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General introduction and outline

Introduction

Around 1970 computed tomography (CT) entered the field of clinical imaging tools. 

In those days both the spatial and temporal resolution of CT were insufficient for 

cardiac imaging. With the introduction of 4-slice CT in the late 1990s, visualization 

of coronary arteries became feasible. Nowadays computed tomography coronary 

angiography (CTA) is considered a suitable non-invasive method for the assessments 

of coronary atherosclerosis; its clinical applicability is widely incorporated in current 

guidelines.1, 2 Coronary stenosis severity on CTA is strongly correlated with invasive 

coronary angiography, and the diagnostic accuracy for the presence of coronary 

artery disease (CAD) is excellent. Especially the high sensitivity (~ 98%) allows 

for accurate rule-out of disease in patients with suspected CAD.3 Additionally, the 

prognostic value of CTA has been established in the past years.4 The prognosis of 

patients is decreased with increasing number of obstructive (≥50% stenosis) lesions.5 

Most importantly, the prognosis of patients without CAD on coronary CTA is excel-

lent. Moreover, it has been noted, that also the presence of non-obstructive CAD 

is associated with impaired prognosis.6 This has led to an increasing interest in the 

clinical value of coronary atherosclerosis burden in addition to only assessing the 

presence of obstructive CAD. On coronary CTA, plaque composition can also be 

assessed. Traditionally, coronary plaque is classified as non-calcified, partially plaque 

or calcified plaque. In several studies, the prognostic implications of the presence 

of different plaque types have been established.7, 8 Patients with non-calcified and 

partially calcified plaque have a worse prognosis compared to patients with only 

calcified plaques. Currently the field of research in cardiac CT is shifting towards 

assessment of overall atherosclerotic burden and incorporating additional features of 

coronary CTA, besides obstructive CAD, for risk stratification of patients. 

Quantification of coronary atherosclerosis.

In current practice the assessment of CAD on coronary CTA is performed visually. 

However, for accurate and reproducible assessment of the dimension and com-

position of coronary atherosclerosis, a quantitative approach would be favorable. 

Recently, novel software algorithms have become available which allow for such a 

quantitative analysis.9  Using this software, the burden of coronary atherosclerosis, 

the three-dimensional dimensions (i.e. diameters and volumes) and the exact de-

gree of stenosis can be quantified. Moreover, this software allows for assessment of 

composition of coronary atherosclerosis using Hounsfield Unit (HU) thresholds. The 

accuracy of this software for quantification of atherosclerosis dimensions has been 

recently established.10 
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This thesis further investigates the accuracy of this software, especially for quan-

tification of coronary plaque composition. Additionally, the clinical value of this 

quantification algorithm will be explored.  

Diabetic patients without chest pain syndrome.

Cardiovascular death is the main cause of death in patients with diabetes mellitus 

(DM).11 Additionally, patients with DM often have silent myocardial ischemia and 

CAD in an advanced stage before becoming manifest.12 However, in these patients 

traditional cardiovascular risk factors fail to accurately predict diabetic patients’ 

risk.13 In the past years the value of different imaging modalities in the specific setting 

of asymptomatic patients with DM has been addressed.14  

This thesis explores the prognostic value of coronary CTA in these high risk diabetic 

patients. Furthermore, the change in ischemia over-time is investigated, focusing on 

the role of coronary CTA to predict these changes. 

Outline

This thesis focuses on the clinical value of quantification of coronary atherosclerosis 

on coronary CTA. Moreover, the value of coronary CTA in high risk diabetic patients 

without chest pain syndrome in clinical practice is assessed. This thesis is preceded 

by Chapter 2 which provides an overview of the clinical use of computed tomography 

coronary angiography (CTA) and the application in acute cardiac care. 

Part 1 of this thesis focuses on the quantitative assessment of coronary atherosclerosis 

on coronary CTA. 

Chapter 3 describes the different imaging techniques for analysis of coronary 

atherosclerosis. In Chapter 4 the feasibility of an automatic algorithm for coronary 

atherosclerotic tissue characterization is established and compared to IVUS VH. 

Chapter 5 continues the study of Chapter 4 and discusses a novel method to enhance 

the characterization of calcified areas in IVUS VH by quantification of the acoustic 

shadow. This acoustic shadow is the result of the inability of the IVUS signal to 

penetrate calcium, and considered a major limitation of this technique. Chapter 6 

assesses the accuracy of a novel algorithm to automatically detect and quantify the 

Agatston coronary artery calcium score on contrast CTA. In Chapter 7 the param-

eters of coronary atherosclerosis as derived from quantitative coronary computed 

tomography (QCT) are correlated to the presence of myocardial ischemia on gated 

myocardial perfusion single photon emission computed tomography (SPECT). In 

Chapter 8, a novel CTA risk score is introduced which integrates the location, severity 
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and composition of coronary atherosclerosis on CTA in one score. The value of this 

automated QCT-derived risk score for risk stratification is assessed in patients with 

suspected coronary artery disease. In Chapter 9, the value of CTA for serial imaging 

of coronary atherosclerosis is investigated. For this purpose, QCT is performed in 

patients who underwent serial CTA with a 2-year interval.

Part 2 of this thesis focuses on the clinical aspects of coronary atherosclerosis on 

coronary CTA in high risk diabetic patients without chest pain syndrome. 

Chapter 10 investigates the changes in ischemia over time as assessed with SPECT 

myocardial perfusion imaging in relation to characteristics of coronary atherosclero-

sis on coronary CTA. In Chapter 11 the long-term prognostic value of coronary CTA 

in high risk diabetic patients without cardiac symptoms is assessed.
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Abstract

Patients presenting with acute chest pain constitute a common and important di-

agnostic challenge. This has increased interest in using computed tomography (CT) 

for non-invasive visualization of coronary artery disease in patients presenting with 

acute chest pain to the emergency department; particularly the subset of patients who 

are suspect of having an acute coronary syndrome, but without typical ECG changes 

and normal troponin levels at presentation. As a result of the rapid developments 

in coronary CT angiography technology, high diagnostic accuracies for excluding 

coronary artery disease can be obtained. It has been shown that these patients can 

be discharged safely. The accuracy for detecting a significant coronary artery stenosis 

is also high, but the presence of coronary artery atherosclerosis or stenosis does 

not necessarily imply that the cause of the chest pain is related to coronary artery 

disease. Moreover, the non-invasive detection of coronary artery disease by CT has 

been shown to relate with an increased use of subsequent invasive coronary angiog-

raphy and revascularization, and further studies are needed to define which patients 

benefit from invasive evaluation following coronary CT angiography. Conversely, the 

implementation of coronary CT angiography can significantly reduce the length of 

hospital stay, with a significant cost reduction.

Additionally, CT is an excellent modality in patients whose symptoms suggest other 

causes of acute chest pain such as aortic aneurysm, aortic dissection, or pulmonary 

embolism. Furthermore, acquisition of the coronary arteries, thoracic aorta, and 

pulmonary arteries in a single CT examination is feasible, allowing ‘triple rule-out’ 

(exclusion of aortic dissection, pulmonary embolism and coronary artery disease). 

Finally, other applications such as the evaluation of coronary artery plaque composi-

tion, myocardial function and perfusion or fractional flow reserve are currently being 

developed and may also become valuable in the setting of acute chest pain in the 

future.
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Introduction

The present chapter is an update of the previous book chapter.1 Those parts on which 

new literature is available have been updated, whereas other parts have been in-

serted unchanged. Since the introduction of CT in the early 1970s the technique 

has evolved into an essential imaging tool in general medicine. With this technique, 

non-invasive high resolution cross-sectional imaging of internal structures such as 

the brain, thorax and abdomen was permitted, thereby gradually replacing the more 

invasive radiographic techniques.2 Moreover, CT angiography has evolved as a very 

accurate tool for visualization of the aorta and pulmonary arteries. However, high-

quality imaging of the coronary arteries remained challenging because of their small 

vessel size, movement, and tortuous anatomy requiring high temporal, spatial and 

contrast resolution. In the late 1990s, the first 4-slice spiral CT scanner was developed 

with sufficient resolution to allow visualization of the coronary arteries, establishing 

the potential of multi-slice CT for detecting significant coronary artery stenosis in 

comparison to invasive coronary angiography (ICA).3-5 Since then, multi-slice CT 

coronary angiography has developed into a promising non-invasive alternative to 

ICA. With each successive generation of scanners from 4-slice to the present 64-, 

256- and 320- slice scanners, temporal and spatial resolution improved markedly due 

to faster gantry rotation times, thinner detectors, and volumetric coverage. These new 

developments currently allow motion-free visualization of the entire coronary artery 

tree with high diagnostic accuracy for detecting coronary artery stenosis.6, 7 Thanks to 

these rapid developments, interest has been raised in using CT for the evaluation of 

patients presenting with acute chest pain. In the intensive cardiac care unit (ICCU), 

acute chest pain is the most common clinical presentation of coronary artery disease 

(CAD). The diagnosis of acute coronary syndrome (ACS) is straightforward in high risk 

patients with typical chest pain, typical ECG changes, and elevation of serum cardiac 

markers (enzymes), whereas it is difficult in patients presenting with atypical chest 

pain, non-diagnostic or normal ECG, and normal markers on presentation. Indeed, up 

to 8 % of patients with ACS are misdiagnosed and inappropriately discharged home.8 

Conversely, only a minority of ‘low risk’ patients (i.e. those with initially normal 

ECGs and cardiac enzymes) actually suffer from myocardial ischemia.9 Therefore, the 

conventional approach for patients with acute chest pain leads to many unnecessary 

hospital admissions and is both time-consuming and expensive and thus, resource-

intensive. Therefore, a non-invasive and rapid examination to establish or exclude 

CAD as the underlying cause of symptoms could substantially improve the clinical 

care of patients admitted to the ICCU, reducing hospital admissions and costs. This 

chapter focuses on the evolving role of coronary CT angiography (CTA) (includ-

ing coronary artery calcium (CAC) scoring) in the diagnosis of patients presenting 
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with acute chest pain. An overview of a wide range of other CT applications is also 

provided, including triple rule-out, evaluation of plaque composition, myocardial 

function, and perfusion.

CT coronary angiography: patient preparation, 
acquisition, post-processing

CT is an imaging modality which has an X-ray source (tube) and detectors on opposite 

sides of a gantry that continuously rotates around the patient. During the CT scan the 

patient is moved through the gantry. Subsequently, the X-ray source emits photons 

collimated into a fan beam which are, after partial absorption and dispersion, reab-

sorbed by the detectors. Computer systems process these data into three-dimensional 

(3D) volumetric information, which can be transferred to CT workstations and evalu-

ated using multiple post-processing techniques.

Patient preparation
Proper patient preparation is important for obtaining diagnostic image quality. There-

fore, before referring a patient for coronary CTA, a short patient history should be 

obtained. Overall, a history of a severe allergic reaction to contrast agents, impaired 

renal function (glomerular filtration rate <30 mL/min), presence of atrial fibrillation, 

and pregnancy are considered contraindications. The patient should refrain from 

food and liquids preferably 3 hours before the examination, to prevent nausea as a 

reaction to the contrast agent. Moreover, a low and stable heart rate in the range of 

approximately 50–60 beats/min is preferred during image acquisition. To achieve a 

low and stable heart rate, a β-blocker is frequently administered prior to the examina-

tion, unless contraindicated. Preferably, sublingual nitrates (0.4mg) are administered 

to the patient. The resulting vasodilatation facilitates the assessment of small coronary 

arteries.10 Lastly, to ensure rapid delivery of the contrast agent bolus for coronary 

CTA, an intravenous catheter should be present for delivery of the contrast agent, 

preferably in the right antecubital vein (18–20 gauge).

Acquisition
The scan range of the current 64-slice scanners is not large enough to cover the 

entire heart in one rotation and therefore several heart cycles are needed to image 

the entire heart. To compensate for cardiac motion and synchronize the start of the 

systole, ECG gating is needed to obtain phase-compatible images. Currently, the 

majority of cardiac CTs are acquired using prospective triggering, in which the start 

of scanning is triggered by the preceding R-wave. Most often the scan is triggered in 
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the relatively motion-free phase of mid diastole (70–80 % of the R–R interval) to mini-

mize motion artefacts. Depending on the scanner type, imaging can be performed in 

helical (‘spiral’) mode with continuous table movement and modulated acquisition, 

or in step-and-shoot mode with multiple volumetric acquisitions reconstructed into 

a single data set. A wide-volume detector allows full cardiac acquisition in a single 

gantry rotation, e.g. a 256- or 320-detector-row scanner that allows a maximum of 

16 cm scan range in a single rotation.11, 12 Novel dual-source CT scanners, equipped 

with two X-ray tubes and two detectors at a 90 degree angle provide high temporal 

resolution. As a result, these scanners are able to produce images of high quality in 

patients with high heart rates. Besides, with these 64-slice dual-source CT scanners, 

using a high-pitch spiral technique, the entire heart can be depicted in one cardiac 

cycle with ultra-low radiation dose (<1mSv).13

For CAC scoring, a low-dose ECG triggered non-contrast-enhanced scan is per-

formed before the contrast-enhanced CT examination and reconstructed to 3-mm 

slices. Additionally, this scan can be used to determine the proper location and scan 

range for coronary CT imaging. For a regular CTA, a rapid infusion of 60–100 mL of 

contrast material with a flow rate of 5 mL/s is used, followed by a saline flush. Typical 

scan parameters are a pitch of 0.375, rotation time of 333–500 ms, tube voltage of 

100 or 120 kV and tube current of 300-500 mA (depending on body mass index). 

However, with novel iterative reconstruction algorithms, lower radiation exposure 

can be achieved by lowering tube voltage and current with preserved image quality. 

When using a bolus-triggered start of the CT scan, the start is automatically initiated 

if the preset contrast-enhancement threshold level in the descending aorta is reached. 

Alternatively, a test bolus injection can be used to determine the contrast transit time. 

Subsequently, data acquisition is performed at half-inspiratory breath hold of ap-

proximately 10 s.

Post-processing
After data acquisition, images are reconstructed and sent to a dedicated worksta-

tion for post-processing. Commonly, coronary CTA data sets are reconstructed with 

continuous images using thin increments (typically 0.5–0.6 mm slice thickness). For 

post-processing, various types of algorithms are available.

· The thin axial slices, as depicted in Figure 1, are considered the source informa-

tion of CT imaging. Accordingly, the cardiac structures and coronary arteries can 

easily be evaluated by scrolling through the images in axial direction.

· Curved multiplanar reconstructions (MPR) allow visualization of the entire coro-

nary artery in a single image which is useful for depicting the entire coronary 

lumen and evaluating degree of stenosis.
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· Maximum intensity projections (MIP) can be reconstructed which represent 

a series of contiguous CT slices stacked into a single image (‘slab’). Moreover, 

MIPs are very suitable for assessment of longer length of vessel segments and may 

facilitate in evaluating the degree of stenosis.

· 3D volume rendering provides a 3D image of the heart and vessels. An excellent 

overview of the coronary anatomy is provided, although 3D volume rendering is 

generally not used for assessing the stenosis severity. Figure 2 provides an example 

of a 3D volume rendered image.

Figure 1. Typical example of axial contrast-enhanced images. 
This image with a 0.5-mm slice thickness, can be used to evaluate cardiac structures (such as the left 
ventricle (LV), left atrium (LA), right ventricle (RV), and aorta (Ao)) and coronary arteries by scrolling 
through the slices in the cranio-caudal direction. Four images have been selected to demonstrate the 
anatomy of the heart. A. Axial image showing the left main (LM) coronary artery at the level of the 
ostium which arises from the left coronary cusp and bifurcates first into the left anterior descending 
coronary artery (LAD). B. Slightly more distal axial image showing the left circumflex coronary artery 
(LCx) and the first diagonal branch (D1) which has originated from the LAD. C. Axial image demonstrat-
ing the origin of the right coronary artery (RCA) from the right coronary cusp and the mid segments of 
the LCx, LAD, and D1. (D) Axial image at midventricular level which shows the mid segment of the 
right coronary artery (RCA) and distal segments of the LAD and LCx (the latter is seen in the left atrio-
ventricular groove).
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Interpretation of coronary artery disease on 
coronary CT angiography

A systematic approach is important when evaluating a coronary CTA. If CAC scoring 

has been performed, the Agatston score is reported on a patient and vessel basis. 

Thereafter, the coronary CTA is interpreted to assess coronary atherosclerosis and 

stenosis severity. In addition to the analysis of the coronary arteries, the entire scan 

range should be examined to detect potential extra-cardiac findings.

Coronary artery calcium score
For quantification of the coronary calcifications, the Agatston method (a method that 

multiplies the calcified area by a density factor based on the highest Hounsfield 

values within this area) is routinely used.14 Total CAC scores are generally stratified 

into normal (zero calcium), mild (1–100), moderate (101–400), and severe (> 400).15 

Several population based studies have demonstrated that the CAC score increases 

with higher age, thereby reflecting the natural progression of atherosclerosis. In ad-

dition, men tend to have higher CAC scores than women of similar age. Therefore, 

the CAC score should be ranked in percentiles according to the distribution within 

age and gender16, 17 Although newer quantification methods have been introduced 

(calcified volume (mm3) and mass (mg) measurements), these metrics are not com-

monly used in clinical practice.18 With novel algorithms the quantification of CAC on 

contrast enhanced scans is feasible.19 However, these techniques are currently not 

used in clinical practice.

Figure 2. Surface-rendered volumetric 3D images of the coronary arteries and side branches. 
This type of image provides a 3D overview of the coronary artery tree and their relative position to the 
underlying cardiac structures, including the left ventricle (LV) and right ventricle (RV). A. Anterior view 
of the left circulation demonstrating the left anterior descending coronary artery (LAD) with first diago-
nal branch (D1). In addition, the left circumflex coronary artery (LCx) can be identified. The left atrium 
(LA), aorta (Ao), and right ventricular outflow tract (RVOT) can be also appreciated in this view.B. Cra-
nial view demonstrating a volume-rendered image of right coronary artery (RCA) and left main coronary 
artery (LM) and their main branches originating from the right and left coronary cusp, respectively. C. 
Posterior view of the RCA and the posterior descending coronary artery (PDA).
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Coronary CT angiography
With regard to the coronary CTA, the quality of the scan should be mentioned as 

this influences the diagnostic certainty of the study. Findings are commonly reported 

similar to the reporting of invasive coronary angiography (ICA). Typically, each coro-

nary segment of the American Heart Association 17-segment model20 is described as 

normal, mild (<30% wall irregularities), non-significant (30–50% stenosis), signifi-

cant (>50% stenosis), severe stenosis (> 70%), and occlusion. In addition to stenosis 

severity, the plaque composition of each lesion should be described as non-calcified, 

calcified, or mixed (i.e. a combination of calcified and non-calcified plaque). Pres-

ence and patency of stents and bypasses are reported, if evaluable. Segments that are 

uninterpretable due to severe calcifications, motion, or breathing artefacts should be 

mentioned as such in the report.

