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Abstract

Background: In high-dimensional data analysis such as differential
gene expression analysis, people often use filtering methods like fold-
change or variance filters in an attempt to reduce the multiple testing
penalty and improve power. However, filtering may introduce a bias on
the multiple testing correction. The precise amount of bias depends on
many quantities, such as fraction of probes filtered out, filter statistic
and test statistic used.

Results: We show that a biased multiple testing correction results if
non-differentially expressed probes are not filtered out with equal prob-
ability from the entire range of p-values. We illustrate our results using
both a simulation study and an experimental dataset, where the FDR
is shown to be biased mostly by filters that are associated with the hy-
pothesis being tested, such as the fold change. Filters that induce little
bias on the FDR yield less additional power of detecting differentially
expressed genes. Finally, we propose a statistical test that can be used
in practice to determine whether any chosen filter introduces bias on the
FDR estimate used, given a general experimental setup.

Conclusions: Filtering out of probes must be used with care as it
may bias the multiple testing correction. Researchers can use our test
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CHAPTER 5. FILTERING, FDR AND POWER

for FDR bias to guide their choice of filter and amount of filtering in
practice.

5.1 Background

Statistical analysis of high dimensional data, i.e. those for which the number
of parameters p is much larger than the number of samples m, often involves
testing of multiple hypotheses. This is because models typically associate one
parameter to each feature on the microarray used, which may represent a part
of or a whole gene (in case of cDNA arrays and of oligonucleotide arrays in
general) or any genomic section. So if classic statistical methods are used to
analyse the data per feature, computed p-values must be jointly corrected for
multiple testing Benjamini and Hochberg [1995]. Of course, the larger the
number of hypotheses tested, the stronger the correction for multiple testing
must be in order to keep the error rate acceptably low.

To decrease the penalty incurred by multiple testing correction, some arti-
cles (see for example McCarthy and Smyth [2009], Zhang and Cao [2009] and
references therein) make a selection of features prior to the data analysis that,
it is hoped, are more likely to not conform with the null hypothesis. For clar-
ity, we call such features non-null, in contrast with those that follow the null
hypothesis which we call null features. By having a weaker correction for mul-
tiple testing, it is also hoped to improve power. However, such selection may
have undue effect on results. Firstly, by leaving some features out of the anal-
ysis altogether, some non-null features will also be left out, therefore putting
a bound on potential power. Secondly, it is impossible to select only features
that do not follow the null hypothesis - had we known which ones these were,
we would not have needed testing in the first place. So many features, includ-
ing some null, are left in, and as such multiple testing correction must still be
used. However, commonly used multiple testing correction methods rely on the
assumption that the null p-values follow a uniform distribution, which may no
longer be the case amongst the selected features. This may introduce bias on
the corrected p-values.

The effect of feature selection on power to detect probes that are differ-
entially expressed between two groups can also be assessed. Feature selection
yields an increase of the p-value significance threshold and, as a consequence,
the power is largely expected to increase too. However, as we will show this is
not always the case.

Thus feature selection methods may affect both power and overall error
rate estimation. However, neither can be evaluated in practice, as they require
knowledge of which features conform (or not) with the null hypothesis. So it
is not straightforward to know in practice the exact effect of feature selection.
In this paper we shall evaluate the effects of feature selection procedures, first
theoretically and subsequently illustrated by both a simulation study and pub-

66
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licly available experimental data. These selection procedures are often referred
to as “filters”, because they are meant to “filter out” some of the noise (null
features) of the data. We shall consider multiple testing correction methods
that estimate the false discovery rate (FDR), under the assumption that null
p-values follow a uniform distribution (for other FDR estimation methods see
Discussion and Appendix C). We shall describe common types of filter used
in the Methods section, and subsequently study their impact on both overall
estimated error rates and power.

