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CHAPTER 1

INTRODUCTION

Soft disordered materials, such as sand, mayonnaise, toothpaste and foams
are all around us. These materials possess a fascinating property: depend-
ing on their confinement, they can act like a solid, like a liquid, or like
something in between [2–5]. Wet sand is solid enough to build a sand
castle (Fig. 1.1(a)) due to the attraction between grains. Walking on the
beach plastically deforms it (Fig. 1.1(b)). Dry sand has no attraction, and
without external confinement flows as if it were a liquid (Fig. 1.1(c)). In
foams, bubbles normally often attract each other, preventing free-flowing
states. Nonetheless, we can observe a transition from solid to liquid-like
in the system: whipped cream is strong enough to hold its own weight
(Fig. 1.2(a)), but we can make it flow by squeezing it out of a piping bag
(Fig. 1.2(b)). Fascinatingly, this behavior is reversible: in the absence of
forcing, the cream acts like a solid again.

(a) (b) (c)

FIGURE 1.1: Three states of sand: (a) a solid sand castle; (b) plastic deformation
under forcing; (c) flow in an hourglass. [1]
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INTRODUCTION

(a) (b)

FIGURE 1.2: Whipped cream acts (a) like a solid when unperturbed yet (b) flows
when it is forced. [6]

(a)
0

δij
δij

(b)
0

Uij

(c)

J density φ
0

lo
ad

(s
he

ar
st

re
ss

)σ

loose grains,
flow

ja
m

m
ed

limit of linear elasticity

(i)

(ii)

yiel
d

str
es

s

FIGURE 1.3: (a) In simulations, the interaction between particles depends on the
overlap δ, which is zero if particles are not in contact and ≥ 0 if particles are in
contact. (b) The potential for harmonic frictionless particles is quadratic in the
overlap δ. (c) The load-density plane of the jamming phase diagram, based on
[3, 7]. At the jamming transition (point J), any decrease in density φ or increase in
shear stress σ will cause the system to unjam and flow. For any density φ > φj,
there is a yield stress σy(φ) above which the system unjams and flows. Most
current work has studied two boundaries in this diagram: (i) the σ = 0 jamming
point, or (ii) the yielding boundary.
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Why do sand and foam behave this way? This behavior originates from
their particulate nature: the strength of the system as a whole depends
on the interactions between the constituent particles, oil droplets or foam
bubbles [3, 8]. These interactions can be tuned, for example by varying the
wetness of the sand [9, 10], varying the air content of the foam [11, 12] or
by varying the external confinement [11, 13–16]. By varying the interac-
tions, a wide range of physical phenomena become accessible. Under high
compression, each particle has strong interactions with many neighbors,
and these systems act like sand on the beach or the whipped cream on a
cake. However, when the particles lose contact, the system loses strength
and starts to flow [13, 17, 18] — just like the sand in an hourglass. Finally, if
the system is exposed to a high enough load, particles lose contact, and the
system also starts to flow [11, 19, 20] — like the whipped cream in a piping
bag. Many of the properties of these systems strongly depend on their
distance from falling apart — on their distance to the jamming transition
[7, 21]. This includes not only the load required to make the system flow,
the yield stress, but also elastic properties such as the shear modulus, and
geometric properties such as the average number of neighbors each particle
interacts with [3, 5, 8, 13, 21–23]. For example, the yield stress vanishes
completely when the system is at the brink of falling apart [11, 24, 25]. In
other words, any infinitesimally small stress will push the system over the
edge, and will cause the system to yield.

To better understand the behavior of these systems on a microscopic
level, they have been modeled using simple models of interacting soft
particles, where (i) particles are modeled using simple circles or spheres,
(ii) particles only interact if they are in contact, and (iii) their interaction
is a function of their overlap (Fig. 1.3(a)) [13, 21–23]. This research led to
the proposal of a jamming phase diagram (Fig. 1.3(b)), where the jamming
transition, point J, is a critical point [7]. At point J, any increase in load or
any decrease in density will cause the system to fall apart. Most research
has focused on one of two boundaries in the diagram: First, there is a
significant amount of work on the zero-deformation limit, investigating
at which density the jamming transition happens, and investigating static
properties as a function of the distance to that point [13, 21–23, 26–29]. This
includes linear elastic properties such as the shear modulus G and the bulk
modulus K, as well as the infinitesimal movement of particles in response
to infinitesimal perturbations [28, 30–34]. Second, research has focused on
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the yield stress limit. The approach typically taken in simulation work is to
investigate energy drops, plasticity and reversibility [35–38]. In contrast,
experiments typically focus on the stress response in steady flow [39–42].

In this thesis, we have worked on understanding the behavior in be-
tween these two boundaries. First, in chapter 2, we use numerical sim-
ulations to probe the first unambiguous deviations from linear elastic
response. In chapter 3, we extend this to determine the characteristics of
rearrangements, and connect this to the reversibility of the system. Finally,
in chapter 4, we probe the microscopic behavior of a foam in response to
an external deformation.

In § 1.1 and § 1.2, we will now review earlier work on the behavior of
soft amorphous systems. In § 1.1, we focus on numerical simulations, and
focus on their relationship to our work in chapters 2 and 3. In § 1.2, we focus
on experimental results in foams, emulsions and colloidal suspensions, and
relate this to our work in chapter 4.

1.1 Jamming

In this section, we will focus on numerical simulations used to understand
the behavior of soft disordered materials. The use of numerical simula-
tions to study the microscopic behavior of materials has a rich history. As
early as the 1940s and 1950s, computers were used to study problems in
statistical physics using the Monte Carlo [43], Metropolis [44] and Potts
[45] methods. Already in 1957, Alder and Wainwright [46] simulated col-
loidal hard sphere suspensions using event-driven molecular dynamics
simulations. Nevertheless, computing power remained a limitation, and
only in the 1990s extensive simulations of systems with many interacting
particles became possible.

In the early 1990s, Bolton and Weaire [47] and Durian [22, 23] laid
the foundations for numerical simulations of soft disordered materials.
Bolton and Weaire probed the behavior of disordered foams using a surface
tension-driven foam film simulation. Durian extended this work using a
simpler model, where the foam bubbles are no longer deformable; instead,
bubbles are treated as circles with simple pairwise interactions. In these
model systems, both authors found (i) a transition from freely flowing
behavior to jammed behavior at a critical packing fraction φc ≈ 0.84, (ii)
evidence for a shear modulus which strongly depends on the distance to
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the jamming transition, and (iii) evidence for a yield stress which vanishes
at the jamming transition.

O’Hern et al. [13, 21] studied the elastic properties of these systems in
detail in their seminal work on jamming: in their model, the particles are
frictionless, i.e., there are no viscous interactions, and the only interactions
between particles are repulsive contact forces. By and large, we use the
same model of bubble interactions in chapters 2 and 3. We will shortly
discuss the ingredients of the model here, and will discuss it in more detail
in § 2.2.

These systems of frictionless soft particles consist of circles with a sim-
ple pairwise interaction under periodic boundary conditions at a fixed
volume. The interactions between particle i and j are a simple power
law Uij ∼ δα

ij, where δij is the overlap between particles, as sketched in
Fig. 1.3(a). The power α tunes the interaction: for harmonic particles, i.e.,
where the interactions act like one-sided linear springs, α = 2. For Hertzian
interactions, typical of grains in 3D, α = 2.5 [48]. For foam bubbles in the
geometry used in chapter 3, the power α ≈ 2.1 for small overlaps [49–51].
In our simulation chapters, we will consistently use harmonic interactions,
i.e., α = 2.

These ingredients are sufficient to uncover a wealth of insights into the
behavior of soft disordered materials. For this thesis, the most important of
these is the shear modulus G: how easy is it to change the shape of a system?
The shear modulus depends on the distance to jamming ∆φ = φ− φc and
the interaction parameter α: G ∼ ∆φα−1.5 [3, 13, 22, 23, 34]. For harmonic
interactions, this means G ∼

√
∆φ. However, G is typically calculated for

infinitesimal deformations, and the range for which linear response is valid
is not known.

In chapter 2, we probe the first deviations from this strict linear elastic
response. Our approach follows from the work of Ellenbroek et al. [32].
They showed that, in systems with harmonic interactions, the value of the
overlap is irrelevant for the elastic response. In other words, the elastic
response is defined by the contact network, i.e., which particles are in contact
and which ones are not. This, then, implies that the elastic behavior will
change once the contact network changes. We will therefore investigate
when the first change in the contact network occurs, and what effect that
change has on the elastic response.
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Finally, we focus on what happens after the initial elastic regime. Mal-
oney and Lemaître [52] investigated behavior of the same soft sphere sys-
tems under large deformations, and show the behavior is a combination of
smooth elastic segments and abrupt plastic stress drops. Other work has,
for example, focused on fluctuations in continuous shear [38, 41, 53]. In
chapter 3, we will focus on the first sign of plasticity in sheared systems.
How can we define plasticity on a microscopic level? Does a system always
become irreversible after a plastic event? Can we have irreversibility with-
out plasticity? We will propose a framework for answering these questions,
and will show preliminary results.

1.2 Foams

In this section, we focus on existing work on foam experiments. This
will provide context for chapter 4, where we probe the behavior of a two-
dimensional foam under shear, while varying the packing density.

The behavior of foams under shear has been a subject of significant
attention. In contrast to simulations, where most work focuses on the static
properties of the packing, foam experiments typically focus on the question
of macroscopic flow (rheology). For example, one can wonder about the
behavior under continuous shear, [54], cyclic shear [55] or extensional flow
[56], investigate the microscopic behavior of the foam films [57] or the
effects of chemical composition of the surfactant [58]. These typically focus
on the behavior of so-called ’dry’ foams, which are highly compressed.
The behavior of foam at lower densities has, for example, been studied
by Katgert et al. [39], who researched the rate dependent behavior for a
low-density foam.

Katgert and van Hecke [26] also measured the static properties of foams
in detail. They (i) determined a relationship between the experimental
packing fraction, i.e., the ratio of foam area and total area, and the theoreti-
cal packing fraction, which is the ratio of the undeformed foam area and total
area; (ii) confirmed the scaling relationship between the average contact
number z and φ found in simulations, and (iii) found force distributions
comparable to those found in experiments. Later, Miedema et al. [49] in-
vestigated the scaling of individual bubble interactions, and Siemens [59]
measured the jamming transition experimentally. Recent work has shown
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that emulsions are also excellently suited for this kind of research, and
finds comparable results [60–64].

In chapter 4, we will use a bi-axial compression and shear setup to
probe the microscopic behavior of foams under shear deformations. In
this setup, we can independently change the packing density φ and the
shear strain γ, which we use to measure the behavior of the foam at a wide
range of densities. We find a smooth transition from behavior dominated
by global non-affine motion at low densities to behavior dominated by
localized rearrangements at high densities.

13





CHAPTER 2

CONTACT CHANGES OF
SHEARED SYSTEMS

Work presented in this chapter has been published in:

[65] Merlijn S. van Deen, Johannes Simon, Zorana Zeravcic,
Simon Dagois-Bohy, Brian P. Tighe, and Martin van Hecke,
Contact Changes near jamming,
Phys. Rev. E 90: 020202(R) (2014). doi:10.1103/PhysRevE.90.020202

and has been submitted to Phys. Rev. E as:

[66] Merlijn S. van Deen, Brian P. Tighe, and Martin van Hecke,
Contact Changes of Sheared Systems: Scaling, Correlations, and Mechanisms,
arXiv:1606.04799

In this chapter, we investigate contact changes in amorphous, athermal,
frictionless particle packings under small shear deformations by means of
numerical simulations. We focus on the first contact change, as this is where
one expects the first significant deviation from strictly linear response. We
will establish a scaling relation between the mean strain at which the first
contact change happens and the system size and pressure, and find that this
strain can accurately be predicted from linear response. We will investigate
the effect of a single contact change on the elastic response, and will show
that, although strict linear response is no longer valid after a single contact
change, the response is still effectively linear in the thermodynamic limit. We
discuss the underlying microscopic mechanism for contact changes, and
reveal subtle correlations between particle motions and overlap, as well as
between subsequent contact changes. Finally, we discuss our findings in
the light of several recent related studies of contact changes.
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CONTACT CHANGES OF SHEARED SYSTEMS

2.1 Introduction

The focus of this chapter is on the first contact change in systems under
shear deformation. Earlier work on sheared systems has mostly focused
on plasticity [52, 67–71], continuous shear [38, 41, 42, 72] or on the linear
response limit [21, 34, 73–75] while earlier work on contact changes has
focused on vibrations [76–78] or hard particle systems [79, 80]. We instead
focus on soft particle systems, as they are descriptive for a wider range
of experimentally relevant systems, and focus on experimentally relevant
simple shear deformations.

The outline of this chapter is as follows. In § 2.2, we will describe the
preparation and deformation of our systems. We focus on the strain at
which the first contact change happens in §§ 2.3 and 2.4, and investigate
multiple contact changes and the behavior in the thermodynamic limit in
§ 2.5. Finally, we compare our results to earlier work in § 2.6.

2.2 Method & protocols

For our simulations, we use the standard frictionless soft sphere model
[13, 21], which is a simplified version of the viscous model for foam bubbles
introduced by Durian [22]. We will shear quasi-statically, so only the elastic
interactions between particles are taken into account - there is no inertia,
nor is there viscous damping. We will focus on so-called ε+all packings [28]
that have a positive bulk and shear modulus, as well as zero residual shear
stress. This is not guaranteed for a square unit cell [28, 34, 81], and we
therefore allow the shape of the cell to change.

In this section, we will describe the precise implementation of the pe-
riodic boundaries, the particle interactions and the energy minimization
algorithms. Finally, we will describe how we apply a simple shear defor-
mation and how we find individual contact changes.

Boundary conditions. We use periodic boundaries, as this removes the need
to model wall-particle interactions. Instead, particles just interact with their
neighbors, which may be periodic copies of particles on the other side of
the unit cell.

In a periodic system, each particle has periodic copies at
#»r = #»ri + nx ·

# »

Lx + ny ·
# »

Ly , (2.1)
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2.2. METHOD & PROTOCOLS
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FIGURE 2.1: A particle with canonical position #»ri = (1, 1) (filled circle) and its
periodic copies (circles) in a system with

# »

Lx = (4, 0) and
# »

Ly = ( 1
2 , 2) (L2 = 8,

α = 1
8 and δ = 1√

2
− 1). The canonical copy falls within the rectangular unit cell

(0, 0), (4, 2) indicated with a dashed line.

where nx and ny are integers and
# »

Lx = (Lxx, Lxy) and
# »

Ly = (Lyx, Lyy)
are two vectors that describe the periodic boundaries (Fig. 2.1). #»ri is the
canonical position of the particle, which falls within the rectangular unit
cell (0, 0), (Lxx, Lyy).

The area of the unit cell is given by

L2 = Lxx · Lyy , (2.2)

where Lxx and Lyy will have closely similar, but not necessarily strictly
equal values. The shear is described using a simple shear (Lees-Edwards)
parameter

α = Lyx/L (2.3)

and a pure shear (i.e., aspect ratio) parameter

δ =
Lyy − L

L
=
√

Lyy/Lxx − 1 . (2.4)

Traditionally, the unit cell is square, i.e.,
# »

Lx = (L, 0) and
# »

Ly = (0, L),
and consequently α = δ = 0 [3, 13, 21], but this leads to systems that are
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CONTACT CHANGES OF SHEARED SYSTEMS

stable to compression but potentially unstable to shear [28, 34, 81, 82]. In
contrast, here we require that the energy is also at a minimum with respect
to these degrees of freedom, which guarantees that the shear modulus is
positive and that the residual shear stresses are zero [28, 34], as one expects
for a physical system at rest. We keep Lxy = 0 fixed, which fixes the global
rotational degree of freedom.

Particles and their interactions. Our system consists of circular particles with
repulsive harmonic interactions. We use a bi-disperse mixture, with N/2
small particles with Rs = 1 and N/2 large particles with radius Rl = 1.4,
to prevent crystallization [3, 21, 137].

The interaction between particles is determined by their overlap

δij =

{
Ri + Rj − | #»rij| if | #»rij| < Ri + Rj,
0 otherwise.

(2.5)

where | #»rij| is the distance between particles i and j (Fig. 1.3(a)). Because
of the periodic boundaries, this distance is not uniquely defined. The
physically relevant value is the minimum distance, so we will define the
distance as

| #»rij| ≡ min
nx ,ny

∣∣∣[ #»ri − #»rj ] + [nx ·
# »

Lx] + [ny ·
# »

Ly]
∣∣∣ , (2.6)

where #»ri and #»rj are the canonical particle positions. nx,ij (ny,ij) is 0 if the
closest copy of j to i is the canonical copy, +1 if it is across the right
(top) boundary and −1 if it is across the left (bottom) boundary. Contact
forces have magnitude fij = kδij, where k = 1 is the spring constant, and
correspond to the harmonic potential

Uij =
k
2

δ2
ij . (2.7)

Energy, enthalpy and stresses. From the particle interactions, we can now
define the macroscopic state variables. First, we have the internal energy,
which is given by the sum of all inter-particle potentials,

U = ∑
i,j

Uij = ∑
i,j

k
2

δ2
ij , (2.8)
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where the sum runs over all particle pairs.
The enthalpy is then given by

H = U + PextL
2 , (2.9)

where Pext represents the external pressure on the system.
Finally, we have the boundary stresses: the simple shear stress

σyx = σxy , (2.10)

the deviatoric (pure shear) stress

τ =
1
2

(
σxx − σyy

)
, (2.11)

and the volumetric stress or internal pressure

Pint =
1
2

(
σxx + σyy

)
. (2.12)

These are computed using the Born-Huang approximation [83, 84]:

σab =
1

2L2 ∑
i,j

[
( #»rij · â)(

#»

fij · b̂)
]

(2.13)

where a, b ∈ {x, y} and the sum is over all particle pairs i, j.

Units. The small particle radius Rs and the spring constant k set all units
in our system. The length scale is given by the small particle radius Rs, the
stress scale is given by the spring constant k and energy is measured in
units of kR2

s .

Preparing a packing. We will now focus on creating a stable packing of
particles. Starting with N randomly positioned particles and a predefined
external pressure Pext between 10−7 and 10−2, we minimize the enthalpy un-
til we end up in a stable state, where the forces on particles and boundaries
add up to zero.

We start by placing N/2 small particles with Rs = 1 and N/2 large
particles with radius Rl = 1.4 at random positions #»ri within a square box
of size

L2
init = φinit

(
N
2

πR2
s +

N
2

πR2
l

)
, (2.14)
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where φinit ≡ 0.8 is chosen to be far below the jamming density φJ ≈ 0.84.
We use a combination of the Conjugate Gradient method [85] and the Fast
Inertial Relaxation Engine (FIRE) [86] algorithms. The latter is much faster,
but becomes unstable when the overlaps between particles are large. We
therefore first use the Conjugate Gradient method to resolve the largest
overlaps. We keep the boundaries fixed, and minimize the energy until

|∆U| ≤10−2 ·U . (2.15)

After the large overlaps are resolved, we can safely switch to the FIRE

algorithm. We now also allow the boundaries (i.e., Lxx, Lyy, and Lyx) to
deform. We relax the system until we reach a state where

|∆H| ≤10−17 · H , and

|σyx| ≤10−15 . (2.16)

The resulting state has positive shear moduli, vanishingly small shear
stresses, and a pressure given by the target pressure Pext.

Simple shear. We are interested in the response to an applied simple shear
deformation. We do this by moving the boundaries into a new state

# »

Lx(γ) =
# »

Lx(0) ,
# »

Ly(γ) =
# »

Ly(0) + γL · x̂ , (2.17)

i.e., we change α → α + γ, while keeping L2 and δ constant. The system
is now no longer in an enthalpy minimum, so we relax the system, using
the FIRE algorithm, but keeping boundaries in the new deformed state. We
relax the system until

|∆H| <10−13 · H , (2.18)

where we sacrifice a small error in the particle positions for simulation
speed. This is accurate enough to detect contact changes and to deter-
mine the behavior of stress and energy at the contact change. We find
the details of the relaxation requirement do not influence the detection
of contact changes, and the relative error in σxy is typically less than 10−6.
An example of the resulting particle displacement is shown in Fig. 2.2.
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FIGURE 2.2: Particle trajectories in response to a simple shear strain γ =

9.8× 10−6, for the N = 256 particle system at P = 10−6. Lines indicate displace-
ments (magnified ×5000), color indicates displacement parallel to the applied
shear. The unit cell is slightly non-square and marked as a gray box.

The corresponding stress and enthalpy response is shown in Figs. 2.3(c)
and 2.3(d).

To detect contact changes, we apply a strain, relax the system, and
compare the new overlaps of each particle pair i, j to the initial state, until
we detect a change in the contact network (δij = 0↔ δij > 0 for any pair
i, j). We then use the bisection method to find the contact change strain:
we move back to the last state before the contact change, and test a strain
between the last known state before and the first state after the contact
change. Specifically, we initially apply a strain

γ = 10−9 · 10ζ (2.19)

where we increase ζ = 0, 1, ... until we find that the contact network
changed. We then bisect ζ until we have determined the strain at the
contact change γ∗ up to ∆γ/γ∗ < 10−6, as shown in Figs. 2.3(a) and 2.3(b).

Treatment of rattlers. Rattlers are always a special case in simulations: be-
cause they are free to move, their behavior is ill-defined. In our simulations,
we encounter rattlers in two distinct ways: first, a particle with three con-
tacts can become a rattler. Because of force balance, all three contacts go to
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FIGURE 2.3: Convergence to the first contact change for the system shown in
Fig. 2.2 (N = 256, P = 10−6). (a) Contact change detection algorithm. Red 4
indicate states without a contact change (γ < γ∗), blue 5 states have had at
least one contact change (γ > γ∗). We rapidly scan shear space until we find a
state with a changed contact network (step 4). We then bisect the strain space to
determine γ∗. (b) The bisection algorithm continues until ∆γ/γ∗ < 10−6. (c) The
stress response before the first contact change (red pluses) is linear as a function of
γ. After the contact change (blue crosses) the response changes drastically. (d) The
enthalpy change during deformation. Because of the linear stress response, the
enthalpy change is quadratic in γ.

zero overlap together. This is detected correctly in our simulations, and the
event is recorded as a single event in which three contacts are lost (Fig. 2.4).

The case of a rattler becoming part of the load-bearing network is
different. Before the rattler gains three contacts, it’s fully free to move, and
we can therefore not determine the strain at which it becomes part of the
network again accurately — if another algorithm had been used, the path
of the particle and therefore also the joining strain could be different. We
will therefore not include these contact making events in our analysis of
the first contact change.

One might worry that this biases the mean strain and the statistics of
breaking or closing a contact. Indeed, we find that, in our simulations,
contact changes in which a rattler annihilates happen at a relatively small
strain (typically 50− 80% of the mean strain). At the same time, these events
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FIGURE 2.4: (a) Zoom-in of a packing where particle r becomes a rattler after the
first contact change (N = 22, P = 1.5 · 10−5). Neighboring particles A, B and C are
indicated. (b) Overlap of r with the neighboring particles A, B and C as a function
of strain γ. Symbols are our results from simulations, while the lines indicate
predictions using linear response. The simulation finds γDNS

∗ = 2.45 · 10−5, while
linear response predicts γLR

∗ = 2.41 · 10−5.

are rare: We find they are most prevalent in large systems at intermediate
pressures, but even there they only make up a few percent of the events.
We find that the overall effect on the mean strain is also limited to a few
percent, while we measure changes in the mean strain over multiple orders
of magnitude. The probability of the first contact being a contact making
event decreases somewhat, as 5–15% of making events involve a rattler
re-joining the contact network. Because we are interested in the scaling
behavior, we are comfortable ignoring these events.

Simulation range. As we will study changes in individual contacts, and in
particular probe the strain at which the first contact change takes place, we
anticipate that we need to study finite size effects, i.e. the role of the number
of particles N in tandem with the role of the pressure P. Moreover, we
anticipate that many quantities will rescale with N2P [28, 33, 65]. We have
therefore prepared various ensembles — groups of sheared systems with
the same number of particles and pressure. Most ensembles contain 100
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systems; some larger ensembles contain up to 5000 systems. The following
ensembles were prepared:

• To characterize the behavior at the first contact change, we created
a set of ensembles having N and P on a log-spaced grid, with N =

16, 32, . . . , 1024 and P = 10−7, 10−6 5
6 , . . . 10−2, and a set at intermedi-

ate N = 22, 45, . . . 724 for P = 10−2 and 10−7. These are sheared until
we find at least one contact change.