Extra-cardiac findings
Beyond evaluating the coronary arteries, other cardiac findings and/or extra-cardiac 

findings may be identified during coronary CTA. Interestingly, extra-cardiac findings 

provide an explanation for chest pain complaints in 4–8% of patients or may be 

incidental findings not related to chest complaints.21, 22 Clinically important findings 

that require immediate therapy, intervention, additional diagnosis, or follow-up 

are reported in approximately 13% of cardiac CT examinations.23, 24 These include 

suspected malignancy which may necessitate immediate therapeutic actions, or the 

presence of acute pulmonary embolism or pneumonia.21, 25-27 Incidental lung cancers 

are found in 0.24% of patients.23 For coronary artery assessment, a zoomed-in small 

field of view focused on the heart is reconstructed to obtain maximal spatial resolu-

tion for evaluation. However, this focused view reveals only 36% of the total chest 

volume, whereas 70% of the total chest volume has been exposed to radiation.27 

Substantially more significant extra-cardiac pathology is found on maximum full-field 

reconstructions than on small-field reconstructions.23 Therefore the maximum full-

field reconstructions should be reviewed for optimal identification of extra-cardiac 

pathology.21, 23, 25, 27, 28

Patients with non-acute chest pain

Coronary artery calcium score

It has been widely verified that the presence of coronary artery calcification only 

occurs in the presence of coronary artery atherosclerosis.29 Both electron beam CT 

(EBCT) and multi-slice CT have been used over the past years for the noninvasive 

evaluation of coronary artery calcifications, both demonstrating high sensitivities 
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for the detection of CAD indicating that a large proportion of patients with CAD 

are accurately detected by CAC scoring.17, 30 The relation between the presence of 

obstructive CAD and the presence and extent of CAC has been extensively studied.31 

The CAC score has a high sensitivity and negative predictive value for the presence 

of obstructive CAD, but its specificity is limited.31, 32 The high negative predictive 

value indicates that patients without CAC virtually never have obstructive CAD. In 

contrast, the lower specificity indicates that patients without obstructive CAD still 

often present with CAC. For instance, Haberl et al. evaluated 1,764 patients who 

underwent both EBCT (CAC score) and ICA. The absence of CAC was associated with 

an extremely low probability of disease (<1%) and thus highly accurate to exclude 

obstructive CAD. However, specificity was only 23% in men and 40% in women. 

Therefore, the technique may be more suited to provide an estimate of total plaque 

burden rather than stenosis severity.

Furthermore, numerous investigations have shown that the extent of CAC provides 

prognostic information. CAC scoring has therefore been proposed as a tool for cardiac 

risk stratification. Several large trials have reported that elevated CAC scores have 

predictive value for cardiovascular events, both independently and incrementally to 

cardiovascular risk factors.33, 34 Budoff et al. assessed the prognostic value of CAC 

scoring in 25,253 asymptomatic individuals over a mean follow-up period of 6.8 

years. The survival of individuals without CAC was excellent (99.6%), with a gradual 

reduction in survival rates with increasing CAC score.33

Coronary CT angiography

With the current generation 64-slice CT scanners, with improved temporal and 

spatial resolution, a good diagnostic accuracy for detection of obstructive CAD has 

been reported, both for the proximal as well as the distal part of the coronary arteries. 

In comparison with ICA, a high sensitivity (85–99%) and high specificity (83–90%) 

has been reported for the detection of obstructive stenoses.6, 7 More importantly, as 

demonstrated by the high negative predictive value, coronary CTA is an excellent 

tool to exclude significant CAD. This implies that in the presence of normal coronary 

arteries on coronary CTA, no further testing is required and patients can be reas-

sured. The positive predictive value however, is lower (64–93%), and the severity of 

atherosclerotic lesions is frequently overestimated on coronary CTA.

Recently, new low-radiation-dose algorithms have been introduced, which resulted 

in a significant reduction in radiation, A meta-analysis of these studies confirmed the 

diagnostic accuracy35; pooled data from 15 studies (with varying novel CT scanners) 

included 960 patients, reported a sensitivity of 100% with a specificity of 89%. The 

NPV was 99%, with a PPV of 93%, indicating overestimation of stenosis severity in 

7% of patients. Moreover, the diagnostic performance of coronary CTA is influenced 
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by the pretest likelihood of obstructive CAD. Indeed, as shown in Table 1, the benefit 

from CT is highest in patients with a low to intermediate pretest likelihood for CAD 

due to the high accuracy to exclude obstructive CAD.36

In line with these observations, Henneman et al. demonstrated that coronary CTA 

was able to exclude coronary artery atherosclerosis in 58% of patients with low pretest 

likelihood of CAD, with no need for further routine visits to the outpatient clinic.37 

Conversely, coronary CTA demonstrated atherosclerosis and/or stenosis in 83% of 

patients with a high pretest likelihood of CAD. These patients may thus benefit more 

from non-invasive testing for ischemia and/or direct ICA with fractional flow reserve 

assessment, to determine optimal therapy (medical management or revascularization. 

Indeed the recent European Society of Cardiology guidelines for stable CAD indicate 

that coronary CTA is particularly useful in patients with low-intermediate pretest 

likelihood of CAD (recommendation class IIa).38

In addition to the diagnostic value, coronary CTA provides prognostic informa-

tion. Chow et al. reported in the CONFIRM (Coronary CT Angiography Evaluation 

for Clinical Outcomes) registry (with 14,064 patients in 12 different centers) that a 

normal coronary CTA was associated with an annual mortality rate of 0.65% over 

a mean follow-up of 22.5 months (Figure 3).39 Conversely, patients with obstructive 

CAD had an annual mortality rate of 2.9%, which increased to almost 5% in patients 

with 3-vessel, left-main and or proximal LAD disease. It is important to realize that 

the annual mortality in the CONFIRM registry was only 1.1%, indicating a relatively 

low risk population.

A recent meta-analysis by Bamberg et al. focused on the prognostic value of 

coronary CTA, and included 9 studies with 3,760 patients with an average follow-up 

varying from 14 to 78 months.40

The overall event rate was 6.8%, but it should be noted that two-third of the events 

were coronary revascularizations. (Early) Revascularization is not an ideal end-point 

since the findings on coronary CTA may have triggered the revascularization. Patients 

with a normal coronary CTA had an event rate of 0.4%. Patients with obstructive CAD 

had a 6-fold increased risk for death, infarction or ACS. Importantly, a significant 

Table 1. Diagnostic accuracy of 64-slice coronary CT angiography for detection of significant stenosis 
(≥ 50%) categorized according to pretest probability. 

Pretest probability N Sens(%) Spec(%) PPV(%) NPV(%)

Low 66 100 93 78 100

Intermediate 83 100 84 80 100

High 105 98 74 93 89

Data adapted from Meijboom et al.36 
Abbreviations: NPV: negative predictive value, Sens: sensitivity, Spec: specificity, PPV: positive predic-
tive value
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stenosis on coronary CTA remained predictive of events after correction for CAC 

score and cardiovascular risk factors.

Patients with suspected acute coronary 
syndrome

Coronary artery calcium score

The prognostic value of the CAC score has been widely established in patients with 

stable angina, but some studies evaluated the use of CAC score in patients with acute 

chest pain. Earlier studies with EBCT reported a high negative predictive value of 

the CAC score, demonstrating that patients with a CAC score of 0 had an excellent 

prognosis.41-43 Georgiou et al. reported in 192 patients with acute chest pain that 

the absence of coronary artery calcifications had a very low risk for future cardiac 

events (<1%), whereas the presence of CAC was a strong predictor of events41. More 

recently, Nabi and co-workers reported on the use of CAC score in 1031 patients with 

acute chest pain using 16-slice CT.44 In the 625 (61%) patients with zero CAC score, 

the cardiac event rate was <1%, whereas the event rate increased in parallel with 

an increasing CAC score. The various prognostic studies using CAC score in patients 

with acute chest pain and/or suspected ACS are summarized in Table 2. The results 

of six studies, with a total of 3035 patients were included in the pooled analysis.45 

In total, 62% of patients with acute chest pain or suspected ACS presented with a 

CAC score of 0 (indicating relatively low risk populations). However, there was a 

large variation in incidence of CAC score of zero between studies, ranging from 36% 

 No CAD  Non-obstructive CAD  Non-high risk CAD  High risk CAD 
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Figure 3. Bar graph illustrating the prognostic value of coronary CTA for the prediction of all-cause 
mortality. 
Non-obstructive CAD was defined as <50% stenosis, non-high risk CAD was defined as ≥50% stenosis 
and high risk CAD included left main stenosis (≥50%) or 3-vessel disease (≥70%) or 2-vessel disease 
(≥70%) including the proximal left anterior descending artery.
CAD: coronary artery disease
Adapted from Chow, Circulation Cardiovascular Imaging 2011
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to 76%. The pooled analysis demonstrated a negative predictive value of 99% for 

the occurrence of future events. In contrast, the positive predictive value was only 

14%. The long-term prognostic value of CAC score patients with suspected ACS has 

also been evaluated. Forouzandeh and colleagues acquired long-term follow-up data 

(median 3.3 years) in 760 patients presenting with acute chest pain who underwent 

16-slice CT.46 Events occurred in 45 (6%) patients; the long-term event rate was 0.4% 

in patients without CAC, and increased to 11% in patients with a CAC score >400. 

Although a CAC score of zero has been associated with an excellent prognosis, it 

has simultaneously been observed that patients with ACS or acute infarction can 

present without CAC in the culprit vessel47. Thus, particularly in the acute setting, 

the absence of CAC may not always imply the absence of atherosclerotic plaque. 

This was demonstrated by Chang et al showing that obstructive atherosclerosis was 

present in 17 of 795 (2%) patients with a suspected ACS and CAC 0. 48 In addition, 

12% of the patients with a CAC 0 had non-obstructive CAD. Accordingly, Biegel et 

al. performed coronary CTA in 785 consecutive patients with acute chest pain.49 Of 

the 255 patients with CAC score 0, significant CAD was observed on ICA in 2.7% of 

patients. Figure 4 provides an example of a patient with an obstructive non-calcified 

plaque despite a CAC score of zero.

Coronary CT angiography

Previous studies have demonstrated that coronary CTA has a high sensitivity and 

specificity for the detection of CAD compared to ICA in patient with stable CAD. 

More importantly, due to the high negative predictive value, coronary CTA can reli-

ably exclude significant CAD, which is of potential value in patients presenting with 

Table 2.  Diagnostic accuracy of a coronary artery calcium score of 0 for the prediction of acute 
coronary syndrome or events.

Author N No. (%) 
CAC=0

Follow-up Sens(%) Spec(%) PPV(%) NPV(%)

Chang et al48 1047 795 (76) Prospective, 30 days 67 77 4 99

Georgiou et 
al41 192 76 (40)

Prospective, 50 ± 10 
months 97 64 48 97

Hoffman et al51 368 197 (54) Prospective, 6 months 97 58 18 99

Laudon et al42 263 133 (51) Prospective, 6 months 97 57 23 99

McLaughlin 
et al43 134 48 (36) Prospective, 30 days 88 37 8 98

Nabi et al44 1031 625 (61) Prospective, 6 months 94 62 7 99

Pooled * 3035 1874(62) - 93 65 14 99

*Data adapted from Tota-Maharaj et al.45

Abbreviations: CAC: coronary artery calcium, NPV: negative predictive value, Sens: sensitivity, Spec: 
specificity, PPV: positive predictive value
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suspected ACS in the emergency room, but without specific ECG abnormalities and 

serum troponin levels in the normal range on admission. Limited studies are avail-

able that assess the diagnostic value of coronary CTA for the detection of significant 

CAD compared to ICA in patients presenting with suspected ACS. Meijboom et al. 

evaluated 104 patients with non-ST elevation ACS using 64-slice CTA compared with 

ICA.36 In total 88 patients (85%) presented with significant CAD on ICA. Reported 

sensitivity and specificity of coronary CTA for detecting or excluding significant coro-

nary artery stenosis were 100% and 75% respectively. Figure 5 shows an example of 

a patient presenting with suspected ACS with a significant stenosis in the RCA. More 

importantly, several investigations have addressed the predictive value of coronary 

CTA for the detection of ACS in patients with acute chest pain. Table 3 demonstrates 

the diagnostic accuracy of coronary CTA for the detection of ACS. In the most of 

these studies ACS is defined as either acute myocardial infarction or unstable angina 

pectoris according to the ACC/AHA-criteria50, preferably with evidence of myocardial 

Figure 4. Example of a patient presenting with suspected ACS.
In this patient coronary artery calcium (CAC) scoring and contrast-enhanced coronary CT angiography 
were performed to exclude CAD. Although the CAC score was zero (A), an obstructive non-calcified 
plaque with a superimposed thrombus in the right coronary artery (RCA) was detected on coronary CT 
angiography (B, C). The volume-rendered 3D reconstruction (B) and curved multi-planar reconstruction 
(C) show an occlusion in the mid segment of the RCA (white arrows). (D) This finding was confirmed on 
invasive coronary angiography (white arrow). Ao, aorta; LAD, left anterior descending coronary artery; 
LCx, left circumflex coronary artery. From Henneman MM, Schuijf JD, Pundziute G, et al. Noninvasive 
evaluation with multislice computed tomography in suspected acute coronary syndrome: plaque mor-
phology on multislice computed tomography versus CAC score. J Am Coll Cardiol 2008; 52 (3):216–
222, with permission.



Chapter 2

30

ischemia on functional testing.51 In the ROMICAT I study, 368 patients presenting 

with chest pain and possible ACS (but normal initial troponin and non-ischemic ECG) 

underwent 64-slice CTA.51 Of these 368 patients, 8% eventually developed an ACS 

according to the definition described above. On 64-slice CT, 183 did not have any 

coronary atherosclerosis (no CAD), whereas 117 had non-obstructive coronary artery 

Figure 5. Example of non-invasive coronary angiography with CT in a patient presenting with sus-
pected ACS. 
In (A), a 3D volume-rendered reconstruction is provided, showing a large dominant right coronary ar-
tery (RCA) with signs of luminal narrowing (white arrow). B. A curved multiplanar reconstruction (MPR) 
of the RCA is shown demonstrating the presence of significant luminal narrowing in the mid segment 
(arrow). C. Another curved MPR in a different view, revealing the presence of significant stenosis (ar-
rows). Cross-sectional CT images (inlays) show the presence of calcified plaque proximal to the stenosis 
(a), exclusively non-calcified plaque within the stenosis (b), and no coronary plaque distal from the 
stenosis (c). D. Conventional coronary angiography confirming the presence of significant luminal nar-
rowing of the RCA (arrow).
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stenoses. Of these 300 patients, only 7 (2%) were diagnosed with ACS, yielding a 

NPV of 98%. Conversely, 68 patients had obstructive CAD on CTA, and 24 developed 

an ACS; accordingly the PPV was 35%. Similarly, Gallagher et al. evaluated 85 pa-

tients with suspected ACS using 64-slice CTA; 73 patients had non-obstructive or no 

CAD on the CT scan and 1 of these developed an ACS, resulting in a NPV of 99%. On 

the other hand, 6 of the 12 patients with obstructive CAD on the CT scan developed 

an ACS, yielding a PPV of 50%. Meta-analysis combining the results of 10 studies 

with a total of 917 patients confirmed a NPV of 98%, with a lower PPV of 64%. 

The high NPV permits rule out of future development of ACS. In contrast, significant 

CAD on coronary CTA has lower predictive value for the development of ACS. These 

observations indicate that absence of significant CAD on coronary CTA can rule out 

development of ACS, but the presence of significant CAD does not indicate that these 

patients will always develop an ACS.

In addition, coronary CTA has been used for prediction of short- and long-term 

outcome of patients presenting to the emergency room with suspected ACS. In the 

ROMICAT I study, none of the 300 patients with a ‘negative coronary CTA’ (defined 

as no coronary atherosclerosis or non-obstructive CAD) experienced a subsequent 

cardiovascular event during a 6 months follow-up period.51 Based on these initial 

observations, subsequent studies have focused on the potential implementation of 

coronary CTA in management of patients presenting to the emergency room with 

suspected ACS (but with normal troponins and non-ischemic ECG). For example, Lit 

et al. performed a randomized controlled trial (RCT) in 1370 patients with suspected 

ACS.52 Patients were randomized to either CTA or standard care. Of the 908 patients 

referred for CTA, 640 (70%) had a negative CTA (no atherosclerosis or non-significant 

CAD). These patients were discharged, and none of these patients died, or presented 

with myocardial infarction within the next 30 days.

At present, four large RCTs have been conducted to assess the value of a CTA-based 

strategy compared to standard care. The results of these four trials have been pooled 

in a meta-analysis by Hulten et al.53 This meta-analysis analysis included the results of 

1,869 patients undergoing coronary CTA and 1,397 patients receiving standard care. 

Of the 1,869 patients undergoing CTA, only 4.2% had a significant coronary artery 

stenosis (≥70% luminal narrowing) on CTA. None of the patients died during the 

trials. In total, 142 (7.6%) of the patients in the coronary CTA group underwent ICA, 

of which 76 (4.1%) were revascularized. Patients referred to coronary CTA more often 

underwent ICA than patients receiving standard care. As depicted in Figure 6, the ICA 

referral rate was 6.3% in patients receiving standard care as compared to 8.4% in 

patients randomized to CTA (P = 0.003). The absolute increase in ICA for a coronary 

CTA based strategy was 21 per 1,000 patients.53 Of interest, the majority of these 

downstream referrals for ICA were during the index hospitalization. Similar to the 
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increase in ICA in the coronary CTA group, a significant increase in revascularization 

was observed in this group (both PCI and CABG).The revascularization rate was 2.6% 

in patients receiving standard care as compared to 4.6 % in patients randomized to 

coronary CTA (P = 0.004). The absolute increase in revascularization for a coronary 

CTA based strategy was 20 per 1,000 patients.

The information from these 4 RCTs underscores the value of coronary CTA in the 

emergency room for patients presenting with acute chest pain, suspect of ACS in the 

emergency room, namely exclusion of CAD. At the same time however, this approach 

is associated with an increased use of ICA and subsequent revascularization.