5.2 Methods

Filtering violates FDR methods’ assumption

Here we assume a study setup commonly found in practice, involving gene
expression profiles of two groups of independent samples, with the null hypoth-
esis H0i : µiA = µiB representing no differential expression between the two
groups A and B, for any given gene i, and a corresponding two-sided alter-
native hypothesis Hai : µiA 6= µiB . Let {Vi}, {Ri}, i = 1, . . . , m be sets of
binary variables taking values in {0, 1}, such that Vi = 1 if gene i follows H0,
and Ri = 1 if gene i is left in the data after filtering. Let us also consider
the filter statistic W = W (Z), so that gene i is filtered whenever W (Zi) ≥ w
for a chosen value w, where Z represents a test statistic. Then we can write
Ri = I{W (Zi) ≥ w} for all i. For more details about this setup, see section
“Study design” in Appendix C.

In practice, multiple testing correction still needs to be used after filtering.
Methods that aim at handling the FDR typically assume that, under H0, the
p-values yielded by the statistical test satisfy P ∼ U [0, 1] in general, so multiple
testing correction after filtering requires that their null distribution, represented
by G0, after filtering is represented by GW

0 and also satisfies GW
0 = U [0, 1] for a

given filter statistic W . Its cumulative distribution function (cdf) is

GW
0 (u) = Pr

{

P W
i ≤ u|H0

}

= Pr {Pi ≤ u|Vi = 1, Ri = 1} , (5.1)

thus the equality GW
0 (u) = G0(u), for all u, holds if, and only if,

Pr {Pi ≤ u|Vi = 1, Ri = 1} = Pr {Pi ≤ u|Vi = 1} , (5.2)

which means that Ri must be independent of Vi and of Pi. In other words, if
the filter selects null features from the entire range [0, 1] with equal probability,
then the null distribution of the p-values remains U [0, 1]. This assumption is
notably difficult to check, as it is not known which of the remaining p-values
follow U [0, 1]. Note also that this is not required from alternative features.
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Filter statistics

Various criteria are used by researchers to filter features out of a dataset. We
aim at evaluating filter effects on error estimates and power and, as such, will
consider a few filter types used in practice, but these are not intended to cover
all possible filters.

A commonly used method involves leaving out of the dataset features with
measurement very close to, or less than, background. We shall refer to this as
the s ignal filter, and we base it on the average signal observed for the feature
over the two groups, i.e. WS(Z) = (X̄+Ȳ )/2. A second type of filter commonly
used is based on the absolute value of the (log) fold change, i.e. WF C(Z) = |X̄−
Ȳ |. It aims at leaving out of the analysis features with too small a fold change
to be biologically interesting, and we shall refer to it as the f old change filter.
A third type of filter of practical interest leaves out of the analysis features that
overall vary less than a certain given threshold. This variance filter assumes
that the feature-specific variance reflects how much discrimination that feature
may yield between the groups, and we shall express it as WV (Z) = S2

Z .
The aforementioned statistics will be used to filter out uninformative fea-

tures here.

Effect of filters on multiple testing correction

Multiple testing correction can be done in a variety of ways. Essentially, meth-
ods aim at controlling/estimating either one of two different error types, namely
family-wise error rate (FWER) and false discovery rate (FDR). In most gene
expression data analysis applications, it is of interest to handle the FDR, as
it makes more sense to talk about the proportion of false positives in a list of
genes declared differentially expressed, instead of the probability of making at
least one mistake in all tests. For this reason, we focus on methods that aim at
handling the FDR, most of which assume that null p-values follow a U [0, 1], so
can be biased by the use of a filter that affects the validity of this assumption.

Thresholds for significance yielded by multiple testing methods increase
as the number of hypotheses tested m decreases. For example, consider the
original Benjamini and Hochberg [1995] step-up procedure for (strong) control
of the FDR for independent test statistics, which can be described as follows.
In order to control the FDR at level φ, reject the null hypothesis H0i whenever
the p-value Pi is no greater than (iφ)/m for each i = 1, . . . , m. When some filter
is applied to the data, resulting in γm features retained for further analysis,
the new FDR threshold becomes (iφ)/(γm), which is larger than the one for all
features as 0 < γ < 1. This suggests that an improved power may result from
filtering, as a larger threshold may select more truly differentially expressed
genes. However, the actual effect on power and on achieved FDR depends on
the filter statistic used. To consider those analytically it is convenient to write
the multiple testing procedure as an explicit function of the empirical cdf of
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the p-values.
The commonly used FDR-controlling multiple-testing procedures suggested