• To characterize the effects of multiple contact changes (§ 2.5.2), we
sheared the ensembles at N = 16, P = 10−6, N = 1024, P = 10−6 and
N = 1024, P = 10−2 up to 25 contact changes.

• To investigate anisotropy, ensembles with N = 16, 256, 1024 particles
at P = 10−3 and N = 16, P = 10−6 were sheared in the inverse
direction.

2.3 Numerical results

In this section, we will first discuss at which strain γ∗ the first contact
change occurs, the relative prevalence of making or breaking a contact, and
the anisotropy in the type of events. We will then discuss the distribution of
γ∗ within an ensemble at fixed N and P, and will discuss how the ensemble
average γcc = 〈γ∗〉 scales with N and P.

2.3.1 The first contact change

For each packing in an (N, P) ensemble, we determine the strain of the first
contact change γ∗, as described in § 2.2. Within a single ensemble, typically
consisting of 100 realizations, we find that γ∗ can vary over three orders
of magnitude. In Fig. 2.5(a) we show the cumulative distribution function
(CDF) of γ∗ for N = 256 ensembles at various pressures. We observe two
important properties: First, the typical scale of the strain γ∗ increases with
pressure P. Second, we find that, although the distributions are wide, their
shape is mostly independent of P. In § 2.3.2, we will take a detailed look at
these distributions and their scaling.
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FIGURE 2.5: (a) Cumulative distribution functions (CDF) Pr(γ∗ < γ) of the contact
change strain γ∗ for ensembles with N = 256 particles at various pressures. The
horizontal shift between curves shows that the characteristic strain increases with
P. (b) Stacked probabilities for the first contact change being a break event (blue
striped), a make event (red striped), a make event involving rattlers (red) or
a mixed event, where contacts are both broken and created (black), again for
N = 256 ensembles. A small amount of new contacts involve a rattler becoming
part of the contact network. At low pressures, all contact changes involve a contact
being broken. The probability of the contact change being a new contact increases
with pressure, up to 40% at P = 10−2. Both mixed events and new contacts
involving a rattler are very rare.
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FIGURE 2.6: Radial distribution function ρ(θ) of the contact orientation for making
(blue) and breaking (red) events, for N = 256, P = 10−3. New contacts are created
along θ = 3π/4, while contacts are broken along θ = π/4.
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Making and breaking. In Fig. 2.5(b), we show a stacked probability graph
of the different contact change types. We distinguish events where one
or more contacts are broken (break), events where one or more contacts
are created (make) and events where contacts are both broken and created
(mixed). Within the make class, we can distinguish events where a particle
which originally was a rattler now becomes part of the contact network
(make (rattler)).

At low pressures, we find that the vast majority of events consists of
contacts being broken. This probability decreases with increasing pressure,
to 59% at P = 10−2. At this pressure, we find that 38% of events create
a new contact. In § 2.4.4, we will show how these probabilities vary as a
function of N2P.

Of all make events, 5− 15% involve rattlers. This is consistent between
ensembles, with no clear dependence on either N or P. Finally, the number
of mixed events increases with pressure, but is < 5%, independent of N.

In the following sections, we will focus on the simple make and break
cases; we will not include make (rattler) or mixed events. We remove the
first because the behavior of rattlers creating new contacts is ill-defined, as
discussed in § 2.2. Mixed events are not included because of their relative
scarcity.

Anisotropy in bond direction. When we shear our system, we expect aniso-
tropy to build up [87]. We measure the anisotropy by measuring the contact
orientation θ for each contact that is created or broken. θ characterizes the
direction for the connection vector #»rij between the two particles, and is
π-periodic.

A simple shear deformation along the x (θ = 0) axis compresses the
system along θ ≈ 3

4 π and extends it along θ ≈ 1
4 π. We therefore expect

breaking contacts to cluster around θ ≈ 1
4 π, while new contacts should

cluster around θ ≈ 3
4 π.

In Fig. 2.6 we show the resulting radial distribution function ρ(θ) for
broken and created contacts. We indeed observe the majority of making
events have 1

2 π ≤ θ < π, while the majority of breaking events have
0 ≤ θ < 1

2 π. This shows that anisotropy is relevant already at the first
contact change.
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γ ↑ bk γ ↑ mk total Pr(γ ↑ bk|·)
γ ↓ bk 412 239 651 0.63
γ ↓ mk 198 129 327 0.61
total 610 368 978

TABLE 2.1: Relative prevalence of making and breaking under forward and
backward shear strain for N = 256, P = 10−3.

Anisotropy in making and breaking. Finally, we investigated whether the
type of contact change and the direction of shear are correlated: If we break
a contact when we shear a packing in the forwards direction, are we more
likely to make a contact when we shear in the backwards direction, and vice
versa? To test this, we have determined the prevalence for making and
breaking under forward (γ ↑) and backward (γ ↓) shear for an ensemble
of 978 packings at N = 256 and P = 10−3. In Table 2.1, we show counts
of the four possible combinations of making and breaking under forward
and backward shear. Our data supports the notion that the type of contact
changes in one shear direction is uncorrelated to the type in the other
direction. For example, Pr(γ ↑ bk|γ ↓ bk) ≈ Pr(γ ↑ bk|γ ↓ mk) ≈ 0.62.

More formally, we calculated the Pearson’s chi-square statistic,

χ2 = ∑(O− E)2/E (2.20)

where the sum runs over all four observations O, and E is the expected
number of observations in the case of independence, e.g.,

Obk,bk = 412 , (2.21)
Ebk,bk = 978 · Pr(γ ↑ bk) · Pr(γ ↓ bk) = 406.0 , (2.22)

and find χ2 = 0.689. The cutoff typically used for significant deviations
(p = 0.05, 1 degree of freedom) is χ2 > χ2

.05 = 3.841. We find χ2 � χ2
.05,

supporting our observation of independence.

2.3.2 Strain distributions

We will now take a more detailed look at the distribution of the strain at
the first contact change, to show that contact changes can essentially be
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FIGURE 2.7: (a) Rescaled complementary cumulative distribution functions (CCDF)
for the same data as in Fig. 2.5(a). The dotted line gives the CCDF for an exponential
distribution. (b) Result of the Anderson-Darling test on each ensemble. Ensembles
where the null hypothesis "these values of γ∗ were drawn from an exponential dis-
tribution" was rejected are indicated with a red ×. Other ensembles are indicated
with a black · (≤ 100 samples), ◦ (100− 1000 samples) or • (≥ 1000 samples). The
blue dot-dashed line indicates the finite size threshold N2P log(N)−0.7 = 1 (see
§ 2.3.3)

described as a Poisson process. For large systems, the shape of the CDF

closely resembles that of an exponential distribution, whose CDF is given
by

Pr(γ∗ ≤ γ) =

{
1− e−γ/β (γ ≥ 0),
0 (γ < 0),

(2.23)

where β is the mean of the distribution. To emphasize the resemblance
between our numerical distributions and the exponential distribution, we
show complementary CDFs (tail distributions) of γ∗, rescaled by the ensemble
mean 〈γ∗〉, i.e. Pr(γ∗ ≥ k · 〈γ∗〉). For an exponential distribution, the CCDF

is thus given by

Pr(γ∗ > k · 〈γ∗〉) = e−k (k ≥ 0), (2.24)
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In Fig. 2.7(a) we plot the rescaled CCDFs for an exponential distribution
(dotted black curve) and for our simulation data (colored curves), and we
find our data indeed closely corresponds to an exponential distribution.

As a formal means of checking conformance to an exponential distri-
bution, we used the Anderson-Darling test [88, §1.3.5.14], with which we
test the hypothesis "these values of γ∗ were drawn from an exponential
distribution". We use a 5% confidence interval, i.e., there is a 5% probability
we reject the hypothesis for samples that were drawn from an exponential
distribution.

In Fig. 2.7(b), we graphically show the results of the test. For N = 256,
we observe the distributions at P ≥ 10−5 are indistinguishable from an
exponential distribution. This is consistent with a Poisson process, where
contact changes are independent of each other.

Nevertheless, we observe deviations for small systems and low pres-
sures. This is not surprising: it seems unlikely for contact changes to be
independent of each other if there are only a limited number of contacts.
The boundary between rejection and non-rejection corresponds to the tran-
sition to extended systems for N2P log10(N)−0.7 > 1 [28, 34], indicated
with a blue curve (§ 2.3.3).

Note that the N2P log10(N)−0.7 < 1 region also includes many ensem-
bles where the hypothesis is not rejected. This does not, however, imply the
data set has been drawn from an exponential distribution; it merely indi-
cates the data is indistinguishable from a set drawn from an exponential
distribution. In these cases, we are dealing with small sample sizes (≤ 100
samples), which makes it hard to distinguish the measured distribution
from that of an exponential distribution.

For larger sample sizes, this explanation is no longer satisfactory, and
taking the underlying distribution to be exponential is a more reasonable
interpretation. We observe that large ensembles where the hypothesis
was not rejected all have N2P log10(N)−0.7 � 1. We conclude that the
transition to extended systems also governs where the distribution of γcc
is well-described by an exponential distribution and, therefore, where the
contact breaking is a Poisson process.

We can now inspect what kind of distribution describes small systems
at low pressures. In Fig. 2.8(a), we show rescaled CCDFs for N = 16 systems
at various pressures, and notice clear deviations from exponential. The
most significant deviation is at low k, where we find Pr(γ∗ > k · 〈γ∗〉) is
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FIGURE 2.8: (a) Rescaled complementary cumulative distribution functions (CCDF)
for N = 16 systems at various pressures, on log k and linear Pr axes. The dotted
line gives the CCDF for an exponential distribution, while the dashed line gives
the CCDF for a Weibull distribution with shape c = 1.2. For most of the curve, the
Weibull distribution matches the data well. (b) Same as (a), on linear k and log Pr
axes. For high k, neither the exponential nor the Weibull distribution matches the
data well.

larger than expected for an exponential distribution. As Pr(γ∗ > k · 〈γ∗〉)
is the survival probability, this indicates a lack of events at small strain. At
higher pressures, this effect seems to disappear. In Fig. 2.8(b), we show the
same data, but now focusing on the behavior at large k.

As an alternative to an exponential distributions, we fit a Weibull dis-
tribution to our data. Whereas the exponential distribution describes the
amount of strain before failure if the failure rate h (number of events per
unit strain) is constant, the Weibull distribution describes the strain before
failure if the failure rate depends on the applied strain as h ∼ γc−1. The
CDF of the distribution is given by

Pr(γ∗ ≤ γ) =

{
1− e(−γ/λ)c

(γ ≥ 0),
0 (γ < 0),

(2.25)

where λ determines the scale, and c the shape of the distribution. The mean
is given by 〈γ∗〉λΓ(1 + 1/c) [89], where Γ is the gamma function. The
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FIGURE 2.9: Color map of γcc as a function of N and P. The inset curves have
constant γcc, as indicated by the values at the edge. The shape is based on the
scaling discussed in § 2.3.3.

rescaled complementary distribution is thus given by

Pr(γ∗ > k · 〈γ∗〉) = e(−k/Γ(1+1/c))c
(k ≥ 0). (2.26)

Using maximum likelihood estimation, we fit our data to a Weibull distri-
bution, and find c ≈ 1.2 for P ≤ 10−3. In Fig. 2.8(a), we find this gives a
much better fit to the data than an exponential distribution. To interpret
this, when c > 1, the distribution is skewed to higher values of k, as the
failure rate h ∼ kc−1 increases with k. We find relatively few values at low
k and relatively many values at high k — hence events at small strain are
suppressed.

2.3.3 Scaling

We now discuss the variation of the mean contact change strain γcc = 〈γ∗〉
with N and P. Even when the distributions are not purely exponential,
their mean is well-defined. We have also seen that γcc depends on P. What
kind of scaling for γcc with N and P should we expect?

In Fig. 2.9, we show γcc as function of both pressure and system size.
The data suggests that there are two regimes: one where γcc depends
solely on pressure and not on packing size, and a second regime where γcc
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FIGURE 2.10: Excess number of contacts Nexc = N∆z/2 as a function of N2P (blue
curve, based on [28, 33, 34]). Arrows indicate volumetric strains corresponding to
a single contact change.

depends on both. We observe γcc increases with pressure in both regimes,
but decreases with increasing packing size in the second regime. This is not
unexpected: contacts are easier to break if the confining pressure is small,
and if there are more contacts, you are more likely to encounter a single
weak contact.

In the following subsections, we will introduce two closely related
scaling arguments, which both lead to the same prediction for the relation
between γ∗ and N and P: a direct argument for compressive strain and a
stress-based argument for shear strain. We will then compare the predicted
scalings to our computational data.

Compression. We start with a compressional argument, based on estimat-
ing the strain scale for making and breaking a contact under compression.
There is a clear relationship between compression and the number of con-
tacts: we gain contacts if we compress the system and we lose contacts if
we expand the system. The scaling that relates the excess contact number
Nexc = ∆z/2 to N and P is well-known from earlier work [28, 33, 34], and
is shown in Fig. 2.10. There are two branches: a plateau Nexc ∼ 1 at low
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pressures and a square root pressure dependence Nexc ∼
√

N2P at higher
pressures.

How far do we need to expand or compress a system at given N and
P to induce a contact change? In the high-pressure regime, we can take

the derivative ± ∂
∂P

(√
N2P

)
∼ ±N/

√
P, which gives us the number of

contacts changed due to unit pressure change. Its inverse, δP ∼ ±
√

P/N,
then gives us the pressure change needed for a single contact change. The
compressional strain is the pressure change divided by the bulk modulus
K: εcc ∼ ±δP/K. As K is independent of N and P [21], we simply find
εcc ∼ ±

√
P/N.

In the low-pressure finite size regime, the number of contacts is indepen-
dent of pressure. Can we then still determine the pressure change required
for a contact change? We can, because the plateau has a finite length. On
the one hand, the plateau ends at P = 0, as we unjam our system and lose
all contacts. On the other hand, the plateau ends when we enter the large
system size regime at N2P ∼ 1 and gain one new contact.

The scales for making and breaking a contact are thus no longer the
same in the finite size regime: To break a contact, we unjam the system
by reducing the pressure with δP ∼ P, and we find εbk ∼ −P. To create
a contact, we increase pressure up to the beginning of the large system
regime, at Ptarget = 1/N2. As we are initially in the small system regime, the
current pressure P� 1/N2 and can be neglected, and the pressure change
δP = Ptarget − P ≈ −1/N2. We thus need to apply a strain εmk ∼ −1/N2.
The contact change strain will be given by the minimum of the absolute
making and breaking strains. As P� 1/N2, we thus expect εcc ∼ P.

Summarized, this argument leads to these characteristic strains for
contact changes under compression:

εbk εmk εcc

ε ∼
{ −P 1/N2 P for N2P� 1,
−
√

P/N
√

P/N
√

P/N for N2P� 1.
(2.27)

As we will see, arguments based on shear, as well as our numerical results,
find the same scaling for these strains.

Shear. We can also formulate an argument for the scaling of γcc under shear
from dimensional analysis. Other than taking γcc constant, there is no clear
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FIGURE 2.11: σcc = 〈σ∗〉 as a function of P/N. Colors and symbols indicate
system size. The data supports an overall scaling σcc ∼ P/N, but the lack of a
good collapse suggests this does not describe the entire behavior.

strain scale, so we will construct the argument using stress instead. We
will start by determining the mean contact change stress in an ensemble,
σcc = 〈σ∗〉.

There are three stress scales in the system: the confining pressure P, the
bulk modulus K and the shear modulus G. As we are describing shear, it
seems unlikely that K is relevant. If the mean stress σcc would scale with
G, we would end up with a constant strain, and we have already seen that
γcc is not constant. This suggests that the only relevant stress scale is the
confining pressure P, so we will take σcc ∼ P.

The stress scale will also depend on the system size. Say we have a
packing with N particles, which has a contact change at σ = σcc. If we
duplicate this system, we will have 2N particles, and two contact changes
will have happened at the same stress σcc, so we expect that σcc ∼ 1/N.

Combining these two scalings suggests the following scaling:

σcc ∼ P/N , (2.28)

which is not strongly inconsistent with our data (Fig. 2.11). Next, we
determine the strain scale γcc via the shear modulus G = σ/γ. From earlier

34



2.3. NUMERICAL RESULTS

10−4 10−2 100 102 104

N2P

10−4

10−2

100

102

N
2 γ

(a)

1

0.5

γcc

10−4 10−2 100 102 104

N2P log10(N)−0.7

(b)

1

0.5

γcc

16

32

64

128

256

512

1024

2048

N

FIGURE 2.12: (a) Scaling of the strain at first contact change γcc as function
of N and P. Symbols and colors indicate packing sizes. Lines indicate power
law functions with exponent 1 (lower branch) and 0.5 (upper branch). (b) Log
corrections improve the collapse.

work [22, 33, 34], we know G scales as

G ∼
{√

P for N2P� 1,
1/N for N2P� 1,

(2.29)

which, combined with the stress scaling we derived, suggests the following
scaling for γcc:

γcc ∼ σcc/G ∼
{
(P/N)/

√
P ∼

√
P/N for N2P� 1,

(P/N)/(1/N) ∼ P for N2P� 1.
(2.30)

This argument does not distinguish between making and breaking
contacts. The choice of P as stress scale is consistent with the breaking
of contacts, as the overlap δ ∼ P. When we compare the scaling to the
compressional argument (Eq. (2.27)), we find it is indeed consistent with the
breaking case, but not with the making case. Nonetheless, the argument is
still consistent with the overall scaling, because the behavior is dominated
by breaking contacts.
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Numerical results. We can now compare our numerical results to the scaling
relationship predicted by the arguments given above. We will initially not
distinguish between the making and breaking of contacts because making
events become exceedingly rare at low P, leading to poor statistics. In
§ 2.4.3, we will use linear response to take a more detailed look at the
different types of events, including the difference between the making and
breaking of contacts.

The suggested scaling in Eq. (2.30) implies that plotting N2γcc as a
function of N2P should collapse all numerical data:

N2γcc ∼
{

N
√

P = (N2P)0.5 for N2P� 1,
N2P = (N2P)1 for N2P� 1.

(2.31)

We have plotted our numerical results in Fig. 2.12(a) and get a good
(but not great) collapse. We retrieve the expected scaling behavior from
Eq. (2.31), but we still find a minor dependence on system size. It has been
suggested that the upper critical dimension for jamming is two, which im-
plies logarithmic corrections in system size [28]. Using the form suggested
in [28], we find a very good collapse (Fig. 2.12(b)). Consistently with what
was recently found for the contact number and for the elastic moduli [28],
also contact making and breaking under shear follows finite size scaling,
with two distinct scaling regimes.

2.4 Linear response

We will now show that many properties of the first contact change can be
deduced from the rest state at γ = 0 using linear response. Instead of using
a direct numerical simulation (DNS), we estimate the trajectories of (non-
rattler) particles from their linear elastic response: #»xi(γ) =

#»xi(0) +
#»ui(0) · γ,

where #»ui(0) = [∂ #»xi/∂γ](0) is calculated directly from the rest state. This
strategy not only allows us to obtain the correct strains for the first contact
change, but also gives us insight into the microscopic mechanisms. In
particular, linear response allows us to probe the closing of contacts in
detail, which is difficult in DNS simulations since, at low N2P, it becomes
exceedingly rare for the first contact change to be a contact making event
(Figs. 2.5(b) and 2.17(b)).
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Why are we allowed to assume that the response remains linear up to
the first contact change? In essence, we will show that the nonlinear be-
havior of jammed packings emerges due to the cumulative effects of many
contact changes. In contrast, between contact changes, the stress-strain
response is essentially linear (§ 2.4.1). After calculating the linear response
for our systems (§ 2.4.2), we will show that it predicts the contact change
strains with surprising accuracy (§ 2.4.3): Linear response predicts its own
demise! Finally, we investigate the breaking and closing of contacts inde-
pendently (§ 2.4.4) and find that their characteristic strains scale differently.
From these strains, we then accurately predict how often the first contact
change is a contact making event in the DNS simulations.

2.4.1 Stress response

First, we will show that the stress-strain response of our systems is essen-
tially linear in the DNS simulations. From the simulations, we find the shear
stress σ(γ) at various strains before the first contact change (Fig. 2.13(a)).
We then fit this response with a second-order polynomial σ = Gfitγ + λγ2,
and quantify the relative contribution of the quadratic component.

We quantify the contribution by calculating the ratio between the quad-
ratic and linear contributions to σ at the contact change strain γ∗:

Q =

∣∣∣∣∣
λγ∗2

Gfitγ∗

∣∣∣∣∣ =
∣∣∣∣
λγ∗
Gfit

∣∣∣∣ . (2.32)

For the typical example in Fig. 2.13(a), we find Q = 0.014. We also show
an extreme example with Q = 0.267 in Fig. 2.13(b). In Fig. 2.13(c), we have
plotted the CDF of Q for four ensembles. We find the largest deviations
from linear response for small systems at high pressure (N = 16, P = 10−2),
but even there the quadratic term is small compared to the linear term,
with 〈Q〉 = 1.4 · 10−2.

In Fig. 2.14(a), we plot Q as function of N and P. The most important
observation is that Q remains small: in the vast majority of cases, Q < 10−3,
and the nonlinear case shown in Fig. 2.13(b) is truly exceptional. The two
regions where Q appears to be the largest are for small N and large P, and
for large N and small P. The origins for these deviations are different. For
large systems at low pressure, the larger deviation is caused by inherent
nonlinearities in the system, as indicated by the high median squared
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FIGURE 2.13: Stress response for (a) a packing with a typical deviation from
linear Q = 0.014 and (b) a packing with a very large deviation Q = 0.267 (both
N = 16, P = 10−2). The simulation data (red ×) is fitted with the second-order
polynomial (blue solid curves) σ = Gfitγ + λγ2, from which we determine Q =

|λγ∗/Gfit|. The black dotted curves are the linear contribution σ = Gfitγ; the
green dash-dotted curves are the linear response predictions σ = GLRγ. The gray
vertical lines indicate the strain at the first contact change γ∗. (c) CDF of Q for
various ensembles. There is no clear trend with either N or P. For the curve with
largest mean (N = 16, P = 10−2), we find that the mean 〈Q〉 = 1.4 · 10−2 and
standard deviation sQ = 2.8 · 10−2 are both much smaller than 1 — hence linear
response captures the majority of stress-strain curves very well.

quadratic component [λ2]0.5 of the stress-strain relation (Fig. 2.14(b)), where
we use the median due to the large influence of outliers on the mean
〈λ2〉. Small systems at high pressures exhibit a small quadratic component,
but due to the larger strains involved, the deviation from linear response
becomes significant in this regime. Nevertheless, the quadratic contribution
to the stress is always small compared to the linear contribution, and we
therefore expect to be able to predict the response of the system directly
from linear response.
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FIGURE 2.14: (a) Mean deviation from linear response at the first contact change
for different ensembles. Strains are very well described by linear response for small
systems at low pressures. Significant deviations only occur for small systems at
high pressures and large systems at low pressures. (b) Median squared quadratic
component [λ2]0.5. The component is of the order 10−2 in most cases, but grows to
102 for large systems at low pressure (close to jamming).
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2.4.2 Calculating the linear response

In this section we will briefly review how, based on the initial particle
positions, box size and box shape, we determine the linear response of the
system. Given an applied deformation of the box, we can determine the
resulting particle motion, forces and energy cost [21, 24, 28, 30, 34].

The state of the system can be described as a vector

|q〉 = |qx, qb〉 = |{x1 . . . xN , y1 . . . yN}, {Lxx, Lxy, Lyx, Lyy}〉 (2.33)

where (xi, yi) is the position of particle i and the four parameters Lab de-
scribe the box size and shape. We only include particles that are part of the
load bearing network (non-rattlers).

We then prescribe a displacement |∆q〉. We determine the energy in the
new state |q + ∆q〉 by expanding U up to second order:

U(|q + ∆q〉) = U(|q〉) + 〈Jq|∆q〉+ 1
2
〈∆q|Hq|∆q〉+ O(∆q3) (2.34)

where
〈Jq| = 〈

∂U
∂x1

, · · · ,
∂U

∂Lyy
| (2.35)

is the Jacobian and

Hq =




∂2U
∂x1∂x1

· · · ∂2U
∂x1∂Lyy

...
. . .