At the same time, the coronary CTA based strategy resulted in a significant reduction 

in the length of stay (emergency department or hospital stay) by 3.4–11.6 hours as 

compared to patients receiving standard care.52, 54-56 For example, 50% of the patients 

randomized to coronary CTA in the ROMICAT II study could be safely discharged 

within 8.6 hours as compared to 26.7 hours for the patients receiving standard care 

(Figure 7).55 Moreover, a coronary CTA based strategy positively affected emergency 

department costs: in three of the four trials a significant reduction in costs was ob-

served in the group of patients randomized to CTA, ranging from $286 to $1321.

The number of post discharge hospitalizations for ACS is extremely low in these 

4 trials (ranging from 0 to 3.1%), which further supports the safety of coronary CTA 

guided discharge of patients.

       










  
  









Figure 6. Difference in referral rate for invasive coronary angiography and subsequent revasculariza-
tion between patients randomized to either a coronary CTA based strategy or standard care. 
Adapted from Hulten et al. 53
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CT angiography of aorta and pulmonary arteries

Non-cardiac causes of acute chest pain concerning vascular structures in the thorax 

such as in acute aortic syndrome and pulmonary embolism can be easily visual-

ized by CT. CT angiography of other vascular beds than the heart is less complex 

if non-ECG gating techniques are used. ECG gating may be used to improve image 

quality. In addition, contrast enhancement in the blood pool is required to visualize 

the vascular structures, and thus intravenous contrast is still needed. Several common 

principles should be applied to all imaging protocols to provide optimal diagnostic 

image quality such as bolus timing for optimization of contrast delivery in the vessel, 

fast high resolution acquisition, and administration of approximately 60–120 mL of 

contrast material (dependent on patient size, contrast agent used, and scanner type) 

injected at rapid infusion rates (4–5 mL/s).

Because of the availability, excellent image quality with good spatial resolution, 

high sensitivity, and fast imaging speed, multi-slice CT has become the first-choice 

imaging tool for the evaluation of acute aortic syndrome57 and traumatic aortic pa-

thology.58 multi-slice CT is also widely used in the evaluation of non-acute pathology 

such as aneurysm or aortic coarctation, inflammatory and infective aortic disease, 

and after aortic surgery.59

Figure 7. Difference in length of hospital stay between patients referred to CTA of standard care.
The horizontal line indicated the median length of stay in both study groups which was significantly 
different. 
From: Hoffmann et al. NEJM. 2011 
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Acute aortic syndrome encompasses a variety of life-threatening conditions that 

require emergency diagnosis and management, including aortic dissection (AD) (see 

Figure 8), intramural hematoma (IMH), penetrating aortic ulcer (PAU) and symptom-

atic aortic aneurysm. 

If a patient presents with suspected acute aortic syndrome, the CT protocol should 

include a non-contrast enhanced scan from the proximal part of the arch vessels 

to the diaphragm, followed by CTA from the proximal part of the arch vessels to 

the femoral arteries. The non-contrast scan is to evaluate possible presence of an 

IMH as aortic wall thrombus.59 IMH of the ascending aorta is clinically regarded at 

high risk for complication (evolving into dissection) and death, and surgery is usually 

indicated.60

PAU is usually located in the mid-descending thoracic aorta, where it presents as a 

mushroom-like contrast outpouching beyond the expected contours of the aortic lu-

men. PAU represents an atherosclerotic ulceration that penetrates the internal elastic 

lamina allowing hematoma formation within the aortic media, and may develop into 

IMH, aortic dissection, or vessel rupture.61

Thoracic aortic aneurysm

Aneurysm is defined as a permanent localized dilatation of an artery, having at least 

a 50% increase in diameter as compared with the normal diameter.60 In general, an 

ascending aortic diameter equal to or greater than 4 cm (in an individual less than 

60 years old) is considered an aneurysm. The size of the thoracic aorta increases 

with age and depends on sex and body size. The normal ascending aorta diameter is 

approximately 27 mm in 20-years old and 36 mm in 80-years old.60 Thoracic aortic 

Figure 8. Thoracic CT angiography showing a type A aortic dissection(A).
The right coronary artery is contrast enhanced and has its origin from the true lumen (arrow, B). The 
right coronary artery has double appearance due to motion artefacts in this non-ECG gated scan. The 
left main coronary artery stem (arrow, C) is also contrast enhanced and had its origin from the true lu-
men. Carotid and subclavian arteries as well as the visceral arteries all had their origin from the true 
lumen. Note the almost complete disruption between the true and false lumen of the descending aorta 
(arrowheads B, C). F, false lumen; T, true lumen.
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aneurysms can be true or false aneurysms. In a true aneurysm all three layers of the 

vessel wall are involved (intima, media, and adventitia) and is characterized by a 

fusiform shape. In a false aneurysm (or pseudo-aneurysm), the intima is disrupted and 

the blood is contained by the adventitia. Atherosclerosis is the most frequent cause of 

thoracic aneurysms (70%). Several genetic syndromes, vasculitis, and inflammatory 

diseases are also associated with aortic aneurysm and dissection.

Asymptomatic patients with an ascending aorta or sinus diameter larger than 5.5 

cm, a growth rate more than 0.5 cm per year in aorta aneurysm less than 5.5 cm, and 

patients with genetically mediated syndromes and thoracic aorta aneurysm exceed-

ing 4.0 to 5.0 cm, are candidates for elective surgical repair. Symptomatic patients 

suggestive of expansion of a thoracic aneurysm should be evaluated for prompt surgi-

cal intervention.60

CT angiography is the most robust tool for evaluating aortic aneurysms and some 

key features should be evaluated when using CT such as the maximal aortic diam-

eter, presence of thrombus, shape and extent of the aneurysm, involvement of aortic 

branches, relationship to adjacent structures, and presence of aortic calcifications. In 

23% of cases a thoracic aneurysm coexists with an abdominal aortic aneurysm, and 

thus evaluation of the entire aorta is indicated. Most importantly, CT shows excellent 

accuracy for characterizing important features of aneurysms.62

Pulmonary embolism

The well-known Wells’ clinical decision rule is used to risk stratify patients suspected 

of pulmonary embolism.63 This is a scoring method based on various clinical risk 

factors and stratifies patients as low, intermediate, or high risk. If a patient has a score 

of 4 or more, further testing is required. In routine clinical practice, multi-slice CT 

pulmonary angiography has become the first-choice imaging method for evaluating 

the pulmonary arteries when pulmonary embolism is suspected (see Figure 9).64 A 

normal CT pulmonary angiography can safely exclude pulmonary embolism without 

need for additional tests.65 On CT, pulmonary emboli are shown as filling defects 

of the contrast-enhanced central or segmental pulmonary arteries. In patients with 

pulmonary embolism, cloth burden is related to right ventricular dysfunction, where 

the measure of a right to left ventricular diameter ratio exceeding 1.0 is at risk for 

short term death.66

Triple rule-out CT

The concept of the ‘triple rule-out’ protocol is to simultaneously exclude all three 

potentially life-threatening causes of acute chest pain (ACS or infarction, acute aortic 

dissection or syndrome, and pulmonary embolism) in a single CT examination. A 

triple rule-out scan protocol includes coverage of the entire thorax cavity including 
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the aortic arch. State-of-the-art 64-slice scanners with wide anatomical coverage are 

able to scan the entire thorax including the pulmonary arteries, thoracic aorta, and 

coronary arteries in a single breath hold of approximately 15–20 s. An important 

technical challenge of a triple rule-out scan protocol is to ensure that high contrast 

enhancement is present simultaneously in both the pulmonary and systemic circula-

tion to evaluate the pulmonary arteries and aorta including the coronary arteries. 

Injection protocols should be adapted to scanner type and acquisition settings.

Triple rule-out approach may improve the triage of patients presenting to the emer-

gency department with acute chest pain, and provide a faster algorithm to make a 

diagnosis. However, it is crucial that patients should be carefully selected to ensure 

the appropriate use of a triple rule-out CT protocol. If the triple rule-out protocol in-

volves retrospective gating of the entire thorax, radiation dose is high, even more than 

the radiation dose observed in dedicated coronary CT angiography.67, 68 Prospective 

gating techniques strongly reduce radiation dose, but may not be applied effectively 

in patients with high or irregular heart rates. Therefore, patients with symptoms highly 

suggestive for ACS, acute pulmonary embolism, or acute aortic dissection, should 

be referred for a work-up specifically designed for this purpose (such as ICA if a 

patient has a high risk for ACS). As discussed before, the presence of a significant 

stenosis on coronary CTA does not automatically confirm the presence of ACS. In the 

remaining patients with uncertain cause of chest pain, a triple rule-out protocol can 

be considered.

Figure 9. Patient with acute pulmonary embolism and high embolus load. 
Massive emboli in the left and right pulmonary arteries can be observed (arrows, A). Note severe dilata-
tion of the right ventricle (RV, B) with interventricular septum shift to the left and compression of the 
left ventricle (LV) due to high embolus load. Normally the RV diameter does not exceed that of the LV.
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Initial studies suggest that a triple rule-out CTA protocol for evaluation of patients 

with acute chest pain is feasible and that quantitative parameters of image quality 

may be comparable to the conventional, dedicated coronary and pulmonary CTA 

protocol. 69, 70 A study evaluating the diagnostic value of triple rule-out with 64-slice 

CT in 55 patients admitted to the emergency department demonstrated that this 

technique facilitated the differential diagnosis of chest pain.70 Furthermore, the triple 

rule-out protocol could potentially identify a subset of patients with acute chest pain 

who can safely be discharged from the emergency department without adverse events 

during a 30-day follow-up.71 A recent study in 100 patients with acute chest pain and 

an intermediate cardiac risk profile used either coronary CTA or a triple rule-out pro-

tocol in case of elevated D-dimer levels. Based on a negative coronary CTA or triple 

rule-out findings, 60 of 100 patients were discharged the same day, without major 

cardiac events at 90-days follow up. Also, those patients with significant coronary 

artery stenosis were identified.72 The use of this protocol in intermediate cardiac risk 

profile patients was calculated to reduce the number of hospitalized patients and 

total health costs.73 Indeed, more RCTs are needed to determine how the triple rule-

out protocol is best applied to improve clinical decision making and justified use.

Technical developments

Coronary artery plaque quantification

Currently, assessment of stenosis severity on coronary CTA is performed visually. This 

requires however significant experience and is characterized by limited reproducibil-

ity.74 Novel software tools have become available to (automatically) quantify stenosis 

severity on CTA, so-called quantitative CTA (QCT).75, 76 These algorithms usually con-

sist of various steps. First, the coronary tree is extracted from the CTA dataset and a 

multiplanar reformation is created of each coronary artery or side branch. Thereafter, 

the lumen and vessel wall are delineated on these MPR images. Based on these 

segmented contours, the severity of coronary artery stenosis can be quantified, but 

also the amount of coronary atherosclerosis (the plaque burden) can be derived (see 

Figure 10.) Previous investigations using QCT have demonstrated a good agreement 

between stenosis severity as assessed with QCT compared to ICA and intravascular 

ultrasound (IVUS).75, 76 It was also shown that stenosis severity derived from QCT 

was related with the presence of ischemia on SPECT perfusion imaging.77 Besides 

these geometrical parameters, it is also feasible to automatically assess and quantify 

coronary plaque composition with QCT. In a head-to-head comparison between 

QCT and IVUS with virtual histology, a good agreement was shown for assessment 

of different plaque types (calcified, mixed or non-calcified).78 QCT will improve 
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quantification of coronary stenosis and assessment of plaque composition and may 

be of particular value in serial evaluations to assess a potential effect of medication 

on atherosclerosis progression/regression and plaque composition.79 Recently, the 

incremental predictive value of these QCT parameters (over visual interpretation) for 

development of a subsequent ACS, has been established.80 Versteylen et al. compared 

the coronary CTA results in 25 patients who subsequently developed an ACS (over a 

mean follow-up period of 26 months) to 101 control patients without events. In the 

patients who developed an ACS, the total plaque volume, the plaque burden and the 

A B C 

D 

Figure 10. Example of quantitative CTA analysis of a 48 year old male patient referred for the evalu-
ation of stable chest pain. 
Panel A demonstrates a stretched multiplanar reformation (MPR)  of the LAD with a calcified lesion.  
QCT was used to detect both lumen (yellow) and vessel wall (orange) contours. Longitudinal lumen 
and vessel wall contours are shown in panel A; whereas transversal lumen and vessel wall contours 
at the level of the minimal lumen area (MLA) are shown in panel B. Panel C show the quantification 
of coronary plaque constitution. Calcium is labeled in white, fibrotic tissue labelled in dark green, 
fibro-fatty tissue in light green and necrotic core labeled in red. Quantification of the calcified lesion 
was performed using proximal (green) and distal (red) reference markers as well as lumen (yellow) and 
vessel wall (orange) reference lines, as illustrated in panel D. In this graph, the x-axis represents the 
distance from the coronary ostium in mm. The y-axis represents the area of either the lumen (lower part 
of graph) or the vessel wall (upper part of graph) in mm2. The part between the two graphs shows the 
plaque constitution. Stenosis severity was quantified as 35%.



Chapter 2

40

non-calcified plaque volume were significantly larger. Moreover, these quantitative 

CTA parameters provided incremental prognostic value over the clinical risk profile 

and the visual interpretation of the coronary CTA results.

Developments in CT scanners

The technology of the CT scanners is evolving rapidly. With the introduction of 256- 

and 320-slice scanners complete volume coverage of the heart becomes possible in 

a single heartbeat,11, 12 This may potentially reduce motion artefacts, particularly in 

patients with irregular heart rates or rhythm abnormalities. Moreover, dual-source CT 

scanners with 2 × 128 detector rows have been introduced and these systems dem-

onstrated a high temporal resolution of 75 ms (approximately half of the temporal 

resolution of the fastest 64-slice scanners) making possible to freeze cardiac motion 

and obtain diagnostic quality images of the coronary arteries regardless of heart rate 

or rhythm. Initial studies with dual-source coronary CT in patients presenting with 

chest pain have reported high negative predictive values approaching 100%, enabling 

to reliably excluded coronary artery stenoses also in patients with higher heart rates.81 

Very recently, high-pitch ECG triggered (‘Flash Spiral’) dual-source CT scanners have 

shown promising results.13 The novelty of this technique lies in the very high pitch 

which results in fast image acquisition without cardiac motion artefacts and a very 

low radiation exposure (<1 mSv).13 Currently only limited data in selected patients 

are available with these newer scanners, and larger studies are needed to determine 

the value of these novel equipment in routine clinical practice.

Novel applications of cardiac CT

Assessment of coronary artery plaque composition

Since coronary CTA allows for the visualization of the coronary vessel wall, coronary 

atherosclerosis on coronary CTA can be further characterized (beyond stenosis sever-

ity), permitting assessment of plaque composition. The plaques can be divided into 

non-calcified, calcified and mixed plaques. Interestingly, coronary plaque composi-

tion has been linked to clinical presentation: patients presenting with an ACS were 

shown to have more non-calcified and/or mixed plaques in the coronary arteries, 

whereas patients with stable CAD present with more calcified plaques.82 In addition, 

it has been suggested that plaque composition may provide prognostic information.

Specifically, non-calcified plaques with low attenuation values, positive remodel-

ing, and spotty calcifications have been associated with subsequent development of 

ACS.83 Moreover, Gaemperli et al. evaluated 220 patients with known or suspected 

CAD using 64-slice coronary CTA and demonstrated worse outcome of patients with 
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mixed or non-calcified plaques.84 This was further confirmed by Hou et al. in 4,425 

patients with suspected CAD with a follow-up period of nearly 3 years. The authors 

demonstrated that patients with non-calcified plaque were at 5 times higher risk for 

the combination of death, infarction or revascularization, as compared to patients 

with calcified plaques, and the risk of patients with mixed plaques was nearly 10 

times higher.85 Interestingly, it was shown in 163 patients with chest pain and sus-

pected CAD that mixed plaques were also correlated with the presence of ischemia 

on SPECT perfusion imaging.86

Evaluation of myocardial perfusion

Recent developments in CT scanner technology have enabled evaluation of left 

ventricular myocardial contrast attenuation enabling CT myocardial perfusion imag-

ing (of the left ventricle). This functional information is of particular importance to 

determine the hemodynamical significance of intermediate coronary artery stenoses 

(around 50% luminal narrowing). Standard CT perfusion (CTP) protocols include a rest 

study for the evaluation of the coronary arteries and the resting myocardial perfusion, 

followed by an adenosine-induced stress study to determine the stress perfusion.87 

Similar to perfusion imaging with SPECT or magnetic resonance imaging (MRI), re-

versible or fixed perfusion defects can be detected indicating ischemia or scar tissue 

respectively. 88-91 A major advantage of CTP is the combination of coronary artery 

anatomy (CTA) and function (CTP) in one examination. Blankstein et al. demonstrated 

with 64-slice CT that an adenosine stress CT protocol can identify stress-induced 

myocardial perfusion defects with a diagnostic accuracy comparable to SPECT.92 Ad-

ditionally, the average radiation required in this protocol was similar to the radiation 

dose of SPECT perfusion imaging. It is anticipated that with improved dose reduction 

protocols, the radiation dose will be reduced significantly. Recent studies have indi-

cated an improved diagnostic accuracy for CTP compared to coronary CTA alone for 

the detection of myocardial ischemia.87, 93 George et al. demonstrated in 53 patients 

with an intermediate to high pre-test likelihood of CAD that the diagnostic accuracy 

of CTP to predict reversible ischemia on SPECT was higher than coronary CTA.87

Evaluation of myocardial infarction

Over recent years, MRI has been successfully employed to image the presence of in-

farcted myocardium with delayed contrast enhancement imaging. However, several 

studies have demonstrated that the presence of infarction can be also identified on 

CT.88 Because of the pharmokinetics of the contrast material, a difference between 

the accumulation of contrast in infarcted and normal myocardium can be visualized. 

Accordingly, early hypo-enhancement can be observed on the CT images during 

the first pass of contrast medium at the area of infarcted myocardium. In addition, 



Chapter 2

42

delayed hyper-enhancement of infarcted tissue can be detected similarly to MRI. 

Good correlations between infarct imaging with CT and other imaging modalities 

such as MRI and SPECT imaging have been demonstrated.88-90 Moreover, a good 

correlation between enhancement patterns (both early hypo-enhancement and late 

hyper-enhancement) and recovery of myocardial function at a follow-up of 3 months 

post-infarction was reported, suggesting that CT may be useful to predict functional 

recovery after infarction.91 However, it is important to realize that in general, delayed 

enhancement imaging with CT requires additional imaging and thus involves ad-

ditional radiation exposure. Also, a larger amount of contrast agent is required for 

delayed enhancement imaging as compared to imaging the coronary arteries alone.

