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Abstract

In the design of microarray or next-generation sequencing experi-
ments it is crucial to choose the appropriate number of biological repli-
cates. As often the number of differentially expressed genes and their
effect sizes are small and too few replicates will lead to insufficient power
to detect these. On the other hand, too many replicates unnecessary
leads to high experimental costs. Power and sample size analysis can
guide experimentalist in choosing the appropriate number of biological
replicates. Several methods for power and sample size analysis have re-
cently been proposed for microarray data. However, most of these are
restricted to two group comparisons and require user-defined effect sizes.

Here we propose a pilot-data based method for power and sample size
analysis which can handle more general experimental designs and uses
pilot-data to obtain estimates of the effect sizes. The method can also
handle χ2 distributed test statistics which enables power and sample size
calculations for a much wider class of models, including high-dimensional
generalized linear models which are used e.g. for RNA-seq data analysis.
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CHAPTER 4. POWER CALCULATIONS

The performance of the method is evaluated using simulated and ex-
perimental data from several microarray and next-generation sequencing
experiments. Furthermore, we compare our proposed method for estima-
tion of the density of effect sizes from pilot data with a recent proposed
method specific for two group comparisons.
keywords:Density of effect-sizes; Discrete inverse problem; High-dimensional
generalized linear models; Non-negative Conjugate Gradients algorithm.

4.1 Introduction

Sample size determination is concerned with the question of determining the
minimum number of samples necessary to demonstrate the existence (or ab-
sence) of a difference between two or more populations of interest. The number
of samples should be sufficient in that the statistical test will reject the null hy-
pothesis, when there really exists a difference, with high probability or power.
Traditional methods for sample size determination apply only to a single hy-
pothesis test and cannot directly be applied to microarray or next-generation
sequencing data.

Lee and Whitmore [2002] were one of the first who describe power and
sample size analysis for microarray studies. The multiple testing problem was
controlled using the easy to apply family-wise error rate. However, controlling
the family-wise error rate is often too conservative for microarray data. Con-
sequently, methods were proposed that control the multiple testing problem
using the false discovery rate e.g. [Pawitan et al., 2005, Liu and Hwang, 2007,
Tong and Zhao, 2008]. Recently, those methods were further adapted for using
pilot data in order to obtain more realistic estimates [Ferreira and Zwinderman,
2006a, Ruppert et al., 2007, Jørstad et al., 2008], albeit restricted to two group
comparisons.

One important difference between the current methods is how effect sizes,
i.e., the fold-changes of the differentially expressed genes, are obtained and
incorporated. For example, some authors considered a single fixed effect size
for the differentially expressed genes [Tsai et al., 2004, Pawitan et al., 2005,
Shao and Tseng, 2007], while others [Jung, 2005, Tong and Zhao, 2008] took
the largest effect sizes of a pilot study (e.g. largest observed two-sample t
test-statistics). The method by Liu and Hwang [2007] can handle a given
distribution of effect sizes, parametric or non-parametric, although they do not
incorporate its estimation in their procedure. A few methods estimate the
distribution of effect sizes from pilot data [Ferreira and Zwinderman, 2006b,
Ruppert et al., 2007, Jørstad et al., 2008, Efron, 2009, Matsui and Noma, 2011,
Long et al., 2012]. However, these methods are only applicable to two-group
comparisons using test statistics that can be approximated by the Student’s t
or the normal distribution, so methods for more general comparisons are still
lacking.

Here we present a general pilot data-based method for power and sample
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4.2. METHOD

size determination for high-dimensional data, controlling the FDR by using the
adaptive version of the Benjamini-Hochberg method [Benjamini and Hochberg,
2000]. The method is based on the framework provided by Ferreira and Zwin-
derman [2006b], extended to handle test statistic distributions other than the
normal. Our method can be used to estimate power of studies involving not
only two-group comparisons, but also multiple-group comparisons, tested using
an F statistic. Furthermore, our method can be used for power estimation of
RNA-seq studies, where data analysis use a generalized linear model framework
leading to χ2 statistic.

The article is organized as follows. Section 4.2 describes estimation of the
proportion of truly null hypotheses and the density of effect sizes. In Section
4.3 the performance of the power and sample size method is evaluated using
simulated data, two microarray data sets and one data set derived from a
RNA-seq experiment. We conclude with a discussion in Section 4.4.