 (2.36)

the extended Hessian at state 〈q| [24, 34, 90]. Because the initial state is at
an energy minimum, the Jacobian term is zero, and the leading contribution
to the energy is quadratic and comes from the extended Hessian.

For a given displacement, the energy cost is thus given by

∆U =
1
2
〈∆q|Hq|∆q〉 , (2.37)

and the resulting forces on particles and boundaries are

| f 〉 = Hq |∆q〉 . (2.38)

Typically, however, we do not know the displacement of each particle.
Instead, we wish to calculate the displacement of the particles given a
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change in the boundaries, i.e., find a state where, given the new boundaries,
the sum of forces on each particle is zero. To find this state, we split the
extended Hessian into four parts:

H =

(
Hxx HT

bx
Hbx Hbb

)
, (2.39)

where the ordinary Hessian Hxx describes the particle-particle interactions,
Hbx the interactions between boundaries and particles, and Hbb those
between different boundaries. We can then rewrite Eq. (2.38) as follows:

(|∆ fx〉
|∆ fb〉

)
=

(
Hxx HT

bx
Hbx Hbb

)(|∆qx〉
|∆qb〉

)
. (2.40)

where |∆qx〉 and |∆qb〉 are the displacements of particles and boundaries,
and |∆ fx〉 and |∆ fb〉 the corresponding forces. Setting the forces on the
particles to zero, we find

|∆ fx〉 = Hxx |∆qx〉+ HT
bx |∆qb〉 = 0. (2.41)

Solving for |∆qx〉 gives us particle displacements as a function of the defor-
mation of the simulation box

|∆qx〉 = −H−1
xx HT

bx |∆qb〉 . (2.42)

Unfortunately, H−1
xx cannot be calculated due to the two zero-energy transla-

tional modes. Instead, we choose to use the Moore-Penrose pseudoinverse
H+

xx, which fixes the zero-energy translational modes in place [91, §6.4]:

|∆qx〉 = −H+
xxHT

bx |∆qb〉 . (2.43)

The full displacement vector is then given by

|∆q〉 =
(
−H+

xxHT
bx |∆qb〉

|∆qb〉

)
. (2.44)

To calculate the energy cost and the stress on the boundary, we use
Eq. (2.40), and find

|∆ fb〉 = Hbx |∆qx〉+ Hbb |∆qb〉 = (Hbb − HbxH+
xxHT

bx) |∆qb〉 . (2.45)
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FIGURE 2.15: (a) Inter-particle motion between particle i and j, where particle j is
fixed in the origin. (b) For most trajectories, there are two solutions (red dashed
and blue dotted circles) where the particle overlap δ = 0, but only the solution
with positive strain (red dashed) is physically relevant solution. (c) In the case of a
closing contact, there are two positive solutions, where the minimum strain is the
physically relevant solution.

The corresponding stress can be calculated as

|∆σb〉 = |
∆ fxx
Lxx

,
∆ fxy

Lxx
,

∆ fyx

Lyy
,

∆ fyy

Lyy
〉 , (2.46)

but in practice, it is more convenient to calculate the stress by using the
Born-Huang approximation (Eq. (2.13)) on the new particle positions |q′x〉 =
|qx〉+ |∆qx〉. The stress also allows us to determine the elastic modulus
corresponding to a given boundary deformation

cq = 〈∆σb|∆qb〉 / 〈∆qb|∆qb〉 . (2.47)

For the resulting energy change we use |∆ fx〉 ≡ 0 to find

∆U =
1
2
〈∆qb|∆ fb〉 =

1
2
〈∆qb| (Hbb − HbxH+

xxHT
bx) |∆qb〉 . (2.48)

We now have all ingredients in place to calculate, for a given boundary
deformation, the particle displacements, stress response and energy change
from linear response. In the next section, we will use this to calculate the
strain at the first contact change.

2.4.3 Contact change strains

In this section, we will describe how we calculate the contact change strains
from linear response, and we will compare their values to the results from
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direct numerical simulations. First, for each particle pair i, j, we determine
the contact change strain γij, defined as the strain where the particles,
assuming linear trajectories, break contact or make a new contact. By
minimizing over all strains, we then calculate (i) the strain at which the
first new contact is made γLR

∗,mk, (ii) the strain at which the first contact
breaks γLR

∗,bk, and (iii) the strain at the first contact change γLR
∗ , which is the

minimum of γLR
∗,mk and γLR

∗,bk. We can then, for each packing, compare these
values of the strain to their counterparts obtained by simulation.

Calculating γLR
∗ . For each particle pair i, j, we determine the velocity

#»ui = ∂ #»xi/∂γ . (2.49)

by evaluating Eq. (2.43) with the unit simple shear deformation |∆qb〉 =
LL̂xy. The inter-particle velocities are then given by

# »uij =
#»ui − #»uj − ny,ijLx̂ , (2.50)

where the last term incorporates the velocity between the copies of the
periodic box. Combining these, we can solve

| #»rij + γij
# »uij| = Ri + Rj (2.51)

for γij to determine when the overlap δij = 0. There are, in general, two
solutions for γij, but only one of them is physically relevant, as indicated
in Fig. 2.15(b) and (c): the physically relevant value is the minimal positive
strain.

The first contact change for the entire system is then determined by
taking the minimum of the strain over all particle pairs i, j:

γLR
∗ ≡min(γij) . (2.52)

We can also limit ourselves to breaking and making strains to determine
the first broken and the first new contact independently:

γLR
∗,bk ≡ min

i,j in contact
γij , (2.53)

γLR
∗,mk ≡ min

i,j not in contact
γij . (2.54)

This allows us to study closing events directly, which is difficult in DNS
simulations due to their rarity at low pressures.
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FIGURE 2.16: PDFs of γLR
∗ /γDNS

∗ for various system sizes at (a) P = 10−2 and (b)
P = 10−6. For each PDF, the standard deviation s is indicated. We observe that
γLR
∗ is a good predictor for γDNS

∗ , with standard deviations on the order of 5% for
small systems and 1% for large systems.

Comparison with numerical simulations. We now show that linear response
accurately predicts the contact change strain. For each individual system,
we compare the linear response value γLR

∗ to the corresponding strain
γDNS
∗ from the DNS simulation. In Fig. 2.16, we plot PDFs of γLR

∗ /γDNS
∗

to quantify the relative deviation from the simulation. We observe that
γLR
∗ is a good predictor for γDNS

∗ . First, these distributions are peaked
around 1, which shows the mean strain found in linear response matches
that of the simulations very well. Second, the standard deviation of the
distributions, s, is of the order of 5% for small systems and 1% for large
systems. At P = 10−2, the largest packings have a standard deviation
of 7× 10−3, which increases to 5× 10−2 for small systems. The largest
standard deviation is obtained for very small systems (N = 16) at high
P (10−2). We find a strong dependency on pressure: for P = 10−6, the
distributions become very narrow around 1. The standard deviations
remains on the order of 10−2 due to outliers. We conclude that for all
parameters considered, the differences between the strains obtained by
linear response and direct numerical simulation are small. In addition to
determining the right contact change strain, we found that in over 90% of
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cases linear response also correctly identifies the contact i, j where the first
contact change takes place.

In conclusion, linear response provides us with a powerful tool to
predict the behavior of packings. It allows us to predict the first contact
change correctly, as well as determining microscopic properties unavailable
in the DNS simulations. We note in passing that the correct prediction of
contact changes suggests that shearing jammed packings might also be
implemented in terms of a discrete event simulation, where, instead of slowly
stepping through strain space, we immediately jump from contact change
to contact change.

Rattlers. In § 2.2, we discussed the effect of rattlers in the DNS simulations.
We will now focus on their effect in linear response. The creation of a rattler,
i.e., a particle losing all its contacts, is also well-defined in linear response.
In Fig. 2.4, we show a packing at the verge of creating a rattler (a), and show
the overlap δri of particle r with its neighbors A, B and C as a function of
strain γ (b). In the simulations (symbols), we find the overlaps smoothly go
to zero while approaching the contact change strain γ∗. In linear response,
we find a slightly different contact change strain for each contact, but they
are within |∆γ/γ∗| < 10−4. As in § 2.2, we do not include systems where a
rattler becomes part of the contact network in our analysis.

2.4.4 Scaling of ensemble averages obtained in linear response

Now that we have established that we can predict contact changes using
linear response, we will study the making and closing strains in detail.
Based on Eq. (2.27), we expect three scaling regimes for the contact change
strains: for low N2P, γmk ∼ 1/N2 and γbk ∼ P, while for high N2P, both
γbk and γmk are expected to scale as

√
P/N2. As before, these scalings

suggest scaling collapse if we plot N2γ as a function of N2P:

N2γ ∼





N
√

P = (N2P)0.5 for N2P� 1,
N2P = (N2P)1 for bk, N2P� 1,
1 = (N2P)0 for mk, N2P� 1.

(2.55)

In Fig. 2.17(a), we plot our linear response data using this rescaling. As
in § 2.3.3, applying log corrections [28] improves the collapse (Fig. 2.17(b)).
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FIGURE 2.17: (a) Scaling of ensemble averaged breaking (5) and making (4)
strains γLR

bk = 〈γLR
∗,bk〉 and γLR

mk = 〈γLR
∗,mk〉 from linear response. (b) As in Fig. 2.12,

log corrections significantly improve the quality of the collapse.

For low N2P, we find that the data is well described by the expected
power laws, but for high N2P, we find that neither branch cleanly scales
as γ ∼

√
P/N, even though the branches combined do appear to scale that

way. The branches slowly converge, and join around N2P ∼ 10−4. We
expect that for larger systems, for which N2P can be large while P remains
small, the clean square root scaling will be recovered for both branches.

What do these different scalings imply for properties that we can mea-
sure in the DNS simulation, specifically for the contact change strain γcc
and the prevalence of making versus breaking events? Starting with the
exponential CDFs (Eq. (2.23)) for making and breaking,

Pr(γ∗,mk ≤ γ) = 1− e−γ/βmk γ ≥ 0, (2.56)

Pr(γ∗,bk ≤ γ) = 1− e−γ/βbk γ ≥ 0, (2.57)

where β is the mean value of the distribution, we can derive the CDF for
the minimum of the distributions, assuming γ ≥ 0:

Pr(min{γ∗,mk, γ∗,bk} ≤ γ) = Pr(
[
γ∗,mk ≤ γ

]
∨
[
γ∗,bk ≤ γ

]
)

= 1− e−γ/βmk e−γ/βbk

= 1− e−γ/βcc , (2.58)
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so the mean contact change strain becomes

βcc =
1

1/βbk + 1/βmk

. (2.59)

We can also derive the probabilities of the first change being a breaking or
making event. We will derive Pr(mk) = 1− Pr(bk) rather than Pr(bk), as
the former vanishes for N2P→ 0.

Pr(mk)LR =
∫ ∞

0
Pr(
[
γ∗,mk = γ

]
∧
[
γ∗,bk > γ

]
) dγ

=
∫ ∞

0

[
(1/βmk)e

−γ/βmk
]
·
[
e−γ/βbk

]
) dγ

= − 1/βmk

1/βmk + 1/βbk
e−γ·(1/βmk+1/βbk)

∣∣∣∣
∞

0

=
1

1 + βmk/βbk

. (2.60)

For N2P � 1, we found that in linear response βmk ∼ βbk ∼
√

P/N2.
This means that breaking and making a contact are equally likely, and the
mean strain βcc is half that of the individual strains. For N2P � 1, the
behavior is different. In this regime, βbk � βmk, so the combined average
strain βcc is dominated by βbk:

βcc =
1

1/βbk + 1/βmk

≈ βbk , (2.61)

i.e., the mean contact change strain is given by the mean breaking strain.
The probability of making a contact in this regime is much smaller than
breaking one:

Pr(mk)LR =
1

1 + βmk/βbk

∼ 1
1 + 1/N2P

≈ N2P� 1 . (2.62)

In Fig. 2.18(a), we show Pr(mk)LR as a function of N2P for each en-
semble, and find the derived scaling: Pr(mk) ∼ N2P for small N2P and
Pr(mk) ∼ 1/2 for high N2P. We then fit our data with a simple scaling
function to ease comparison with the numerical data.
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FIGURE 2.18: (a) Scaling of Pr(mk)LR = βmk/(βmk + βbk) using the aver-
age making and breaking strain from linear response. The curve is a fit to

Pr(mk) = b
2 N2P/(1 +

√
b · N2P)2 with b = 0.35± 0.01. (b) Scaling of the fre-

quentist probability Pr(mk)DNS = Nmk/N from DNS simulation data. Because of
the limited ensemble size (100− 2000), the error bars are large, especially for low
Pr. The curve is the same as in (a). Error bars without symbols indicate ensembles
without making events.

To compare the results to numerical simulations, we determine the
frequentist probability

Pr(mk)DNS = Nmk/Ntotal . (2.63)

We then plot this probability against N2P in Fig. 2.18(b). To get an error
estimate, we model the system as Poissonian [92, A1], and use

s =
√

N(Pr)(1− Pr)/N , (2.64)

as standard deviation, where we take Pr = Pr(mk)DNS. If Pr(mk)DNS = 0,
we take Pr = 1/Ntotal.

We find the scaling describes our data reasonably well for medium
to high N2P, but at lower N2P, we find a large number of outliers on
a plateau around Pr(mk)DNS ≈ 5 · 10−3. We propose this deviation is
caused by difference in the distributions of γmk and γbk. In Fig. 2.19, we
plot the distributions of γmk and γbk. As we have seen in § 2.3.2, the
distribution of γcc deviates from exponential for N2P � 1, but here we
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FIGURE 2.19: Rescaled CDFs for the first breaking event strain Pr(γbk ≤ k · 〈γbk〉)
(red line) and the first making event strain Pr(γmk ≤ k · 〈γmk〉) (blue dashes) for
(a) N = 16, P = 10−6 and (b) N = 1024, P = 10−2. For high N2P, both CDFs are
well-described with an exponential (light gray background curve), but for low
N2P, both CDFs diverge from an exponential. The distribution of γmk gets more
weight at low values, while the distribution of γbk gets more weight at higher
values.

find that the distributions for γmk and γbk deviate from exponential in a
different way. For γmk, there is a bias towards lower strains, explaining the
relative abundance of making events.

We have seen that linear response provides us with a powerful tool to
understand what happens in the DNS simulations. We not only predict
the first contact change with surprising accuracy, we can also predict the
prevalence of different types of events.

2.5 Multiple contact changes

In this section, we will discuss the behavior of our systems when strained
beyond the first contact change. We will discuss the implications of contact
changes for continuum elasticity, and will take a look at the effects of
switching from free boundaries at zero strain to fixed boundaries in systems
at finite strain.
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FIGURE 2.20: (a) Probability distribution functions of G1/G0, the relative shear
modulus after the first contact change, for different values of N2P log10(N)−0.7.
For small systems at low pressures (bottom), we find 0 ≤ G1/G0 ≤ 1. For
intermediate systems, we find G1/G0 is typically smaller than 1, but can become
negative (indicating an unstable system). For large systems at high pressures (top),
we find G1/G0 ≈ 1. The creation of contacts (blue) correlates with an increase in
G, while the breaking of contacts (red) correlates with a decrease in G. (b) The
fraction of events where G1 < 0 peaks around N2P log10(N)−0.7 ≈ 1. (c) The
standard deviation of G1/G0. For small systems at low pressures, s ≈ 0.3, whereas
for large systems s ∼ (N2P)−β with β = 0.35± 0.01.

2.5.1 Shear modulus

As we have seen, the first contact change happens at lower and lower
strains as systems get larger. Schreck et al. [76] suggested that this implies
that linear response is no longer valid for disordered systems at large N.
It is clear that changing a single contact can have a large effect on small
systems, but one would expect the effect to vanish in larger systems: in the
thermodynamic limit, systems are expected to behave increasingly like an
elastic solid, and this apparent paradox lead to a lively debate [77, 78, 93].

Here we show how the effect of a single contact change on the shear
modulus becomes smaller and smaller when the system size is increased.
We note that, as long as the shear modulus does not change significantly,
we can consider the system to have an effective linear response, even though
it is no longer strictly linear. To quantify the effect of a single contact change,
we calculated the shear modulus before (G0) and after (G1) the first contact
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change using Eq. (2.47). For each value of N and P, we have calculated the
probability distributions ρ(G1/G0). From these, we determine in particular
Pr(G1 < 0) (Fig. 2.20(a)) and the width of these distributions (Fig. 2.20(c)).
We find that the shape of these distributions varies strongly and that we
can organize our data using the finite size parameter N2P log10(N)−0.7,
and as function of this parameter we distinguish three regimes.

(i) N2P log10(N)−0.7 � 1. In the small system size limit, we find that
ρ(G1/G0) is a strongly asymmetric distribution, with most weight around
zero. We find that the mean 〈G1/G0〉 ≈ 0.2, and that 0 < G1 < G0. To
understand this, we note that in this regime, the first contact change is
a breaking event, which weakens the system. We find that G1 is signif-
icantly smaller than G0 because, in this regime, there is typically only a
single excess contact (Fig. 2.10). Surprisingly, the system does not unjam
immediately, for reasons we will discuss in § 2.5.2.

(ii) N2P log10(N)−0.7 ≈ 1. In the intermediate regime, the number of
excess contacts remains small, contact changes are predominantly contact
breaking events, and we observe that G1 < G0. However, the probability
that G1 < 0 becomes finite, in contrast to the behavior in regime (i). This
follows from the variation of forces on the contacts between particles, the
prestress: without prestress, G has to be non-negative [28, 94], but as P
increases in regime (ii) there is sufficient prestress to allow for negative
values of G1, and this happens in up to 35% of cases (Fig. 2.20(b)).

(iii) N2P log10(N)−0.7 � 1. For large systems, we enter the continuum
regime, where the distribution ρ(G1/G0) peaks around one and becomes
increasingly symmetric and narrow. Hence G1 ≈ G0, and this is the essence
of the solution of the apparent paradox. The symmetry of the distribution is
consistent with out observation that contact creation and contact breaking
becomes equally likely in this regime.

Types of events. We observe a strong correlation between the type of events
and the behavior of G1/G0, where, in the vast majority of cases, G1 < G0
is linked to broken contacts, and G1 > G0 to created contacts (Fig. 2.20(a)).
In a minority of breaking events (≈ 0.5%), we find G1 < G0, but a close
inspection of anomalous events systematically reveals that for these events,
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rearrangements happen at very nearby strains, or G1 ≈ G0, which suggest
that their small probability is a measure of numerical noise, and does not
contain significant physics.

Effective linear response. A simple scaling argument for the width of the
distribution of G1/G0 can be obtained from combining the scaling of G
with P, G ∼ ∆z ∼

√
P with the observation that making and breaking of

contacts is equally likely. As a single contact change modifies ∆z by ±1/N,
we thus expect G±1 ∼ ∆z0 ± 1/N. The width of this distribution scales as

s ∼ G+
1 − G−1

G0
∼ 1/N

∆z0
∼ 1/N√

P
=

1√
N2P

. (2.65)

However, when we measure the width of the distribution using the
standard deviation s, we observe it vanishes as (N2P log10(N)−0.7)−β with
β = 0.35± 0.01 (Fig. 2.20(c)). We suggest that the contacts changed under a
shear deformation have a relatively large impact on the shear modulus -
a relatively small number of contacts contribute disproportionately to the
elastic moduli [95].

Nevertheless, the observed diminishing of the width of the distribution
ρ(G1/G0) is sufficiently strong to be consistent with an effective linear
response picture. We call a material effectively linear if, for a small fixed
deformation γt, the standard deviation of G(γt) vanishes for N → ∞. In
terms of contact changes, we need to establish how the number of contact
changes experienced up to γt grows with N, and how the effect of a single
contact change decreases with N. We estimate the number of contact
changes between γ = 0 and the test strain γt as

n = γt/γcc = γt/(
√

P/N) . (2.66)

We then assume that all contact changes are independent of each other,
and assume each contact change causes a change in G drawn from the
distribution ρ(G1/G0) with standard deviation s ∼ (N2P)−β. The central
limit theorem then states that the standard deviation after n contact changes
is given by

sn ∼
√

n(N2P)−β . (2.67)
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FIGURE 2.21: The number of contacts for systems with N = 16 particles at
P = 10−6. The circle area represents the fraction of systems with a given number
of contacts; the thickness of the lines represent transition probabilities. Initially,
the systems start off with the minimum number of contacts 2N + 1 = 33 (31
or 29 when there are one or two rattlers, respectively). In the first and second
contact change, the system loses one contact (three when a rattler is created). In
the following events, the system alternately gains and loses a contact.

Combining these, we find that the standard deviation after a strain γt is
given by

sγt
∼
√

γt/(
√

P/N)
(

N2P
)−β
∼ √γt · N

1
2−2βP−

1
4−β , (2.68)

which vanishes for large N as long as 1
2 − 2β < 0, or

β > 1/4. (2.69)

Clearly, 0.35 > 1/4, so, for N → ∞, our systems approach the con-
tinuum limit. This is consistent with the picture where, for large N, the
effective value of G depends on the applied shear γ rather than the number
of contact changes n [96, 97].

2.5.2 Alternating contact changes

Here, we investigate correlations between consecutive contact changes.
In Fig. 2.21, we show the number of contacts in the system as a function
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of the number of contact changes for systems with N = 16 particles, at
P = 10−6. Initially, systems have 2N + 1 contacts, i.e., 33 if all particles
are part of the contact network, 31 if there is one rattler and 29 if there
are two rattlers. Surprisingly, we observe the first two contact changes are
breaking events, bringing the contact number to 2N − 1. The system then
alternately gains and loses a contact, switching between 2N − 1 and 2N
contacts. This behavior stays apparent at least until the 10th contact change.
This evidences correlations between subsequent events. In addition, we
note that the same contact is often involved in multiple contact changes,
although typically not in subsequent contact changes.

The subtle role of boundary conditions. One question this poses is why the
system is allowed to lose contacts in the first place: after all, we are on
the brink of losing rigidity, and a single broken contact should unjam the
system. However, that does not take into account the change in boundary
conditions between the initial relaxation and the strained state. In the initial
relaxation, we require

Fx = Fy = 0 (2.70)

for all particles, and

σyx = σxy = 0 ,

τ = 1
2 (σxx − σyy) = 0 ,

Pint =
1
2 (σxx + σyy) = Pext , (2.71)

for the boundaries. This gives us 2N + 3 degrees of freedom. Two of these
degrees are constrained by requiring zero global translation, and the other
2N + 1 need to be constrained by at least Nc = 2N + 1 contacts between
particles to be jammed [28, 33]. When we strain the system, this changes.
Instead of requiring a fixed stress on the boundaries, we require a fixed
deformation

Lyx(γ) = Lyx(0) + γ · L(0) , (2.72)

Lxx(γ) = Lxx(0) , and (2.73)
Lyy(γ) = Lyy(0) . (2.74)

Of the initial 2N + 3 degrees of freedom, we now only have 2N left, which
means we need just 2N − 2 contacts for stability: our system is suddenly
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overconstrained, and we expect we need to break four contacts to unjam.
Surprisingly, we find that the system only loses two contacts before gaining
a new contact, and that diving below 2N − 1 contacts already unjams the
system.
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2.6 Alternative scaling models

In this section, we will discuss our findings in the light of alternative scaling
approaches that have surfaced in the literature recently. First, we will
investigate how accurately we can determine the power laws via scaling
collapse of our data, and will compare the log corrections we applied
in § 2.3.3 to power law corrections. Then, we will compare our results
to work on contact changes in closely related model systems. Schreck
et al. [76] have investigated nonlinearities in jammed packings at finite
temperature, and found a different scaling law for the onset of contact
changes that we attribute to their averaging over modes. Combe and
Roux [79] and Lerner et al. [80] have approached the problem from a hard
particle perspective, and found a scaling law very close to the behavior
we find close to jamming. Finally, we will approach the problem from a
statistical perspective. Starting from the distribution of γ∗ of all contacts in
all packings, we apply extreme value analysis to find the expected mean
first contact change. We find that this does not yield a good prediction for
the measured value, and determine that this cannot be explained by a few
weak contacts, but rather points to correlations involving the whole system
— i.e., the statistics of the first n contact changes in a system are different
from the statistics of the first contact change in n systems.

Best collapse. Before describing the scaling functions found in other work,
we will first investigate the range of scaling functions that gives an accept-
able match to our data.