by Y. Benjamini and co-authors can all be expressed in terms of the empiri-
cal cdf of the p-values Gm Finner et al. [2007]. Indeed, consider the general
procedure of selecting p-values Pi satisfying Pi ≤ u∗, where

u∗ = max
u

{g(ui, φ) ≤ Gm (u) , 0 ≤ u ≤ 1}, (5.3)

and u represents possible values for the random variables {Pi} (i = 1, . . . , m).
Then different functional forms of g(ui, φ) will yield the different FDR methods:
Benjamini and Hochberg [1995]’s step-up procedure uses g(u, φ) = u/φ, the
adaptive FDR of Benjamini et al. [2006], which corrects for the proportion of
null features π0, uses g(u, φ) = (π0)u/φ, both independent of i, and Benjamini

and Yekutieli [2001]’s method uses g(ui, φ) = u/φ
∑i

j 1/j. For more details see
section “FDR methods and p-values distributions” in Appendix C.

The effect of filtering on power can then be evaluated by using the relation
Gm(u) = π0G0 − (1−π0)Ga(u). Doing so the expression on the right-hand side
of equation (5.3) becomes maxu{[g(ui, φ) − π0G0(u)]/(1 − π0) ≤ Ga (u) , 0 ≤
u ≤ 1}. For example, if after filtering the original Benjamini-Hochberg FDR
is to be used, the power is given graphically by the intersection GW

a (u) =
[1/(1 − πW

0 )][u/φ − πW
0 GW

0 (u)], where πW
0 represents the proportion of null

features after filtering (see Ferreira and Zwinderman [2006] when no filtering is
applied). For one example of such a development, see section “FDR and power
as function of fraction filtered out” in Appendix C.

For some methods it is not possible to express them as explicit functions of
the p-values’ cdf. Then numerical methods can be used to evaluated the effect
of filtering, as done in our simulation study in section “Simulation study”.

Student’s t test

To further evaluate the effect of filtering, null and alternative distributions of
the test statistic, before and after filtering, must be known. A commonly used
statistic in the study setup used here to test the null hypothesis H0 : µX = µY

against Ha : µX 6= µY is

T =
X̄nX

− ȲnY

[

V̂ar
(

X̄nX
− ȲnY

)

]1/2
=

X̄nX
− ȲnY

Sp

√

1/nX + 1/nY

, (5.4)

where we assume for simplicity that σ2
X = σ2

Y = σ2, so S2
p represents the

pooled variance. Under H0 the distribution of T is a Student’s t distribution
with ν = nX + nY − 2 degrees of freedom.

The effect of filtering can be evaluated via conditioning on the filter statis-
tics. For example, if a fold change filter is used, the conditional cdf can be
written as
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Figure 5.1: Probability density functions (pdf) of p-values for two filters un-
der the null hypothesis (tν=8 (δ = 0)) (left panel) or alternative hypothesis
(tν=8 (δ = 1)) (right panel). For each filter 25% of the hypotheses are removed.
The fold-change filter is shown as a solid line, the variance filter as a dashed
line, and the pdf with no filtering is shown as a dashed line. For more details
see section “Filtering and p-values distribution” of Appendix C.

FTW
(t) = Pr{T ≤ t | |X̄nX

− ȲnY
| ≥ w}

=
Pr{T ≤ t, |X̄nX

− ȲnY
| ≥ w}

Pr{|X̄nX
− ȲnY

| ≥ w} . (5.5)

Similar expressions can be derived for the other filter statistics (see section
“Density of test statistics after filtering” in Appendix C).