4.2 Method

The inverse problem

Consider a set of test statistics T1, · · · , Tm. For example, these could be ob-
tained from a microarray or RNA-seq experiment investigating some biological
hypothesis of interest on m genes, possibly involving two or multiple condi-
tions. Suppose also that a user-defined statistical model was chosen that led
to the test statistic T , i.e. Student’s t−, F− or χ2-test. Each individual test
statistic will either follow the null hypothesis or the alternative hypothesis. So
let us represent by F0 and Fa the null- and alternative cumulative distribution
functions of the test statistics, which follow from the chosen statistical model.
Then each test statistic T follows the mixture distribution given by

F (t) = π0F0(t) + (1 − π0)

∫

Fa(t; θN)fΘ(θ)dθ, (4.1)

where F0 and Fa are known, whilst the mixing coefficient or proportion of truly
null hypotheses π0 and fΘ the density of effect sizes are unknown. The integral
is over the support of the test statistic T .

Ferreira and Zwinderman [2006a] have shown, under quite general condi-
tions, how the power can be calculated while controlling the FDR at a de-
sired level, within this mixture framework. The average power of the adaptive
Benjamini-Hochberg approach is given by Ga(u∗; N), where u∗ is the unique
positive solution of the equation

Ga(u; N) = u
π0(1 − α)

α(1 − π0)
, (4.2)

with α representing the desired FDR level and Ga() is the distribution of the
p-values under the alternative hypothesis. Moreover, they have shown, given

47



CHAPTER 4. POWER CALCULATIONS

estimates of π0 and fΘ, how power and sample size determination can be per-
formed when test statistics approximately follow a normal distribution, i.e.
Fa(t; θN) = Φ(t−θN), with Φ() representing the cumulative distribution func-
tion of a standard normal [Ferreira and Zwinderman, 2006c]. For other sample
sizes than the pilot-data, Ĝa(u∗; N ′) gives us an estimate of the average power
achieved with sample size N ′ via

Ĝa(u; N ′) =

∫

Γ(u, θ; N ′)f̂Θ(θ) = u
π̂0(1 − α)

α(1 − π̂0)
, (4.3)

where Γ(·, θ; N ′) is the distribution of a p-value under the alternative hypothe-
ses with effect size θ and sample size N ′.

In this approach, it is thus essential to assume that the effect size θ is
independent of the sample size N . We show that this assumption holds under
more general settings, i.e. that the departure from the null distribution can
be factored as an effect size and a sample size, for the commonly used test
statistics: Student’s t, F and the χ2 statistics—see Appendix B.1.

To obtain estimates of π0 and fΘ, equation (4.1) must be solved. Solving
equation (4.1) for fΘ is called an inverse problem. Specifically, equation (4.1)
is a Fredholm integral equation of the first kind. These problems are known to
be ill-posed as the discretized versions of these equations lead to ill-conditioned
systems of equations. Regularization methods have been proposed for solving
these kind of problems [Tikhonov, 1963, O’Sullivan, 1986, Hansen, 2010].

The integral of equation (4.1) represents a convolution if Fa belongs to
a location-family of distributions, e.g. Fa(t; θN) = Φ(t − θN), then explicit
solutions exist [Delaigle and Gijbels, 2007]. This led to the proposal for a
kernel deconvolution estimator for estimation of the density of effect sizes by
Ferreira and Zwinderman [2006a]. Nevertheless, numerical implementations
are not straightforward as numerical integration of highly oscillating functions
are involved. Implementations based on the Fast Fourier Transform lead to
fast and stable solutions [Delaigle and Gijbels, 2007, van Iterson et al., 2009].

Unfortunately the integral of equation (4.1) does not represent a convolu-
tion in general. Furthermore, the presence of π0 and the constraints on the
solution that, fΘ should be a valid density meaning everywhere non-negative
and integrate to one, make equation (4.1) an integral equation with a twist.

Discretization of the integral equation can be done in many ways: approx-
imating the integral numerically or by first representing the density of effect
sizes as a sum of basis functions and then using numerical integration. See
Appendices B.2 and B.3 for an example of the former approach.