In § 2.3.3, we provided two arguments that predict the following scaling
for the first contact change strain γcc:

N2γcc ∼ F
(

N2P
)

(2.75)

where F(x) ∼ x for small N2P and F(x) ∼ x0.5 for large N2P. In the same
section, we have seen the results from the simulation collapse when plotted
on these axes. Furthermore, we have seen that the collapse improves
significantly by using the log correction

N2γcc ∼ F
(

N2P log10(N)−0.7
)

, (2.76)

with the same F(x).
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First, we investigate for which exponents in N the collapse, without the
log correction, is satisfactory, i.e., for what values of q and r does

Nqγcc ∼ F
(

NrP
)

(2.77)

give an acceptable collapse? To make this quantitative, we measure the
running maximum M (starting at low NrP) and the running minimum m
(starting at high NrP), and calculate the effective area between the curves

ℵ =
∫ [

log10(M(NrP))− log10(m(NrP))
]

d log10(NrP) , (2.78)

where

M(x) =max(Nqγcc|NrP ≤ x) , (2.79)
m(x) =min(Nqγcc|NrP > x) . (2.80)

In Fig. 2.22, we show collapse plots for q = 1.8 . . . 2.2 and r = 1.6 . . . 2.0. We
observe that all plots with

r ≤ q ≤ r + 0.4 (2.81)

are reasonable (ℵ / 1), and that N2γ ∼ F
(

N1.8P
)

has the best overall
scaling collapse (ℵ = 0.32). Our log-corrected collapse is very close to this,
with ℵ = 0.37.

Second, we can wonder about the correct asymptotic behavior of F(x).
To find this behavior, we fit F(x) = C · xβ separately for both the upper
(N1.8P > 10) and lower (N1.8P < 0.1) branches (Fig. 2.23(a)), and find

F(x) =

{
(1.7± 0.1) · x0.50±0.01 (x � 1)
(2.7± 0.3) · x1.00±0.01 (x � 1)

, (2.82)

which means that the best overall scaling of γ becomes

γ =

{
(1.7± 0.1) · P0.5N−1.1 (N2P� 1)
(2.7± 0.3) · P1N−0.2 (N2P� 1)

. (2.83)

The error bars are given by the variation of the parameters when the fit
range is increased or decreased by a decade. When p and q are varied
within the collapse region, the exponents vary by ∼ ±0.05.
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FIGURE 2.23: (a) Asymptotic behavior of F(x). Black lines show the result from the
power law fit: F(x) ∼ x1.0 for small x and F(x) ∼ x0.5 for large x. The crossover
between the two regimes is at x = 0.4. (b) Residual plot F(x)/x1.0 (blue) and
F(x)/x0.5 (red) show the fitted power laws match the behavior very well in their
respective regimes, as they scatter around a constant value. (c) Log-correction
c(N) = log10(N)−0.7 and power law correction c(N) = N2/N1.8 = N−0.2 as
function of system size N. Both vary roughly by a factor of two in the range of N
we probe. (d) The ratio of the two varies by less than 35%.

When we compare the power laws to our expected scaling (Eq. (2.31)),
we find the scaling of γ with P is as expected, but note two differences from
the expected scaling of γ with N. First, we observe γ decreases as N−0.2

for small systems, instead of the independence of N our scaling model
predicted. Second, for large systems, we observe γcc scales as N−1.1 instead
of N−1.

Comparison between power law and log corrections. We can interpret the 1.8
exponent in N as a correction to the predicted N2P scaling: N1.8P =

N−0.2(N2P). In Fig. 2.23(c), we compare this correction to the log cor-
rection described in § 2.3.3. We observe the corrections produce largely the
same effect in the range of N that our simulations cover. When we plot
the ratio of the two (Fig. 2.23(d)), we observe that the deviations between
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FIGURE 2.24: “The total energy per particle required to break a single contact
averaged over k (scaled by A(∆φ)(∆φ)2, where A(∆φ) is only weakly dependent
on ∆φ) versus N for ∆φ = 10−2 (crosses), 10−3 (pluses), 10−4 (triangles), 10−5

(diamonds), 10−6 (squares), and 10−7 (circles). The solid line has slope −1.7.”
From Schreck et al. [76, Fig. 3(b)]; copyright 2011 by The American Physical Society.

both corrections are less than 35%, over a range where N2 changes by three
orders of magnitude.

It is thus very difficult to distinguish log corrections from power law
corrections to scaling in 2D. To achieve a measurable difference of a factor
three, systems of at least 60 000 particles are required. Alternatively, simu-
lations can be performed in three dimensions, in which case log corrections
will disappear [28].

To conclude, we find our deviations from the expected scaling can be
described by both a log correction and a power law correction. Much larger
systems or three-dimensional simulations are required to fully distinguish
the two corrections.

2.6.1 Excited eigenmodes

We now turn to comparing our results to other work on contact changes
in amorphous systems. We first focus on work by Schreck et al. [76], who
investigated contact breaking in jammed sphere packings using excited
eigenmodes. They displace particles along an eigenmode:

#»r = #»r0 +
√

Nδêk , (2.84)
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where #»r0 is the original state, #»r the excited state, N the system size, êk
the eigenvector for eigenmode k, and δ the excitation amplitude. The
system is then allowed to evolve at fixed energy. For small excitations δ, the
system oscillates around a base state, and most energy is contained in the
initial eigenmode. However, for excitations larger than a critical excitation
amplitude δc(k) there is a sharp increase in how much energy spreads into
the other eigenmodes of the system. Schreck et al. find that δc is directly
related to the first contact change in the system. Surprisingly, they find that
contacts only break, even for large systems (N = 1920) at high densities
(∆φ = 10−2).

For each system, δc(k) is calculated for every eigenmode k. The authors
then measure the average energy required to break a contact

E = 〈(ωkδc(k))
2〉k , (2.85)

where ωk is the eigenfrequency of eigenmode k and the mean is taken over
all eigenmodes.

Fig. 2.24 shows the scaling of the energy per particle E/N as a function
of density ∆φ and system size N. Schreck et al. find a relationship

E/N
A(∆φ) · (∆φ)2 ∼ N−β , (2.86)

“where A(∆φ) is only weakly dependent on ∆φ and β ≈ 1.7” [76]. Close to
jamming (N∆z = 0 . . . 2), they find A(∆φ) is constant and β = 1 . . . 2 [98].
When we rewrite Eq. (2.86) in terms of E, take A(∆φ) as constant and use
∆φ ∼ P, we find

E ∼ N1−β(∆φ)2 ∼ N1−βP2 . (2.87)

To compare this with our results, we note that

E ∼ σγL2 ∼ σγN ∼ GNγ2 , (2.88)

so
γ ∼
√

E/GN ∼ N−β/2PG−1/2 . (2.89)

Using the known finite-size scaling of G [34], we then find

γ ∼
{

PN(1−β)/2 (N2P� 1)
P0.75N−β/2 (N2P� 1)

, (2.90)
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FIGURE 2.25: (a) Our data rescaled as in Schreck et al. [76] (Eq. (2.90)). Black
lines indicate power laws with exponent 1 and 0.75. (b) The residuals F(x)/x1.0

(blue) and F(x)/x0.75 (red) do not have a plateau, indicating these power laws
do not well describe the data. (c,d) Same, but with data rescaled as in Wyart
[99] (Eq. (2.94)), where we have chosen r = 1.8, as in our best collapse. The
corresponding q = 1.8 + 0.15 = 1.95 is indistinguishable from our best choice
q = 2.0.

To test whether this matches the data, we plot N(β+3)/2γ as a function
of N2P in Fig. 2.25(a), using the published value β = 1.7. We find, firstly,
that the collapse is not very good. Secondly, we find the 0.75 power law
for the upper branch overestimates the actual strains. To a lesser extent,
the lower branch also deviates from Eq. (2.90). This is also reflected in the
residuals in Fig. 2.25(b) — neither branch collapses onto a constant value.

We expect these differences arise because Eq. (2.85) calculates the energy
as an average over 2N modes within the same system. In § 2.6.3, we will see
that averaging over all contacts loses many of the features we find for the
first contact change.

2.6.2 Hard particle systems

The question of contact breaking and plasticity has also been studied in
systems of hard particles. These systems are isostatic [100], which means a
contact change is always a breaking event, and each breaking event will
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cause the system to unjam. Contact changes are therefore directly connected
to plastic events. Isostaticity also implies that the force distribution is
unique, and can be derived directly from the contact network [101]. Because
the systems are isostatic, the results can only describe the N2P� 1 limit of
soft particle systems.

Combe and Roux [79] investigated the prevalence of and distance be-
tween strain jumps in a system under uniaxial stress-controlled compres-
sion. The system is deformed by increasing σyy while keeping σxx constant.
Combe and Roux find that the spacing between events is described by an
exponential distribution in δq(N/1024)1.16, where δq is the relative uniax-
ial stress increment ∆σyy/P. This is consistent with modeling events as a
Poisson process.

Because the mean of the distribution

〈δq(N/1024)1.16〉 = 〈∆σ〉(1/P)(N/1024)1.16 ∼ constant (2.91)

is independent of N and P, the mean stress required to break the first
contact scales as

〈∆σ〉 ∼ P〈∆q〉 ∼ P/N1.16 . (2.92)

We can then calculate the γbk using the uniaxial compression modulus E.
Using that K ∼ 1 and G ∼ 1/N � K near jamming, E is given by [102]

E =
4

1/K + 1/G
∼ G ∼ 1

N
(2.93)

and the expected mean strain to break the first contact is thus given by

γbk ∼ 〈∆σ〉/E ∼ P/N0.16 , (2.94)

which is very close to the P/N0.20 scaling we found by fitting our data to a
pure power law (Eq. (2.83)).

A theoretical argument for this power law, based on the concept of
"weak" contacts that connect to local motion, and "strong" contacts that are
connected to global motion, was introduced by Lerner et al. [80]. Wyart
[99] uses this to predict that the strain for the first contact change should
scale as

γ ∼ P/N0.15 , (2.95)

which is close to the value found by Combe and Roux [79].
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In Fig. 2.25(c), we show this scaling also provides a good match to our
data — the 0.15 exponent can be seen as a power law correction to our
initial γ ∼ P scaling near jamming, and is essentially indistinguishable
from either log or 0.2 power law corrections.

2.6.3 Extremal value scaling

In this section we probe whether we can predict the scaling of γcc and
distribution of γ∗ based on the distribution of all contact change strains
ρ(γij) for a given ensemble (N, P). Note that before (§§ 2.3 and 2.4), we
have determined the scaling of γcc by determining γ∗ for each packing, and
averaging over those values. We found that the distribution of γ∗ is close
to a exponential distribution. Assuming that large enough packings are
statistically similar, it should be possible to predict γcc from the distribution
of ρ(γij) using extremal statistics. In particular, one might expect that ρ(γij)
takes on a simple form for sufficiently large N, possibly even amenable
to a theoretical description. Deviations from this picture may point to
lack of self-averaging or other subtleties, and as such provide important
information for developing a deeper theoretical understanding for the
characteristic strains of the first contact change. Before starting, we note
that for contact creation, it is difficult to establish which potential contacts
should be considered, and we therefore focus on the breaking of contacts
only, using γLR

∗,bk from linear response. We will also limit our discussion to
contacts that break under shear in the positive direction, i.e., γ > 0. As a
first probe of the usefulness of extremal value statistics for contact breaking,
we compare the results of two distinct methods of calculating the mean
contact breaking strain. First, we define γLR

bk = 〈γLR
∗,bk〉, the mean of the

contact breaking strains determined for an ensemble of packings, as we
have done in § 2.4. Second, we determine γdist

bk from the distribution of
positive contact change strains ρ(γ†

ij) by solving

1
〈Nbk〉

=
∫ γdist

bk

0
ρ(γ†

ij)dγ†
ij . (2.96)

To implement this, we first compute the numerical CDF Pr(γ†
ij < γ) based

on the breaking strain γij for every contact in every packing in the ensemble
and then solve

Pr(γ†
ij < γdist

bk ) = 1/〈Nbk〉 , (2.97)
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FIGURE 2.26: (a) CDF of γ†
ij for every contact for every packing in the N = 1024,

P = 10−2 ensemble. The strain at which Pr(γ†
ij < γdist

bk ) = 1/〈Nc〉 is the expected

contact breaking strain for this ensemble: γdist
bk = 1.4× 10−4. The mean breaking

strain from linear response is γLR
bk = 1.5× 10−4, and is indicated with the dashed

line. (b) Colored symbols: resulting scaling of γdist
bk . Gray background: scaling of

γLR
bk , as in Fig. 2.17(b). (c) The ratio γdist

bk /γLR
bk varies slowly with N2P log10(N)−0.7,

from γdist
bk /γLR

bk ≈ 0.5 to γdist
bk /γLR

bk ≈ 1.0.

where 〈Nbk〉 ≈ 0.5〈Nc〉 is the mean number of contacts that break under
positive strain, for which we take the numerical ensemble average. This
procedure is illustrated in Fig. 2.26(a) for the N = 1024, P = 10−2 ensemble,
where 〈Nbk〉 = 1147. For this particular example we find that γLR

bk =

1.5× 10−4 whereas γdist
bk = 1.4× 10−4. These values are close but distinct

(γdist
bk /γLR

bk = 0.93) — as we will show below, there are systematic deviations
between these numbers which provide insight into the statistics of contact
breaking.

As comparison, we repeat this procedure for a synthetic ensemble
of systems where all contacts are uncorrelated. To build this ensemble,
we draw Nbk = 1147 contacts for each of Ns = 1000 systems from the
measured frequentist distribution of contact breaking strains ρ(γ†

ij) of the
N = 1024, P = 10−2 ensemble (bootstrapping). For each system, we
calculate the minimum strain γ∗. We then compare the mean breaking
strain γbk = 〈γ∗〉 = (1.34± 0.04)× 10−4 to γdist

bk = 1.4× 10−4, and find
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γdist
bk /γbk = 1.05 ± 0.04 > 1. Values below 1 thus indicate significant

deviations from uncorrelated systems.

Distribution of strains. We now probe the distribution of strains of first con-
tact breaks. Consider an ensemble of M packings of N particles, each with
Nbk(m) contacts for which we calculate the breaking strains γ†

ij. This yields
a total of ΣM

m=1Nbk(m) ≡ M〈Nbk〉 samples (values of γ†
ij), as illustrated in

Fig. 2.27 for a synthetic data set, as well as for two data sets at fixed P and
N. First, we can collect all breaking strains in a distribution ρ(γ†

ij) (black
curves in panels b,e,h). As illustrated in Fig. 2.27 there are now two opera-
tions we can perform. Equivalent to what we do to determine γLR

bk in linear
response, we can determine the minimum breaking strain for each of the M
packings, obtaining M breaking strains (red crosses in panels a,d,g) and the
corresponding distribution ρ(γLR

∗,bk) (shown as red curves in panels b,e,h,
as a fraction of ρ(γ†

ij)). Alternatively, we may also consider the M smallest
values out of M〈Nbk〉 samples taken out of the distribution ρ(γ†

ij) (blue

circles), which yields the distribution ρ(γ<) := ρ(γ|γ ≤ γdist
bk ) (blue curve).

The mean values considered above are related to these distributions as
follows: γLR

bk is the mean of the ρ(γLR
∗,bk), whereas γdist

bk is the maximum value
of γ< in ρ(γ<). Clearly, the distributions ρ(γLR

∗,bk) and ρ(γ<) in general will
be different, but if the different packings are statistically indistinguishable
and large enough to allow for self-averaging, so that γLR

bk ≈ γdist
bk , these

distributions are directly related (see below), which yields a statistical test
on the nature of the contact breaking strains.

Results. We have determined γbk and γdist
bk for all (N, P) ensembles. In

Fig. 2.26(b) we plot N2γdist
bk vs N2P log10(N)−0.7, and in Fig. 2.26(c) we

plot the ratio γdist
bk /γLR

bk vs N2P log10(N)−0.7. At low N2P log10(N)−0.7, we
find that γdist

bk and γLR
bk exhibit similar scaling with N2P log10(N)−0.7, but

that their ratio γdist
bk /γLR

bk ≈ 0.6 < 1.05± 0.05 points to deviations from
self-averaging. At very high N2P log10(N)−0.7, γdist

bk increases faster than
γLR

bk and appears to reach equality for the highest values of N2P — we
suggest that here the packings are large enough to be self-averaging.

To further characterize the origins of this breakdown of self averaging
in small systems, we take a closer look at the distributions ρ(γ∗,bk) and
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FIGURE 2.27: (a) Scatter plot of each positive contact breaking strain γ†
ij for 100

synthetic systems drawn (bootstrapped) from the distribution ρ(γ†
ij) for N = 1024,

P = 10−2 (black dots). For each system, γ∗ ≡ min γ†
ij is indicated with a red +.

All values below the 1/Nc percentile are indicated with a blue ◦. (b) The PDF
ρ(xij) (black). The distribution of per system minima (ρ(γ∗)/M, red dashed) and
values below the 1/Nc percentile (ρ(γ<)/M, blue dash-dotted) as part of the
whole are indicated. (c) Same as (b), but with a linear PDF axis. (d,e,f) Same as
(a,b,c), with numerical data from the N = 1024, P = 10−2 ensemble. (g,h,i) Same,
with numerical data from the N = 16, P = 10−6 ensemble.
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ρ(γ<) in Fig. 2.27 and 2.28. In Fig. 2.27(a–c), we plot each value of γ†
ij for

the first 100 systems in the synthetic ensemble described above. When
we compare the PDFs of the per system ρ(γ∗,bk) (red curves in panel b)
and distribution minima ρ(γ<) (blue curves in panel b), we note they are
similar for small values of γ†

ij, but different for larger values of γ†
ij.

In Fig. 2.28(a) we compare the CDF of the per system minima to the CDF

of the whole distribution. In the synthetic data, we can deduce that the
inverse CDF of minima Pr(γ∗ ≥ γ) relates to the CDF of the distribution
Pr(γij < γ) as

Pr(γ∗ ≥ γ) = (1− Pr(γij < γ))〈Nbk〉

=

[
1−

#γij<γ

Ns〈Nbk〉

]〈Nbk〉

≈ exp(−
#γij<γ

Ns
)

= exp(−〈Nbk〉Pr(γij < γ)) , (2.98)

for large enough 〈Nbk〉 for a given 〈Nbk〉Pr(γij < γ). In Fig. 2.28(a), we
plot Pr(γ∗ ≥ γ) as a function of 〈Nbk〉Pr(γij < γ) for both the synthetic
distribution described above, as well as for a synthetic distribution with
small 〈Nbk〉. We observe the exponential scaling predicted in Eq. (2.98) for
both. Hence, one expects 63% of the Ns per-system minima γ∗ to be present
in the set of Ns global minima γ<.

In Fig. 2.27(d–f), we plot each value of γ†
ij for the first 100 systems, taken

from the N = 1024, P = 10−2 ensemble. The relation between the PDFs
of the per system ρ(γLR

bk ) (red curves in panel e) and distribution minima
ρ(γ<) (blue curves in panel e) are similar to those of the synthetic data,
and γdist

bk = 1.4× 10−4 and γLR
bk = 1.5× 10−4 are quite similar. Consistent

with this, a plot of Pr(γ∗ ≥ γ) as a function of 〈Nbk〉Pr(γij < γ) is approx-
imately exponential, although slight deviations can be seen in the tails of
these distributions (Fig. 2.28(b)).

In Fig. 2.27(g–i), we plot each value of γij for the first 100 systems, taken
from the N = 16, P = 10−6 ensemble. The differences between the PDFs
of the per system ρ(γbk) (red curves in panel h) and distribution minima
ρ<(γ

dist
bk ) (blue curves in panel h) are more significant, and γbk = 1.6× 10−6
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FIGURE 2.28: Pr(γ∗ ≥ γ) as a function of 〈Nbk〉Pr(γij < γ) (see text). (a) Solid

black curve: Synthetic data, drawn from ρ(γ†
ij) in the N = 1024, P = 10−2

ensemble (〈Nbk〉 = 1147). For the same ensemble, data with a single value from
a distribution with lower mean (dot-dashed blue curve) and for systems with
an overall per-system scale (dashed purple curve) are also shown. Dotted red
curve: Synthetic data, from ρ(γ†

ij) in the N = 16, P = 10−6 ensemble (〈Nbk〉 = 16).
The gray line indicates Pr(γ∗ ≥ γ) = exp(−〈Nbk〉Pr(γij < γ)). (b) Data from
our simulations. We observe the curves decay slower than exponential, indicating
correlations between contacts. (c) Data from (b), but with all strains rescaled to the
mean of strains within one system. This reduces the effect of a per-system scale
(dashed purple curve), but does not completely negate it. The behavior for the
packing-derived data is unchanged as compared to (b).

and γdist
bk = 1.1× 10−6 are quite distinct. Consistent with this, a plot of

Pr(γ∗ ≥ γ) as a function of 〈Nbk〉Pr(γij < γ) deviates significantly from an
exponential (Fig. 2.28(b)). This deviation points to a lack of self-averaging
in small systems.

Interpretation. We now discuss two possible scenarios to explain the devi-
ations for small N2P log10(N)−0.7. First, each finite packing could have a
different distribution of γij, but between packings these distributions are re-
lated by an overall scale factor. The data shown in Fig. 2.27(g) suggests that
this is possible. To understand the effect of such ‘overall scale factor’ for
the statistics, we draw an overall system scale from a uniform distribution

69



CONTACT CHANGES OF SHEARED SYSTEMS

U (0, 1) for each of the synthetic systems, and multiply the strains for each
system with this scale factor. The resulting behavior is shown in Fig. 2.28(a),
where we see the decay is much slower than for uncorrelated systems. The
reason for this is that packings with a low minimum will typically come
from a system which contains other low strains. This saturates the low
strain region of the overall distribution with strains that are not system
minima. The data extracted from our direct simulations (Fig. 2.28(b)) show
a similar decay, slower than exponential, with slower decays for lower
pressures. To directly check whether a per-system scale can explain the
behavior, we divide all strains by the mean strain for each system, and
show the results in Fig. 2.28(c). In the case of a simple scale incorporated
in synthetic data, this brings the behavior closer to the simple exponential
(dashed purple line). The behavior is still not purely exponential because
this normalization step overcorrects deviations. Nevertheless, we note
that the rescaling has very little effect on the contact change strains shown
in Fig. 2.28(b). We therefore conclude the correlations cannot be simply
explained by an overall system scale.

Second, inspired by Lerner et al. [103], we now investigate whether we
can recover the behavior of γLR

bk using extremal value statistics by assuming
that most contacts are drawn from a distribution with mean k, but a limited
number of ’weak’ contacts are drawn from a distribution with mean k′ � k.
In the case of one extraordinarily weak contact in each packing, we expect
most of the k system minima to show up in the lowest k values of the entire
set of strains. We have simulated this by dividing one strain in each of the
synthetic packings by 103. As we see in Fig. 2.28(a), Pr(γ∗ ≥ γ) decreases
much more rapidly than exponential, and drops to Pr(γ∗ ≥ γ) = 0 around
〈Nbk〉Pr(γij < γ) ≈ 3 — in other words, the k minima are all found in the
lowest 3k values of the full set. The exact point of intersection depends on
how weak the contact is, and on how many weak samples are in the packing.
However, our data for actual packings shows a slower than exponential
decay, thus discounting the ’weak contact’ hypothesis as source for the
correlations in our systems.

Hence, in conclusion: for sufficiently large systems, packings are self
averaging, and extremal value statistics may be sufficient to determine the
mean value and distribution for the first contact break strains. For small
systems, correlations between contacts need to be taken into account for a
correct prediction.
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Appendix

2.A Finite size scaling of ρ(u‖) and ρ(u⊥)

In this appendix, we will discuss the distributions of u‖ and u⊥, which pro-
vide a continuum description of the inter-particle motion. For each particle
pair i, j, we split the inter particle velocity # »uij = ∂ # »xij/∂γ in components
parallel and perpendicular to the contact:

u‖,ij
= # »uij · r̂ij , (2.99)

u⊥,ij =

√
u2

ij − u‖
2
,ij

. (2.100)

Using every contact in every packing in an ensemble, we then build the
frequentist distributions ρ(u‖) and ρ(u⊥).

In the following, we will discuss the relationship between the shape and
scale of these distributions and N and P. Earlier work [31] has focused on
Hertzian systems at intermediate to high pressure (P2/3 ∼ 〈δ〉 ≥ 3 · 10−4).
They find the shape of the distribution does not depend on P, and find
a simple single scaling of the overall scale with P. We extend this with
harmonic systems much closer to jamming (P ∼ 〈δ〉 ≥ 10−7). At high
pressures, we recover the same behavior, but close to jamming, we find (i)
the shape of the distributions depends on the pressure P, and (ii) the widths
of the distributions scale with N2P, with two distinct scaling regimes.