Fractional flow reserve (FFR)

It has been shown in the FAME (FFR vs. Angiography for multivessel evaluation) 

trial that revascularization guided by invasive assessment of FFR is superior in terms 

of outcome over revascularization driven by angiographic stenosis severity.94 This 

observation highlights that functional (ischemia) assessment may be preferred over 

anatomical assessment (stenosis severity) to guide the need for revascularization. 

Invasive assessment of FFR however, may not be the first choice in patients with 

stable chest pain, and a non-invasive approach may be preferred. With the applica-

tion of computational fluid dynamics and complex mathematical calculations, novel 

software tools allow for the non-invasive assessment of FFR from coronary CTA data-

sets (FFRct) without additional imaging, modification of CT acquisition protocols, or 

administration of medication.95 An example of this approach (as compared to ICA and 

Figure 11. Case example of FFRct with corresponding invasive coronary angiogram.
Multiplanar reformat of a coronary CT angiogram demonstrating obstructive stenosis of the proximal 
portion of the left anterior descending (LAD) coronary artery and a computed fractional flow reserve 
(FFRCT) value of 0.62, indicating ischemia. Invasive coronary angiography demonstrates obstructive 
stenosis of the proximal portion of the LAD and measured fractional flow reserve (FFR) values of 0.65, 
indicating ischemia.
From: Min et al., JAMA 2012
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invasive FFR) is shown in Figure 11. In the DISCOVER FLOW (diagnosis of ischemia-

causing stenoses obtained via noninvasive fractional flow reserve) trial, Koo et al. 

have demonstrated good agreement between FFRct and invasive FFR in 103 patients 

in whom 159 coronary arteries were evaluated.96 At present, FFRct is not suitable for 

implementation in the daily practice since FFRct calculations are time consuming 

(calculation of FFRct may require up to 5 hours) and requires sophisticated computa-

tion which is not available in routine clinical imaging departments.96

Transluminal attenuation gradient

Another method to improve assessment of the hemodynamic significance of a 

coronary stenosis with CTA could be the calculation of the transluminal attenuation 

gradient (TAG). 97 For this purpose a MPR is generated of each coronary. Along the 

center-line of this MPR the luminal intensity is measured at 1mm increments. TAG is 

then defined as the slope of the regression line of the decrease in luminal intensity 

from the proximal to the distal part of the coronary (Figure 12). A steep decrease in 

intensity (i.e. a more negative TAG) was associated with the presence of an obstruc-

tive lesion in that coronary.97 Recently Wong et al. have reported the incremental 

value of TAG measurements on 320-row CTA over CTA alone for the prediction of 

invasive FFR significant lesions.98 However, until present the exact clinical value of 

TAG is unknown and requires further trials and investigations.

Evaluation of myocardial function

Besides assessment of the coronary arteries, cardiac CT imaging also permits assess-

ment of left ventricular volumes and function. If data have been collected during the 

whole cardiac cycle, images can be retrospectively reconstructed in several phases 

to derive left ventricular ejection fraction from the left ventricular volumes. Indeed, 

numerous studies have shown that global left ventricular function assessed by CT 

correlates well with echocardiography and MRI, although CT appeared to minimally 

overestimate end-systolic volume and may thus slightly underestimate left ventricu-

lar ejection fraction.99, 100 In addition, regional wall motion abnormalities can be 

reliably evaluated as compared to MRI. 101 However, as images should be acquired 

throughout the cardiac cycle, left ventricular function protocols are associated with 

increased radiation exposure and CT may not be the first choice technique, but could 

be considered as an alternative for patients who are not suitable to undergo MRI.102
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Conclusion

Patients presenting with acute chest pain to the emergency room, suspect for an ACS 

but without the diagnostic ECG and troponin criteria. This poses an important dilemma 

in clinical cardiology: on the one hand, this population constitutes a large number of 

patients with a low prevalence of ACS, but on the other hand a substantial number 

of patients appear to develop an ACS once discharged. Coronary CT angiography 

is a feasible technique for non-invasive, fast, and accurate exclusion of obstructive 

CAD in patients presenting with acute chest pain. Moreover, a normal coronary CTA 

permits safe discharge with good short- to mid-term prognosis. This has increased in-

terest in using CT for non-invasive assessment of CAD in the emergency department, 

and in addition the technique can evaluate the presence/absence of other causes of 

acute chest pain such as aortic aneurysm, aortic dissection, or pulmonary embolism.

Figure 12. Patient example of transluminal attenuation gradient (TAG) calculation. 
Panel 1: Coronary CTA demonstrates calcified lesions in the proximal LAD coronary artery and moder-
ate stenosis in the mid LAD traject, confirmed by invasive coronary angiography. 
Panel 2: Luminal attenuation plot. Black dots represent 5-mm intervals at which intraluminal attenua-
tion (in Hounsfield units, HU) and luminal area (in mm2) were measured. TAG is shown by the yellow 
line and was -11.95 (HU/10mm).
Panel 3: Axial and representative cross-sectional views of coronary CTA. 
MLD: minimal lumen diameter, QCA: quantitative coronary angiography
From: Choi et al., JACC: cardiovascular imaging 2011 
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Four RCTs have been performed comparing a CT-based approach in the emergency 

room versus a standard of care approach. These trials confirmed the value of coro-

nary CTA to exclude CAD, with good outcome after discharge, and a reduction in 

hospital stay and costs. At the same time, an increase in ICA and revascularization 

rate was observed in patients with CAD on coronary CTA; this warrants further studies 

to determine the precise relation between the coronary CTA findings and referral 

for ICA. Finally, other applications such as the evaluation of coronary artery plaque 

composition, myocardial function and perfusion or fractional flow reserve are cur-

rently being developed and may also become valuable in the setting of acute chest 

pain in the future.
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Coronary atherosclerosis burden

This editorial refers to: “Coronary Atheroma Volume and Cardiovascular Events Dur-

ing Maximally Intensive Statin Therapy” by Puri et al. pusblished in European Heart 

Journal in November 2013 

Hydroxymethylglutaryl (HMG) CoA-Reductase inhibitors or statins play an impor-

tant role in the primary and secondary prevention of coronary heart disease.  By in-

hibiting the enzyme HMG-CoA reductase, statins lower the production of cholesterol 

in the liver, resulting in lower LDL cholesterol levels. Besides lowering cholesterol 

levels, statin therapy slows down plaque progression and in some patients even cause 

plaque regression. 

In the beginning of the 90’s the first trials were initiated to assess the effect of 

statin therapy on plaque dynamics. Randomized trials, like MARS and REGRESS, 

used (quantitative) invasive coronary angiography (ICA) to assess luminal stenosis 

characteristics. Since ICA only allows assessment of the coronary lumen, differences 

in minimal lumen diameters (MLD) and mean segment diameters (MSD) between 

baseline and follow-up were assessed as a measurement of coronary plaque change.1,2 

These early studies demonstrated that moderate dose statin therapy on average re-

duces plaque progression. Importantly, this was associated with a reduction of major 

adverse cardiovascular events (MACE). Of note, it was shown that the beneficial effect 

of statin therapy is more pronounced in more severe lesions.1

A relative shortcoming of these studies was the inability of ICA to visualize true 

coronary atherosclerotic burden. Around the same time as the first angiographic 

studies with statin therapy were executed, a novel method for the assessment of 

coronary plaque burden was designed; intracoronary ultrasound (ICUS), nowadays 

known as intravascular ultrasound (IVUS). This invasive method uses ultrasound to 

create two dimensional tomographic images of the coronary lumen and vessel wall 

morphology.3 Since then IVUS is frequently used for coronary plaque assessment 

and has been widely validated for serial plaque imaging.4 IVUS is able to visualize 

true atherosclerotic burden with a high resolution and could be of value, not only 

for prognostic implications, but also to provide novel insights in the mechanisms of 

plaque dynamics in patients receiving statin therapy. In the future, non-invasive, serial 

assessment of coronary atherosclerosis could be feasible using quantitative computed 

tomography coronary angiography (QCT).5 Figure 1 demonstrates the difference in 

coronary plaque assessment between ICA, IVUS and QCT.

In this issue of the European Heart Journal Puri et al. present the results of a novel 

sub-study of the SATURN trial. In this study, 1039 patients underwent serial IVUS 

before and after 24 months of statin therapy. Patients were randomized to the highest 

dose of either rosuvastatin (40mg) or atorvastatin (80mg), which is currently the most 

intensive statin regiment used in clinical practice. Serial IVUS was performed in a 



Chapter 3

60

A B 

EEM Lumen 
border 

IVUS 
catheter 

C D 

Atheroma 

F 
Vessel wall 

Lumen 
border 

Atheroma 

E 
Calcified 
plaque 

Figure 1. Difference in coronary plaque assessment between IVUS , invasive coronary angiography 
(ICA) and quantitative computed tomography coronary angiography (QCT).
Panel A demonstrates quantitative coronary angiography (Qangio XA version 7, Medis medical image 
systems B.V.). After delineation of the contrast-filled lumen the percentage stenosis can be calculated. 
The yellow area in Panel B represents the coronary plaque. However, since the vessel wall cannot be 
depicted on ICA this is a derived parameter. Panel C demonstrates a cross-sectional IVUS image of a 
coronary artery. This view allows assessment of coronary atherosclerosis. After segmentation of the EEM 
and lumen contours as demonstrated in Panel D, the plaque burden can be assessed. Panel E represent 
a cross-section of a QCT analysis of a coronary artery (Qangio CT research edition version 1.3.6., Medis 
medical image systems B.V.). In a similar fashion as IVUS, the lumen and vessel wall are segmented 
(Panel F). Thereafter, coronary plaque burden can be calculated. In addition, QCT allows for character-
ization of coronary atherosclerosis. 
Abbreviations: EEM: external elastic membrane, IVUS: Intravascular Ultrasound
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single coronary, without significant luminal stenosis or previous revascularization. 

The authors investigated the prognostic influence of baseline percentage atheroma 

volume (PAV) on: a) MACE b) lipid levels at baseline and follow-up and c) coronary 

plaque progression. It was demonstrated that PAV at baseline is associated with the 

occurrence of MACE during 2 years follow-up. The incidence of MACE in patients 

in the lowest quartile of PAV was 5.1% and was significantly increased stepwise 

per PAV quartile (5.1%, 5.7%, 7.9% and 12% respectively, p=0.001). This relation 

remained significant after correction for baseline risk factors. Of particular interest, 

neither LDL cholesterol levels at baseline or after high dose statin treatment could 

independently predict MACE. Thereafter, the correlation between PAV at baseline 

and plaque progression on IVUS was assessed. As expected, patients with PAV above 

median demonstrated a greater reduction in PAV at 12 months follow-up. Accord-

ingly, in these patients lumen volume was significantly more increased after therapy 

compared to patients with PAV below median. However, no significant differences in 

vessel wall volume were observed between the two groups. Thus, patients with heavy 

disease burden at baseline benefit relatively more from aggressive/high dose statin 

therapy with regard to plaque regression, compared to patients with a light disease 

burden, confirming the older ICA results with modest dose statin therapy 

One of the most striking results of this study is the fact that LDL levels at baseline or 

after statin treatment showed no predictive value for MACE. This could lead to doubt 

about the beneficial effect of LDL-lowering therapy. However, as also discussed by 

the authors, there is overwhelming evidence for the beneficial effects of statin therapy 

on plaque progression and MACE.6 As demonstrated by IVUS in the REVERSAL-trial, 

there is a significant association between the amount of LDL-cholesterol reduction 

due to statin therapy and slowed progression of atherosclerosis (as assessed by PAV). 

Currently, statin therapy is so fundamentally established in daily practice, its benefi-

cial effect is beyond doubt. Even though it has been demonstrated that in patients 

receiving statin therapy LDL cholesterol levels have no additional prognostic value, 

further lowering of LDL cholesterol levels with novel PCSK9 monoclonal antibodies 

could further reduce the residual risk in these patients.7, 8 These drugs are currently 

investigated in trial to assess the safety and efficacy.

Recently, evidence has become available suggesting that the effect of statin therapy 

on prognosis in not solely mediated through lowering of LDL-cholesterol but also 

so-called “pleiotropic effects” play an important role. These molecular mechanisms 

seem to be in part independent of LDL-lowering. Examples of these pleiotropic effects 

are:  improvement of endothelial function, stabilization of atherosclerotic plaques 

and decreasing oxidative stress and inflammation.9 Indeed, recent studies have dem-

onstrated that in addition to decrease in PAV, statin therapy leads to stabilization of 
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coronary atherosclerosis. Nozue et al performed IVUS Virtual Histology (IVUS-VH) 

in 39 patients during PCI and after 8 and 48 months of statin therapy. An increase in 

negative remodeling and calcified plaque was observed during follow-up suggesting 

stabilization of coronary plaque.10 This was further confirmed by Taguchi et al, in 120 

ACS patients receiving statin therapy who underwent serial IVUS. Both in patients 

showing plaque progression or regression, the amount of necrotic core, associated 

with plaque vulnerability, was significantly decreased after 8 to 10 months of statin 

therapy.11 In the SATURN sub-study, Puri et al. demonstrated that plaque regression 

was most pronounced in patients with PAV above the median. These patients pre-

sented with an unfavorable risk profile at baseline. It seems that the most diseased 

patients benefit the most from aggressive therapy. This was in line with a recent study 

that comparing plaque regression by statin therapy in patients with stable CAD and 

ACS demonstrated the most benefit of statin therapy in ACS patients.12 Unfortunately, 

the study by Puri et al. lacks further insight in the prognostic value of PAV changes by 

statin therapy. This would be an interesting topic, worth further investigation.

In conclusion, statin therapy lowers PAV and as a result improves prognosis. These 

beneficial effects are more pronounced in patients with a PAV above the median. 

Despite aggressive/high dose statin therapy, a high atherosclerotic plaque burden 

still remains a heavy burden and novel treatment modalities should be developed to 

further reduce residual risk. 
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Abstract

Purpose: Plaque constitution on CTA is associated with prognosis. At present only 

visual assessment of plaque constitution is possible. An accurate automatic, quantita-

tive approach for CTA plaque constitution assessment would improve reproducibility 

and allows higher accuracy. The present study assessed the feasibility of a fully au-

tomatic and quantitative analysis of atherosclerosis on CTA.  Clinically derived CTA 

and IVUS VH datasets were used to investigate the correlation between quantitatively 

automatically derived CTA parameters and IVUS VH.

Methods: A total of 57 patients underwent CTA prior to IVUS VH. First, quantitative 

CTA (QCT) was performed. Per lesion stenosis parameters and plaque volumes were 

assessed. Using predefined HU thresholds, CTA plaque volume was differentiated 

in 4 different plaque types necrotic core (NC), dense calcium (DC), fibrotic (FI) and 

fibro-fatty tissue (FF). At the identical level of the coronary, the same parameters 

were derived from IVUS VH. Bland-Altman analyses were performed to assess the 

agreement between QCT and IVUS VH.

Results: Assessment of plaque volume using QCT in 108 lesions showed excellent 

correlation with IVUS VH (r = 0.928, P <0.001) (Figure 1). The correlation of both FF 

and FI volume on IVUS VH and QCT was good(r = 0.714, P< 0.001 and r = 0.695, 

P <0.001 respectively) with corresponding bias and 95% limits of agreement of 24 

mm3 (-42 ; 90) and 7.7mm3 (-54 ; 70). Furthermore, NC and DC were well-correlated 

in both modalities(r = 0.523, P <0.001) and (r = 0.736, P <0.001). 

Conclusion: Automatic, quantitative CTA tissue characterization is feasible using a 

dedicated software tool.  
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Introduction 

Computed tomography coronary angiography (CTA) is a well established non-

invasive method for the assessment of coronary atherosclerosis. At present, there is a 

rich amount of data confirming the correlation between stenosis degree on CTA and 

invasive coronary angiography.1, 2 Moreover, several studies have demonstrated the 

prognostic value of stenosis degree as assessed by CTA in the occurrence of adverse 

cardiovascular events.3, 4 In addition to the assessment of stenosis degree, CTA allows 

in vivo characterization of coronary atherosclerotic plaque to differentiate non-

calcified, calcified and mixed plaque. These CTA plaque types have been associated 

with prognosis.5 Besides, several additional plaque characteristics on CTA have been 

associated with plaque vulnerability (e.g. positive remodeling, spotty calcification, 

low attenuation plaque).6 

Ultimately, CTA stenosis degree and plaque constitution can be derived by a fully 

automatic, quantitative approach, allowing high accuracy and good reproducibility. 

Previously, semi-automated methods to characterize plaque on CTA have been de-

scribed. 7, 8 However, a dedicated fully automatic quantitative CTA plaque character-

ization tool to assess plaque constitution is currently unavailable.

The present study assessed the feasibility of an automatic and quantitative analysis 

of CTA data. In this study, clinically derived CTA and intravascular ultrasound virtual 

histology (IVUS VH) datasets were used to investigate the correlation between quan-

titatively, automatically derived CTA parameters and IVUS VH. For this assessment, 

IVUS VH was defined as the golden standard since it is an approved method for the 

in-vivo assessment of coronary plaque characteristics and has been well validated 

against histopathology.9 IVUS VH allows for the assessment of plaque vulnerability 

and is associated with outcome.10 The correlation between CTA plaque character-

istics and intravascular ultrasound virtual histology (IVUS VH) has previously been 

described.11-13. 

In this investigation automatic, quantitative assessed stenosis degree and plaque 

constitution on CTA were compared to IVUS VH. For this purpose, a dedicated 3-di-

mensional registration algorithm was used, allowing a slice-by-slice comparison of 

both modalities. In short, the aim of the present study was 1) to perform an automatic 

quantitative CTA analysis of stenosis degree and plaque constitution and 2) to validate 

this against IVUS VH.
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Methods

Patient population

The patient population consisted of 57 patients who presented with chest pain at the 

outpatient clinic (Leiden, the Netherlands) and underwent CTA, followed by clinically 

referred invasive coronary angiography (ICA). In addition, IVUS VH was performed to 

further evaluate the severity and extent of coronary artery disease. 

CTA images were acquired using either a 64-slice CT scanner (Aquilion 64, Toshiba 

Medical System, Otawara, Japan) or a 320-row volumetric scanner (Aquilion ONE, 

Toshiba Medical System, Otawara, Japan). Non-ionic contrast material (Iomeron 400, 

Bracco, Milan Italy or Ultravist 370, Bayer Schering Pharma AG Berlin, Germany) was 

administered with an amount of 80-110 ml followed by a saline flush with a flow rate 

of 5 ml/s. Contra-indications for CTA were: 1) renal insufficiency (glomerular filtration 

rate < 30 ml/min); 2) known allergy to iodine contrast material; and 3) pregnancy. 