Once an expression for the pdf of the test statistics after filtering is obtained,
we can obtain the pdf and cdf of the p-values using the relation P = 2[1 −
F0(|T |)], which holds since P = P{T > |t0|} = 1 − F (|t0|) + F (−|t0|) and
F is assumed to be symmetric (see also section “Distribution of p-values” in
Appendix C). Similar relationships can also be obtained for non-symmetric
F . For expressions corresponding to some of the filter statistics, see section
“Filtering and p-values distribution” in Appendix C.

Based upon such expressions obtained with the various filter statistics, we
display the effect of each filter on the null and alternative distributions of p-
values on figure 5.1. From it we can see that the fold change filter leaves
out mostly features with p-values near 1, whilst the variance filter leaves out
more p-values near 0, suggesting the latter is more likely to leave out non-null
features.
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A test for filtering-induced FDR bias

Since the bias on the FDR is yielded by the effect of a filter W on the null p-
values distribution G0, we propose to compare an estimate of the distribution
GW

0 to the expected uniform. In the setup used here, GW
0 can be estimated by

performing the same statistical analysis on the dataset where row and column
labels are permuted, and subsequently applying the filter W . Then ĜW

0 can be
compared to the uniform using a Kolmogorov-Smirnov test, yielding a p-value
q. In fact, we use a Benjamini-Hochberg FDR-correction for the p-values,
that is equivalent to a one-sided Kolmogorov-Smirnov and thus will be less
conservative. This process can be repeated a number N0 of times, so yielding an
empirical p-value distribution, Gq say, for the comparison between the filtered
null p-value distribution and the U [0, 1]. By comparing Gq to the uniform using
again a Kolmogorov-Smirnov test, it can be concluded whether filtering affects
the null p-value distribution and, as such, FDR estimates. If so, researchers may
wish to either consider other types of filter, or avoid using a filter altogether.
For more details, see section of the same name in Appendix C.

5.3 Simulation study

Study setup

To investigate the properties of the filters described in subsection “Filter statis-
tics”a simulation study is carried out. We use a setup that mimics a microarray
experiment where thousands of features are measured simultaneously, based
upon a setup first suggested by Langaas et al. [2005] and described in detail in
Appendix C. Briefly, per feature a two-sample Student-t test statistic was cal-
culated and converted to a two-sided p-value accordingly. The p-value list was
then filtered using each one of the filter statistics considered here, and subse-
quently FDR-corrected by either one of the following methods: Benjamini and
Hochberg [1995], Benjamini and Yekutieli [2001], Benjamini et al. [2006] and
Storey [2002], represented respectively by BH, BY, aBH and qv. To guarantee
comparability, the same fraction (1 − γ) of p-values was removed in all cases.
For each simulated list, features are declared differentially expressed yielding
an FDR of 5%, and subsequently both the achieved FDR (fraction of false posi-
tives amongst features below FDR threshold) and the observed power (fraction
of p-values below FDR threshold amongst those belonging to non-null features)
were calculated.

Note that FDR estimation using the qvalue method relies on p-values taking
values on the entire [0, 1] interval. Thus, we only used the variance and signal
filter statistics with this method.
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Figure 5.2: Filter statistic distribution for all features (blue histogram) and
separately for features for which H0 holds (blue line) and Ha holds (red line)
for one simulated dataset. Each one of these filter statistics leaves features
out with small statistic values. The vertical gray lines mark deciles of the
distribution for all features, so that if 10% of the features must be left out,
then they are the ones with value of the filter statistic to the left of the first
vertical gray line, the last vertical line leaves 1% of the data.

Illustration of filter statistics

We shall show how each filter statistic affects power and FDR estimates us-
ing one of the simulated datasets chosen at random. First, the filter statistics
used have little association with each other, as evidenced by the lack of pat-
tern described by the dot clouds (figure C.1). It is also clear that, when using
any of these filter statistics, there is always a fraction of the truly differen-
tially expressed features that is wrongly left out, which can never be declared
differentially expressed.