The discretized inverse problem can then be written as a linear system of
equations, such as Ax = b. The matrix A is typically ill-conditioned. For
example, when the integral is approximated on a fine grid two consecutive
columns of A become nearly identical, therefore, A will not be of full column
rank. In the next two sections we described two different approaches for solving
the discrete inverse problem.
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Tikhonov solution of the discrete inverse problem

Ridge regression was proposed by Hoerl and Kennard [1970] to solve regression
problems with multicollinearity. Ridge regression is similar to the earlier pro-
posed regularization method for solving discrete ill-posed problems of Tikhonov
[1963]. Tikhonov proposed to force the L2-norm of the solution not to exceed
a certain value thereby the solution is stabilized or regularized. Solving a dis-
cretized version of equation (4.1) using Tikhonov regularization leads to the
following minimization problem:

min
x

||b − Ax||22 + λ2 ||x||22. (4.4)

The first term represents the usual least-squares term and the second term the
constraint on the size of the solution. The weight of the constraint is balanced
by λ, a positive value. Equation (4.4) can be reformulated as an ordinary
least-squares problem

min
x
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whose solution is given by

xλ = (AT A + λ2I)−1AT b. (4.6)

Several methods have been proposed for finding the optimal regularization pa-
rameter in the regression literature; such as cross-validation, generalized cross-
validation or Akaike’s information criterion [Hastie et al., 2001, Ruppert et al.,
2003]. However, it turns out that these methods do not always work for discrete
inverse problems as can be seen by a plot of the generalized cross-validation
error as a function of λ shown in the upper-left panel of Figure 4.1. This
plot is useless for finding the optimal value of λ. When plotted on a double-
logarithmic scale, shown in the lower left panel of Figure 4.1, the generalized
cross-validation error as function of λ represents an S-shaped curve, but still
has no clear minimum (Varah [1983] made the same observation).

Hansen and O’Leary [1993] advocated the L-curve for selecting the regu-
larization parameter for ill-posed problems. The L-curve is a log − log plot
of the solution norm versus the residual norm. The general shape is that of
an ‘L’ where the vertical part represent under-smoothing and the horizontal
part over-smoothing. Based on heuristic arguments they propose to use the λ
that reflects the corner of the curve (see upper-right panel of Figure 4.1). By
plotting or calculating the curvature of the curve the corner can be located.

In a similar way, using an estimate of the curvature, we could locate the
first corner of the S-curve. The first corner reflects the transition from slow
to rapid increase of the generalized cross-validation error when reducing the
model complexity (see lower-left panel of Figure 4.1).

Figure 4.1 suggests that there is a close relation between the generalized
cross-validation error on the log-scale and Akaike’s information criterion; com-
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pare Figure 4.1 lower-left and -right panels. In Appendix B.4 we give a verifi-
cation of this observation.
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Figure 4.1: Upper-left panel: Generalized cross-validation error as function of
λ. Lower-left panel: Generalized cross-validation error on double logarithmic
scale. Upper-right and lower-right panel: L-curve and Akaike’s information
criterion as function of λ, respectively. For λ an equidistant grid of 50 points
from 10−10 to 10+10 was used. A × indicates the optimal penalty parameter
automatically selected as described in the text. These plots were generated
using the simulated data, described in Section 4.3 “Example 1: Two group”,
using method B with grid-size 250.

One disadvantage of the linear Tikhonov approach is that it can lead to
a solution that contains negative values, which in turn leads to a non-valid
density of effect sizes (see left-panels of Figure 4.2, more detail on the data is
given in Section 4.3 “Example 1: Two group”). To overcome this discrepancy
one could cast the linear problem to a nonlinear one by the transformation
x = exp(z) (where exp is taken element wise) and solve for z. Solving such
a nonlinear discrete inverse problem leads necessarily to an iterative approach
[Hanke et al., 2000, Calvetti et al., 2004]. Unfortunately, solving the nonlinear

50



4.2. METHOD

discrete inverse problem as proposed by Hanke et al. [2000], equation (4.5) with
x = exp(z), has not yet produced satisfying results. For this reason, we will
take a different route to obtain a valid estimate of the density of effect sizes.

Constrained solution of the discrete inverse problem

Projection methods like the Conjugate Gradients method of Hestenes and
Stiefel [1952] are another popular way of solving discrete inverse problems, es-
pecially the Conjugate Gradients Normal equation Residual Method (CGNR)
[Golub and van Loan, 1996] is very well suited for our problem. Interest-
ingly, the Conjugate Gradients method or partial least-squares, as it is called
in the chemometrics literature, is related to ridge regression [Frank and Fried-
man, 1993]. For example, Phatak and de Hoog [2002] show that the partial
least-squares method has similar shrinkage or regularizing properties as ridge
regression.