Only scans with adequate image quality were included for the current analysis.  The 

effective dose was calculated using a conversion factor of 0.014 mSv/(mGy x cm)

IVUS VH examinations were acquired during conventional ICA using a dedicated 

IVUS console (S5tm Imaging system Volcano Corporation, rancho, Cordova, CA, USA) 

in combination with a 20MHz, 2,9 F phased-array IVUS Catheter (Eagle Eye, Volcano 

Corporation, Rancho Cordova, CA, USA). Motorized pullback was performed at a 

constant speed of 0.5 mm/s until the IVUS catheter reached the guiding catheter. 

Exclusion criteria for IVUS VH were severe stenosis, (subtotal) vessel occlusion or 

vessel tortuosity. 

Clinical data were prospectively entered into the departmental Cardiology Infor-

mation System (EPD-Vision, Leiden University Medical Center) and retrospectively 

analyzed. In each patient, the presence of CAD risk factors was recorded.

The feasibility of quantitative CTA analysis software to assess stenosis severity has 

been reported previously.14 For the current analysis, the most recent update of this 

program was used, which allows fully automatic, quantitative assessment of both 

stenosis severity and plaque constitution (QAngioCT Research Edition version 1.3.6, 

Medis Medical Imaging Systems, Leiden, the Netherlands). In all patients quantitative 

computed tomography (QCT) was performed to determine lumen and vessel wall 

borders. Subsequently, using a dedicated 3-dimensional registration algorithm, CTA 

images were registered with the corresponding IVUS VH run as shown in Figure 1. 

Thereafter, automatic lesion quantification was performed in both modalities to 

assess stenosis parameters and plaque constitution. Finally, the correlations for all 

parameters (Table 1) between the both modalities were assessed. 
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Quantitative CTA analysis

Lumen and vessel wall detection.
First, an automatic tree extraction algorithm was used to obtain all the 3-dimensional 

centerlines of the coronary tree.15 Based on these centerlines, straightened multi-

planar reformatted (MPR) volumes were created of those vessels of which an IVUS 

VH examination was available. Next, the lumen border contours and vessel wall 

borders were assessed according to the previously reported method.14 This method 

uses spatial fi rst- and second-derivative gradient fi lters in longitudinal cross sections 

in combination with knowledge of the expected CTA intensity values in the arter-

ies. Thereafter lumen and vessel contour are detected in the individual transversal 

IVUS-VH 

= = = 

MDCT 

IVUS 

IV. III. II. Panel: I. 
Figure 1. Schematic illustration of the characterization of coronary plaque on CTA: cross-correlation 
with IVUS VH.
First, the 3-dimensional centerline was generated from the CTA data set using an automatic tree extrac-
tion algorithm (Panel I). Using a unique registration a complete pullback series of IVUS images was 
mapped on the CTA volume using true anatomical markers (Panel II). Fully automatic lumen and ves-
sel wall contour detection was performed for both imaging modalities (Panel III). Finally, fusion-based 
quantifi cation of atherosclerotic lesions was based on the lumen and vessel wall contours as well as the 
corresponding reference lines (estimate of normal tapering of the coronary artery), as shown in panel IV. 
At the level of the minimal lumen area (MLA) (yellow lines), stenosis parameters, could be calculated 
for both imaging techniques. Additionally, plaque volumes and plaque types were derived for the whole 
coronary artery lesion, ranging from the proximal to distal lesion marker (blue markers). Fibrotic tissue 
was labeled in dark green, Fibro-fatty tissue in light green, dense calcium in white and necrotic core 
was labeled in red.
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cross-sections perpendicular to the centerlines, whereby the locations from the lon-

gitudinal analyses are taken into account. This method is insensitive to differences in 

attenuation values between data sets and independent of window and level settings.

Plaque constitution.
Two approaches for tissue (plaque) classification were implemented. The first used 

predefined fixed intensity cut-off values on the Hounsfield Units (HU) to assess plaque 

constitution. Currently, different cut-off values are available in the literature, which 

are obtained by comparing CTA with IVUS VH or histological examination.6, 16 For 

the current analysis, the fixed HU cut-off values used for classifying were: -30 – 75, 

for necrotic core, 76 – 130 for fibro-fatty, 131 – 350 for fibrotic, and 351+ for dense 

calcium. These values were initially based on the paper by Brodoefel et al. and em-

pirically optimized using three representative training sets. 16

The second approach used an adaptive threshold based on the principle that plaque 

attenuation values are influenced by luminal contrast densities.17, 18 Therefore, in this 

approach, the HU thresholds are adapted according to lumen attenuation values. This 

method is based on two principles. 

The first principle is the decrease in lumen intensity from the proximal to the distal 

part of the coronary artery. The intensity cut-off values are adapted by the same linear, 

decreasing trend along the vessel. 

The second principle is that the lumen intensities are lower in the parts of a se-

vere stenosis and higher in the parts with severe calcified lesions due to blooming 

artifacts. Therefore, intensity cut-off values are locally compensated by subtracting 

a percentage of the difference to correct for the cut-off values in these locations. 

These dynamic thresholds were automatically derived and are user independent. The 

Table 1. QCT derived parameters and their corresponding definitions.

QCT parameter Definition

Lesion length (mm) The distance between the proximal and distal 
ends of the coronary lesion

Lumen volume (mm3) Total volume of the lumen between the 
proximal and distal ends of the coronary lesion

Vessel wall volume(mm3) Total volume of the vessel wall between the 
proximal and distal ends of the coronary lesion

Plaque volume(mm3) Total volume of plaque wall between the 
proximal and distal ends of the coronary lesion. 
Defined as vessel wall volume – lumen volume

Minimal Lumen Area (MLA) (mm2) The minimal lumen area at the point of 
maximal obstruction.

Percentage lumen area stenosis at the level of 
the MLA (%)

1 - (MLA/corresponding reference lumen area) 
x 100%
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inter- and intra observer variability for the lumen and vessel segmentation have been 

previously described.19, 20 The assessment of plaque constitution was performed fully 

automatically.

Cross-correlation with IVUS VH 

To validate the results of the QCT analysis, CTA images were compared to IVUS 

VH images of the corresponding artery. IVUS VH lumen and vessel wall contours 

were generated using QCU (QCU- CMS 4.59, Medis, Leiden, The Netherlands). A 

dedicated software tool was used to fuse the CTA and IVUS VH images as previ-

ously described.14 First using anatomical landmarks (side-branches, ostia, calcified 

plaques) the IVUS VH images were mapped on the longitudinal CTA centerline. 

Secondly, the IVUS VH cross-sectional images were translated and rotated to fit onto 

the corresponding CTA cross-section. This 3-dimensional registration method allows 

correction of deviations in IVUS VH caused by inconstant motorized pullback speed 

and enables a slice-by slice comparison of the coronary artery. 

In both modalities, CTA and IVUS VH, lesions are manually defined by placing 

reference locations at non-diseased, non-bifurcated proximal and distal parts of the 

segment of interest. A slope is automatically defined between these reference loca-

tions which represent an estimate of the normal proximal-to-distal tapering of the 

segment of interest. Consecutively, using the reference slope, the minimal lumen area 

(MLA) as well as the proximal and distal ends of a lesion were automatically assessed 

as shown in Figure 1.  Subsequently, a number of parameters were derived from QCT 

and IVUS VH in each analyzed coronary lesion as described in Table 1.

In addition to coronary arteries with atherosclerotic lesions, a vessel-based analysis 

of non-diseased coronary arteries was performed in the mid part of the coronary 

artery. In these non-diseased vessels, lumen and plaque volumes were assessed in 

both modalities. Since no plaque was present in these vessels, no comparison of 

plaque characteristics was performed. 

Statistical analysis

Continuous data are presented as mean ± SD if normally distributed or as median 

(interquartile range (IQR)) if non-normally distributed. Categorical data are presented 

as absolute numbers and percentages. A comparison was made between QCT and 

IVUS VH parameters on a lesion basis. Bland-Altman analyses were performed to 

assess the bias and the limits of agreement for the comparison between QCT and 

IVUS VH (GraphPad Prism software, version 5.01, GraphPad software Inc, San Diego, 

California, MA, USA). Bland-Altman analyses represent the difference of each pair 

plotted against the average value of each pair. Additionally, to correct for intra-patient 

correlation linear mixed models were used. The differences for each parameter be-



Chapter 4

72

tween QCT and IVUS VH was calculated and entered as a dependent value. For 

this analysis, the 95% confidence intervals (95% CI) were calculated. Furthermore, 

the feasibility of QCT to assess luminal parameters in non-diseased segments was 

assessed in all plaque free segments. 

Results

For this study, 61 patients with diagnostic quality of the CTA were selected. In 4 of 

these 61 patients (7%) image quality was still insufficient to perform tissue charac-

terization. The remaining 57 patients were included in this study. These 57 patients 

underwent CTA using either a 320-row volumetric (n = 41) or a 64-row helical scan-

ner (n = 16). Median time between CTA and IVUS VH was 2 (IQR 0 – 64) days.  The 

effective dose of the CTA acquired on 320-row CTA was 6.5 ± 4.0 mSv, The mean 

radiation dose for 64-slice CT performed in our centre has been previously described 

(18.1 ± 5.9 mSv) 21 . Baseline characteristics are described in Table 2; the mean age 

was 57.8 ± 11.5 years and 68% of patients were male. In these 57 patients an IVUS 

VH run was available of 138 vessels; 29 of these vessels were unsuitable for further 

analysis because of the presence of a stent (n = 11) or insufficient quality of either the 

IVUS VH run (n = 6), the CTA extraction (n = 7) or other technical limitations (n = 5). 

For the final analysis, 109 vessels were used of which 69 revealed atherosclerosis, 

whereas 40 vessels did not. In these 69 diseased vessels, 108 lesions were identified. 

These 108 lesions were used for the lesion based comparison.

Coronary plaque volume

The results of the comparison of coronary plaque volumes (per lesion) are depicted 

in Figure 2. There was an excellent correlation between vessel volume on QCT and 

vessel volume on IVUS VH (r = 0.957, P <0.001). Based on linear mixed models, ves-

sel volume was significantly overestimated on QCT as compared to IVUS VH, median 

vessel volume (242 mm3 (IQR 152 – 371) vs. 238 mm3 (IQR 141 – 331), respectively, 

95% CI of the mean difference ranging from 5.3 to 24.8 mm3, P = 0.003). Bland-

Altman analysis demonstrated a bias of 15 mm3 with 95% limits of agreement ranging 

from -84.9 to 115 mm3. The correlation between lumen volume on QCT and IVUS 

was excellent (r  =  0.917, P  <0.001). QCT significantly underestimated the lumen 

volume: the median volume was 92 mm3 (IQR 60 – 136) on QCT compared to 111 

mm3 (IQR 64 – 163) on IVUS VH (95 CI of the mean difference ranging from -28.3 

to -14.6 mm3, P <0.001). The bias of the Bland-Altman analysis of lumen volume 

was -21.5 mm3 with 95% limits of agreement from -92.3 to 39.4 mm3. Accordingly, 

the correlation between plaque volume measured with both modalities was similar 
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(r = 0.928, P <0.001). QCT overestimated plaque volume with a bias of 36.5 mm3 

(P <0.001) with limits of agreement of -48.8 to 121.9 mm3.

Coronary stenosis parameters

Good correlations were observed for the assessment of minimal lumen area (MLA) 

and lumen area stenosis, r = 0.836 and r = 0.701, respectively. However MLA was 

underestimated on CTA, as demonstrated by a bias of -1.62 mm2 with 95% limits of 

agreement ranging from -5.54 to 2.30 mm2. Median MLA on QCT was 4.3 mm2 (IQR 

3.12 - 5.83) compared to 5.20 mm2 (IQR 3.75 – 7.90) on IVUS VH (95% CI of mean 

difference ranging form -2 to -1.2 mm2, P  <0.001). In contrast, area stenosis was 

Table 2. Baseline characteristics of study population (n=57).

Men 39 (68)

Age (years) 57.8 ± 11.5

Calcium score 69 (0 – 287) 
(range 0 – 3247)

Known CAD 11 (19)

Risk Factors

 Diabetes 14 (25)

 Hypertension † 38 (67)

 Hypercholesterolemia ‡ 27 (47)

 Smoking 20 (35)

 Obesity (BMI ≥ 30 kg/m2) 14 (25)

 Positive family history* 25 (44)

Medication

 Beta-blockade 29 (51)

          ACE inhibitor / AT II blockade 30 (53)

 Diuretics 19 (33)

 Nitrate 11 (19)

 Calcium antagonist 10 (18)

 

Data are represented as mean ± SD, median (interquartile range) or as number and percentages of 
patients.
†Defined as systolic blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg or the use of 
antihypertensive medication. ‡Serum total cholesterol ≥230 mg/dL or serum triglycerides ≥200 mg/dL 
or treatment with lipid lowering drugs. 
*Defined as the presence of coronary artery disease in first-degree family members at <55 years in men 
and <65 years in women.
Abbreviations: CAD, coronary artery disease; BMI, body mass index; ACE, angiotensin converting en-
zyme; AT II, angiotensin II 
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significantly overestimated on QCT (median 42.8% (IQR 32.22 – 55.12)) compared 

to IVUS VH (median 40.06% (IQR 28.66 – 50.49) (95% CI of mean difference ranging 

from 0.7 to 5.6 %, P = 0.01). Bland-Altman analysis demonstrated a bias of 3.17 % 

with limits of agreement ranging from -21.61 to 27.96 %

Coronary plaque constitution 

The results of both fixed and dynamic threshold CTA tissue classifier are demonstrated 

in Table 3. Bland-Altman analyses of the two different CTA tissue classifier methods 

are depicted in Figures 3 and 4 respectively.
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Figure 2. Bland-Altman analyses of vessel volume, lumen volume and plaque volume,. 
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Table 3. Results of QCT plaque constitution assessment : cross-correlation with IVUS VH (n=108).

IVUS VH
Median (IQR) 
(mm3)

QCT
Median (IQR)
(mm3)

95 % CI 
of mean 
difference

P-value Correlation 
coefficient

Bias
(mm3)

Lower 
95% 
LOA
(mm3)

Upper
95% 
LOA
(mm3)

Fixed threshold

Fibrotic 39.7(19.9-67.3) 43.2 (23.1-76.1) 1.6 ; 13.8 0.013 0.695, <0.001 7.7 -54.8 70.2

Fibro-
fatty

9.3(4.9–19.4) 25.9 (16.0-41.6) 13.3 ; 19.0 <0.001 0.714, <0.001 24.4 -41.8 90.7

Necrotic 
core

11.8(6.0–22.3) 22.8 (14.7-38.9) 10.4 ; 19.1 <0.001 0.523, <0.001 14.8 -29.7 59.2

Dense 
calcium

5.4(1.7–11.6) 7.6 (2.1-24.9) 6.6 ; 15.9 <0.001 0.736, <0.001 11.3 -36.4 59.0

Dynamic threshold

Fibrotic As above 55.7(36.1-94.9) 15.0 ; 25.9 <0.001 0.787, <0.001 20.4 -35.7 76.6

Fibro-
fatty

“ 28.3(16.2-45.9) 16.7 ; 23.6 <0.001 0.704, <0.001 20.2 -15.2 55.6

Necrotic 
core

“ 11.0(5.6-24.7) -1.6 ; 3.6 0.458 0.479, <0.001 1.0 -25.9 27.9

Dense 
calcium

“ 6.95(0.9-18.9) 4,5 ; 12.5 <0.001 0.733, <0.001 8.5 -32.5 49.5

IVUS VH, Intravascular Ultrasound Virtual Histology, QCT, quantitative computed tomography,  LOA, 
Limits of agreement, IQR interquartile range
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Figure 3. Bland-Altman analyses of minimal lumen area (MLA) and percentage area stenosis.
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Figure 4. Bland-Altman analyses of plaque constitution as assessed using fixed thresholds.
Comparison between QCT and IVUS VH for fibrotic tissue, fibro-fatty tissue, necrotic core and dense 
calcium volumes.



77

Quantification and characterization of CAD with QCT

Method 1: fixed thresholds.
On a lesion basis, good correlations were observed for volumes of fibrotic tissue 

(r = 0.695, p <0.001), fibro-fatty tissue (r = 0.714, p <0.001), necrotic core (r = 0.523, 

p <0.001) and dense calcium (r = 0.736, p <0.001). Bland-Altman analysis, as de-

picted in Figure 3 and described in Table 3, demonstrated a significant overestimation 

of the volumes of all four plaque types by QCT. For necrotic core, bias was 11.3 

mm3 with limits of agreement ranging from -29.7 to 59.2 mm3. The smallest bias was 

observed for fibrotic tissue (7.7 mm3) with limits of agreement ranging from -54.8 to 

70.2. mm3.

Method 2: dynamic thresholds.
The results of the dynamic CTA tissue classifier are described in Table 3. The volumes 

of dense calcium, fibrotic and fibro-fatty volumes were all significantly overestimated 

by QCT (P <0.001.) No significant differences were observed in necrotic core vol-

umes between both modalities (P = 0.481). In Figure 5, the Bland-Altman analysis 

of the dynamic tissue classifier is depicted. The narrowest limits of agreement were 

observed for necrotic core volume ranging from -25.9 to 27.9 mm3 with a bias of 1.0 

mm3. However, the correlation coefficient for necrotic core (r = 0.479, P <0.001) 

was smaller compared to the other three plaque types. In Figure 6 an example is 

demonstrated of CTA plaque constitution assessment of a coronary lesion using the 

two different methods. 

Non-diseased coronary arteries

In non-diseased coronary arteries (n  =  40), vessel, lumen and plaque volume on 

QCT were significantly correlated with IVUS VH (r = 0.947, r = 0.920 and r = 0.738, 

respectively (p <0.001). However median vessel volume was significantly overesti-

mated on QCT as compared to IVUS VH (410 mm3 (IQR 250 - 616) versus 408 mm3 

(IQR 236 – 550)) (95% CI of the mean difference ranging from 25.5 to 85.5 mm3, 

p = 0.001)). Lumen volumes were significantly smaller on QCT as compared to IVUS 

VH (median 190 mm3 (IQR 92 – 303) versus median 283 mm3 (IQR 147 - 422) (95% 

CI of the mean difference ranging from -90.3 to -40.5 mm3, p <0.001)). Accordingly, 

plaque volume on QCT was significantly higher (median 236 mm3 (IQR 157 – 324)) 

as compared to IVUS VH (median 112 mm3 (IQR 66 – 153)). 