Shape of distributions. In Fig. 2.29, we plot the probability density functions
of u‖ and u⊥, rescaled by their standard deviations s‖ and s⊥, for ensembles
with different system sizes and pressures. We note that, even though the
different distributions cannot be collapsed with a single scale parameter, the
majority of the behavior is captured in the standard deviation s. For both
distributions, we observe the distributions become increasingly peaked
near 0, and, although neither PDF diverges, their peaks appears to develop
a sharp kink for small pressures. We observe the shape changes with P,
and, for large enough N, is largely independent of N — N2P is not the
relevant scaling parameter here. Surprisingly, this means the overabundant
low values are still present for large systems at P ≈ 10−3, which would
normally not be considered ‘close to jamming’.
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FIGURE 2.29: (top) Distributions of u‖, rescaled by their standard deviation s‖, for

ensembles with N = 16, 256, or 1024 particles at P = 10−6 . . . 10−1. s‖ is indicated
in each figure. The distributions develop a sharp kink around 0 for low pressures,
and become smooth for P ' 10−2. There is a weak dependence on N, with the
distribution becoming more peaked for high N. (bottom) Same, for u⊥. Here, the
distributions depend less on N and P, although also here the distribution gains
weight near 0 for decreasing P.
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FIGURE 2.30: (a) Scaling of the standard deviation s‖ as a function of N and P.

At low N2P, s‖ is independent of pressure and at high N2P we recover s‖ ∼ δ0.25,

consistent with [31]. (b) Same, for s⊥. At low N2P, s‖ is independent of pressure.

At high pressure we find a scaling s‖ ∼ δ−0.2...−0.15, somewhat slower than the

δ−0.25 found in [31].

Scaling of standard deviations. Ellenbroek et al. [31] find the width of the
distributions scale as

s‖ ∼ 〈δ〉1/4 , (2.101)

s⊥ ∼ 〈δ〉−1/4 , (2.102)

where 〈δ〉 is the mean overlap between pairs of particles in contact in the
ensemble. If we assume (i) the standard deviations will scale with N2P
and (ii) the distributions are independent of N for large N, Eq. (2.101) and
Eq. (2.102) suggest plotting

N0.5s‖ ∼ F(N2P) , (2.103)

N−0.5s⊥ ∼ F(N2P) , (2.104)

should collapse our data. We note that, because the shape of the distribution
varies, the choice of the measurement (e.g. a percentile rather than the
standard deviation) can have a rather large effect on the collapse (which
can reach ±0.2 in the scaling exponent), and we therefore do not expect a
perfect match.
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In Fig. 2.30(a), we find the best scaling collapse for s‖ is close but not
equal to the expected scaling: we find s‖ ∼ N−0.4 at low N2P rather than
s‖ ∼ N−0.5. Nonetheless, we suggest that the scaling is close enough to
be consistent with the proposed scaling. At low pressures, we find that s‖
only depends on N, and no longer depends on P. For N2P � 1, we find
the expected s‖ ∼ P0.25 power law.

For s⊥, we find Eq. (2.104) provides a rather good collapse (Fig. 2.30(b)).
At low N2P, we find s⊥ becomes independent of P, and at high N2P, we
find behavior similar, but different from the expected s⊥ ∼ P−0.25 power
law.

Surprisingly, we find both s⊥ and s‖ reach a pressure-independent
plateau for low N2P. This has important implications for the behavior close
to jamming — in contrast to what is generally assumed, s⊥/s‖ does not
diverge for low pressures, but reaches a plateau whose value diverges as
s⊥/s‖ ∼ N0.9 in the thermodynamic limit.
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CHAPTER 3

REARRANGEMENTS IN
SHEARED DISORDERED

SOLIDS

A paper based on the work presented in this chapter is in preparation as:

[104] Merlijn S. van Deen, Sven Wijtmans, M. Lisa Manning and Martin van Hecke
Rearrangements in Sheared Disordered Solids.

In this chapter, we propose a framework for investigating the characteristics
of plasticity in amorphous, athermal, frictionless packings using numerical
simulations. Using quasi-static shear under constant packing fraction,
we have started investigating the nature of non-smooth events and their
reversibility. We will discuss three properties of plasticity. First, contact
change events can be classified into network events, where the particle
motion is continuous but not smooth, and rearrangements, associated with
discontinuous jumps in position, energy and stress. Second, events can
be classified as line reversible, loop reversible or irreversible under cyclic
strain. Finally, we propose classifying the behavior under stress relaxation,
i.e., whether the system relaxes back to the same zero stress state before
and after an event. We predict a strong relationship between the type of
event, i.e., network events or rearrangements, and the (ir)reversibility of
the event. We will show preliminary data on the classification of events in
network events and rearrangements, and will propose steps to connect the
event classification to reversibility measures.
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3.1 Introduction

All solids will fail and flow if a large enough shear stress is applied. In
disordered solids such as granular materials, foams, and dense colloids,
a wide range of different failure type phenomena have been observed,
depending on material preparation, packing fraction, pressure and applied
stress. These range from gradual weakening phenomena [65, 97], to failure
via localized rearrangements [75], large-scale avalanches [52, 69, 105] and
the formation of shear bands [106–110]. To make predictions about failure,
many continuum models [111–115] make assumptions about the statistics
of a solid’s complex potential energy landscape and how shear drives
the system to explore mechanically stable minima within that landscape.
However, there is no universally-accepted definition of which events take
a particle packing to a “different state”. It is thus critically important to
characterize the elementary events that allow a solid to explore different
mechanically stable states.

What elementary events can one observe in sheared disordered solids?
In systems where the interaction potential is zero if two particles are not
touching, changes to the load bearing particle contact network define one
class of events [65, 116, 117]. Whether contact changes alone are sufficient
to explore distinct minima in the potential energy landscape [116, 117] is not
clear, but it is known that contact changes are not necessarily sufficient to
drive the system towards the type of instability which causes discontinuous
particle rearrangements and stress drops [35, 52, 116, 118, 119], and these
instabilities therefore constitute a distinct type of event. Moreover, the
precise nature of the (ir)reversibility of these events is subtle. Simulations
and experiments under periodic strain have revealed that rearrangements
can be (a) irreversible: particles end up in a different position from where
they started, (b) loop reversible: particles end up in the same position but
go back via a different path, or (c) line reversible: particles end up in the
same position and traverse the same path [35]. Crucially, macroscopic
properties, as well as the ability to encode memories [87, 120] depend on
whether rearrangements are reversible or not [20, 35, 121]. It is however
not immediately clear how to connect (ir)reversibility to the difference
between contact changes and rearrangements. Finally, the phenomenology
of fluctuations, plastic events and failure appears to change significantly
between fragile systems close to jamming and more elasto-plastic systems
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far away from jamming [38, 42, 97]. However, the effect of pressure on the
nature and prevalence of different events is unexplored.

In this chapter, we focus on unambiguously classifying events in a
simple model granular solid. We would like to understand the properties
of these events, and how the frequency of each type depends on distance
to jamming. We propose two major categories of events involving contact
changes, which we denote network events and rearrangements. Rearrange-
ments are associated with measurably non-zero changes in shear stress,
energy, and particle positions. Network events correspond to changes in
the contact network, with no associated discontinuity in the stress, energy,
or particle positions.

To classify reversibility, there are several natural strategies. From an
experimental point of view, relaxing to zero strain or to zero stress are
obvious candidates. From the view of contact changes, one can consider
shearing back to the previous contact change, or to the last plastic event.
In this chapter, we will discuss reversibility under two different protocols:
we will first discuss shearing back to the previous contact change, and will
then discuss relaxing to zero stress.

3.2 Methods

We will now discuss the numerical simulations used to find contact changes
at various pressures. We use the same simulation code as described in § 2.2.
However, we now continue our simulations beyond the first contact change,
until we find 25 events (up to 50 events at the lowest pressures). For each
event i, we store the particle positions before ( #»ri

−) and after ( #»ri
+) the

event, as well as the energy (U−i , U+
i ) and shear stress (σ−xy,i, σ+

xy,i). We will
show that these can be used to classify events as either a network event,
where these are all continuous, or a rearrangement, where these are all
discontinuous. We have generated 100 packings of Np = 512 particles
for a range of pressures P = 10−7 to 2× 10−1, for a total of 2500–5000
events per ensemble. We use a larger range in pressure than before, as
we expect an influence of localized behavior far from jamming. To probe
reversibility under stress and strain controlled protocols, we use a different
set of boundary conditions with the same energy minimization routines.
We will describe these algorithms in detail in the sections on reversibility.
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continuity as function of γ
#»ri U σxy G

between events C∞ C∞ C∞ C∞

network event C0 C1 C0 −
rearrangement − − − −

TABLE 3.1: Classification of events based on continuity of extensive variables. In
between events, all variables are smooth (C∞). At a network event, the particle
positions and σxy are continuous but non-differentiable (C0), while the energy,

a quadratic function of overlaps, is once differentiable (C1). G = ∂σxy/∂γ is
discontinuous. Finally, during a rearrangement, all variables are discontinuous.

3.3 Classification of contact changes

We now focus on the classification of contact changes: which differences
do we expect between simple, continuous contact changes, network events,
and discontinuous events, rearrangements? First, we investigate which
behavior we expect from theoretical considerations. In § 3.5, we will show
preliminary numerical data on the distinction.

We start by noting that the energy is a smooth function of the overlaps
δij:

U = ∑
i,j

k
2

δ2
ij , (3.1)

which implies that discontinuities in U correspond to discontinuities in δij.
δij can be discontinuous for two reasons. First,

δij =

{
Ri + Rj − | #»rij| if | #»rij| < Ri + Rj,
0 otherwise.

is inherently non-differentiable but continuous (C0) at | #»rij| = Ri + Rj, i.e.,
at a contact change. Secondly, δij can be discontinuous when #»rij is discon-
tinuous, i.e., if at least one of the particles i and j moves discontinuously as
a function of strain γ.

Once we know the behavior of the particles, the behavior of U, σ and
G follows directly — see Table 3.1. (i) In the absence of contact changes,
particle positions are completely smooth and differentiable (C∞), and so are
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the overlaps, energy, stress and shear modulus. We have confirmed this to
be the case in our simulations. (ii) At a network event, | #»rij| = Ri +Rj, and δij
is non-differentiable (C0). We therefore expect U to be singly differentiable
(C1), σxy to be non-differentiable, and G = ∂

∂γ σxy(γ) to be discontinuous.
This is consistent with our observations in § 2.5.1. Although there is no
a priori requirement for particle positions to be non-smooth, we observe
they are also C0. This makes sense, as the creation or disappearance of a
contact discontinuously changes the eigenmodes, and therefore also the
particle motion in response to (shear) deformation. (iii) It is also conceivable
that the energy is continuous but not differentiable, which implies that the
particles, stress and shear modulus are discontinuous. We believe there
is no physical situation corresponding to this, as U is not the integrand
of δij, but the sum of δ2

ij — the square of a discontinuous function is still
discontinuous. (iv) Finally, at a rearrangement, the discontinuity stems
from discontinuous particle positions. As a consequence, δij, U, σxy and G
will all be discontinuous. Inversely, we have seen that U and σxy cannot be
discontinuous at a network event, and a discontinuous jump in energy or
stress is therefore a clear indication of a rearrangement event.

3.4 Reversibility

In sections 3.4.1 and 3.4.2 below, we will discuss two methods to classify
(ir)reversibility. We can understand the behavior under forwards shear as a
sequence of events connected by energy branches. At an event, the system
can jump from one branch to another (Fig. 3.1), and this is where we expect
to see irreversibility.

First, we will focus on reversibility under strain cycling. To probe the
reversibility of event i, we start just after the last event before i, i.e., at γ+

i−1.
We then strain forwards, via γi, to just before the next event, i.e., to γ−i+1,
and record the particle positions at discrete values of γ. From there, we
strain back to γ+

i−1, passing by the exact same strain values. We can then
distinguish three different behaviors: (i) line reversible behavior, where
the system follows the exact same path back, (ii) loop reversible behavior,
where the system follows a different path, but returns to the original path,
or (iii) irreversible, where the system never returns to the original path. In
§ 3.4.1, we will discuss this protocol in more detail.
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FIGURE 3.1: A single particle coordinate as function of strain during forward
shear. Each event is indicated by a pair of circles: the closed circle indicates the
position before the event and the open circle indicates the position after the event.
For a network event, these circles coincide, and the closed circle is obscured by the
open circle. (a) All 25 events for a system at P = 10−2. Three rearrangements are
indicated with dotted lines. The first rearrangement (event 10) is indicated, as well
as the last event before and the first event after the rearrangement. (b) Zoom-in
on the first rearrangement at γ10 ≈ 2.13× 10−3. We observe a clear discontinuous
jump between the particle position before (x−10) and after (x+10) the event.

In § 3.4.2, we focus on reversibility under stress relaxation. One of the
most natural concepts of plasticity is yielding: will the system move back
when it is ’let go’? To determine whether a system yields at an event, we
determine the reversibility under stress relaxation. Instead of prescribing
the strain γ, we let the simulation minimize the energy also with respect to
γ, which will relax the shear strain [34]. This will typically involve larger
strains than strain reversal, and we therefore expect some events to be
classified as strain irreversible, yet stress reversible.

With these protocols in place to test strain and stress reversibility, it
becomes possible to correlate the event type, i.e. network events and
rearrangements, to reversibility, and to map the relative prevalence of
reversible and irreversible events for each, and this is the focus for future
work.
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FIGURE 3.2: A single particle coordinate as function of strain during the strain
cycle around event i (marked with a black dotted line). We start at γ+

i−1, strain
forwards until γ−i+1 (black arrow), and strain back to γ+

i−1 (blue arrow). (a) In
the case of a line reversible event, we follow exactly the same path forwards and
backwards. Here, both R2

i,γ and M2
i,γ are small. (b) In a loop reversible event,

the system jumps to a different branch, and returns back to the original branch
between γ−i and γ+

i−1. The maximum distance M2
i,γ is large, but the final distance

R2
i,γ is small again. (c) An irreversible event does not return to the original branch.

Here both R2
i,γ and M2

i,γ are large. Note that this figure is not meant to imply
that ∆x is smooth at γi — as a matter of fact, we expect non-smoothness for loop
reversible and irreversible events (b and c).

3.4.1 Strain cycle reversibility

In this section, we will propose a protocol to probe reversibility of events
using a strain cycle. Straining in a loop around γi, we accurately record
the followed paths, and distinguish loop and line reversible events from
irreversible events. The detailed procedure for the strain cycle is illustrated
in Fig. 3.2. To probe the reversibility of an event i, we start just after event
(i− 1), at (γ+

i−1, #    »ri−1
+). We then strain forwards, passing γi and continuing

to γ−i+1, i.e., just before the next event. From there, we strain back, passing
over exact the same strain values. For each event i, this provides us with a
forwards path #»r↑(γ) and a backwards path #»r↓(γ) for each particle. We now
calculate two quantities. First, we calculate the mean squared displacement
between the forwards and backwards paths at the initial strain γ+

i−1

R2
i,γ =

〈
| #»r↑(γ+

i−1)− #»r↓(γ
+
i−1)|2

〉
, (3.2)
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where the average is taken over all particles. We use R2
i,γ as a measure of

overall reversibility: we have returned to the same initial state if R2
i,γ = 0.

In practice, we have to define a finite cutoff due to numerical noise. Second,
we calculate the maximum mean squared displacement during the full
cycle

M2
i,γ = max

γ+
i−1≤γ≤γ−i+1

〈
| #»r↑(γ)− #»r↓(γ)|2

〉
, (3.3)

which we use to distinguish line reversible from loop reversible events:
if the event is line reversible, the maximum distance is M2

i,γ = 0 (up to
numerical noise), while it is finite for a loop reversible event. Combined, we
define three categories: (i) line reversible, where both R2 and M2 are small,
(ii) loop reversible, where R2 is small, but M2 is large, and (iii) irreversible,
where both R2 and M2 are large.

To correlate the type of event to the reversibility, we return to our
discussion on the continuity of particle motion. In the case of network
events, particle motion is fully continuous, and it is hard to imagine that
they would be irreversible. We thus expect network events to be line
reversible. At the same time, discontinuities are normally associated with
hysteresis: the instability of the system at γ−i that leads to a jump towards
a new state at γ+

i should not cause the state at γ+
i to be similarly unstable

under backwards shear. We thus expect all rearrangements to be either
loop reversible or irreversible.

3.4.2 Reversibility under stress

In this section, we explain how to determine whether the system is stress
reversible, i.e., whether the relaxation of the system to zero shear stress
brings us to a different state depending on whether we start just before or
just after the event. If we find a different relaxed state, we can say that the
system has yielded at the event.

We use our numerical simulations to determine the stress relaxation.
Starting at a given γ and #»r , we find a minimum in energy with respect to
both the particle positions and strain γ. The other boundary conditions,
i.e., the box size L2 and the pure shear parameter δ, are kept constant (see
§ 2.2). In this way, we find a corresponding relaxed state with σxy = 0
for each given state. For each pre-event state (γ−i , #»ri

−), we calculate
the corresponding relaxed state (γ−,R

i , #»ri
−,R), as shown in Fig. 3.3. To
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(a)

γi γi+1

∆
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(b)

γi γi+1

(c)

γi γi+1

FIGURE 3.3: A single particle coordinate as function of strain while probing the
stress relaxation of event i (marked with the black dotted line). During stress
relaxation, the system relaxed to a state with zero shear stress (red square). The
zero shear stress state does not have to lie on the original forwards path. When
starting at γ−i , the system relaxes to the state in the bottom left corner (blue arrow).
We show three cases for relaxation when starting at event γ−i+1 (red arrow). (a)
If the system is line reversible, we follow the exact same path. (b) In the case of
loop reversibility, the system initially follows a different paths, but jumps back
to the same branch and ends up at the same zero stress state. (c) In the case of
irreversibility, the system relaxes to a different zero stress state (small red square).
Cases (a) and (b) relax into the same zero-stress state and are marked reversible; (c)
relaxes into a different state and is marked irreversible.

determine whether event i is reversible under stress, we compare the
relaxed state when starting just before the event to the relaxed state when
starting just before the next event, and calculate the mean squared distance
between the two:

R2
i,σ =

〈
| #    »ri+1

−,R − #»ri
−,R|2

〉
, (3.4)

where the average is taken over all particles. As before, this allows us to
distinguish reversible from irreversible events. Distinguishing between line
reversible and loop reversible is not easy, because the stress relaxation algo-
rithm does not follow the same strain increments for different relaxations.
Nonetheless, we sketch the resulting behavior in these three categories in
Fig. 3.3.
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3.5 Preliminary results

In this section, we will present and discuss preliminary work on the classi-
fication of contact changes. Afterwards, we will discuss our expectations
for reversibility and their connection to the different event types.

3.5.1 Classification of events

We will now focus on the classification of events into network events and
rearrangements. As discussed in § 3.3, we expect that the particle positions,
energy and shear stress are continuous for a network event, while they will
be discontinuous for a rearrangement.

For each event, we have determined the particle positions #»r − and #»r +,
the energies U− and U+ and the shear stresses σ−xy and σ+

xy before and after
the event. With these, we define the mean squared distance

R2 =
〈
|

# »

r+i −
# »

r−i |2
〉

, (3.5)

where the average is taken over all particles, the relative energy change

∆̃U = (U+
i −U−i )/U−i , (3.6)

and the relative shear stress change

∆̃σ = (σ+
xy,i − σ−xy,i)/σ−xy,i . (3.7)

With these, we can calculate a 3D histogram (R2,−∆̃U, |∆̃σ|), where we
only includes events with a drop in energy — as we will discuss later,
rearrangements cannot increase the energy of the system. We plot 2D
projections of this histogram in Fig. 3.4 for N = 512 ensembles at P = 10−6

and P = 10−2. For P = 10−2, we observe a clear separation into two
clusters: one at high R2, −∆̃U and |∆̃σ|, consisting of rearrangements, and
one cluster at low R2, −∆̃U and |∆̃σ|, corresponding to network events.
This cluster appears at small, but finite, values of R2, −∆̃U and |∆̃σ|, due
to the small, but finite, strain step ∆γ = γ+ − γ−. This step is defined by
the bisection algorithm, which continues until ∆γ/γ− < 10−6. We have
repeated simulations with a higher tolerance, i.e., stopping the bisection
at ∆γ/γ− < 10−5, and found the values of R2, −∆̃U and |∆̃σ| for network
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FIGURE 3.4: 2D projections of a 3D histogram of the particle displacements R2,
relative energy drop ∆̃U and relative stress change ∆̃σ for P = 10−6 (5000 events)
and P = 10−2 (2500 events). We sort events into 100 log-spaced bins on each axis:
R2 from 10−30 to 100, ∆̃U from 10−15 to 105 and ∆̃σ from 10−10 to 105. The colorbar
represents the fraction of events in each bin; white indicates bins without events.
For P = 10−2, the data shows a clear separation, with R2 and ∆̃σ providing the
cleanest distinction. For P = 10−6, the separation is less clear: there is now a much
wider spread in R2 and ∆̃σ, and ∆̃U now seems to provide the clearest separation.
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FIGURE 3.5: Fraction of events with U+ ≤ U−.

events depend strongly on this tolerance, while events in the rearrangement
cluster are unaffected.

For P = 10−6, the situation is not as clear — the two clusters are
spread out, and a new cluster at low R2 but large −∆̃U and |∆̃σ| has
formed. These events are likely to be rearrangements with abnormally
small displacements.

Although the separation between network events and rearrangements
in Fig. 3.4 is not entirely clear for low pressures, we can still find an upper
bound for the fraction of events that are rearrangements. As noted before,
rearrangements involve a discontinuous jump in the energy U and the
stress σ. In the case of a rearrangement, the jump in energy must be to a
lower value. Network events can show both an increase and a decrease in
energy, depending on the sign of σ. Because events with U+ > U− cannot
be rearrangements, we can take the fraction of events with U+ ≤ U− as
an upper bound to the fraction of rearrangements. In Fig. 3.5, we show
this fraction as a function of P. We observe the bound starts out at 30% for
P = 10−7, decreases to 10% for P = 10−1 and increases again to 30% at
P = 2× 10−1. We cannot be certain whether this trend is due to a changing
prevalence of rearrangements, or due to network events being more or less
likely to have a negative energy change. Nonetheless, we can be certain
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FIGURE 3.6: (a) A single particle coordinate as function of strain during the strain
cycle and during stress relaxation. During the strain cycle (black and blue dashed
arrows), the system is fully reversible. The stress relaxation before the event (blue
solid arrow) relaxes to a lower strain, but after the event, σ < 0, and the system
relaxes to a stable position at a higher strain (red solid arrow). The system is
therefore irreversible. (b) The fraction of events with σ−i+1 < 0

that at most 30% of events are rearrangements, and network events occur
more regularly.

We have seen that we can clearly distinguish network events from rear-
rangements for systems at high pressure. At low pressure, the distinction
is blurred. Whether this is due to our choice of parameters remains to be
seen, and is a topic for future work. Nevertheless, we are able to give an
upper bound for the fraction of rearrangements, and find at most 30% of
events are rearrangements.

3.5.2 Reversibility

We now focus on the connection between the event type and reversibility
under stress and strain. We expect several distinct classes of behavior,
and will show preliminary data on the prevalence of the different types of
events.

We first focus on network events. In general, we expect these to be
reversible: When particle motions are continuous, as is the case for network
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FIGURE 3.7: A single particle coordinate as function of strain during (a) stress
relaxation (red and blue arrows) and (b) during the strain cycle (black and blue
arrows). In the stress cycle, the system is loop reversible: from γ+ downward, a
different branch is followed, but both branches merge at some strain γ < γ+

i−1.
During the strain cycle, the system also follows the second branch on the way
back, but never shears back far enough to jump back to the original branch. We
detect the system as irreversible under strain cycling.

events, there is no clear path for them to become irreversible. There are
two exceptions to this rule. First, when we create a rattler at γi, the path
of that rattler from γi to γ−i+1 is ill-defined, and so is its path back to γ+

i . It
is unlikely for the rattler to become part of the contact network at exactly
the same strain. Nonetheless, the particle is locally confined, and we thus
expect the particle to rejoin the network somewhere near γi, which would
make the system loop reversible. Second, we can expect event i to be stress
irreversible without rearrangements if σ−i+1 < 0 while σ−i > 0. In that case,
the system will relax to a lower strain when starting from γ−i , but will
relax to a higher strain when starting from γ−i+1, as sketched in Fig. 3.6(a).
We can again determine an upper bound for this type of event — we can
determine the fraction of events with σ−i+1 < 0, but we do not know how
these events would be classified under strain reversal. In Fig. 3.6(b), we
show the fraction of events with σ−i+1 < 0, and observe a strong decrease
with pressure. While for low P, almost one in four events has a negative
post-event stress, the prevalence decreases to almost zero at P = 10−2.
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We now turn to the reversibility of rearrangements. Here, we can
see either loop reversible or irreversible events, and we have no a priori
expectation for the prevalence of either. Instead, we will focus on the
expected correlations between strain and stress reversibility.