The CGNR method is a Conjugate Gradients method applied to the normal
equations AT Ax = AT b. The kth iterative solution x[k] of the CGNR method
is defined as the solution to the minimization problem

x[k] = min
x

||Ax − b||22 s.t. x ∈ Kk, (4.7)

where the Krylov space Kk is defined as the span of powers of the matrix AT A

applied to AT b:

Kk ≡ span{AT b, (AT A)AT b, . . . , (AT A)k−1AT b}. (4.8)

The Conjugate Gradients method is a very efficient algorithm that generates
solutions that lie in a Krylov space where the number of iterations plays the
role of the regularization parameter [Phatak and de Hoog, 2002] (see Appendix
B.5 for a derivation that shows why the solution of a least-squares problem lies
in the Krylov space).

Like the linear Tikhonov method, the CGNR method does not constrain
the solution to be non-negative. However, using the zero-vector as starting
point the first iterations all gave non-negative solutions. This led us to suggest
to stop the CGNR method just before the first negative values are introduced,
leading to a non-negative solution. The Conjugate Gradient method applied
to discrete inverse problems is known to show semiconvergence, the optimal
solution is reached before convergence. This further supports our early stopping
rule. The performance of our stopping rule was evaluated using simulated data,
described in Section 4.3 “Example 1: Two groups”, by calculating the relative
error, defined as

∣

∣

∣

∣

∣

∣
xtrue − x[k]

∣

∣

∣

∣

∣

∣

2
∣

∣

∣

∣xtrue
∣

∣

∣

∣

2

, (4.9)
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where x[k] represents the regularized solution e.g. at the kth iterate of the
CGNR method. The upper panel of Supplementary Figure B.1 shows the rela-
tive error for 25 simulated data sets using the CGNR method, the × indicates
solution x[k] with all elements ≥ 0. According to our stopping rule, the ma-
jority of the selected solutions have relative error near the lowest point. For
comparison, the lower panel shows the relative error for Tikhonov regulariza-
tion, where the optimal solution is obtained using the L-curve method (some
of these solutions do not lead to valid densities).
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Figure 4.2: Example 1: Estimated density of effect sizes on a grid of 750 points.
Left panels using the Tikhonov regularization and right-panels CGNR method.
In the upper panels method A, an estimate of the density of test-statistics, is
used in the middle panel method B and lower panel method C.
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4.3 Examples

Simulated Data

Example 1: Two groups

In Appendix B.3 we described one method, using an estimated density of the
test statistics, for estimation of both π0 and the density of effect sizes. Our
approach also allows estimation by using an empirical distribution of the test
statistics or transformations thereof, such as an estimated distribution of the
p-values. In this example we will show how accurate π0, the power and the
density of effect sizes are estimated using these three approaches which we will
refer to as method A: estimated density of the test statistics; method B: esti-
mated cumulative distribution of the test statistics; and method C: estimated
cumulative distribution of the p-values.

The simulation study represents a two group microarray experiment with
m = 5000 features and N = 10 samples per group. Let Rij and Sij , i =
1, . . . , m, j = 1, . . . , N be random variables where Sij ∼ N(−µi/2, 1) and Rij ∼
N(µi/2, 1) with the first µi = 0 for i = 1, . . . , m0 and the remaining µi for
i = m0 + 1, . . . , m were drawn from a symmetric bi-triangular distribution as
described by Langaas et al. [2005]. A total of 25 data sets were simulated
with the proportion of non-differentially expressed features fixed at π0 = 0.8.
Additional technical noise is added to the model using X ∼ log(eR + eǫ) and
Y ∼ log(eS + eǫ) with ǫ ∼ N(0, 0.12), so that the noise is positive and additive.

A simple t test was applied to each of the 5000 features to obtain a vector
of test statistics and corresponding p-values. The FDR was controlled at 0.1
using the adaptive Benjamini-Hochberg method. We also evaluated the effect
of the numerical integration error by using different grid sizes: 100, 250, 500
and 750 points.

The observed power, calculated as the mean proportion of correctly declared
significant features out of all alternative features (1000) over 25 simulated data
sets is slightly above 0.3, indicating that the effect sizes are small.