This can also be seen in figure 5.2, where the empirical distribution of the
filter statistics grouped by the underlying hypothesis is displayed. The gray
vertical lines indicate deciles of the filter, increasing from left to right, so that
if 50% of the data is to be left out then all features with filter statistic up to
the fifth gray line from the left are neglected. Thus, filter statistics that have
the least overlap between their distributions under the null (blue line) and
alternative (red line) hypotheses are expected to improve power, which is the
case with the fold change filter. However, the opposite is true for the variance
and signal filters, implying that these filter statistics tend to leave many non-
null feaures out of the dataset. This is natural, as the fold change filter makes
use of the group labels, which the other ones do not.
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Filtering and fraction removed

An ideal filter only removes null features, thus decreasing the chance of making
false positives. As a consequence the proportion of true null hypotheses, π0,
decreases when compared to the whole set of features. So it is interesting to
compare the filter statistics based upon the behaviour of π0(1 − γ), as the
proportion of features retained γ varies from 1 to 0.

As references, we consider both the best filter possible, which leaves out null
features until there are none left, and a random filter, which leaves out null and
non-null features with equal probability (see section “Simulation study setup”
in Appendix C for detailed descriptions). In figure 5.3 π0(1−γ) for the best and
random filters serve as bounds below and above for all others filters. Amongst
realistic filters, the best performances are obtained with the fold change filter,
although it does not perform as well as the best filter. The variance filter
performs worse than those, which is not surprising as it leaves proportionately
more features out with small p-values than the others (figure 5.1). The worst
performance is yielded by the signal filter, its performance slightly better than
the random filter.

FDR and power

Since some filters are more likely to leave out alternative features than others,
they will also have a different effect on power and achieved FDR. We evaluated
the mean of each of these quantities across all 1000 simulated datasets.

As the FDR is controlled at 5% in all cases, the achieved FDR is expected
to remain constant as the proportion of filtered out features increases, but this
is not always observed (figure 5.4). Indeed, when using either BH or aBH, the
fold change filter yields an increase on the achieved FDR that gets larger as
more features are filtered out. Interestingly, the variance and signal filters do
not have this effect on the achieved FDR. A decrease on achieved FDR, while
not as bad a problem as an increase since it means more conservative results,
is also undesirable and is observed in some degree with all FDR methods. It is
also noteworthy that two of the FDR methods (aBH and, to a smaller extent,
qv) overestimate it even with no filtering, while one (BY) underestimates it over
the entire range. The variance and signal filters showed the smallest induced
bias on the FDR, for all methods considered. From the viewpoints of both
bias at no filtering (x = 0) and trend for increasing values of x, using BH with
variance or signal filter yielded the best results: the achieved FDR was closest
to the required 5% for most filtered-out proportions x.

Our intuition also suggests that power should increase after filtering. Again
here this is proven to not always hold (figure C.2). For example, the power
yielded after using the signal filter almost invariably decreases, so that it is
worse to use this filter than to not filter at all. The power yielded after using
the variance filter increases slightly compared with no filtering, but the amount
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Figure 5.3: Proportion of non-differentially expressed genes as function of the
fraction filtered out x ≡ 1 − γ. Each curve represents the mean of π0(x) over
1000 simulated datasets (error bars are small but not displayed for clarity).
From bottom to top, curves represent the following situations: ideal filter (thin
solid line), fold change filter (solid line, ◦), signal fiter (dashed-and-dotted line,
×), variance filter (dashed line, △) and the random filter (thin solid line). See
Appendix C for a description of the ideal and the random filters.

depends on the FDR method used. The fold change filter seems here to be the
best, yielding considerable increases of power when used.

By considering both measures together a better picture emerges of the cost-
benefit relationship of using each filter statistic. We construct an equivalent
to a ROC curve for this (figure 5.5) using BH. To start with, the signal and
variance filters always yield less power after any amount of filtering, a trend
that gets stronger as the FDR threshold increases. On the other hand, the
test statistic and fold change filters yield an improved power for each FDR
threshold after filtering, for commonly used FDR threshold values up to 0.1 and
filtered out ratios not larger than 0.5. Interestingly, the cost-benefit relationship
between observed power and achieved FDR is constant for the fold change filter,
regardless of the fraction filtered out x, whilst it deteriorates for the other filters
as x increases (figure C.3).
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Figure 5.4: Achieved FDR as function of the fraction filtered out x for the dif-
ferent filter statistics, fixing the FDR with each method at 0.05. Values shown
are the mean FDR over 1000 simulated datasets (the variability of the FDR is
small - not shown). Filters are: solid line = variance, dotted = signal, dashed-
and-dotted = fold change. In all cases the proportion of non-differentially
expressed genes is fixed at 0.8. The q-value method cannot be computed for
the fold-change filter as in this cases the p-value range changes.