First, we expect no line reversible events: discontinuities normally
are associated with hysteresis — the instability of the system at γ−i that
leads to a jump towards a new state at γ+

i should not cause the state at
γ+

i to be similarly unstable under backwards shear. We thus expect all
rearrangements to be either loop reversible or irreversible.

Second, we expect systems that are loop reversible under strain to
be similarly loop reversible under stress. If the system jumps back to
the original branch between γi and γi−1 in strain control, we expect the
stress relaxation to follow the same path. The exceptions to this are, as
discussed before, events with σ−i+1 < 0. In contrast, events that are (loop)
reversible under stress relaxation are not necessarily loop reversible under
stress relaxation. In Fig. 3.7, we sketch an example where the event is loop
reversible under stress but irreversible under strain, because the system
jumps back to the original branch only for γ < γ+

i−1.
Finally, the system can be irreversible under stress relaxation. In that

case, we expect the strain cycle to follow the same irreversible path, and
we would classify the event also as irreversible under strain.

We have sketched the expected reversibility behavior for network events
and rearrangements, and summarize the behavior in Table 3.2. In general,
we expect network events to be line reversible, with two exceptions. We
expect to observe the discontinuities of rearrangements in loop reversible
or line reversible behavior.
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event type strain cycle stress relaxation

typical behavior
network line reversible reversible
rearrangement loop reversible reversible
rearrangement irreversible irreversible

network events involving rattlers
network loop reversible reversible
network irreversible irreversible

Fig. 3.6(a) (σ−i+1 < 0)
network line reversible irreversible
rearrangement loop reversible irreversible

Fig. 3.7
rearrangement irreversible reversible

TABLE 3.2: Possible combinations of event type and reversibility in the strain
cycle and under stress relaxation, as discussed in § 3.5.

3.6 Conclusion and outlook

We have shown that in granular systems, rearrangements that alter the
total energy or shear stress in a system, denoted rearrangements, are rarer
than network events that alter the contact network but leave the energy
unchanged. We propose a connection between the type of event and their
behavior under stress relaxation and strain reversal. We have discussed
that we expect stress and strain reversal to disagree in a significant minority
of events (< 25%), in situations where σ−i+1 < 0.

We propose several directions for future research. First, and foremost,
we will implement and analyze the stress relaxation and strain cycle proto-
cols. In parallel, we will investigate whether it is possible to make a clean
distinction between network events and rearrangements at low pressures,
and if not, which ranges of pressure allow for a clean distinction. Once these
pieces are in place, we will be able to numerically verify the proposed corre-
lations between event type and the reversibility properties. In addition, we
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will be able to show trends with P in the various measures, where we expect
to see a transition between behavior close to the jamming transition and
behavior at high densities, as it is known that the nature of rearrangements
change with pressure – close to jamming, particles have strong nonaffine
motion, and one expects rearrangements to be extended and fragile [31, 52],
while at high pressure, rearrangements become localized, as described in
Shear Transformation Zone theories [4, 111].

The nature of rearrangements has strong experimental relevance. The
prevalence and stress reversibility of events and, to a lesser extent, the
discontinuities of rearrangements are measurable in experiments. As such,
any pressure dependence is likely to have implications for oscillatory strain
protocols, and whether memory formation and readout are more effective
at different pressures.

So far, we have restricted ourselves to studying particle packings that
are not strained very far (less than 5%) from a zero-stress state. Therefore,
we are unlikely to see large avalanches associated with self-organized states
that occur when the average shear stress is comparable to the average
pressure. It will be interesting to study how reversibility is affected by the
average shear stress in addition to the pressure.
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CHAPTER 4

SHEARED FOAMS

A paper based on the work presented in this chapter is in preparation as:

[122] Merlijn S. van Deen, Alexander O.M. Siemens and Martin van Hecke
Rearrangements in Wet and Dry Foams.

In this chapter, we investigate the behavior of a jammed two-dimensional
foam under shear. We focus on the behavior under slow steady shear, as
this allows us to come as close as possible to the quasi-static limit stud-
ied in numerical simulations in the previous chapters. We will first show
qualitative changes by comparing foams at low (φ = 0.85) and very high
(φ = 1.5) densities. While at high densities abrupt rearrangements domi-
nate, nonaffine motion dominates the behavior at low densities. We will
show that this change in behavior can be quantified by various measures:
we will determine the structural relaxation time and the autocorrelation
time, quantify the amount of nonaffine motion and finally quantify the
degree of localization. A coherent picture emerges, where discrete, local-
ized events at high density give way to qualitatively different, much more
smooth and homogeneous behavior near jamming.

4.1 Introduction

The focus of this work is on the response of foams in slow steady shear over
a range of packing density φ. Earlier work on foams has mostly focused on
the behavior in the high density limit [123–127], on the rheology [39, 40, 58],
or on static properties [26, 51]. The phenomenology in this limit is similar to
other experimental work on plastic behavior in colloids, where the system
behaves like a densely packed foam. This behavior is typically described
in terms of shear transformation zones and avalanches [111, 121, 128],
although the interest in nonaffine behavior is growing [129, 130]. The issue
is that at lower densities, closer to jamming, the phenomenology appears to

93



SHEARED FOAMS

change qualitatively. By controlling the packing density over a wide range
while slowly shearing the system, we uncover unambiguous trends in the
behavior of the system.

The outline of this chapter is as follows. First, we will introduce our
setup, measurement protocols and post processing steps in §§ 4.2 and 4.3.
We will then discuss our results in § 4.4: we will discuss the viscous and
structural relaxation timescales in §§ 4.4.1 and 4.4.2, non-affine behavior
in § 4.4.3 and finally discuss two characteristics of rearrangements, spatial
localization and caged motion, in § 4.4.4. We will finish with the discussion
and conclusion in § 4.5.

4.2 Setup and protocol

In this section, we will discuss our measurement set up, as well as the
driving protocols. We perform measurements on a bidisperse quasi-2D
monolayer of foam bubbles, as shown in Fig. 4.1. These bubbles are trapped
under a glass plate, to stabilize the bubbles and to remove the effect of
surface tension, which leads to bubble-bubble attraction [26, 40, 59], also
known as the ‘Cheerios effect’ [132]. From the sides, the system is confined
between four walls. This serves two purposes. First, where earlier work
tuned the packing density using a gap between the glass plate and the
liquid [26, 133], we can directly and precisely compress the foam over a
wide range of densities by moving one or both walls inward. Second, we
can apply a pure shear deformation by moving one wall inward and the
other outward. We measure the response of the foam by imaging the system
from above using a digital camera. We will discuss each part of the setup in
the following subsections. We will first discuss the surfactant solution and
the creation of foam bubbles. We will then turn to the mechanical setup
used to drive the walls, and finally turn to the question of the measurement
protocol.

4.2.1 Surfactant and foam

We create the two-dimensional packing by blowing nitrogen bubbles in
a surfactant solution. In this subsection, we will describe the surfactant
solution used and the procedure for creating bubbles.
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FIGURE 4.1: Foam at different densities (see § 4.2.4) and deformation (see § 4.2.5).
(a) Foam at φ = 0.85, sCD = −0.2. (b) Foam at φ = 1.25, sCD = −0.2. (c) Foam
at φ = 1.25 after pure shear deformation, sCD = +0.2. The frames are cropped
to 800× 800 px, corresponding to 50.4 mm× 50.4 mm. Video versions of these
figures are available on-line [131, S1 and S2].

As surfactant solution, we use the basic foam mix from Golemanov
et al. [134]. The solution is prepared in two steps. First, we create a stock
surfactant solution by mixing 59.4 g (6.6 wt%) sodium lauryl ether sulfate
(SLES), 30.6 g (3.4 wt%) cocamidopropyl betaine (CAPB) with 810 g (90 wt%)
demineralized water. This is stirred mechanically until the SLES has com-
pletely dissolved. In the second step, we first prepare a viscous mix of water
and glycerol. The high viscosity helps to stabilize the foam, as the diffusion
coefficient of gas through the foam boundaries, i.e., from bubble to bub-
ble, is inversely proportional to viscosity [135]. We use 2640 g (43.7 wt%)
glycerol and 3130 g (51.8 wt%) demineralized water. After the glycerol has
been completely dissolved, we add 275 g (4.5 wt%) of the stock surfactant
solution and use a stir plate to gently mix the solution. The final solution
contains 0.30 wt% SLES and 0.16 wt% CAPB. Density, viscosity and surface
tension were measured by Siemens [59], and are ρ = (1094± 2) kg/m3,
η = (3.87± 0.01)mPa s and σ = (25.6± 0.3)mN/m, respectively. During
measurements, approximately 100 mL of water evaporates per day, corre-
sponding to a fluid level decrease of 1 mm. To compensate for this loss, we
top up the container with demineralized water daily. We do not observe
any changes in behavior due to this refilling procedure.

To create the foam, we bubble nitrogen through the surfactant using a
needle, held at the bottom of the surfactant solution, at a depth D = 50 mm.
The gas flow is limited by a combination of a pressure control valve and a
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FIGURE 4.2: (a) PDF of bubble radii for an uncompressed system. Our systems are
largely bidisperse, with a 50 : 50 mixture of d ≈ 2 mm and 3 mm. (b) Mean bubble
area as a function of density φ for small (crosses) and large bubbles (pluses). The
small bubble area is largely independent of φ, but the large bubbles are more easily
deformed, and decrease in area for φ > 1.2. Snapshots show sections of the foam
at φ = 0.9, 1.1 and 1.3.

flow control valve. The pressure control valve limits the overpressure to
1 bar, while the flow control valve limits the flow to Q = 0.55 mL/s at a
pressure difference of 1 bar. To prevent crystallization, the foam has to have
a sufficiently large variety in bubble sizes [39, 136, 137]. We therefore use
a 50 : 50 mixture with an ≈ 1.4 size ratio, as is common in simulations [3,
13, 137]. We create bubbles using two different needles. Large bubbles are
created using a 21G needle, resulting in bubbles with d = (3.0± 0.2)mm.
Small bubbles are created using a 30G needle, resulting in bubbles with
d = (2.1± 0.3)mm. We create approximately 250 bubbles — twice the
required amount of bubbles. By hand, we remove bubbles to reach the
desired 50 : 50 bubble ratio and to remove any crystalline patches. In this
way, we end up with a packing of 120–130 bubbles, with an unjammed
size of 380–435 mm2. We show the final probability density function of the
bubble radii for an example system in Fig. 4.2(a).

We have measured the stability of the foam during a set of shear experi-
ments with a total runtime of 75 hours. In this period, we measured only
3 coalescence events, i.e., events where two bubbles merge, reducing the
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number of bubbles from 136 to 133. Coarsening, where the large bubbles
drain nitrogen from the small bubbles, is not noticeable over this period
of time; the change in both the mean and the standard deviation of the
distribution is much smaller than the measurement error. We note that for
high densities φ ' 1.2 (see § 4.2.4 for definition) the large bubbles deform
noticeably, with their area reducing by 10–15%, while the effect on the small
bubbles is negligible (Fig. 4.2(b)). In addition, we are limited to φ / 1.5,
above which bubbles buckle out of plane and form a second layer.

4.2.2 Mechanical setup

We trap the bubbles between a glass plate on the top and four boundaries
on the sides (Fig. 4.3). The glass plate serves two purposes. First, the plate
removes the attraction between the bubbles due to surface tension. Sec-
ond, the plate reduces coarsening and coalescence by keeping the Plateau
borders hydrated [138]. The surface of the liquid is always higher than
the glass plate, typically by 3–5 mm. Using a set of micrometer screws, we
carefully level the glass plate, with a maximum deviation from level of
10−5 rad, to reduce the effect of gravity on the packing [59].

The boundaries on the sides are used to confine, compress and shear
the system. Each of the boundaries is driven by a linear translation stage
(Bahr Modultechnik EL30) connected to a stepper motor (Lin Engineering
4118L-01-RO). Each stepper motor is powered by a driver (Advanced Micro
Systems CDR-4MPS), which is controlled by a computer using a TTL pulse
input. To determine the proportionality constant, we measured the distance
between the walls using a caliper for various pulse counts, and found that

Cst = 4.95× 10−5 mm/pulse. (4.1)

From LabVIEW, these stepper motors are driven using two pulse train
(square wave at a given frequency) outputs for the velocity and two digital
direction outputs for the direction. We use one output pair to drive the
b motor, which moves the B and C boundaries in the y direction, and a
second pair to drive the c and d motors in unison. These motors move the
C and D boundaries in the x direction (Fig. 4.3(c)).

The frequency of the pulse train output can only be updated at a limited
rate. This causes the actual deformation to ’lag behind’ the deformation we
want to apply — the wall moves too fast if the frequency decreases, or too
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FIGURE 4.3: The bi-axial measurement setup. (a) Overview. Bubbles are created in
a surfactant solution and trapped between a glass plate on top and four boundaries
on the sides. Three of the four boundaries are driven by linear stages. The glass
plate can be leveled using three micrometer screws. The system is imaged from the
top using a CMOS camera. (b) Side view, where boundary A has been removed
for clarity. Boundaries B, C and D are indicated. Bubbles are trapped under a
glass plate (red), and the water level (blue) is 5 mm above the glass plate. (c)
Top view, with the top plate removed. The four boundaries and their motion are
indicated; boundary A is fixed, while boundary B moves in the y direction, D in
the x direction, and C in both directions (red arrows). Their driving stages are
marked as a, b and c; boundary C is displaced by stages b and c; stages c and d
follow the same displacement. Confinement lengths LB and LCD are indicated.
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slow if the frequency increases. To remedy this, we implement a simple
feedback in our system. We measure the number of sent pulses using a
second I/O card, and, using the measured deviation, apply proportional
feedback. Including a feedback term, the frequency of the square wave we
send to the stepper motor driver is given by

f =

∣∣∣∣C
−1
st

∂l
∂t
− q(psent − pexpected)

∣∣∣∣ , (4.2)

where psent and pexpected are the measured and calculated pulse counts,
respectively. We find q = 1/s gives effective feedback, keeping |psent −
pexpected| . 2 pulses ≈̂ 0.1 µm.

We use a set of four inductive position sensors to detect the end of
the movement range on both axes; two on each axis. These serve a dual
purpose. First, we use them to define the zero point for the position coun-
ters. We define nB = 0, nCD = 0 to be at the outermost sensors, which
corresponds to a maximum physical box size

lB(0) = 45.3 mm × lCD(0) = 56.6 mm, (4.3)

which corresponds to a length of 916 000 and 1 144 000 pulses, respectively.
We move each side wall outwards until the inductive sensor is triggered. We
then move inwards at a slower rate, until the sensor is no longer triggered.
We reset the pulse count at this point. We repeat this protocol with ever
decreasing rates. We always reset the pulse count on the inward direction,
as the inductive sensors are somewhat hysteretic. This protocol allows us
to recover the zero position with an error of ∼ 10 pulses ≈̂ 0.5 µm. We run
this calibration at the start of each measurement session.

Second, we use the sensors to end the measurement when we reach
one of them, indicating that the end of the measurement range has been
reached. In addition to this software-based approach, we also have a set of
break switches, which disable the stepper motors on a hardware level. This
prevents hardware damage due to software errors.

4.2.3 Imaging

To measure the response of the system, we image the system from the top
using a Basler A622f CMOS camera (8 bits grayscale, 1280× 1024 pixel,
6.7 µm× 6.7 µm pixel size [139]) with a Tamron 28− 300 mm macro lens at
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f ≈ 38 mm. The distance from sensor to the glass plate is 455 mm, resulting
in an overall image scale of Cim = 60 µm/px.

To clearly image the foam bubbles, we mount 30 cm long LED strips
around each side of the setup (off-brand ‘3528’ SMD LEDs, 240/m, with
an input power of 1.8 W per strip). The light from these LED strips is
reflected by the Plateau borders of the bubbles, and causes the bubbles
to show up as white circles [26, 59]. We have determined camera gain
(ca. 350 photons per bit, register value 112) and shutter time (11.24 ms,
register value 562) to correspond to saturated bubbles at the given lighting
conditions (Fig. 4.1). We typically image at fim = 1 Hz or 10 Hz, and store
all images for post-processing.

4.2.4 Packing density

We define the packing density in terms of an area fraction, where we divide
the undeformed foam area by the current system area. This is analogous to
what is commonly done in simulations on jamming [3, 13, 22].

To determine the undeformed foam area, we measure the transition
from the boundary jammed to the gravity jammed regime [59], the closest ana-
log to the jamming transition in this system. We will call the confinement
box size at which this happens the jamming area Aj. To determine Aj, we
use two different protocols. While setting up the experiment, we slowly
move one boundary outwards until a hole forms, and denote the area at
which the hole first appears as Aj. This protocol works best in the initial
setup, where we can manually move the walls to accurately find the correct
area. To measure Aj after each measurement, we expand the system until a
significant hole has formed, and measure the hole size Ah in ImageJ. We
then find Aj = A− Ah, where A is the confinement box size [59]. We find
Aj is essentially constant (< 1% change) over 72 hours. We will therefore
take Aj as constant, and all values of φ reported will be calculated with
respect to Aj measured while setting up the measurement.

Given Aj, we calculate the foam area by assuming the packing frac-
tion at this confinement is φj ≈ 0.842, as reported in jamming simulation
literature [13]:

Afoam = φj Aj = 0.842Aj . (4.4)

For a given confinement box size A, we can now determine φ using

φ =
Afoam

A
, (4.5)
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where we use the undeformed foam area Afoam. We note that φ can become
larger than 1 due to the deformation of foam bubbles. Inversely, we can
determine the system area for a given φ as

A =
Afoam

φ
=

φj

φ
Aj , (4.6)

which we use to set the density in the driving protocol.

4.2.5 Deformation

We deform our system by driving the side walls of our system. In this
section, we will discuss how we independently drive the walls to compress
and shear the system. For our measurements, the most relevant deforma-
tion is continuous pure shear, and we will choose our notation to reflect
that.

We note that there are multiple valid ways to define shear strain in a
system. As we expect the response of our system to be best described by a
series of small strain increments, we choose to work with the logarithmic
or Hencky strain [140]

ε =
∫ l

L

1
l′

dl′ = ln(l/L) , (4.7)

where l(t) is the deformed length and L the undeformed length. In Hencky
strain, a constant strain rate corresponds to an exponential movement of the
boundaries, and it is therefore useful to write the lengths of the boundaries
in terms of an area A0 and a length factor esj(t):

lB =
√

A0 · esB(t) ,

lCD =
√

A0 · esCD(t) . (4.8)

At the beginning of each measurement, A = A0, and sB(0) = −sCD(0). In
our experiments, we then apply a deformation of the form

sB(t) =− sCD(0)−
1
2

γ(t) + εBB(t) ,

sCD(t) = + sCD(0) +
1
2

γ(t) , (4.9)
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a combination of pure shear strain and uniaxial compressional strain, and
typically start at sCD(0) = −0.2 (Fig. 4.4(a)). We use the following pro-
tocols: (i) continuous pure shear γ(t) = γ̇t, (ii) sinusoidal pure shear
γ(t) = γmax sin(ωt), (iii) step pure shear γ(t) = γsH(t), where H(t) is
the Heaviside step function, and (iv) continuous uniaxial compression
εBB = ε̇BBt.

We can derive the effective shear and compression rate from the wall
velocities

∂

∂t
lB = lB

∂sB
∂t

;
∂

∂t
lCD = lCD

∂sCD
∂t

, (4.10)

and find

γ̇(t) =
∂lCD/∂t

lCD
−

∂lB/∂t

lB
=

∂sCD
∂t

(t)− ∂sB
∂t

(t) ,

=
∂

∂t
[γ(t)− εBB(t)] . (4.11)

The compression rate is

ε̇(t) =
1
A

∂A
∂t

=
∂lB/∂t

lB
+

∂lCD/∂t

lCD
=

∂sCD
∂t

(t) +
∂sB
∂t

(t)

=
∂

∂t
εBB(t) , (4.12)

where positive ε̇ corresponds to expansion.
In Fig. 4.4, we sketch the general protocol of a single measurement. First,

we expand the system to the jamming transition at A = Aj. After relaxing
the system, we compress it to a given density φ, and again relax the system.
We then run the measurement; in the case of a shear deformation, we set
ε̇ = 0, γ̇ = γ̇, and start at sCD(0) = −0.2. We deform until sCD(t) = 0.2,
for a total shear strain ∆γ = 0.4. Finally, we slowly expand the foam to re-
measure the jamming area, which allows us to detect foam coalescence and
coarsening. A full measurement run consists of 10 to 20 of these individual
measurements, each for a different value of φ.
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(a)

A = Aj, sCD = −0.2

(b)

A→ Ajφj/φ

(c)

sCD → +0.2

(d)

A→ 1.1Aj

FIGURE 4.4: The bi-axial shear protocol. (a) Initially, we move the system to
A = Aj at sCD = −0.2. We relax the system for 20 min. (b) Next, we compress the
system to the target density φ by decreasing the area to A = Ajφj/φ, and let the
system relax for 10 min. (c) We then shear the system at a fixed γ̇ from s = −0.2
to s = 0.2. (d) Finally, we measure the current foam size by moving a single
wall outwards, until we reach A = 1.1Aj. We use this information afterwards to
calibrate our densities.

4.3 Post processing

In the following two sections, we will describe in detail the post-processing
steps we apply to the recorded images. In this section, we will first focus on
difference imaging and the image variance 〈∆I2〉(t, ∆t), including correcting for
the affine deformation field. Second, we will introduce our particle tracking
algorithm and will discuss the tracking quality and affine correction.

4.3.1 Difference imaging

We will first describe how we measure the activity in the system using
difference imaging. In Fig. 4.5(a,b), we show a φ = 1.25 foam under pure
shear at (a) t = 5000 s and (b) t = 5010 s, which we will use to explain the
process.

We describe each image as a set of intensities I(x, y, t), where 0 ≤ I < 1
(Fig. 4.5(a,b)). We can then calculate the difference image

∆I(x, y, t, ∆t) = I(x, y, t + ∆t)− I(x, y, t) , (4.13)

which is shown in Fig. 4.5(c). The difference image highlights the motion
between (a) and (b). Each moving particle shows up as a set of crescents,
indicating the old and new positions of the edges. The crescents corre-
sponding to the old positions have negative ∆I (red), while the crescents
corresponding to the new positions have positive ∆I (blue). We observe

103



SHEARED FOAMS

0 10 20 30 40
x [mm]

0

10

20

30

40

y
[m

m
]

(a)

0 10 20 30 40
x [mm]

(b)

0 10 20 30 40
x [mm]

(c)

−0.05

0.00

0.05

I(
b)
−

I(
a)

0.00 0.25 0.50 0.75
x̃

0.00

0.25

0.50

0.75

1.00

ỹ

(d)

0.00 0.25 0.50 0.75
x̃

(e)

0.00 0.25 0.50 0.75 1.00
x̃

(f)

−0.05

0.00

0.05

I(
b)
−

I(
a)

0.00 0.25 0.50 0.75
x̃

0.00

0.25

0.50

0.75

1.00

ỹ
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FIGURE 4.5: φ = 1.25 foam under pure shear γ̇ = 3× 10−5/s. (a) t = 5000 s.
(b) t = 5010 s. (c) The difference image is dominated by the affine deformation
field; 〈∆I2〉 = 2.6× 10−4. (d,e) Affine-corrected version of (a) and (b). We apply
the correction by cropping the image to the foam, and resizing the image to a
square 200× 200 px image. (c) The difference image is almost homogeneous now,
showing just the non-affine parts of the deformation field; 〈∆I2〉 = 5.4× 10−5.
(g,h) Rearrangement between (g) t = 5890 s and (h) t = 5900 s. (i) Affine-corrected
difference image; 〈∆I2〉 = 1.2× 10−2. Video versions of these figures are available
on-line [131, S3 and S4].
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that the difference image is dominated by the affine deformation: the top
wall moves towards the bottom, while the right wall moves towards the
right. The foam largely follows this deformation.