Using method A the mean power is mostly overestimated while π0 is es-
timated more accurately (Figure 4.3). Method B tends to overestimate both
power and π0. Finally, method C yields the most accurate average power. All
three methods have comparable estimates of the density of effect sizes (Figure
4.2). Note that there is little gain in using grid size 750 compared to 500 as
it does not improve π0 estimates. Increasing the grid size used for the numer-
ical integration may help by approximating the integral more accurately, but
it will also increase the ill-conditionedness of the inverse problem. Other inte-
gration methods can then be considered as alternatives, e.g. the trapezoidal or
Simpson’s method, which can have similar accuracy with a smaller grid size.
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Figure 4.3: Example 1: Estimates of the proportion of non-differentially ex-
pressed genes and the average power. Dashed horizontal lines are indicating
a) the true π0, left-panel, and b) estimated expected power, right-panel. The
x-axis indicates the different grid sizes used for the numerical integration and
the use of different estimation methods for the density of effect sizes, where
in each rectangular region the first box-plot indicates the method A, second
method B and third C.

Example 2: Power prediction

In this example we examine the quality of power predictions based on pilot-
data are using t- and F -test statistics. The same simulation set-up as described
in Section 4.3 “Example 1: Two group” was used. We only show results us-
ing method A with a grid-size of 500 and the proportion of non-differentially
expressed genes of π0 = 0.7. We considered three pilot-data sample sizes; 5,
10 and 15 per group and calculated t-test statistics and p-values for each. For
the F -test statistics we just square the t-test statistics, so each gene under the
null hypothesis follows a central F with (1, N − 2) degrees of freedom. The
power was predicted for per-group sample sizes of 15, 20, 25 and 30. In order
to assess how good the predictions are, the true positive rate of simulated data
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sets with these larger sample sizes are calculated using the adaptive Benjamini-
Hochberg FDR at 0.1. Since, in a simulation study, it is known apriori which
genes are differentially expressed the true positive rate can be calculated as the
number of declared differentially expressed genes that are truly differentially
expressed over the total number of truly differentially expressed genes. The
whole procedure was repeated 25 times (see Figure 4.3).

The predicted power increases most for the smaller sample sizes, leveling
off for larger sample sizes, as expected. Power predicted using the F -statistics
is a little higher than the t-statistics, and is in better agreement with the true
positive rate. For the t-statistics the pilot-data of sample size 5 per group
has the largest variation, whereas for the F -statistics the pilot-data set with
sample size 15 per group. This is probably, because for larger sample sizes the
density of effect sizes is better estimated then for smaller sample sizes were
the density of effect sizes is estimated to have larger effect sizes. As the power
is increasing faster for the smaller effect sizes this could give rise the large
variability observed for the larger sample sizes.

Example 3: Comparing estimation of the density of effect sizes

Recently, Long et al. [2012] proposed an improvement of the method by Ruppert
et al. [2007] for estimation of the density of effect sizes, in case test statistics
were derived from a two-group comparison. They assume the density of effect
sizes can be represented by a normal density or convex combination of normal
densities which yields a fast estimation method. This assumption seems to
favour estimating effect size densities that are unimodal. In order to illustrate
this, we run two simulation studies. The first one was based on an unimodal
effect size density, as assumed by Long et al. [2012], and showed slightly better
results using Long’s method compared to ours, both in terms of estimated π0

and in terms of the Hellinger distance between the estimated and true effect
size densities (Supplementary Figures B.2 and B.3).

The second simulation study uses the bitriangular density of effect sizes
proposed by Langaas et al. [2005], as in our example 1, and showed better
results using our method compared to Long’s (Supplementary Figures B.4 and
B.5). Thus, when the true effect size density is bimodal, our method yields a
better fit to the data compared to Long’s method. Our method does not make
specific assumptions about the effect size density shape and is, therefore, more
flexible.

Our method estimates the density of effect sizes and π0 simultaneously. π0

estimates of both simulations are similar to those of the methods proposed by
[Storey, 2003, Langaas et al., 2005] (Supplementary Figures B.2 and B.5).
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Figure 4.4: Example 2: Left panel predicted power using t-statistics and right
panel using the F-statistics for sample sizes ranging from 15-30. The white box
indicates the true positive rate over 25 simulated data sets for the sample sizes
ranging from 15-30. The red, green and blue boxes are predicted power based
on pilot-data of size 5, 10 and 15.