Discussion

The present study has demonstrated the feasibility of a fully automatic, quantitative 

analysis of CTA images for the assessment of coronary artery stenosis severity and 
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Figure 5. Bland-Altman analyses of plaque constitution as assessed using dynamic thresholds.
Comparison between QCT and IVUS VH for fibrotic tissue, fibro-fatty tissue, necrotic core and dense 
calcium volumes.
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plaque constitution. Using a dedicated 3-dimensional registration algorithm a slice-

by-slice comparison was made between QCT and IVUS VH. Very good correlations 

were observed for lumen, vessel and plaque volume between QCT and IVUS VH. 

Still, lumen volume was slightly underestimated and vessel volume slightly overesti-

mated on QCT. The assessment of MLA and lumen area stenosis using QCT correlated 

well with IVUS VH( r = 0.836 and r = 0.701, respectively).

In addition, the performance of two different approaches for tissue characterization 

was evaluated. The differentiation of coronary plaque volume in fibrous, fibro-fatty, 

necrotic core and dense calcium on QCT correlated well with IVUS VH. The dynamic 

A B 

C 

Figure 6. An example of a coronary lesion, plaque constitution is assessed using two methods of tissue 
characterization. 
The x-axis represents the distance from the coronary ostium in mm. The y-axis represents the area of 
either the lumen (lower part of graph) or the vessel wall (upper part of graph) in mm2. The part be-
tween the two graphs shows the plaque constitution using a color code with fibrotic tissue labeled in 
dark green, fibro-fatty tissue in light green, dense calcium in white and necrotic core labeled in red.   
Plaque constitution is assessed using either method 1 (Panel A) or method 2 (Panel B). In Panel C the 
corresponding IVUS VH data is shown. The use of method 2 correlated better with IVUS VH compared 
to method 1.



Chapter 4

80

threshold approach performed better compared to the fixed threshold approach, as 

demonstrated by more narrow limits of agreement on the Bland-Altman analyses.

Coronary stenosis assessment

CTA is a suitable method for the non-invasive evaluation of coronary atherosclerosis. 

Beyond the assessment of luminal narrowing it allows for the visualization of coro-

nary plaque. The prognostic value of CTA has been extensively reported and CTA is 

commonly used in clinical practice to rule out atherosclerosis in patients with low-to-

intermediate pre-test likelihood of CAD.22 Currently, CTA datasets are mainly visually 

analyzed to assess luminal narrowing. This visual approach requires an experienced 

observer, is subjected to interobserver variability and has lesser reproducibility. In the 

literature a quantitative analysis of CTA datasets on luminal narrowing and plaque 

constitution has been proposed as an objective and accurate method for analyzing 

CTA images. Several previous studies have reported different quantitative assessments 

of CTA images 7, 8, 12, 23. These studies have shown wide variety in results, mainly caused 

by differences in CTA contour detection algorithms. In the present study, good corre-

lations were observed for the assessment of plaque volume (r = 0928), lumen volume 

(r = 0.917) and vessel volume (r = 0.957). Vessel volume was slightly overestimated, 

whereas lumen volume was underestimated resulting in overestimation of plaque 

volume. In line with the present findings, Bruining et al.24 have demonstrated an 

overestimation of coronary plaque volume. In 48 patients, the investigators compared 

a quantitative CTA analysis with limited manual interference to IVUS. In contrast to 

the present investigation, the authors report an underestimation of coronary vessel 

wall volume. This discrepancy is potentially caused by differences in the vessel wall 

detection algorithm. In the future, the assessment of coronary plaque volume on CTA 

could be applied as a non-invasive method for the investigation of plaque regression 

or progression in patients or to assess the effect of medical therapy. In addition to 

coronary volume parameters, the ability of QCT to assess stenosis severity was inves-

tigated. Despite an overestimation on QCT for lumen area stenosis, good correlations 

were observed compared to IVUS VH. The method applied in the present study is 

best comparable to the ATLANTA study. 12 In this prospective study 50 patients were 

enrolled. In 50 lesions, a quantitative analysis of CTA datasets was performed and 

compared with IVUS VH. Similar to the present findings an overestimation of MLA 

and an overestimation of plaque volume was observed. 

Coronary plaque constitution

Beyond establishing luminal narrowing, CTA allows for the assessment of coronary 

plaque constitution. Previous studies have indicated the correlation between CTA 

plaque characteristics and plaque vulnerability.6 Also, the prognostic value of CTA 
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plaque constitution has been reported.25 Potentially, an accurate, quantitative as-

sessment of coronary plaque constitution could provide more detail on the relation 

between plaque vulnerability and plaque constitution on CTA.  However, at present 

an automatic, quantitative assessment of plaque constitution is unavailable. Previous 

studies have assessed mean HU of coronary plaques on CTA in different plaque types 

as assessed with IVUS (e.g. hypo or hyperechogenic).26 In contrast, the present study 

has used predefined HU thresholds to compare the four different plaque volumes 

with both modalities. In previous investigations the feasibility of manual or semi-

automatic quantitative CTA plaque constitution analyses has been assessed using 

IVUS VH as a reference. 7, 12 However, data is lacking evaluating a direct a slice-by-

slice comparison between automatically, quantitatively assessed plaque constitution 

and IVUS VH. 

Two different methods were applied for the quantitative analysis of plaque constitu-

tion.

Method 1: fixed thresholds.
The first method used fixed, predefined HU thresholds to differentiate coronary 

plaque volume in four different plaque types. This method has been applied in previ-

ous investigations.7, 12 In the present study, significant correlations were observed for 

all four plaque components. Still, an overestimation of plaque volume was noted for 

all different components on QCT. However, corresponding bias on Bland-Altman 

analysis were small for all components. These results are in line with previous reports. 

Indeed, using an automated vessel segmentation algorithm in 50 patients, Voros et 

al.12 demonstrated small difference, but wide limits of agreement for the assessment of 

plaque constitution on CTA compared to IVUS VH.  In contrast, in a study by Brodoef-

fel et al.7 in 14 patients, a comparison was made between plaque constitution on CTA 

and IVUS VH. The authors reported a good correlation for overall plaque volume; 

however, no significant correlation could be demonstrated for different plaque types. 

Method 2: dynamic thresholds.
Recently, Dalager17 et al. have demonstrated that differences in luminal intensities 

have an effect on the attenuation values inside the plaque. A decrease in luminal 

intensity was associated with lower coronary plaque HU. Besides, Choi at al.27 have 

shown that coronary stenosis severity has an effect on luminal intensities. A signifi-

cant decrease in luminal HU was observed at the location of a severe obstruction. It 

can therefore be expected that at the location of a severe stenosis different thresholds 

apply for the assessment of plaque constitution. These two previously described 

mechanisms formed the basis of the second approach on tissue characterization. A 

dynamic threshold algorithm was applied which automatically adapt HU thresholds 
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based on the luminal intensity values at the level of the plaque. This was previously 

proposed in a review by Akram et al. 18 suggesting that it is quite important for the 

implementation of plaque segmentation algorithms to take local attenuation values 

into consideration. For this reason a dynamic tissue characterization algorithm was 

implemented. As demonstrated, the performance of the dynamic threshold approach 

was superior to a fixed threshold approach. For all four plaque types, limits of agree-

ment of Bland-Altman analyses were smaller for the dynamic threshold approach.  

This indicated that there is indeed an effect of luminal intensities on coronary plaque 

HU. An accurate characterization of coronary plaque requires a method which ac-

counts for these differences. Possibly, more sophisticated algorithms to account for 

local difference in plaque attenuation values could be established. This would require 

further studies into local differences in attenuation values.

Recently, the influence of 100kV scanning on plaque constitution assessment became 

a topic of interest. In the present study none of the patients were scanned using 

100kV In a recent publication by Horiguchi et al. 28 using in vitro models the authors 

demonstrated equal performance of 100 kV in 120 Kv in soft plaque densitometry. 

In contrast, the intracoronary CT values were approximately 50 HU higher in 100 

kV scans compared to 120kV scans. Potentially, applying the dynamic threshold 

algorithm used in the present study could correct for these intracoronary density 

differences and would allow for more accurate tissue characterization.

Clinical implications

At present the clinical value of quantitative CTA plaque constitution assessment has 

yet to be established. Although a reasonable correlation was observed for the as-

sessment of coronary plaque constitution between QCT and IVUS VH, there still is a 

large variability in different plaque volumes between both modalities. It is unlikely 

that full agreement of coronary plaque constitution between QCT and IVUS VH will 

be achieved. To appreciate the prognostic value of quantitatively assessed plaque 

constitution on CTA, future studies are needed.  

Limitations

Although the present study demonstrated that automatic quantification of coronary 

plaque is feasible, some limitations need to be considered. For the present study only 

scans with sufficient quality were included. Therefore, the value of QCT in scans with 

severe noise or motion artifacts is unknown. The present analysis was a single-center, 

single-vendor study. An analysis of CTA datasets acquired by different CT-scanners 

could provide additional valuable insight.  IVUS VH was used as the gold standard. 

However, two limitations of this technique need to be considered. First, the radial 

resolution of IVUS VH is limited to 100µm, allowing less accurate assessment of 
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coronary plaque. Secondly, coronary calcium creates an acoustic shadow on IVUS 

VH caused by the inability of the echo signal to penetrate calcium. Although, plaque 

located behind calcifications is labeled on IVUS VH, the accuracy of characterizing 

tissue surrounding dense calcium is unknown. Potentially this leads to an underes-

timation of calcium volume on IVUS VH. In addition, a direct comparison between 

QCT plaque characterization and histopathology could provide further insights into 

the pathophysiology of CTA plaque constitution.  

Conclusions

The present study has demonstrated the feasibility of automatic, quantitative analysis 

of CTA images. QCT demonstrated excellent correlations for the assessment of plaque 

volume and stenosis parameters as compared to IVUS VH. Furthermore, plaque 

constitution was well-correlated between both modalities. In a direct comparison 

between a fixed threshold approach and a dynamic threshold approach for the quan-

tification of plaque type volume, the dynamic threshold performed better as shown 

by better correlations with IVUS VH.
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Abstract

Purpose: We enhance intravascular ultrasound virtual histology (VH) tissue charac-

terization by fully automatic quantification of the acoustic shadow behind calcified 

plaque. VH is unable to characterize atherosclerosis located behind calcifications. In 

this study, the quantified acoustic shadows are considered calcified to approximate 

the real dense calcium (DC) plaque volume.

Methods: In total, 57 patients with 108 coronary lesions were included. A novel 

post-processing step is applied on the VH images to quantify the acoustic shadow and 

enhance the VH results. The VH and enhanced VH results are compared to quantita-

tive computed tomography angiography (QTA) plaque characterization as reference 

standard.

Results: The correlation of the plaque types between enhanced VH and QTA dif-

fers significantly from the correlation with unenhanced VH. For DC, the correlation 

improved from 0.733 to 0.818. Instead of an underestimation of DC in VH with a 

bias of 8.5 mm3, there was a smaller overestimation of 1.1 mm3 in the enhanced VH.

Conclusion: Although tissue characterization within the acoustic shadow in VH is 

difficult, the novel algorithm improved the DC tissue characterization. This algorithm 

contributes to accurate assessment of calcium on VH and could be applied in clinical 

studies.
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Introduction

Intravascular ultrasound Virtual HistologyTM (IVUS VH) is considered to be the gold 

standard for in vivo assessment of coronary plaque characteristics.1,2 However, a 

limitation of this technique is the ability of the ultrasound signal to fully penetrate 

calcified tissue, resulting in an acoustic shadow behind calcified tissue.3 Therefore, 

IVUS only visualizes the leading edge of calcium, due to a nearly total reflection of 

the echo signal. Moreover, tissue located behind large calcifications with a clearly 

edged acoustic shadow cannot be classified accurately and determination of the 

extent of the calcifications and other plaque characteristics is not possible.4 Even 

though the accuracy is unknown, IVUS based tissue characterization methods such 

as VH® (Volcano) or iMapTM (Boston Scientific) provide classifications of the plaque 

in these acoustic shadow areas.5 However, coronary atherosclerosis in the acoustic 

shadow is rarely classified as dense calcium (DC). This may lead to underestimating 

the DC area and overestimating of other plaque components. We hypothesized that 

most of the tissue in the acoustic shadow is DC and aim to compensate for the 

underestimated calcified areas in VH.

Therefore, a novel masking algorithm was developed in which a fully automatic 

post-processing step is applied on the VH images to quantify the acoustic shadow 

behind calcified areas. The quantified regions are modified and added to the total DC 

volume. To validate this new post-processing step, the enhanced VH (eVH) results are 

compared to plaque characteristics obtained with computed tomography angiogra-

phy (CTA).

Methods

The study population consisted of a previously described patient cohort of 57 patients 

with chest pain.6 In brief, all patients underwent CTA followed by clinically referred 

invasive coronary angiography (ICA) and IVUS VH. The Institutional Review Board 

of the Leiden University Medical Center approved this retrospective evaluation of 

clinically collected data, and waived the need for written informed consent.

IVUS Virtual Histology

Acquisition and quantification.
The examinations were acquired during conventional ICA using a dedicated IVUS 

console (S5tm Imaging system Volcano Corporation, Rancho Cordova, CA, USA) in 

combination with a 20MHz, 2.9 F phased-array IVUS Catheter (Eagle Eye, Volcano 
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Corporation, Rancho Cordova, CA, USA).All IVUS lumen and vessel wall delinea-

tions were quantified with QCU-CMS-Research v4.69 (research version of QIvus, 

developed by the Leiden University Medical Center). Additionally, the tissue region 

between the lumen and vessel wall was characterized by the integrated Volcano 

VH software in the following plaque types: necrotic core (NC), dense calcium (DC), 

fibrotic tissue (FI) and fibro-fatty tissue (FF).

Post-processing of the acoustic shadow.
A novel automatic method was developed to combine VH tissue characterization with 

an acoustic shadow detection method in order to quantify calcified plaque behind 

the acoustic shadow. This is performed in five automatic steps as shown in Figure 1:

1) The potential acoustic shadow regions are determined for each transversal IVUS 

frame by dividing it into two-degree wide wedges, resulting in 180 wedges.

2) For every wedge, the mean and maximum grayscale intensities of the plaque area 

are compared to the corresponding mean and maximum grayscale intensities 

of four predefined layers located outside of the external elastic membrane (0-

0.2 mm, 0.2-0.5 mm, 0.5-1.0 mm and 1.0-2.0 mm). If the mean and maximum 

grayscale intensity of each layer is less than the corresponding mean and maxi-

mum grayscale intensities of the plaque area, the wedge is marked as potential 

acoustic shadow.

3) Every transversal frame is analysed per one degree along a virtual polar scan-line. 

If the sum of grayscale intensities from the lumen border up to and including 

the VH determined dense calcium region is larger than 20% of the sum of all 

grayscale intensity values of the scan-line, the angle is marked as an acoustic 

shadow angle.

4) A mask is constructed based on the marked acoustic shadow angles covering all 

pixels behind the dense calcified regions as shown in Figure 1D.

A B C D 

Figure 1: The automatic post-processing steps on the IVUS VH. 
A) The first step shows the 180 wedges. B) shows the second step with the four predefined layers in grey 
and white and in green the potential acoustic shadows. C) shows the third step with shadows in blue 
where the calcium regions are larger than 20%. D) shows the final masks with the calcified regions in 
white.
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5) The area and volume of the masked areas are quantified and added to the total DC 

area and DC volume.

Computed tomography coronary angiography

Acquisition.
Of the 57 patients, 16 CTA exams were acquired using a 64-row helical CT scanner 

(Aquilion 64, Toshiba Medical System, Otawara, Japan) and 41 from a 320-row volu-

metric scanner (Aquilion ONE, Toshiba Medical System, Otawara, Japan). The scan 

protocol was previously described.7,8 Scans with poor image quality were excluded 

for the current analysis.

Quantification of coronary atherosclerosis.
CAD on CTA was quantified using dedicated software (QAngio CT Research Edition 

v1.3.6, Medis medical imaging systems bv, Leiden, the Netherlands). The validity 

of this software tool for the segmentation of the coronary anatomy was previously 

established.9 For characterization of CAD, two different approaches are available in 

the software. One approach with predefined fixed intensity cut-off values on the 

Hounsfield Units (HU) and an adaptive approach where cut-off values are adapted 

according to lumen attenuation. In the present analysis the adaptive threshold for 

CTA plaque constitution was used as the reference standard.6 This adaptive threshold 

is based on the principle that plaque intensity is influenced by luminal contrast densi-

ties and decrease from the proximal to the distal part of the vessel. Therefore, in this 

automatic- and user-independent approach, the HU cut-off values of the different 

plaque types are adapted according to lumen intensity. First, a linear trend line is 

fitted through the mean lumen intensity. Next, the threshold for NC is defined as 200 

HU below this estimate with a maximum of 75 HU and the DC threshold is defined 

as 100 HU above this estimate with a maximum of 450 HU. The threshold between 

FI and FF is set on 20% of the difference between the NC and DC threshold. This way, 

the intensity cut-off values are adapted by the same linear, decreasing trend along the 

vessel (see Figure 2). Additionally, because the lumen intensity is lower in parts of a 

severe stenosis, the NC cut-off value is locally decreased with 125% of the difference 

between the estimate and the real lumen intensities. In contrast, lumen intensity is 

higher in calcified parts due to blooming artefacts. Therefore, the DC cut-off value is 

locally increased with 25% of the difference between the estimate and the real lumen 

intensities.



Chapter 5

94

Comparison between VH and CTA

To compare the VH data with the CTA data a previously described comparison al-

gorithm was used.6 All transversal IVUS images were matched and fused with the 

corresponding transversal CTA images using anatomical landmarks (side-branches, 

ostia, and calcified plaques) as shown in Figure 3. The plaque volumes of all different 

plaque components in the lesions in each corresponding artery were assessed. Both 

the original VH images and the post-processed, eVH images were compared to QCT 

as shown in Figure 4.

Statistical analysis

Statistical analyses were performed with the use of SPSS software (version 20.0, SPSS 

Inc., Chicago, IL, USA). First, the absolute plaque volumes of each plaque type on 

VH and eVH were compared. Second, both the VH and eVH plaque parameters 

were compared to QCT. For this purpose, the Spearman correlations were calculated. 

Moreover, the absolute median differences between QCT and VH or eVH were es-

tablished. Thereafter, Bland–Altman plots were made to assess the bias and the limits 

of agreement for the comparison between VH and CTA (GraphPad Prism software, 

version 5.01, San Diego, California, USA). These plots show the difference of each 

pair plotted against the average value of each pair. Additionally, the Pitman-Morgan 

test of variances was used to demonstrate if the variances in the comparisons of 

QCT with VH with and without post-processing were significantly different.10 The 

Pitman-Morgan test takes the correlation between two variances into account. A P-

value ≤0.05 was considered statistically significant.