From the difference image, we then quantify the behavior by calculating
the mean of squared pixel differences, i.e., the image variance

〈∆I2〉(t, ∆t) =
〈
(∆I(x, y, t, ∆t))2

〉
, (4.14)

where the average is taken over the foam area. A high 〈∆I2〉 corresponds to
a large amount of motion in the system. If there is no motion in the system,
we are limited by pixel noise, and find 〈∆I2〉 ≈ 2× 10−5. At the high end,
we observe saturation of the signal for 〈∆I2〉 ≈ 4× 10−2.

We find 〈∆I2〉 is dominated by the affine deformation field, as shown
in Fig. 4.5(c), where we find 〈∆I2〉 = 2.6× 10−4. We are, however, mostly
interested in the nonaffine behavior, as we expect the nonaffine behavior to
differ between low and high φ. We therefore apply an affine correction by
resizing each frame to a fixed size of 200× 200 pixels using cubic spline
interpolation, as shown in Fig. 4.5(d,e). This almost completely removes
the affine deformation field, as shown in Fig. 4.5(f), and we find an affine-
corrected 〈∆I2〉 = 5.4× 10−5.

Finally, we show an example of a rearrangement in Fig. 4.5(g-i). In
this rearrangement, a bubble moves inwards from the edge, and the foam
around it moves to accommodate this rearrangement. For this rearrange-
ment, we find 〈∆I2〉 = 1.2× 10−2, close to the saturation level. This is not
surprising — almost half of the system participates in the rearrangement.

4.3.2 Particle tracking

To supplement our difference imaging, we implemented an iterative par-
ticle tracking algorithm, where the particle detection in each step is sup-
ported by position information from the previous time step. In this section,
we will introduce our tracking method.

Regular particle tracking algorithms have difficulty tracking bubbles
for various reasons. First, a particle tracking algorithm cannot easily dis-
tinguish bubbles and the empty areas between bubbles — an issue that is
especially problematic for foams close to jamming. Second, in our setup,
bubbles are not lighted homogeneously, which makes thresholding difficult.
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FIGURE 4.6: Hough-based particle tracking. (a) Frame t = i + 1 with the old
position at t = i overlaid (yellow circle). We crop the new frame around the
original particle, with an extra 2 px border (yellow square). (b) Hough transform
of the binarized cropped image. We use standard Gaussian particle fitting to find
maximum, which gives us the displacement (∆x, ∆y) = (3.7,−0.9). (c) Same as
(a), but with the new particle position overlaid (red circle).

FIGURE 4.7: Particle trajectories for a φ = 0.85 system under γ̇ = 3× 10−5/s.
Open circles indicate the starting position, closed circles the final positions. (a)
Trajectories; (b) Affine-corrected trajectories. Video versions of these figures are
available on-line [131, S5 and S6].
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FIGURE 4.8: (a) x(t) and (b) affine corrected x̃(t) for three densities under
γ̇ = 3× 10−5/s. Notice the difference in scale — one pixel corresponds to
∆x̃ ≈ 2× 10−3, and (b) covers the full measurement rather than just the first
1000 s. The error in tracking is ±1 px. The motion in x(t) is dominated by the
affine deformation. After subtracting the affine deformation, we observe distinct
behaviors for different densities: smooth and nonaffine for low φ, and affine
plateaus connected by jumps for high φ. Corresponding 2D trajectories are shown
in Fig. 4.20.

We solve the first issue by manually marking the bubbles in the first frame,
and solve the second issue by using a Hough circle transform (HCT) [141]
rather than more commonly-used blob detection mechanisms, as the HCT
does not require a contiguous area, and instead makes use of the circular
symmetry of bubbles.

First, we choose a fixed threshold, chosen to maintain as much of the
circular structure of the bubbles as possible. We apply this threshold to
each image, and use these images as input to the HCT algorithm. To fit
the new center of a particle at t = t + 1, we start with known old position
(x0, y0) at t = t, and particle radius r. First, we crop the frame around
(x0, y0) to L = 2r + 4 px on each axis. Next, we apply the Hough circle
transform for r = r on this cropped image. This results in an image with a
single large peak, centered on the new position (x, y). We fit a 2D Gaussian
to the image to retrieve the best fit for (x1, y1). We are able to track the
complete particle paths for 95% of all particles. This process is illustrated
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in Fig. 4.6. To bootstrap the process, we manually mark particles on the
first frame of each experiment, and use HCT for a range of radii to find the
best x, y and r. This process is repeated for each particle, and the resulting
set of (x0, y0, r) are used as starting position for the tracking process.

After applying the iterative method, we have a set of coordinates
(x(t), y(t)) for each particle. We show an example path for a φ = 0.85
system under shear in Fig. 4.7(a). As before, the particle motion is domi-
nated by the affine deformation field. To subtract the affine deformation
field, we reshape the rectangular box to a square, and define

x̃(t) = x(t)/Lx ; ỹ(t) = y(t)/Ly , (4.15)

where the box lengths Lx = LCD/Cim and Ly = LB/Cim are known from
the applied deformation. The resulting affine-corrected paths are shown in
Fig. 4.7(b), where we observe the particles rarely move over large distances.

We will now investigate the accuracy of the tracking algorithm. In
Fig. 4.8(a), we show x(t) for a single particle for three different densities.
We observe our particle tracking is fairly noisy, with an error in position of
1 px, or approximately 0.05 times the mean bubble diameter. Nonetheless,
we can clearly follow the trajectories of the particles, and we note that
these are dominated by the affine deformation field. In Fig. 4.8(b), we
plot the affine corrected position of the same particle, for longer t. We
can clearly distinguish different behavior for different densities φ: for low
φ, the motion is smooth, while for high φ, the behavior can be described
as purely affine (plateaus) plus discontinuous jumps. For intermediate φ
we find intermediate behavior, with a combination of smooth drift and
discontinuous jumps.

4.4 Results

Using the tools provided in the previous section, we will now focus on
measuring qualitative and quantitative changes in the behavior of foam
packings at varying density. We will use difference imaging to capture
global changes, and will use particle tracking to investigate localized be-
havior.

Because we are working in a system where viscous effects play a sig-
nificant role at higher shear rates, we will first investigate the time scale at
which these effects play a role. We will then probe the structural relaxation
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FIGURE 4.9: (a) Deformation x = A sin(ωt), with A = 1.2 mm and ω = 0.6 rad/s.
The maximum wall velocity is Aω = 0.72 mm/s. (b) The response of a foam
(φ = 0.86), compared to the state at t = 0. The system reaches a limit cycle
after a few cycles. The frequency is double that of the driving, as both positive
and negative driving lead the system away from the zero deformation state.
The response is slightly anisotropic, as indicated by the difference in height of
subsequent maxima. (c) Phase difference θ (see text for definition) as function
of driving angular frequency ω, for A = 1.2 mm and φ = 0.86. For each ω,
we perform five measurements, each running for 20 cycles. The dotted line
is a fit to tan−1(−ω/ω0), the expected phase shift for a first-order filter, with
w0 = 0.14 rad/s. We observe the phase shift is somewhat slower than that of a
first-order filter. Nonetheless, we observe almost the entire π/2 phase shift over
three orders of magnitude in ω. The phase difference is small, although non-zero,
at ω = 10−2 rad/s, indicating viscous effects are important for ω & 10−2 rad/s.

time under step shear. As we will see, this time scale decreases strongly
with φ. We then focus on measuring the global behavior from the difference
imaging of foams under slow steady shear. We will show that the autocor-
relation time strongly depends on φ, and will show qualitative trends in
〈∆I2〉. We then continue with data from tracked particles, and will show
trends with φ in the mean squared displacement, the inverse participation
ratio and the distribution of velocities.
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4.4.1 Viscous time scale

First, we will determine the time scale at which viscous effects begin to
dominate. Because the viscous damping is non-linear [142], the time scale
depends on the velocity, and we will measure the scale for the velocities
relevant in our experiment. We perform this measurement with a foam at
density φ = 0.86, as we expect the largest effects to emerge at low φ, where
forces between particles are small.

To measure the viscous velocity scale, we drive the system with a
sinusoidal deformation x = A sin(ωt), where we use A = 1.2 mm and vary
ω from 10−2 rad/s to 1 rad/s (Fig. 4.9(a)). We measure the resulting image
variance 〈∆I2〉 by comparing each frame to the initial frame (Fig. 4.9(b)).
Because 〈∆I2〉measures the deformation from the base state, it is positive
for both positive and negative strain, and the resulting 〈∆I2〉 is quadratic
in x.

We quantify the viscous effects with the phase shift θ. For this, we first
determine the components of 〈∆I2〉 that are in-phase (X) and out-of-phase
(Y) with x2 as

X =
〈

R
(

x2(t)
)
· R
(
〈∆I2〉(t)

)〉
t

, (4.16)

Y =

〈
R
(

∂

∂t
x2(t)

)
· R
(
〈∆I2〉(t)

)〉

t
, (4.17)

where we normalize the mean and standard deviation of each component
using

R(q) =
q− 〈q〉t

〈(q− 〈q〉t)2〉t
. (4.18)

We then calculate the phase shift

θ = tan−1 (Y/X) . (4.19)

Although we did not measure a wide enough range of ω to measure
the full shift from in-phase to π/2 out of phase behavior, we do observe
a clear trend. At low driving rate ω = 10−2, we are close to in-phase
behavior, and extrapolation suggests ω = 10−3 is slow enough to not
have any noticeable viscous effects. ω = 10−3 corresponds to a wall
velocity v = Aω = 1.2 µm/s. At the typical wall length L = 35 mm, this
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corresponds to a shear rate γ̇ = 4× 10−5. Most of our measurements are at
a lower rate, γ̇ = 3× 10−5, but to measure the effect of shear rate, we also
measure at higher rates. For these measurements, viscous effects start to
play a role.

4.4.2 Structural relaxation time

In this section we investigate the relationship between the structural re-
laxation time and φ and γ̇. To do so, we apply a step shear to the system,
and image the resulting relaxation process. Using difference imaging, we
quantify the process and then determine the timescales involved.

In Fig. 4.10(a), we show a step shear γ = 5.3× 10−4 applied between
t = 0 and t = 0.5 s. The system is then allowed to relax for 300 s, after
which the next step is applied. Overall, we have an instantaneous shear
rate γ̇ = 10−3, and a mean shear rate γ̇ = 2× 10−6. In Fig. 4.10(b), we
show the variance 〈∆I2〉 between the first state after the step shear and each
subsequent state. When we compare 〈∆I2〉 for a low and a high density
system, we observe (i) a stronger response for the low density foam, and
(ii) a slower decay for the low density foam.

We fit the resulting curve with an exponential

〈∆I2〉 = Imax

[
1− exp

(
t− t0

τ∗SR

)]
, (4.20)

where Imax, t0 and τ∗SR are free parameters in the fit. In Fig. 4.10(c), we plot
the resulting value of τ∗SR as a function of φ and step size γ. We observe that,
for the smallest strain step γ = 5.3× 10−4, the relaxation time decreases
from τ∗SR ≈ 40 s at φ = 0.85 to τ∗SR ≈ 6.7 s at φ = 1.3. Larger strain steps
result in longer relaxation times, where the relaxation time doubles from
γ = 5.3× 10−4 to γ = 7.2× 10−3. Imax, i.e., 〈∆I2〉 for the final relaxed
state, scales roughly linearly with the step size, and decreases slightly with
increasing φ. This is likely due to relaxation of the system while it is being
sheared, as 〈∆I2〉 is calculated with respect to the first state after the step
shear.
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FIGURE 4.10: (a) The applied step shear γ = 5.3× 10−4 is applied between
t = 0 and 0.5 s. The system is then relaxed for 300 s. (b) 〈∆I2〉 for φ = 0.85
(blue pluses) and φ = 1.3 (red crosses), with an exponential fit 〈∆I2〉 = Imax(1−
exp((t− t0)/τ∗SR) (φ = 1.3: τ∗SR = 6.7 s, Imax = 5.0× 10−5; φ = 0.85: τ∗SR = 42 s,
Imax = 1.4× 10−4). (c) τ as a function of density φ. Markers indicate the mean,
error bars indicate the standard deviation. Symbols and colors indicate the strain
step size. We observe structural relaxation times are a factor 5 longer for low φ
than for dense systems. Larger strain steps correspond to longer decay times, but
a factor 30 in step size only results in a 2 times longer decay. (d) Imax as a function
of density φ. Imax scales roughly linearly with step size, and decreases slightly
with density.

4.4.3 Difference imaging

We will now focus on several measures we obtain from difference imaging.
First, we will discuss the behavior of 〈∆I2〉 as a function of both time t
and the time step ∆t. We will first show qualitatively how the behavior
changes as a function of φ in uniaxial compression. We will then show the
expected behavior for a single bubble in a synthetic example, and show
that the behavior can be described by a power law on short time scales.
Once we have set up this framework, we turn to the behavior of foam
under pure shear. We will first determine the autocorrelation time, and will
then investigate trends with φ in nonaffine behavior and the occurrence of
rearrangements.
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FIGURE 4.11: Compression of a two-dimensional foam from φ = 0.77 to φ = 1.41
under ε̇ = −3× 10−5/s. (left row) Snapshots at φ = 0.77, 0.90, 1.04, 1.21 and 1.41,
corresponding to t = 0 s, 5000 s, 10 000 s, 15 000 s and 20 000 s. The size is indicated
with a scale bar. (right row) Flame graphs of 〈∆I2〉(t, ∆t). Densities are indicated
at every 5% change in φ. With increasing confinement, we observe a transition
from fully smooth to fully intermittent behavior. A video version of this figure is
available on-line [131, S7].
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FIGURE 4.12: Example of difference imaging. (top) A particle, here modeled
with an annulus with inner radius r = 16 px and outer radius R = 24 px, moves
horizontally at v = 0.01 px/s. The intensity of the ring is I = 1. A Gaussian
noise term with standard deviation s = 1/16 is added to simulate imaging noise.
(middle) Difference images show the displaced particle as a set of four crescents.
(bottom) By averaging over the squared differences, we capture the displacement
in a single number. Red crosses indicates values corresponding to the ∆Iij images.
Values computed from intermediate annulus positions are shown with a black
line. A power law fit A(∆t)β + C to 0 < ∆t < 20 is shown with the red dotted line
(A = 2.3× 10−5, β = 1.9, C = 0.007).

In Fig. 4.11, we show a flame graph of 〈∆I2〉(t, ∆t) for a system under uni-
axial compression: using color and intensity, we show 〈∆I2〉 as a function
of both t (x) and ∆t (y). At t = 0, we start at φ = 0.77. For φ < φj ≈ 0.84,
the behavior is completely smooth, and 〈∆I2〉 varies slowly. Above φj, we
observe a larger variety in motion, with ’hot’ and ’cold’ sections. Nonethe-
less, 〈∆I2〉 still varies slowly. When we increase φ further, we observe
sharp triangles that are characteristic of intermittent behavior in the system
(Fig. 4.13).

We now turn to capturing this behavior in simpler parameters. To
do so, we first focus on a synthetic example of a single moving bubble.
In Fig. 4.12, we show a synthetic bubble (annulus) moving horizontally.
We then determine the difference image as compared to the original state.
Finally, we calculate 〈∆I2〉 for these difference images, and plot 〈∆I2〉 as

114



4.4. RESULTS

0.0
0.2
0.4
0.6
0.8
1.0

s

0 20 40 60 80
t

0
2
4
6
8

∆
t

20 40 60 80
t

0

1

∆
s

FIGURE 4.13: t, ∆t flame graphs for two examples: a linearly increasing function
(a,c), and a step function (b,d). For the linearly increasing function, we observe a
smooth flame graph, with an increased ∆s for increased ∆t. For the step function,
we observe a sharp triangular shape — if the step happens between t and t + ∆t,
∆s = 1. Otherwise, ∆s = 0. When we approach the event at t = 20, we capture
the event for a wider range of ∆t; this is the leading edge of the triangle. After the
event, s = 1, and ∆s = 0, irrespective of ∆t, and we find that the trailing edge of
the triangle is sharp.

a function of ∆t. We find that the behavior on short timescales can be
well-described as a power law, and we therefore summarize the behavior
of 〈∆I2〉 for different ∆t by fitting 〈∆I2〉 to

〈∆I2〉(∆t) = A
(

∆t
1 s

)β

+ C , (4.21)

where A, β and C are fit parameters, for ∆t ≤ 20 s. This gives us a rate
of nonaffine behavior A = 2.3× 10−5 and a power β = 1.9. C = 0.007
captures the offset resulting from imaging noise.

We now turn to the behavior for real foams under shear. In Figs. 4.14(a)
and (b), we show flame graphs for a low density (φ = 0.9) and a high
density (φ = 1.5) foam, sheared at the same rate γ̇ = 3× 10−5. We observe
large qualitative differences. For the dense foam, we observe the behavior
is largely affine, indicated by the low value of 〈∆I2〉, even at ∆t = 20 s
(〈∆I2〉 ∼ 10−4). The exception to this are rearrangements, recognizable by
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FIGURE 4.14: Behavior of 〈∆I2〉(t, ∆t) for a low density (φ = 0.9) and a high
density (φ = 1.5) foam. Both samples are sheared with a constant shear rate γ̇ =

3× 10−5/s (total strain ∆γ = 9× 10−3). (a) Intensity plot of 〈∆I2〉(t, ∆t) for φ =

0.9. Larger ∆ts lead to larger 〈∆I2〉, but the behavior is largely time-independent.
(b) 〈∆I2〉(t, ∆t) for φ = 1.5. Here, we can clearly distinguish individual events,
which show up as bright triangles. (c) Image variance when compared to the state
at t = 1200 s. The low density system has a slow but consistent increase. The
high density system generally has a slow growth, but has significant jumps when
rearrangements occur. (d,e) The results from fitting 〈∆I2〉(t, ∆t) = A× (∆t)β + C.
For the low density, A ≈ 10−6 and β ≈ 1.6 are fairly constant, while we can clearly
distinguish the quiet and active periods for the high density foam. Video versions
of these figures are available on-line [131, S8 and S9].
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FIGURE 4.15: Example of a rearrangement in a dense (φ = 1.5) foam under shear
(γ̇ = 3× 10−5). (a-c) Snapshots at t = 1730 s and t = 1770 s and the corresponding
difference image. The bubble marked with a red dot moves down to the lower wall.
(d) The corresponding 〈∆I2〉(t, ∆t) intensity plot. The intensity profile roughly
follows the dotted line t + ∆t = 1759 s. (e,f) The corresponding amplitude A(t)
and power β(t). β peaks and A starts to increase when the first sign of the event
enters our fit range (g). The maximum A and minimum β are just before the
rearrangement (i). In the intermediate regime (h) we find the behavior is not
well-described by a power law. Finally, we recover the regular β ≈ 1.6 when most
motion has dissipated (j).
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their distinctive triangular shape, as explained in Fig. 4.13. In contrast, for
the low density foam, we do not observe distinct rearrangements, but 〈∆I2〉
is typically higher by a factor 2, indicating a larger amount of nonaffine
motion.

We fit Eq. (4.21) to 〈∆I2〉(t, ∆t) for every value of t, and plot the resulting
A(t) and β(t) in Figs. 4.14(d) and (e). C(t) ≈ 6.25 (not shown) is essentially
independent of time and corresponds to approximately 2.5 bits of imaging
noise. For the low-density system, we observe a constant A ≈ 10−6 and
β ≈ 1.6. For the high-density system, we observe A ≈ 5× 10−7, β ≈ 1.6
for the quiet parts, while A and β strongly vary near rearrangements.

In Fig. 4.15, we now focus on the behavior of A and β near rearrange-
ments. In Figs. 4.15(a-c), we show the before and after state of the rear-
rangement, with their difference image. A single bubble worms its way
in between two larger particles. In Fig. 4.15(d-f), we show the behavior of
〈∆I2〉(t, ∆t), A(t) and β(t) for this rearrangement. We observe the charac-
teristic triangular shape, and observe A(t) increases strongly close to the
event at t = 1758 s. β peaks approximately 20 s before the event, where the
first precursor of the event enters the fit interval, and dips to β ≈ 0.1 at the
event. In Figs. 4.15(g-j), we show 〈∆I2〉(t, ∆t) for four values of t, indicating
the variety of behaviors around a rearrangement.

Autocorrelation time. We now first focus on determining the autocorrelation
time of motion in the system from A(t) and β(t). First, we combine A(t)
and β(t) into a single signal function

α(t) = log10 A(t) + µβ(t) , (4.22)

where µ = 1 was chosen to optimize the signal to noise ratio. We then
normalize α as

α̃(t) =
α(t)− 〈α(t)〉t〈

(α(t)− 〈α(t)〉t)2
〉1/2

t

, (4.23)

whose mean is 0 and standard deviation is 1. We then calculate the autocor-
relation function

Rαα(τ) = 〈α̃(t + τ) · α̃(t)〉t .is (4.24)

In Fig. 4.16(a), we show the autocorrelation function Rαα(τ) for φ =

0.85 . . . 1.5 under a steady shear γ̇ = 3× 10−5/s. We observe a strong
effect of φ: Rαα(τ) decreases much more rapidly for high densities.
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FIGURE 4.16: (a) Autocorrelation function R(τ) for a range of systems at φ =

0.85 . . . 1.5, under pure shear at γ̇ = 3× 10−5. Higher values of φ correlate with
a faster decay of R(τ). We fit each function with R(τ) = exp((τ − τ0)/τ∗) with
τ0 and τ∗ as free parameters. (b) Characteristic time scale τ∗ as a function of φ

for all measurements at γ̇ = 3× 10−5. Different colors indicate seven different
measurement series. For φ < 1, the scatter between measurements is large,
although we recover the same trend, where τ∗ decreases for increasing φ, for each
measurement series. For higher densities, we find consistent behavior between
different series.

We determine the autocorrelation time by fitting Rαα with

Rαα(τ) = exp
(

τ − τ0

τ∗AC

)
, (4.25)

where τ0 and τ∗AC are free parameters in the fit. In Fig. 4.16(b), we now
show the autocorrelation time τ∗AC as a function of density φ for seven in-
dependent measurement series at γ̇ = 3× 10−5/s. We observe comparable
behavior for all series, where τ∗AC ≈ 500 s for φ = 0.85 and τ∗AC ≈ 50 s for
φ = 1.3.

In Fig. 4.17(a), we focus on the relation between τ∗AC and the shear
rate γ̇. We observe τ∗AC is strongly dependent on γ̇, with a scaling not in
contradiction with τ∗AC ∼ γ̇−1. This suggests motion in the system is most
strongly correlated with a strain scale rather than a time scale, consistent
with quasi-static shear.

119



SHEARED FOAMS

(a)

10−5 10−4 10−3 10−2

γ̇ [s−1]

100

101

102

103

τ
∗ A

C
[s

] 1

φ
1.5
1.0
0.87 (b)

0.8 1.0 1.2 1.4 1.6
φ

10−5

10−4

10−3

10−2

γ̇
[s
−

1 ]

100

103

τ
∗ A

C
[s

]

FIGURE 4.17: (a) Characteristic time scale τ∗ as a function of shear rate γ̇ for three
densities φ. We observe τ∗ decreases roughly as γ̇−1, suggesting we are dealing
with a characteristic strain scale rather than a time scale. (b) τ∗ as a function of
both φ and γ̇. Both trends are clearly visible: higher φ and higher γ̇ both lead to
smaller values of τ∗AC.

Nonaffine behavior and rearrangements. We now focus on the nonaffine be-
havior of foams. From jamming simulations, it is well known that behavior
near the jamming transition becomes increasingly nonaffine [32], while the
behavior in dry foams is largely affine, interspersed with rearrangement
events [135].

Here, we will investigate the nonaffine behavior as measured by the
image variance 〈∆I2〉. In Fig. 4.14(c), we show 〈∆I2〉 as a function of ∆t,
i.e., we measure how 〈∆I2〉 builds up over longer periods of time. For high
φ, we observe 〈∆I2〉 grows slowly with ∆t, except when rearrangements
happen, causing a jump in the signal. For low φ, the behavior is remarkably
different: there are no distinct events, and 〈∆I2〉 grows smoothly with time.
Nevertheless, 〈∆I2〉 reaches values comparable to those of a rearrangement
at t ≈ 1450 s.