Experimental Data

Example 4: Two group

In this example we carry out power and sample size analysis on experimental
microarray data with a two-group design, containing 38 arrays. We take subsets
of the data and do power predictions for the full-sized data set. Thus the
objective is to compare the predicted power with those for the full-sized data
set.

The data was taken from the multtest (2.10.0) package. Briefly, the data
contained 38 tumor samples divided in two groups; 27 acute lymphoblastic
leukemia (ALL) samples and 11 acute myeloid leukemia (AML) samples. Ran-
domly, 25 subsets were constructed containing 15 ALL and 5 AML samples.
Again, simple t tests were applied to obtain test-statistics and corresponding
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p-values.
From Table 4.1, it can be seen that the mean predicted power is close to

that of the full sized data for all three methods (Supplementary Figure B.6).
These results show that the predicted power is within an acceptable range of
the observed power of data with same sample size as was used for the prediction
of the power.

Table 4.1: Example 4: Estimated average power for the full sized data and
subsets of data.

Method Full data Subsets
A 0.78 0.781(0.042)
B 0.64 0.73 (0.05)
C 0.79 0.77 (0.06)

1mean, 2standard deviation

Example 5: Factorial design

In this example we will illustrate how a power and sample size analysis can
be performed for a factorial design. The data for this example is taken from
the estrogen (1.8.7) package from BioConductor [Gentleman et al., 2004]. The
data gives results from a 2×2 factorial experiment on MCF7 breast cancer cells,
involving as factors estrogen (present or absent) and length of exposure (10 or
48 hours). The objective was to identify genes that respond to an estrogen
treatment and to classify these genes as early or late responders, which can be
done in terms of an F-test statistic. We followed the analysis as presented in
the limma users guide to obtain the set of F -test statistics and corresponding
p-values.

We will estimate the average power again using the three estimation meth-
ods, A, B and C, as described earlier. Estimated density of effect sizes do not
differ much between the three approaches (upper panel of Figure 4.5). As a
result, the predicted power varies between the three approaches only for the
smallest sample size (lower panel of Figure 4.5). Indeed, for the observed total
sample size 8 the power is estimated to lie in the range [0.45, 0.65]. With the
sample size of the pilot data only half of the time the differentially expressed
genes are detected. Larger sample sizes yield power estimates above 0.8, i.e.
now the differrentially expressed genes are detected with 80% probability. From
Figure 4.5 we conclude that, to guarantee an average power of 80%, the study
should include at least 15 patients per group.

Some authors suggest leaving the region near zero out of the density of effect
sizes when computing power predictions. The reason is that small effect are
very hard to validate and thus are not typically of interest. In this example,
leaving out a region [0, 0.5] gives estimated power curves that are even closer
to each other (Supplementary Figure B.7).
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Figure 4.5: Example 5: Upper panel: Estimated density of effect sizes using
estimation method A (solid), B (dashed) and C (dotted). Lower panel: estimate
power curves for sample sizes up to 5× larger than the pilot data.

Example 5: RNA-seq data

In this example we will show how our method can be applied to count data
of an RNA-seq experiment. We will use the data described by ’t Hoen et al.
[2008] comparing gene expression profiles in the hippocampi of transgenic δC-
doublecortin-like kinase mice with that of wild-type mice. Data was down-
loaded from GEO [Edgar et al., 2002] (GSE10782) and analyzed using the gen-
eralized linear model approach implemented in edgeR (2.4.3) [McCarthy et al.,
2012, Robinson et al., 2010]. A tag-wise dispersion parameter was estimated
using the Cox-Reid adjusted profile likelihood approach for generalized linear
models as implemented in edgeR. Using a treatment contrast, we tested per
tag if there was a genotype effect using the likelihood ratio statistic. This test
statistic follows asymptotically a χ2 distribution with one degree of freedom.