275 350 

75 

Mean lumen intensity (HU) 

Threshold (HU) 
450 

150 

DC 

FF 

FI 

NC 

Figure 2: The adaptive threshold scheme.
The graphs shows the thresholds in HU (above the black line is DC, above the green line is FI, above 
the red line is FF and below the red line is NC) that are used for each measured mean lumen intensity 
on the x-axis for each crossectional CTA image. For example, if the mean lumen intensity is more than 
350 HU, everything below 75 HU is NC, between 76 and 150 is FF, between 151 and 450 is FI and 
above 451 is DC. 
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Results

Baseline patient characteristics were previously described.6 For this analysis, 109 

vessels were used of which 69 revealed atherosclerosis, whereas 40 vessels did not. 

In these 69 diseased vessels, 108 lesions were identifi ed. These 108 lesions were used 

for the present lesion based comparison.

Plaque classifi cation on VH compared to eVH

The quantifi cation results of both VH and eVH are depicted in Table 1. On VH median 

FI volume was 39.7(19.9-67.3) mm3, while applying the novel algorithm decreased 

the median FI volume to 37.6(16.8–61.5) mm3, (P<0.001). Similarly, the total volume 

of FF decreased from 9.3(4.9-19.4) mm3 to 7.9(4.1-16.9) mm3, (P<0.001). Also, NC 

volume decreased from 11.8(6.0-22.3) mm3 to 10.1(4.2-18.8) mm3, (P<0.001).

enhanced 
IVUS VH 

= = 

CTA 

IVUS 

IV. III. II. I. 

IVUS VH 

= = = 

Figure 3: Schematic illustration of the comparison of VH and eVH with QCT.
First, the centerline was generated from the CTA data set  (I). IVUS images are fused with the CTA vol-
ume using anatomical landmarks (II). Lumen and vessel wall contours were detected for both imaging 
modalities (III). Finally, lesions were quantifi ed on the segmented plaque as shown in panel IV. Plaque 
volumes and plaque types were derived for the whole lesion, ranging from the proximal to distal lesion 
marker (blue markers). Both VH and eVH were compared to QCT. 
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In the total population, the volume of DC in VH was 815.22 mm3. An acoustic 

shadow was detected in 106 of the 108(98%) lesions. The quantified acoustic shadow 

resulted in a total volume of 1033.93 mm3. These quantified areas were added to 

Table 1: Absolute differences between VH vs eVH plaque constitution compared to QCT plaque con-
stitution (n=108).

VH median (IQR) 
(mm3)

QCT median 
(IQR) (mm3)

95% CI of mean 
differences

P-value

Fibrotic 39.7(19.9-67.3)
55.7(36.1-94.9)

15.0;25.9 <0.001

Enhanced fibrotic 37.6(16.8-61.5) 18.5;30.2 <0.001

Fibro fatty 9.3(4.9-19.4)
28.3(16.2-45.9)

16.7;23.6 <0.001

Enhanced fibro fatty 7.9(4.1-16.9) 19.4;25.9 <0.001

Necrotic core 11.8(6.0-22.3)
11.0(5.6-24.7)

-1.6;3.6 0.458

Enhanced necrotic core 10.1(4.2-18.8) 1.1;6.3 0.006

Dense calcium 5.4(1.7-11.6)
6.95(0.9-18.9)

4.5;12.5 <0.001

Enhanced dense calcium 10.0(3.0-22.8) -3.6;1.5 0.401

eHV, Enhanced Virtual Histology; CI, confidence interval; IQR, interquartile range; VH, virtual histol-
ogy; QCT, quantitative computed tomography

A C 

B D 

E 

F 

G 

H 

Figure 4: Example of the registered images after fusion.
The yellow scale bars represent 5 mm. A) CTA image with IVUS overlay B) in green correctly translated 
and rotated on the CTA image. C) contains the corresponding VH overlay from D) and similarly E) con-
tains the eVH image from F). The QCT tissue overlay is shown in G) from the CTA image in H) Note that 
all overlays are mirrored in the top row for a correct fusion. The overlays in C-G have five color codes: 
red (NC), light-green (FF), dark-green (FI), white (DC), and blue for the masked areas. There is a nice 
correspondence between the masked areas in E) and the two calcified areas with high intensities in H) 
with in between a calcified area with lower intensity, more similar to the luminal contrast intensity in 
the bifurcating artery. This example shows that the DC area in VH is underestimated when compared 
to the DC area in the tissue overlay in G). Adding the blue quantified acoustic shadow to the total DC 
volume in eVH will approximate the DC volume in QCT.
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the DC volumes providing a total enhanced DC volume of 1949.15 mm3. Overall, 

the median DC volume increased from 5.4(1.7-11.6) mm3 to 10.0(3.0-22.8) mm3, 

(P<0.001).

Plaque classification on QCT

The QCT plaque quantification results were previously described.6 In brief, on 

QCT, the median FI volume was 55.7(36.1-94.9) mm3, the median FF volume was 

28.3(16.2-45.9) mm3, the median volume of NC was 11.0(5.6-24.7) mm3 and the DC 

volume was 6.95(0.9-18.9) mm3.

Comparison of VH and eVH to QCT plaque classification

To validate the novel algorithm, the VH and eVH data were compared to QCT. The 

results of this comparison are demonstrated in Table 1.

Absolute differences.
The median DC volume was significantly underestimated by VH compared to QCT 

(5.4(1.7-11.6) mm3, vs. 6.95(0.9-18.9) mm3 P<0.001). After applying the novel 

algorithm to the VH data, there was no significant difference between the DC volume 

on both modalities 10.0(3.0-22.8) mm3 for eVH vs. 6.95(0.9-18.9) mm3 for QCT, 

P=0.401). However, for NC a significant difference between QCT and eVH was ob-

served (11.0(5.6-24.7) mm3 on QCT vs 10.1(4.2-18.8) mm3 on eVH P=0.006). For FI 

and FF a significant difference was observed for both VH and eVH compared to QCT.

Correlation and agreement.
For all four plaque types there was difference in correlation between QCT and VH 

compared to QCT and eVH after applying the novel algorithm (Table 2). The largest 

change in correlation between VH and QCT was observed for DC. Adding the quanti-

fied area to the DC volume improved the correlation with QCT from 0.733 to 0.818. 

The correlations of the other plaque types changed less if the novel algorithm was 

applied to the VH data.

The results of the corresponding Bland-Altman plots for the DC volume of both VH 

and eVH compared to QCT are shown in Table 2 and depicted in Figure 5. Without 

masking, DC volume in VH was underestimated with a bias of 8.5 mm3 compared 

to the QCT. After applying the masking tool it was overestimated with a bias of -1.1 

mm3. The masking is especially useful on cases with large DC volumes as shown in 

Figure 5 where the systematic error in the large DC volumes is smaller for eVH. The 

last column in Table 2 depicts the statistical significance of the difference in variances 

between the two comparisons (i.e. QCT vs. VH and QCT vs. eVH). As demonstrated 

with the Pitman-Morgan test of variances, the agreement in DC volume between 
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VH and QCT was significantly improved by applying the masking tool (P<0.001). 

Similarly, there was a significant change in variance for the FF and FI between VH 

and eVH compared to QCT. However, for these plaque types the agreement of QCT 

was better with VH than with eVH. For NC, there was no significant difference in 

variances between QCT vs. VH and QCT vs. enhanced VH. An example of a coronary 

lesion and the resulting comparison between QCT and VH without and with the 

enhanced plaque quantification is shown in Figure 6.

Figure 5: Bland-Altman plots for both the DC volume of VH and DC volume of eVH compared with 
QCT.

Table 2: Correlation and agreement of VH vs eVH plaque constitution compared to QCT plaque con-
stitution (n=108).

Correlation 
(Spearman)

Bias 
(mm3)

Lower 
95% LOA 
(mm3)

Upper 
95% LOA 
(mm3)

Difference in variance
(P-values Pitman’s test)

Fibrotic 0.787,<0.001 20.4 -35.7 76.6
<0.01

Enhanced fibrotic 0.750,<0.001 24.3 -54.6 77.8

Fibro fatty 0.704,<0.001 20.2 -15.2 55.6
0.05

Enhanced fibro fatty 0.728,<0.001 22.6 -7.3 44.5

Necrotic core 0.479,<0.001 1.0 -25.9 27.9
0.76

Enhanced necrotic core 0.425,<0.001 3.7 -26.4 61.4

Dense calcium 0.733,<0.001 8.5 -32.5 49.5

<0.001Enhanced dense 
calcium

0.818 <0.001 -1.1 -28.3 31.7

VH, virtual histology; LOA, limits of agreement; QCT, quantitative computed tomography



99

Enhanced characterization of calcification in IVUS VH

Discussion

This study presents the results of a novel post-processing step on VH data to com-

pensate for the limited ability of IVUS to penetrate dense calcified tissue. The novel 

algorithm detects, masks, and quantifies the acoustic shadow behind calcium. By 

adding the quantified acoustic shadows to the total DC volume, the correlation be-

tween DC volumes on VH and QCT improves significantly. Moreover, the agreement 

between both modalities improved significantly, from an underestimation in VH to a 

A 

C 

B 

Figure 6: Quantification of plaque volumes along the vessel. 
A) An example of a coronary lesion in CTA. The x-axis represents the distance from the coronary ostium 
in mm. The y-axis represents the area of either the lumen (lower part of graph) or the vessel wall (upper 
part of graph) in mm2. The part between the two graphs shows the plaque constitution using a color 
code. In the corresponding VH data is shown in B) and in C) the results with the quantified shadows 
in blue. The enhanced quantification has better correspondence with the CTA analysis after adding the 
quantified shadow areas to the DC.
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small overestimation of DC volume in the enhanced VH. However, for FI and FF the 

agreement with QCT was reduced after applying the novel algorithm.

Acoustic shadow

The limited ability of the echo-signal to penetrate coronary calcium results in two 

problems.5 Firstly, the outer vessel boundaries located in the acoustic shadow are 

difficult to segment and need to be manually adjusted. This potentially leads to 

observer bias. However, an experienced observer can manually overcome this prob-

lem. Secondly and most important, the noise in the acoustic shadow is classified as 

coronary atherosclerosis by RF based methods as VH or iMapTM(Boston Scientific).11 

Ideally, an acoustic shadow should be completely dark in B-mode IVUS images due 

to the greatly limited ability of the ultrasound signal to penetrate the calcified plaque. 

Current software tools fail to identify these acoustic shadows and quantify the tissue 

within the acoustic shadow. These regions are characterized mainly as FI or FF by VH 

or characterized mainly as necrotic tissue by iMap. The validity of this quantifica-

tion is unknown. Recent echogenicity methods solve this problem by classifying the 

acoustic shadows behind calcifications as ‘unknown’.12 The acoustic shadow can be 

delineated manually, but is very time consuming. Moreover, a manual approach is 

susceptible to inter- and intra-observer variability for determining and masking the 

regions in the acoustic shadows. Bayturan et al. investigated a novel type of ‘attenu-

ated plaque’ which occurs in the absence of DC.13 Attenuated plaque was defined as 

hypoechoic plaque with deep ultrasonic attenuation (shadow) despite the absence of 

DC and is associated with high risk lesions. The acoustic shadow behind this attenu-

ated plaque can also be detected by this post-processing procedure by using step 4 to 

differentiate between attenuated shadow regions and shadow regions resulting from 

DC as classified by VH or for example by echogenicity if there is no VH available.14

Novel algorithm

For the present study a novel algorithm was developed to automatically detect and 

quantify the regions of acoustic shadow. Our hypothesis is that most of the tissue in 

the acoustic shadow is DC, or at least a larger volume than is detected with IVUS 

VH. To compensate for the suspected underestimation of DC within these regions, 

the quantified areas were added to the total DC volume. Although the corrected DC 

volumes in eVH show improved bias and correlation with QCT, the post-processing 

step does not detect any additional DC but selects regions without enough signal 

for reliable tissue characterization. Adding the quantified acoustic shadows to the 

overall DC volume, could result in overestimating DC in VH because not all plaque 

within the acoustic shadow is calcified. However, excluding the quantified shadows 

from the VH results will result in larger underestimation of the DC volume, because 
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all DC areas located in the acoustic shadow (i.e. calcifications located behind other 

calcified areas) will be excluded as well. Moreover, a thin or non-dense calcified 

plaque would allow for penetration of the acoustic signal and would likely not result 

in an acoustic shadow.

Coronary artery calcium on IVUS

Coronary calcium, as assessed with different imaging modalities, is a representation 

of overall atherosclerotic burden. The prognostic value of coronary artery calcifi-

cations has been widely established.15 Therefore, accurate assessment of coronary 

calcium on IVUS is of value in clinical practice. Calcifications on IVUS are strongly 

correlated with overall coronary plaque burden, but show limited correlation with 

stenosis severity.16

Besides sole DC, the relation between DC and necrotic core (considered a vulner-

able plaque type) is of clinical value. Previous studies addressed the prognostic value 

of the NC/DC ratio on IVUS VH. On IVUS VH the ratio between NC and DC was 

the only significant parameter associated with cardiovascular risk factors for sudden 

coronary death in men.17 Moreover, the NC/DC ratio was positively associated with 

a high-risk acute coronary syndrome presentation.18 Indeed, ruptured plaques have 

a smaller calcium arch, and relatively more deep calcium than superficial calcium 

compared to non-ruptured plaques.19

The influence of coronary calcium on atherosclerotic plaque characterization with 

VH is an ongoing topic of debate.20 Some studies suggest that coronary calcium on 

VH is surrounded by an area of artefact incorrectly quantified as NC.21 This was 

confirmed by Pu et al. in a study with 131 coronary lesions, combining VH with near-

infrared spectroscopy (NIRS).22 In all lesions with calcified plaque, NC was present 

on VH. However, in these calcified plaques no relation was observed between per-

centage NC of VH and lipid core burden index on NIRS, suggesting an overestimation 

of NC in VH due to the artefact caused by calcium. By masking the regions behind 

the DC in the acoustic shadow, the median NC volume decreases compared to VH 

which potentially could improve the relation with NIRS. Furthermore, Thim et al. 

found no correlation between NC size determined by IVUS VH and real histology.23 

Although they did not include histological examples with large calcifications and 

acoustic shadows on the corresponding VH images, they suggest that the NC tissue 

detection in VH and the presence of calcifications are linked. A similar assessment of 

DC by VH and real histology is needed to provide further insights in this approach of 

enhancing VH results.

In addition to the relation with clinical presentation, coronary calcium influences 

the local response to medical therapy for plaque regression. Bruining et al. performed 

IVUS in 118 patients randomized to treatment with perindopril or placebo.24 Patients 
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with little calcium showed plaque regression on perindopril treatment, whereas 

patients with moderate calcium showed no change in atherosclerosis. This led to the 

concept that coronary calcium content should be considered in quantitative analysis 

of therapy effect in atherosclerosis regression studies and need accurate assessment.

By quantifying the acoustic shadow, the presented algorithm can enhance the as-

sessment of DC in VH. By applying the algorithm, there is a small trade-off in the 

agreement of NC, but there is no significant difference in NC variance between VH 

and eVH as shown in the last column of Table 2. Potentially, this novel tool provides 

better applicability of VH for DC assessment.

Limitations

Although results of the presented study show that the VH results can be enhanced to 

improve correlation and bias of DC with QCT, there are some limitations. The post-

processing step was applied on VH data and analyses from a single-centre. The influ-

ence of the post-processing step on the output of different IVUS catheters/vendors is 

unknown, specifically if iMap would benefit in the same degree of this approach.11 

The agreement for FI and FF became less with the novel algorithm. However, for 

clinical purpose accurate assessment of DC and NC is of greater value. Both NC and 

DC on VH are associated with ACS presentation or plaque rupture, whereas FI and 

FF are not.1,25

For this comparison, the QCT was used as the gold standard. However, the segmen-

tation of plaque areas and the tissue classification in QCT is influenced by blooming 

artefacts. Also, bias between both modalities is always present because of the differ-

ence in segmented plaque volumes. QCT overestimates the plaque volume by an un-

derestimation of the lumen volume and a slight overestimation of vessel wall volume 

compared with IVUS.6 A direct comparison between the plaque characterization in 

VH and OCT or histopathology could provide further insights into the distribution of 

DC in areas within the acoustic shadows.26

Conclusion

Although tissue characterization within the acoustic shadow in VH is unreliable, an 

automatic post-processing step to quantify the acoustic shadow in order to add these 

regions to the calcified tissue enhances the agreement with QCT DC characterization.
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Abstract

Purpose: Potentially, Agatston coronary artery calcium (CAC) score could be calcu-

lated on contrast CTA. This will make a separate non-contrast CT scan superfluous. 

This study aims to assess the performance of a novel fully automatic algorithm to 

detect and quantify the Agatston CAC score in contrast CTA images.

Methods: From a clinical registry, 20 patients were randomly selected for each 

CAC category (i.e. 0,1-99,100-399,400-999,≥1000). The Agatston CAC score on 

non-contrast CT was calculated manually, while the novel algorithm was used to 

automatically detect and quantify Agatston CAC score in contrast CTA images. The 

resulting Agatston CAC scores were validated against the non-contrast images.

Results: A total of 100 patients (60±11 years, 63 men) were included. The median CAC 

score on non-contrast CT was 145(IQR 5-760), whereas the contrast CTA CAC score 

was 170(IQR 23-594) (P=0.004). The automatically computed CAC score showed a 

high correlation (R=0.949; P<0.001) and intra-class correlation (R=0.863; P<0.001) 

with non-contrast CT CAC score. Moreover, agreement within CAC categories was 

good (Kappa 0.588).

Conclusion: Fully automatic detection of Agatston CAC score on contrast CTA is 

feasible and showed high correlation with non-contrast CT CAC score. This could 

imply a radiation dose reduction and time saving by omitting the non-contrast scan.
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Introduction

Coronary artery disease (CAD) is one of the leading causes of death worldwide.1 

Coronary artery calcium (CAC) is a representative marker of the overall coronary 

atherosclerosis burden.2 The amount of coronary artery calcium is routinely detected 

and quantified on a non-contrast computed tomography (CT) scan according to the 

Agatston scoring approach.3, 4 This Agatston CAC score has been demonstrated to 

have prognostic value for cardiovascular events, independent of age, ethnicity and 

sex.5-10 However, for the estimation of severity and extent of coronary stenosis a 

contrast computed tomography coronary angiography (CTA) has to be performed.11, 12 

This technique allows evaluation of coronary stenosis with good accuracy compared 

to invasive coronary angiography.13-16 Moreover, contrast CTA provides accurate 

visualization of the coronary vessel wall and allows assessment of coronary plaque 

constitution. 