By fitting 〈∆I2〉 to Eq. (4.21), we capture the nonaffine behavior in a
single parameter A(t). For purely affine behavior, A(t) = 0, and A(t)
grows with increasing nonaffinity. We thus expect typical values of A(t) to
be small for high φ, and large close to jamming. A(t) also captures the effect
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FIGURE 4.18: (a) CDFs Pr(A < A′) for fitting parameter A. The typical value
of A is higher for low φ, but the peaks are much larger for high φ. (b) 5%, 50%
(median) and 95% percentiles of A as a function of packing fraction φ. The median
A decreases with φ, but the 95% percentile, i.e. peaks in the signal, becomes more
prominent for higher φ.
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FIGURE 4.19: (a) PDFs of β(t) for systems at a range of densities φ. For higher
densities, the distribution becomes wider, and a tail towards low β appears. (b)
The mean 〈β〉 does not change with φ. (c) The standard deviation sβ increases
linearly with φ.
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of rearrangements: at a rearrangement, A(t) shortly peaks, with values 100
to 1000 times larger than typical (Fig. 4.14(d)). For larger time scales, this
causes 〈∆I2〉 to reach comparable values for both low and high φ.

We capture both behaviors in Fig. 4.18(a), where we have plotted CDFs
of A(t). For low densities, we observe the CDF is close to a step function,
indicating all values of A(t) are close to the typical values — in other
words, there are no rearrangements where A(t) jumps to a high value.
For increasing φ, we observe two effects. First, the typical value of A(t)
halves, from [A(t)]0.5 ≈ 10−6 at φ = 0.85 to [A(t)]0.5 ≈ 4× 10−7 at φ = 1.5.
Second, the shape no longer resembles a step function for high densities.
Instead, we find the upper 20% percentile now consists of values much
larger than the median, consistent with the appearance of rearrangements.

In Figs. 4.18(b) and 4.18(c), we plot the median [A]0.5 and the 95%
percentile [A]0.95 as a function of φ, and find the behavior indicated above.
[A]0.5 decreases smoothly with φ, and seems to reach a plateau around
φ = 1.4. [A]0.95 increases roughly linearly with ∆φ, up to 4× 10−5 at
φ = 1.5.

We can also capture the rearrangement behavior using the power law
exponent β(t). In Fig. 4.14(e), we have seen β(t) ≈ 1.6 in steady state,
without any large-scale deviations. However, near rearrangements, β(t)
fluctuates strongly. In Fig. 4.19(a), we plot the PDFs of β for different
φ. For increasing φ, we observe (i) the peak of the distribution shifts to
higher β, (ii) the width of the distribution increases, and (iii) a tail at low β
forms. In Fig. 4.19(b), we plot the mean value of β, and observe 〈β〉 = 1.6,
independent of φ. At the same time, the standard deviation of β grows
from 0.1 at φ = 0.85 to 0.5 at φ = 1.5 (Fig. 4.19(c)).

Conclusion. We have observed several trends with density φ. First, we
quantified the autocorrelation time, and observed it decreases with a factor
30 between φ = 0.85 and φ = 1.5. We observed qualitative changes
in nonaffine behavior from the distribution of A(t), where we observe
the amount of nonaffine behavior decreases with density φ. Finally, we
observed qualitative changes in the prevalence of rearrangements from the
[A]0.95 and the standard deviation of β(t).
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FIGURE 4.20: Affine-corrected particle trajectories for a single particle for systems
under continuous shear γ̇ = 3× 10−5/s. (left) φ = 0.85, (middle) φ = 1, (right)
φ = 1.35. Color changes with time. We observe a qualitative change in behavior:
at low φ, the bubble follows a smooth path through space, while at the highest φ,
the particle jumps around between caged states. The intermediate φ = 1 exhibits
a mixture of both behaviors. Circles indicate the Lindemann criterion r = 0.14〈r〉.

4.4.4 Tracked particle trajectories

We will now focus on the behavior of the systems using tracked particle
trajectories. First, we focus on differences in the motion of individual
particles, where we observe a transition from smooth behavior at low φ to
caged behavior at high φ. We will then look at various measures to quantify
these differences. First, we focus on the mean squared displacement, where
we find smaller displacements for larger φ at the same ∆t, but no clear
signature of a caging timescale. We then investigate localization directly
using the inverse participation ratio and by characterizing the distribution
of velocities.

Caged motion. We first focus on trajectories of individual particles. In
Fig. 4.20, we show the particle trajectory for a single particle in the mid-
dle of the system for three systems at different densities. We observe a
clear qualitative trend, consistent with Fig. 4.8(b): the low density system
smoothly moves across phase space, while the high density system is in a
’cage’ which deforms affinely, and the particle jumps from cage to cage. For
intermediate φ, we find intermediate behavior.

Mean squared displacement. To quantify this behavior, we turn to the mean
squared displacement (MSD). We calculate the MSD from the particle
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FIGURE 4.21: Mean squared displacement for systems at a range of φ (colors) at
γ̇ = 3× 10−5/s (pluses) or γ̇ = 3× 10−4/s (crosses). (a,b) MSD as function of ∆t
and ∆γ. (c,d) Affine corrected MSD as function of ∆t and ∆γ. In all figures, power
laws corresponding to diffusive (1) and ballistic (2) motion are indicated.
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positions as

〈| #  »

∆x|〉(t, ∆t) =
〈
(xi(t + ∆t)− xi(t))

2 + (yi(t + ∆t)− yi(t))
2
〉

, (4.26)

where the average is taken over all particles and all times t. Our particle
positions are accurate to up to 1 px, and we therefore expect reliable results
for 〈| # »

∆r|〉 > 1 px2 ≈ 4× 10−3 mm2, or 3× 10−6 in affine-corrected units.
In Fig. 4.21(a), we show 〈| #  »

∆x|2〉 for shear measurements at shear rates
γ̇ = 3× 10−5/s and γ̇ = 3× 10−4/s at a range of density φ. First, we
observe that the curves describe ballistic behavior, consistent with motion
that is largely dominated by the affine deformation. Next, we observe that
the curves for γ̇ = 3× 10−5/s and γ̇ = 3× 10−4/s are separated by an
order of magnitude in time. In Fig. 4.21(b), we have plotted the curves as
a function of strain and observe the curves almost collapse. Finally, we
observe a trend with φ for γ̇ = 3× 10−5/s: higher densities have a larger
〈| #  »

∆x|2〉 at small ∆t, but have a slower growth: at t ≈ 3× 102 s, 〈| #  »

∆x|2〉 is
approximately equal for all φ. At longer timescales, 〈| #  »

∆x|2〉 is larger for
lower densities.

For the affine corrected 〈| #  »

∆x̃|2〉, we find comparable behavior, albeit
without a clear crossing time. 〈| #  »

∆x̃|2〉 is larger for low φ at small ∆t, but
grows more rapidly for low φ. 〈| #  »

∆x̃|2〉 grows slower as a function of ∆γ for
γ̇ = 3× 10−4/s than for γ̇ = 3× 10−5/s, suggesting nonaffine behavior is
more prominent at low shear rates.

We note that we do not observe plateaus in the mean squared displace-
ment function, as typically associated with caging behavior [143, 144]. This
suggest there is no typical time or spatial scale for these cages, causing the
plateaus to be averaged out.

Inverse participation ratio. Another hallmark of rearrangements is their
localization in space: typically, only four particles (a T1 event) or a small
group of particles (a shear transformation zone or STZ) are participating. We
quantify this behavior using the Inverse Participation Ratio (IPR), defined
as

Λ(t) =
〈|∆#»

r̃ |4〉
〈|∆#»

r̃ |2〉2
, (4.27)

where
# »

∆r̃ is the displacement in affine-corrected coordinates within a time
step ∆t and the average is taken over all particles. We choose ∆t = 10 s, as

125



SHEARED FOAMS

100 101

Λ

10−3

10−2

10−1

100

101

ρ
(Λ

)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

φ

FIGURE 4.22: PDFs of the inverse participation ratio Λ (see text), for foams sheared
at γ̇ = 3× 10−5/s. Λ is determined using a time step ∆t = 10 s. For φ = 0.85, the
PDF is approximately Gaussian. For increasing φ, and increasingly prominent tail
at high Λ forms, indicating the appearance of rearrangements.

this corresponds to the shortest time scale where the particle tracking is
not dominated by noise, as we observed in the mean squared displacement
Fig. 4.21(a). To interpret this value, we note that for a fully homogeneous
system, 〈|∆#»

r̃ |4〉 = 〈|∆#»
r̃ |2〉2, and Λ = 1. For a fully localized system,

where only a single particle i has a finite ∆
#»
r̃ , 〈|∆#»

r̃ |4〉 = |∆#»
r̃i |4/N, while

〈|∆#»
r̃ |2〉2 = |∆#»

r̃i |4/N2, so Λ = N, where N is the number of particles. In
numerical simulations of particles with viscous interactions, Woldhuis et al.
[38] measured the IPR of the energy dissipation between particles, and
observed the IPR increased from ≈ 3 at low φ and high γ̇ to ≈ 286 at high
φ and low γ̇. Here, we observe comparable behavior: In Fig. 4.22, we show
PDFs of Λ(t) for a range of φ (γ̇ = 3× 10−5/s, ∆t = 10 s), and observe that
the tail of the distribution becomes much more prominent at higher φ. We
observe an increase in the prevalence of high values, indicating there are
more rearrangement events at higher φ. We also observe that the maximum
observed value increases, indicating the events become more and more
localized. For high densities, we find the maximum IPR is max Λ ≈ 25.
When we take the number of samples into account, this is comparable to
the results found by Woldhuis et al. [38].
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FIGURE 4.23: (a) PDFs of ∆x for three densities (γ̇ = 3× 10−5/s, ∆t = 10 s). The
gray background curve indicates a Gaussian distribution with standard deviation
s = 8× 10−4. (b) Excess kurtosis κ̃ = k− 3 for a range of φ for γ̇ = 3× 10−5/s at
∆t = 10 s (blue crosses), and γ̇ = 3× 10−4/s at ∆t = 1 s (red pluses) and ∆t = 10 s
(red crosses).

Velocity distribution. We can also capture this localized behavior in the
distribution of velocities if the system, i.e., the PDFs of ∆x̃ and ∆ỹ, where
we calculate the distribution for all particles i and times t. We show the
PDFs of ρ(∆x̃) for φ = 0.85, 1.0 and φ = 1.5 for ∆t = 10 s in Fig. 4.23(a); the
PDFs for ∆ỹ are completely equivalent. As before, ∆t = 10 s is large enough
to limit the impact of tracking errors, but small enough to clearly show the
differences between the distributions.

For φ = 0.85, the distribution is approximately Gaussian, except for a
peak at ∆x = 0, an artifact of the tracking algorithm. For higher φ, fatter
tails appear. In other words, most particles move at a ’typical’ velocity for
low φ, while there is a much larger spread for high φ. We quantify this
trend by calculating the kurtosis

κ =
〈|∆#»

r̃ |4〉
〈|∆#»

r̃ |2〉2
, (4.28)

where the average is now taken over both particles and time. For a purely
Gaussian distribution, κ = 3. We therefore plot the excess kurtosis κ̃ = κ − 3
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as a function of φ in Fig. 4.23(b), and show results for γ̇ = 3× 10−5/s at
∆t = 10 s and 3× 10−4/s at ∆t = 1 s and 10 s. For the γ̇ = 3× 10−4/s
system, ∆t = 1 s is sufficient to be unaffected by tracking noise, and has the
same γ interval as as the γ̇ = 3× 10−5/s system at ∆t = 10 s. However, we
have seen that the structural relaxation time is largely independent of γ̇,
and we therefore also show results for ∆t = 10 s

For γ̇ = 3× 10−5/s, we observe κ̃ varies over four decades, with an
exponential increase for φ < 1, before flattening out to κ̃ ≈ 100. For
γ̇ = 3× 10−4/s, we find qualitatively the same behavior, but we note that
at low φ, κ̃ is higher than for γ̇ = 3× 10−5/s, irrespective of ∆t.

Conclusion. Using particle tracking data, we have shown qualitative trends
with φ: First, we observe caging behavior for high φ systems, and this
behavior smoothly changes into smooth behavior at low φ. Second, we
have observed the mean squared displacement is larger for higher φ at the
same ∆t, but find no convincing signal of caging. Finally, we investigated
localization, and found clear trends with φ in the inverse participation ratio
Λ, as well as in the kurtosis κ of the distribution of velocities. The effect of
γ̇ on these measures is not clear yet, and is subject for further research.

4.5 Discussion and conclusion

In this chapter, we performed bi-axial pure shear measurements on a mono-
layer of foam bubbles. We have introduced our setup and measurement
protocol, and have shown that we can describe the observed behavior using
several quantities: the image variance 〈∆I2〉(t, ∆t), the image variance fit
parameters A(t) and β(t) and finally using the tracked particle positions.

Using these quantities, we first quantified the viscous time scale under
sinusoidal shear, where we find a characteristic timescale τ ∼ 1/ω0 = 7 s
at φ = 0.86 and typical deformation scales. We then used a step shear
deformation to quantify the structural relaxation time τ∗SR, and measured
its dependence on φ. We found that τ∗SR decreases with φ, from ≈ 50 s for
φ = 0.85 to τ∗SR ≈ 7 s at φ = 1.3, comparable to the viscous relaxation time
scale.

We then investigated trends in foams under steady shear. First, we
determined the autocorrelation time τ∗AC, which decreases from τ∗AC ≈ 500 s
at low φ to τ∗AC ≈ 50 s at high φ. We note that this time scale is much longer
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than both the structural relaxation timescale and the viscous timescale,
hence at these shear rates, we are close to quasi-static

Finally, we indicate several qualitative trends. First, we find that the
distributions of the fit parameters of 〈∆I2〉(t, ∆t), A(t) and β(t), show
a clear transition from smooth but nonaffine motion at low φ to affine
with interspersed rearrangements at high φ. We find the same trends in
the inverse participation ratio Λ and the kurtosis of the distribution of
velocities ρ(∆x̃).

Overall, we have shown that we observe a clear transition from global,
smooth, nonaffine behavior at low φ to local, intermittent behavior at high
φ. We observe this transition to be smooth — there is not a single φ at
which we suddenly switch from one behavior to the other. Instead, we find
a mix of behaviors, which is best evidenced by Figs. 4.8(b) and 4.20.

We suggest several direction for future research. First, the dependence
of the nature of rearrangements on the shear rate remains relatively unex-
plored. Our trends suggest the behavior is largely unaffected by the strain
rate, which suggests that we have well separated the intrinsic relaxation
time and the straining time scale. In contrast, Woldhuis et al. [38] find that
the shear rate can play a similar role as the density, and the behavior is
governed by ∆φβ/γ̇, with β ≈ 1.1 . . . 1.3. It remains to be seen whether this
regime can be reached, as the shear rates in this system are limited by the
viscous drag with the top plate.

Second, information on the forces between bubbles would help to un-
cover many of the microscopic details of the system. Eric Weeks’ group at
Emory University has invested a considerable amount of effort into mea-
suring these details in oil-water emulsions [60, 62–64, 145, 146]. As both
the physics and the imaging in these emulsions are comparable to those in
foams, we propose these same methods should transfer to our system.

Appendix

4.A Reversibility

In this section, we focus on measuring reversibility under cyclic step shear.
First, we step forwards to γ = γmax in four γmax/4 steps. For each step, we
shear forwards at a rate γ̇ = 10−3/s, and we relax the system for 300 s after
each step. After performing four steps forward, we step backwards in the
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FIGURE 4.24: (a) 〈∆I2〉 between initial and final state, for a range of pressures
and deformations γ. We expect a trend where larger γ and smaller φ correspond
to larger 〈∆I2〉, but the measure is dominated by localized rearrangements. (b)
An example of a localized rearrangement: φ = 0.91, γ = 6.6× 10−3, 〈∆I2〉 =
8.9× 10−3.

same way, until we return at γ = 0. We then compare the final state to the
initial state, and determine the variance 〈∆I2〉.

We show this measure for a range of φ and γmax in Fig. 4.24(a). We
observe no clear relationship for either, as the signal is dominated by
localized events.
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SUMMARY

Foams are all around us: from personal care (shaving foam) to food
(whipped cream) to building materials (polyurethane foam). At the same
time, their behavior is poorly understood: how is it possible that whipped
cream can act both as a solid, on top of a pie, and as a liquid, when extruded
from a piping bag? The key to understanding this lies in the structure of
the foam. A foam is not a homogeneous material, but consists of a large
number of small air bubbles. The whole is more than the sum of its parts:
even though the behavior of a single bubble is easy to understand, their
collective behavior is much more complicated and completely different.
The reason for this is that a deformation of the whole is only reflected
partially in the deformation of individual bubbles. Instead, a large part of
the deformation is reflected in a change in the structure of the foam. In this
thesis, we investigate this change in structure.

In the first part of this thesis, we use a simple microscopic computer
model to simulate the response of a foam when it is deformed by a tiny
amount. Initially, the response is elastic, and the foam relaxes back to its
original shape when released. We measure how far we need to deform
the foam until it is irreversibly deformed. In the second part of this thesis,
we focus on an experiment, where we measure the response of a two-
dimensional foam when it is deformed at the edges. We observe that the
response of bubbles in the center of the foam qualitatively depends on how
densely the bubbles are packed together.

In chapter 2, we numerically investigate the first change in the structure
formed by the bubbles. We describe the structure using the so-called contact
network: the list of all bubbles that touch each other. Earlier work has shown
that the elastic response of a foam is mainly determined by this contact
network, which implies that a change in this network results in a change
in the elastic response. We measure how far we need to deform the foam
until two bubbles lose contact, or two bubbles are brought into contact. We
observe that the process of making and breaking contacts depends strongly
on how densely the bubbles are packed together: we need to deform the
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foam further if the bubbles are more densely packed together. We also
observe that the number of bubbles in the foam matters: in a larger foam, it
is more likely that a single contact change occurs somewhere in the system.
At the same time, the effect of a single contact change decreases with size,
allowing the overall response to stay well-defined.

In chapter 3, we extend this work to larger deformations, and ask when
and how systems become irreversibly deformed. First, we check for sudden
changes in the location of particles: discontinuous jumps are often a sign
of an irreversible process. Second, we observe what happens when we
deform the system back to its initial shape. Do particles follow the same
path back, or do they move to a different location? Finally, we measure
what happens when the foam is allowed to relax. Do the bubbles move
back to their initial position, or does the system stay deformed? Although
we have not been able to answer all questions in this chapter, we have laid
the ground work for further research.

Finally, in chapter 4, we describe an experiment in which a two-dimen-
sional foam is trapped between four walls. By moving these walls, we first
tune how densely the bubbles are packed together. Then, by independently
moving the different walls, we deform the foam without changing the
surface area. We then ask how bubbles in the center of the foam respond to
this deformation at the edges. At low densities, all bubbles in the system
participate, and move smoothly. This changes at high densities: there, the
bubble motion becomes localized and intermittent. We characterize the
behavior of the foam in various ways. First, we measure the relaxation
time: how quickly is a sudden deformation transmitted through the system?
The denser the bubbles are packed together, the faster the deformation is
transmitted. Second, we measure the behavior when we smoothly deform
the system, and measure a continuous change from smooth to intermittent
behavior. Finally, we identify the potential of tracking individual particles,
where we again identify this transition. In each of these properties, we
find a strong dependence on packing density. In each case, we find two
qualitatively different regimes, with mixed behavior in between. This
shows foams cannot be modeled as just bubbles or just straight soap films:
those are approximations that only work well in the low and high density
limits, respectively.
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Schuim is overal: van persoonlijke verzorging (scheerschuim) tot voedsel
(slagroom) tot bouwmaterialen (purschuim). Toch is het gedrag van deze
materialen slecht begrepen. Waarom kan slagroom zowel stil boven op een
taart liggen, als ware het een vaste stof, als uit een slagroomspuit stromen,
als ware het een vloeistof? De clou zit hem in de opbouw van schuim.
Een schuim is geen homogene stof, maar een samenvoeging van een groot
aantal kleine luchtbellen. Het geheel is meer dan de som der delen: elke
losse bel gedraagt zich simpel, maar het collectieve gedrag is complex
en compleet anders. Een vervorming van het geheel uit zich namelijk
maar deels in vervorming van de individuele bellen. Een groot deel van
de vervorming uit zich in een verandering van de structuur die de bellen
samen vormen. Het is die structuurverandering die in dit proefschrift
onderzocht is.

We maken eerst gebruik van een simpel microscopisch computermo-
del, en simuleren daarmee wat er gebeurt als we een schuim een klein
beetje vervormen. Hierbij meten we hoe lang een schuim elastisch blijft
en terugveert, en hoe ver we het schuim moeten vervormen voordat de
vervorming onomkeerbaar wordt. Vervolgens meten we in een experiment
wat er gebeurt als een twee-dimensionaal schuim aan de randen wordt
vervormd, en zien dat het gedrag van de bellen aan de binnenkant van het
schuim sterk afhangt van hoe stevig de bellen zijn samengepakt.

In hoofdstuk 2 kijken we naar de eerste verandering van de structuur
die door de bellen gevormd wordt. Die structuur beschrijven we met het
zogenaamde netwerk van contacten: de lijst van alle bellen die elkaar raken.
Uit eerder onderzoek is namelijk bekend dat het elastische gedrag van het
systeem voornamelijk bepaald wordt door dit netwerk. We bekijken hoe
ver we het systeem moeten vervormen tot twee bellen het contact verliezen
of met elkaar in contact komen. We zien daarbij dat het proces van het
maken of verbreken van contacten samenhangt met hoe sterk de bellen zijn
samengedrukt: het systeem moet verder vervormd worden als de bellen
sterker op elkaar worden gedrukt. We zien dat ook het aantal bellen in het
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schuim uitmaakt: als het systeem groter is dan zal het eerder voorkomen
dat ergens in het systeem twee bellen een contact verliezen of maken. Het
elastische gedrag verandert daardoor eerder in grotere systemen, maar
tegelijkertijd wordt het effect van een enkele contactverandering kleiner.
Hierdoor blijft het gedrag van het schuim goed gedefiniëerd.

In hoofdstuk 3 kijken we naar iets grotere vervormingen, en kijken
daarbij naar wanneer en op welke manier een systeem onomkeerbaar wordt
vervormd. Allereerst meten we of er abrupte sprongen zijn in de posities
van deeltjes: zo’n sprong is vaak een teken van een onomkeerbaar proces.
Ten tweede kijken we wat er gebeurt als we het systeem een stukje terug
bewegen: volgen de deeltjes dan exact hetzelfde pad terug? Als laatste
kijken we wat er gebeurt als we het systeem laten terugveren. Beweegt het
systeem dan terug naar de starttoestand, of blijft het systeem vervormd?
We hebben deze vragen nog niet volledig kunnen beantwoorden, maar we
hebben wel de fundamenten gelegd voor vervolgonderzoek.

In hoofdstuk 4 beschrijven we een experiment waarbij we een twee-
dimensionale laag schuimbellen opsluiten tussen vier wanden. Door deze
wanden te verplaatsen kunnen we allereerst de bellen meer of minder tegen
elkaar aandrukken. Vervolgens kunnen we, met een slimme beweging van
de wanden, het schuim vervormen zónder de oppervlakte te veranderen.
De vraag is vervolgens hoe de bellen aan de binnenkant van het systeem op
deze vervorming aan de rand reageren. We hebben het gedrag op een aantal
manieren in kaart gebracht. Allereerst kijken we naar de relaxatietijd: hoe
snel wordt een abrupte beweging door het hele systeem doorgegeven? Hoe
sterker de bellen op elkaar gedrukt worden, hoe sneller dit gaat. Vervolgens
meten we het gedrag van het schuim bij een voortdurende vervorming,
waarbij we een langzame overgang tussen soepel en abrupt gedrag vinden.
Als laatste bekijken we de mogelijkheden van het automatisch volgen van
deeltjes (particle tracking), waarbij we wederom deze overgang zien. We
zien dus dat elke eigenschap sterk afhangt van de dichtheid, waarbij het
gedrag bij lage dichtheden soepel is, maar bij hoge dichtheden abrupt en
lokaal wordt. Bovendien is er altijd sprake van een gemengd regime, wat
laat zien dat schuim niet gemodelleerd kan worden met alleen ronde bellen
of alleen rechte zeepvliezen: dat zijn benaderingen die alleen in de limit
van zeer lage respectievelijk zeer hoge dichtheden goed werken.
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