Testing for filtering-induced FDR bias

The test for filtering-induced bias proposed (see Methods) can be easily applied
to one of the simulated datasets. All filter statistics considered here are used,
with a range of filtered out fractions (figure 5.6 and figure C.4). After permuta-
tion and filtering, signal and variance filters yield null p-values approximately
uniformly distributed for all filtered-out fractions, whilst the fold-change filter
does not, even if only 10% of the features are filtered out. Correspondingly, the
FDR bias (computed on the data with no permutation) is larger for the two
latter and negligible for the two former filter statistics, relatively for each FDR
method. Note that the achieved FDR curves are very similar to those shown
in figure 5.4, as expected. In a similar way, the corresponding observed power
(not shown) follows the same curves as the ones shown in figure C.2. With the
p-values from the FDR bias test given, we can see that the situations where
bias is introduced are correctly picked up.

Based upon these results, we conclude that the signal and variance filters
introduce no significant FDR bias, but also yield little power gain. The fold
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Figure 5.5: Actual power (y-axis) displayed as function of the Benjamini-
Hochberg FDR fixed at various levels, for the different filter statistics. In each
panel, one curve is displayed for each given fraction of features left out, varying
from 0 (black) to 0.9 by steps of 0.1 (gray shades). In all cases the proportion
of differentially expressed genes is fixed at 0.20. Note that all filters leave out
some alternative features, so the maximum power achievable may be below 1
after filtering.

change filter, on the other hand, does introduce bias on the FDR, but may yield
improved power for φ < 0.1 and 1 − γ < 0.5. So, no filter statistic displays
superior results all-round.

5.4 Experimental data: childhood leukemia

In contrast to a simulation study, in this case it is not known which features are
null or alternative. Since these are essential to measure achieved power and false
discovery rates, we take the same approach as that from van Wieringen and van
de Wiel [2009], which is to choose an experiment with plenty of samples in each
group to be compared, from which small subsets are selected and analysed. The
idea here is to use the dataset with all available samples as the truth, so that
the achieved power is estimated as the number of features found in the subset
as well as in the whole data, divided by the total number of features found in
the whole data. Similarly, the achieved FDR is estimated as the proportion of
features selected in the subset that was not selected in the whole dataset.

We use a leukemia gene expression dataset described and first analysed by
Boer et al. [2009]. Briefly, the dataset consists of peripheral blood samples,
from which RNA was isolated and hybridized to Affymetrix U133A microar-
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Figure 5.6: Boxplots generated by null p-values yielded after permutation is
applied to the simulated data, for varying proportions of features left in the data
(x-axis) using the fold-change filter. For comparison, the distribution yielded
without filtering is shown (leftmost boxplot). Lines represent the achieved
FDR using each of the methods aimed at 5% control level: BH (dashed line
with triangles), aBH (dashed-and-dotted line with crosses), BY (dotted line).
For comparison, the Bonferroni correction is also shown (solid line). Above
each boxplot the p-value yielded by our test for FDR bias is given (’***’ for
< 0.001). The solid thin straight line at 5% represents the FDR threshold used.

rays, according to the manufacturers’ protocol, and the data was subsequently
pre-processed as described by Boer et al. [2009]. We shall use the data cor-
responding to samples with the Tel-AML translocation (n = 44) and Hyper-
diploid (n = 44) of their training cohort (n = 190). To compare the groups, we
apply an empirical-Bayes linear regression model as implemented in the Bio-
Conductor package limma [Smyth, 2005], and the yielded p-values are corrected
for multiple testing by Benjamini-Hochberg’s FDR [Benjamini and Hochberg,
1995]. We evaluate power and FDR bias in three study sizes (8, 16 or 24 samples
selected at random per group) to check if sample size may affect results.