The π0 estimates vary between methods (0.69, 0.69 and 0.73, using re-
spectively methods A, B and C), as do corresponding effect size densities (see
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upper panel of Figure 4.6). Nevertheless, predicted power curves generated by
the three methods are fairly similar (lower panel Figure 4.6), with the small
difference observed driven mostly by the mass of effect sizes estimated to be on
the tail. Indeed, using Method B the effect size density has the heaviest tail,
and the estimated power is correspondingly the largest. On the other hand,
Method C yields an effect size density with the lightest tail, leading to the
smallest predicted power. In practice, researchers should choose the method
that most closely resembles the approach used for data analysis. Thus, if in this
case the intention is to analyse the data using edgeR-derived test statistics and
their χ2-square asymptotic densities, then method A should be chosen. How-
ever, if on the other hand p-values will be extracted for further comparisons
with other methods, then method C might be the most appropriate.
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Figure 4.6: Example 5: Upper panels shows the estimated density of effect sizes
using the three methods. Lower panel the predicted power curves, from 8, the
total sample size of the pilot-data to 40. Method A (solid), B (dashed) and C
(dotted).
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4.4 Discussion

Most methods so far proposed for pilot data-based power and sample size cal-
culations using high-dimensional data focused on two-group comparisons, and
so far have assumed that the test statistics used follow either a normal or a
Student-t distribution [Ferreira and Zwinderman, 2006c, Scheinin et al., 2010,
Ruppert et al., 2007, Jørstad et al., 2008, Matsui and Noma, 2011]. Our ap-
proach is thus much more general, as it can be used for a large class of test
statistics including those generated from generalized linear models applied to a
wide variety of high-dimensional data. Types of data that can be handled in-
clude microarray and next-generating sequencing. Our method is general in the
sense that it can handle any kind of high-dimensional data, where parametric
forms for the null and alternative distribution of test statistics (or transforma-
tions thereof, like p-values) are known, and a set of pilot data is available. In
particular, our method can be used for multiple-group comparisons, as well as
deviance-based testing used to compare nested models.

The method relies on the adaptive version of the Benjamini-Hochberg FDR
method, which does not explicitly take into account correlation among features.
Some authors [Tibshirani, 2006, Lin et al., 2010] suggested to use resampling-
based FDR in the power and sample size analysis, but neither π0 nor the
density of effect sizes were then estimated. Our approach could be extended to
use a resampling-based estimate for the null distribution of test statistics (or
p-values), making it nonparametric. In this case, the nonparametric alterna-
tive distribution could be based on a shifted version of the nonparametric null
distribution.

We have considered two methods to solve the system of equations involved
in our approach. One of them, the nonlinear Tikhonov optimization problem,
described in section 4.2, did not produced satisfactory results (data not shown),
as it led occasionally to estimated densities that are not non-negative every-
where. Another approach would be to follow the suggestion of [Eilers and Marx,
2010] and use a combination of first- and second-order penalties, so that posi-
tivity of estimated coefficients can be imposed. This is an interesting direction
for future research. Other authors have used constrained estimation methods,
requiring quadratic programming or an expectation-maximization algorithm
[van de Wiel and Kim, 2007, Ruppert et al., 2007, Jørstad et al., 2008, Matsui
and Noma, 2011] and, thus, leading to computationally intensive algorithms.

We should point out that, when there is not enough information about the
effect size density in the pilot data, estimates can be unstable. This is especially
the case when π0 is close to one, a large fraction of effect sizes is small, and
the pilot data sample size is small (data not shown). This observation was also
reported by Long et al. [2012]. Such situations may especially arise when using
sequencing data, which is a very sensitive technology that may, as a result,
require larger pilot data studies for reliable power calculations.

Our method assumes that test statistics, with known null and alternative
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distributions, are produced by the data analysis. So any type of test statistic
distribution family can be handled. Our package, SSPA (available from http:
//www.bioconductor.org, see Appendix F for the vignette of the package), can
handle any given family of distribution, so long as both null and alternative
are known, at least empirically. One natural further generalization would be
to attempt to solve the problem in terms of p-values, independently of the
test statistics’ distribution. This would require an alternative distribution that
depends explicitly on effect size and sample size, in such a way that the effect
size density is sample-size invariant. A parametric distribution family that
could be considered here is the beta, provided one of its parameters can be
factorized as a product of sample size and effect size. Non-parametric estimates
for the p-values null and alternative distributions could also be considered, via
resampling say, provided the same factorization can be obtained. A further
alternative is to look for a functional form that can be used approximately,
e.g. by a p-value transformation leading to approximately normally distributed
random variables, both under the null and alternative hypothesis.

To conclude, our method for power and sample size calculation is flexible,
and can be used for power studies in a wide variety of statistical models used
for hypothesis testing in high-dimensional data studies.
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