The true positive rate and the achieved FDR were calculated for various
filter thresholds ranging from 0-0.9 using the fold-change, variance and signal
filters (see figure 5.7 and figure C.5). With the FDR level fixed at 5%, as
the fraction filtered out increased the achieved FDRs with both the signal and
variance filters remained stable around 5%, but increased with the fold change
filter, in agreement with the simulation study results (upper-left panel in figure
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Figure 5.7: Achieved FDR as function of the fraction filtered out for the dif-
ferent filter statistics, using an FDR control level fixed at 0.05 (horizontal
solid, black line). Computations are done using randomly selected subsets of
n = 8, 16, 24 samples from each subtype considered. Differential expression is
evaluated using limma, and p-values are FDR-corrected.

5.4). Interestingly, this FDR bias seemed invariant to the sample size. On the
other hand, there is a strong relationship between sample size and observed
power (true positive rate), in spite of the model being used taking advantage
of the large number of genes in the study to improve power for detection of
differential expression. For each fixed sample size, however, results are similar
to those for the simulation study, with the fold change filter improving the
power but the signal and the variance filter having no or the opposite effect.
These confirm our conclusions that power increase via filtering is linked to an
FDR bias.

5.5 Results and Discussion

Filtering features is a common practice in high-dimensional data analysis,
aimed at minimizing the penalty due to multiple testing correction and, conse-
quently, increasing power. As we have shown in this paper, an increase in power
is linked to introducing bias on the FDR. This is because any filter statistic
that filters out only noise is bound to be associated to the test statistic and,
therefore, affects the null distribution of p-values and introduces FDR bias.

The fact that filtering introduces FDR bias is evident from published arti-
cles. For example, Querec et al. [2009] used a fold-change filter to increase their
list of 22 differentially expressed genes to 65, both obtained with 5% FDR. Of

78



5.5. RESULTS AND DISCUSSION

the longer list 33 genes are validated by RT-PCR, of which 26 are confirmed,
yielding in fact an FDR between 11 and 20%. The sought power increase could
have been achieved instead by using a more suitable analysis model for their
data than a per-gene ANOVA, such as the one proposed by Smyth [2005] and
implemented in the BioConductor package limma.

We have assumed in this study that a Student’s t test, or an empirical Bayes
linear regression model, is used to find differential gene expression between the
two groups. However, results are not specific to these models. Indeed, had
the Wilcoxon rank-sums test been used similar results would be produced. To
illustrate this, we show power and achieved FDR computed in our simulation
study using this test statistic and the Benjamini-Hochberg FDR (see figure
C.6). The FDR curves (left pannel) and the power curves (right pannel) are
very similar to the ones produced using the t-test statistic.

The conclusion that FDR bias may result from the use of filtering is also
not dependent upon the shape of the alternative hypothesis. Indeed, in much
the same way as for the two-sided alternative, for a one-sided alternative such
as is the case when an F test is used in ANOVA, it still holds that whenever
GW 6= G the F-test p-values do not follow a uniform distribution under H0.

Filtering can also affect the fit of models that estimate the distribution of
one (or more) parameters across all genes, such as empirical Bayes models like
the one proposed by Smyth [2005]. Indeed, such models rely on a large number
of features with certain common characteristics, and if for example half of the
features with small variance are left out, it can be that the distribution for the
sample variance may no longer be well-described by the model.

Other authors have also attempted to handle the effect of filtering on mul-
tiple testing correction. McClintick and Edenberg [2006] used permutations
to estimate the number of false positives, but ignored the fact that if a filter
is used the null distribution of p-values may be affected. Hackstadt and Hess
[2009] also propose a framework that makes objective use of the p-value distri-
bution, but assumed without criticism that power is increased after filtering.
Our proposed framework allows us to not only demonstrate that an FDR bias
may be introduced by filtering, yielding important understanding about the
problem, but also to evaluate this bias, and its effect on power, using a variety
of FDR formulations and filter statistics.

To the best of our knowledge, we are the first to propose a statistical test
to check if filtering introduces FDR bias. It can be used in any application
for any combination of statistical model, filtering setup and FDR method. In
our simulation study filter statistics that use group information are found to
introduce bias, whilst those approximately independent from group information
do not, as expected. We suggest researchers use this test to make decisions of
whether or not to apply any filtering to the data.

Our FDR bias test differs from examining the density of the left-out values
as mentioned elsewhere [Hackstadt and Hess, 2009]. We believe that, as these
p-values typically include a (hopefully, but not always, small) set correspond-
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ing to non-null features, even if the filtered-out p-values do have an empirical
distribution close to the uniform, it can still be that the FDR is biased.

A violation of the uniform null distribution assumption also occurs when
there is correlation among features, as previously pointed out by Yekutieli
and Benjamini [1999], Dudoit et al. [2008]. This served as motivation to pro-
pose resampling-based FDR procedures which preserve the original dependence
structure among features. We checked if these FDR-estimating methods would
be affected by filtering in our simulation study (see section C.12 and figure C.7
therein). Our conclusion is that the methods tested do not avoid introducing
FDR-bias as a result of filtering in the context considered. Further research
would be needed to better understand the behaviour of these FDR methods
when filters are used.

On the basis of our results, we believe it is unlikely that a two-step ap-
proach involving testing and filtering improves power and does not bias the
FDR. Our conclusion is thus that two-step approaches should be avoided in
general, extending to a general microarray study the conclusions of Pounds
and Cheng [2005] that “the use of even the best filter may hinder, rather than
enhance, the ability to discover interesting probe sets or genes”, obtained for
filters such as present/absent calls (Affymetrix microarrays) using simulation
and experimental data.

It often occurs that researchers wish to prioritize features via fold change,
say, from a compiled list of differentially expressed genes, estimated to contain
a fixed percentage φ false positives, with the goal of making a shorter list for
in-lab validation. While this does not bias the multiple testing correction as
is done a posteriori, researchers should be aware that the shorter list is no
longer expected to have the same percentage φ of false positives. Here we
note that, in our simulation study, for some combinations of FDR estimation
method and filter the FDR was preserved after post-FDR filtering, but no power
improvement resulted (see section C.13 and figures C.8 and C.9 therein). A
better alternative would be to incorporate the fold-change filter threshold into
the statistical model used, as suggested by McCarthy and Smyth [2009] and
Zhang and Cao [2009]. A similar approach could be used to derive a statistical
test that combines a two- or multiple-group comparison and the variance filter,
based upon the F statistic. In general, however, for each choice of statistical
model and filter statistic a new combined model needs to be worked out.

Alternatives, for any generic filter and test, to avoid filtering-induced FDR-
bias would be to adapt the multiple testing correction method to relax the
assumption of uniform distribution for the null features in a way that filtering-
induced bias is avoided, or to devise a way of correcting the FDR bias. These
issues deserve further research if two-step approaches are to yield correct results.
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Conclusion

We showed both in theory and in applications that, when a statistical test
follows a filter to prioritize features for further analysis, power increase is linked
to an FDR bias, making results look too optimistic. Our proposed statistical
test for FDR bias can be used to guide researchers in their decision as to whether
or not to filter, and as to the filter setup to use, such as the filter statistic and
the proportion of features filtered out.

Software

All the computations were performed using R version 2.10.0 [R Development
Core Team] and the BioConductor (2.5) packages multtest (2.2.0), qvalue
(1.19.1) and genefilter (1.28.0). All the figures were made using basic R
graphics and packages geneplotter (1.24.0), lattice (0.17-26) and RCol-

orBrewer (1.0-2). All scripts used here are available from the authors upon
request. R scripts and functions implementing the simulation and reproducing
the figures and results presented here can be found at: http://www.humgen.
nl/MicroarrayAnalysisGroup.html.
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