In current clinical practice, a non-contrast CT scan is often performed to quantify 

the Agatston CAC score. Subsequently, depending on the clinical question, a contrast 

CTA scan is performed to assess coronary stenosis severity. While the non-contrast 

CT scan and contrast CTA are performed separately, they both contribute to radia-

tion exposure.17 Since calcified lesions can be distinguished on contrast CTA, it is 

conceivable that contrast CTA images could be used to detect coronary calcium and 

calculate the Agatston score. If Agatston CAC score calculation on contrast CTA im-

ages is accurately achievable, it could result in making a separate non-contrast CT 

scan superfluous, hence resulting in a decrease in cost, time and radiation exposure. 

Previous studies have addressed this topic, aiming to assess the potential of software 

tools to quantify CAC on CTA datasets, however, these algorithms required (partial) 

manual interference or provided moderate results.18-22 Recently, using a novel soft-

ware algorithm, fully automatic quantification of the Agatston CAC score on contrast 

CT has become feasible. However, the accuracy of this tool has yet to be determined. 

Therefore, the aim of this present study was to 1) assess the feasibility of a novel tool 

to fully automatically detect and quantify CAC in contrast CTA images, and calculate 

the Agatston CAC scores and 2) to compare the derived Agatston scores with Agatston 

CAC scores obtained from traditional non-contrast CT scans and assess the agreement 

per Agatston CAC score risk category. 3) The contribution of the non-contrast CT to 

the overall radiation exposure was calculated.
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Methods

Patients and study protocol 

The population consisted of 100 patients from an ongoing clinical registry. Per 

Agatston CAC score risk categories (i.e. 0, 1-99, 100-399, 400-999,  ≥1000), 20 

patients, with sufficient image quality of the non-contrast CT and the contrast CTA, 

were randomly selected to ensure an equal distribution. These patients had known 

or suspected CAD and were clinically referred for the evaluation of chest pain to the 

Leiden University Medical Center, between 2008 and 2012. All patients underwent a 

non-contrast CT scan followed by a contrast CTA.

Patients with previous, myocardial infarction, percutaneous coronary intervention 

(PCI) or coronary artery bypass graft surgery (CABG) were excluded. The clinical data 

were prospectively entered into the departmental Cardiology Information System 

(EPD-Vision©, Leiden University Medical Center, the Netherlands) and retrospec-

tively analyzed. The Institutional Review Board of the Leiden University Medical 

Center approved this retrospective evaluation of clinically collected data, and waived 

the need for written informed consent. 

Cardiac CT and CTA acquisition 

Patients were scanned with either a 64-slice CT scanner (Aquilion 64, Toshiba Medi-

cal System, Otowara, Japan) or a 320-row volumetric scanner (Aquilion ONE, Toshiba 

Medical System, Otowara, Japan). Contra-indications for CTA were, 1) impaired renal 

function (glomerular filtration rate< 60), 2) pregnancy, 3) (supra-) ventricular arrhyth-

mias, 4) known allergy to contrast agent, 5) severe claustrophobia. Prior to CT exami-

nation, beta-blocking medication was administered if the heart rate was ≥65 beats per 

minutes, unless contra-indicated. Patients received 0.4 mg of nitrates sublingual prior 

to the scan. Non-contrast CT and contrast CTA were performed according to standard 

clinical practice.23, 24  For assessment of the CAC-score on non-contrast CT, images 

with a 3mm slice-thickness were reconstructed. Scan parameters for 64-slice CTA 

were 400ms gantry rotation time, collimation of 64x0.5mm, tube voltage of 100-135 

kV and tube current of 250-350mA, depending on body mass index. Scan parameters 

for 320-row CTA were 350ms gantry rotation time, collimation of 320 x0.5mm, tube 

voltage of 100-135 kV and tube current of 400-580mA, depending on body mass 

index. Images were acquired prospectively and reconstructed at 75% and at the best 

phase of the R-R interval.25 Radiation dose was calculated with a dose-length product 

conversion factor of 0.014 mSv/(mGy x cm).26  
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Quantification of Agatston CAC score on non-contrast CT scan

The standard non-contrast CT scan was made to manually assess the total amount of 

CAC in the coronary arteries, defined according to the Agatston CAC-scoring method. 

To analyze the CAC score, the collected images were transferred to a workstation 

for evaluation using dedicated post-processing software (CalcSore v1.1.1 by Medis 

specials bv). Coronary calcified lesions were manually selected and quantified in 

non-contrast CT scans with a threshold of 130 Hounsfield Unit (HU). 

Quantification of Agatston CAC score on contrast CTA

Prior to coronary artery calcium quantification, image quality of both non-contrast 

CT and contrast CTA was assessed using the following ordinal scale: good image 

quality, moderate image quality or poor image quality. Image data sets without mo-

tion artefacts or increased image noise were evaluated as good quality datasets with 

motion artefacts or increased image noise were classified as moderate. Clinically 

non-diagnostic scans were classified as poor image quality and were excluded.

A novel algorithm for fully automatic detection and quantification of the calcium 

volume and Agatston CAC score on the contrast CTA datasets was developed. The 

Agatston CAC score was automatically derived in the following steps:

1. The coronary tree was automatically extracted from the CTA dataset using a 3D 

vessel-tracking algorithm.27 

2. Using an automatic tree labeling algorithm, the segments of the coronary tree 

were automatically labeled according the AHA 17-segment model.27-29 Subse-

quently, the four main coronaries, i.e., right coronary artery (RCA), left main (LM) 

artery, left anterior descending (LAD) artery and left circumflex (LCx) artery and 

corresponding side-branches were identified based on this labeling result. Multi-

planar reformations (MPRs) were created based on the centerlines of the detected 

coronaries. An experienced observer verified the extracted and labeled coronary 

tree.

3. To automatically detect and quantify CAC, a novel algorithm was used to identify 

the presence of calcium in the coronary arteries. A reference trend line on the 

lumen intensity values along the centerline was fitted for each individual vessel, 

ranging from the proximal to the distal part of the vessel. After this, only the pixels 

near the centerline with intensity values higher than the reference trend line are 

considered to be calcified and selected for further processing using and advanced 

region growing scheme (Figure 1.)

4. All detected calcified pixels in the MPRs are projected back into the original 

volume. Any emerging gaps within projected spots are filled if needed. Next, the 

volume is resampled to have a slice thickness of 3 mm. 
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5. Based on the detected CAC volumes for each of the four main coronaries and 

side-branches, the Agatston CAC score was automatically calculated using a 

predefined conversion factor of 2.74.19 

An example of the automatic CAC assessment on contrast CTA with corresponding 

non-contrast CT reference is depicted in Figure 2. 

First, the Agatston CAC scores derived from contrast CTA using the novel software 

tool were compared to the Agatston CAC score from non-contrast CT as a refer-

ence. Second, differences in performance of the software per coronary vessel were 

assessed. Third, the agreement between the two methods per Agatston CAC score risk 

category was assessed. Last, the contribution of the non-contrast CT to the overall 

radiation exposure was calculated. 

Statistical analysis

Continuous data are presented as mean ± SD if normally distributed or as median 

(interquartile range, IQR) if non-normally distributed. Categorical data are presented 

as absolute numbers and percentages. A comparison was made between the non-

contrast CT Agatston CAC score and the contrast CTA Agatston CAC score.  Non-

Figure 1. Method for automatic coronary calcium detection.
Example of the method for automatic coronary calcium detection. Panel A shows an MPR with two 
calcified coronary lesions (white arrows). Panel C demonstrates the luminal intensities plot. The x-axis 
represents the distance from the coronary ostium, the y-axis represents the peak intensity along the 
centerline (HU). The red line is the trendline of this plot. Large deviations from this trendline are con-
sidered coronary calcium (white arrows) Panel B demonstrates a cross-sectional view of the coronary 
artery with the detected coronary calcium marked in bleu. The yellow line indicates the coronary lu-
men border. 
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parametric tests were used to compare the absolute difference between the CAC score 

derived from non-contrast CT scan and contrast CTA. A non-parametric correlation 

(Spearman) and intra-class correlation (ICC) were used to calculate the correlation 

between the two methods. An ICC less than 0.4 indicated poor correlation, an ICC 

between 0.4 and 0.75 indicated fair to good  correlation, and an ICC greater than 

0.75 indicated excellent correlation.30 Thereafter,  the Bland-Altman method was 

used to assess the  limits of agreement for the Agatston CAC score between the two 

methods.31 The Bland-Altman was calculated for both absolute and percentage differ-

ences. For clarity, a magnified view of the Bland-Altman plot with an X-axis range up 

to 1000 was provided. The agreement within the Agatston CAC score risk categories, 

was evaluated using the weighted kappa (k) statistics. Poor, fair-to-good and excellent 

were defined by a k-value of <0.4, between 0.4 and 0.75, and > 0.75, respectively.32 

All statistical tests were two-sided and a P-value <0.05 was considered statistically 

A B 

C 
D 

B 

D 

Figure 2. Patient example of coronary calcium detection with both methods.
A 66 year old male patient with calcified coronary plaque in the LAD. Panel A illustrates the coronary 
artery calcium (CAC) on the non-contrast CT scan (arrows). Panel B depicts the manual detection of 
the calcified lesions on the same non-contrast CT scan. Panel C shows CAC in the same patient on 
the contrast CTA scan. Panel D depicts the automatic detection and quantification of the calcium on 
the contrast CTA scan with a novel fully automatic algorithm. The Agatston CAC score was 63 on the 
non-contrast CT scan and 58 on the contrast CTA scan as assessed with the fully automatic algorithm.
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significant. All statistical analyses were performed with SPSS software (Version 20.0, 

SPSS Inc., Chicago, Illinois).

Results 

Patient population

The total patient population consisted of 100 patients with a mean age of 60 ± 11 

years and 63 patients (63%) were male. The clinical baseline characteristics of the 

patients are listed in Table 1. Hypercholesterolemia was observed in 33% of patients, 

and 21% of patients presented with obesity. Of the 100 scans, 54 were classified as 

good; the remaining 46 were classified as moderate quality. 

Table 1. Patient characteristics. 

Baseline characteristics Total (N = 100)

Age (yrs) 60 ± 11

Gender (% male) 63 (63%)

Cardiovascular risk factors 

 Hypertension† 38 (38%)

 Hypercholesteromia‡ 33 (33%)

 Diabetes mellitus 31 (31%)

 Family history of CAD* 33 (33%)

 Current Smoker 15 (15%)

 Obesity (BMI ≥ 30 kg/ m2) 21 (21%)

Agatston CAC score (non-contrast CT) images) 606 ± 997
=-

145 (IQR 5 – 760)

Data are represented as mean ± SD, median (interquartile range) or as number and percentages of 
patients.
†Defined as systolic blood pressure ≥140 mmHg or diastolic blood pressure ≥90
mmHg or the use of antihypertensive medication.
‡Serum total cholesterol ≥230 mg/dL or serum triglycerides ≥200 mg/dL or treatment with lipid lower-
ing drugs. 
*Defined as the presence of coronary artery disease in first-degree family members at <55 years in men 
and <65 years in women.
Abbreviations:  BMI: body mass index, CAD: coronary artery disease, CAC: coronary artery calcium, 
CT: computed tomography, IQR: interquartile range.
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Agreement between non-contrast CT and contrast CTA Agatston CAC 
score

The median Agatston CAC score on non-contrast CT was lower compared to the Ag-

atston CAC score on contrast CTA (145(IQR 5-760) and 170(IQR 23-594), P=0.004, 

respectively) (Table 2). Overall, the median difference was 0 (-217-35). 

 The correlation between the non-contrast CT- and contrast CTA Agatston CAC 

score is displayed in Figure  3. The Agatston CAC score on non-contrast CT was 

highly correlated with the contrast CTA Agatston CAC score (R=0.949, P<0.001 and 

ICC=0.863, P<0.001). The correlation was similar between scans of good image qual-

ity (R=0.934) and moderate image quality (R=0.949). The correlation was similar for 

patients scanned with 100kV (n= 13), R=0.994, P<0.001, 120 kV (n=72), R=0.935, 

Table 2. Agreement between the Agatston CAC score derived from non-contrast CT and contrast CTA 
per coronary vessel.

Coronary 
artery

Non-contrast
Agatston CAC score
Median (IQR)

Contrast CTA
Agatston CAC score
Median (IQR)

P-value Correlation (R), 
(P-value)

ICC, 
(P-value)

LM 0 (0-37) 0 (0-13) 0.160 0.513, (P<0.001) 0.757, 
(P<0.001)

LAD 83 (1-369) 86 (0-281) 0.371 0.894,(P<0.001) 0.854, 
(P<0.001)

RCA 16 (0-251) 33 (0-150) 0.001 0.827, (P<0.001) 0.793, 
(P<0.001)

LCX 4 (0-53) 11 (0-65) 0.703 0.754, (P<0.001) 0.851, 
(P<0.001)

Total 145 (5-760) 170 (23-594) 0.004 0.949, (P<0.001) 0.863, 
(P<0.001)

Abbreviations: CT: computed tomography, CTA: computed tomography coronary angiography, ICC: 
Intra-class correlation, IQR: Interquartile Range, CX: circumflex artery, LAD: Left anterior descending 
artery, LM: Left main, RCA: Right coronary artery.

   







 

    





 


 





 



 




     
















    





 


 





 



 




Figure 3. Correlation between non-contrast CT Agatston CAC score and contrast CTA Agatston CAC 
score. 
The left figure shows the full range scatter plot. The right figure shows a magnified view of the non-
contrast CT Agatston CAC score up to 1000.
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P<0.001, or 135 kV (n=15), R=0.960, P<0.001. For all three kV settings the ICC 

between the non-contrast CT and contrast CTA CAC score was 0.784. 

 The Bland-Altman analysis of the Agatston CAC score as assessed with both 

methods is shown in Figure 4. The non-contrast CT Agatston CAC score was lower 

compared to the contrast CTA Agatston CAC score as demonstrated by a bias of -176 

with 95%-limits of agreement ranging from -1248 to 896. The bias on a percentage 

basis was 3% with 95%-limits of agreement ranging from -174% to -168%. As dem-

onstrated in the Bland-Altman analysis the absolute error increases with increasing 

CAC-scores (lower panels). However, on a percentage basis this trend is not observed 

(upper panels).  

The per-vessel analysis, as described in Table 2, demonstrated similar results. Cor-

relations for LAD, RCA and LCX were 0.894, 0.827 and 0.754, respectively (P<0.001). 

    















 







 





 









 

 






 


 




 


 






 


 





 




 




   
     















   


 







 





 









 

 






 


 




 


 






 


 





 




 




    












   








 





 










 
 







 


 



 


 







 


 





 



 




     












   








 





 










 
 







 


 



 


 







 


 





 



 




Figure 4. Bland-Altman of non-contrast CT Agatston CAC score and contrast CTA Agatston CAC score. 
The left panel shows the Bland-Altman plot.  De dotted vertical lines represent the bias with corre-
sponding 95% limits of agreement. The right panel shows a magnified view of the same Bland-Altman 
plot with an X-axis range of 1000. In the two upper panels the Y-axis represents the percentage differ-
ence of the Agatston CAC score between the two methods. In the lower two panels the Y-axis represents 
the absolute difference.
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However, the correlation for LM CAC score was lower (R=0.513, P<0.001) compared 

to the correlation for the overall CAC score. Except for RCA, there were no significant 

absolute differences between non-contrast CT Agatston CAC score and contrast CTA 

Agatston CAC score per vessel.  

Agreement within Agatston CAC score risk categories

The agreement between the two methods within the traditional Agatston CAC score 

risk categories was assessed and depicted in Table 3. The fully automatic algorithm 

used on contrast CTA classified 67/100 patients (67%) in the same cardiovascular risk 

category compared with the non-contrast CT Agatston CAC score. Of the remaining 

33 (33%) patients, 10 (10%) shifted to a higher category and 23 (23%) to a lower 

category. Importantly, of the 20 patients with a non-contrast CT Agatston CAC score 

of 0, 18 (90%) patients were accurately classified as CAC score of 0 on the contrast 

scan. Only two patients shifted to a higher category, these patient had a contrast CTA 

Agatston CAC score of 11 and 14.  Furthermore, in the CAC score category of 1-99, 

14 (70%) patients remained in the same category while 3 (15%) patients shifted to a 

lower category and 3 (15%) patients to a higher category. In the category 100-399, 

11 (55%) patients remained in the same category, while 5 (25%) patients shifted to a 

lower category of 1-99 and 4 (20%) patients shifted to a higher category of 400-999. 

Of the 20 patients in the category 400-999, 10 (50%) patients remained in the same 

category after calcium scoring on CTA images, while 9 (45%) patients shifted to a 

Table 3. Agreement within CAC score risk categories between the contrast CTA Agatston CAC score 

and the non-contrast CT Agatston score.

Non-contrast CT Agatston CAC score

Category 0 1-99 100-399 400-999 ≥1000 Total

Contrast CTA
Agatston CAC score

0 18 3 0 0 0 21

1-99 2 14 5 1 0 22

100-399 0 3 11 8 0 22

400-999 0 0 4 10 6 20

≥1000 0 0 0 1 14 15

Total 20 20 20 20 20 100

Same 18 14 11 10 14 67

Shift up 2 3 4 1 0 10

Shift down 0 3 5 9 6 23

The underlined numbers indicate agreement between both methods. 
Abbreviations: CAC: coronary artery calcium, CT: computed tomography, CTA: computed tomography 
coronary angiography.
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lower category and 1 (5%) patient to a higher category of ≥1000. Lastly, 6 (30%) 

patient in the risk category of ≥1000, shifted to a lower category. Overall, the agree-

ment within the Agatston CAC score risk categories was good (k= 0.588). This was the 

same for scans with good (k= 0.578) and fair (k= 0.586) image quality. 

Radiation dose

In total, the mean radiation dose was 9.10 ± 5.78 mSv. For non-contrast CT the radia-

tion dose was 1.39 ± 0.39 mSv and for the contrast CTA 7.60 ± 5.78 mSv. On average, 

the radiation dose of the non-contrast CT was 20% of the total radiation exposure.  

Discussion 

The present study assessed the feasibility and accuracy of a novel software tool for 

fully automatic detection of CAC and subsequent quantification of the Agatston CAC 

score on contrast CTA images. The automatic algorithm was evaluated by using the 

non-contrast CT Agatston CAC score as a reference standard.  The Agatston CAC score 

derived from contrast CTA was well-correlated with non-contrast CT Agatston CAC 

score. Moreover, even though a third of the patients were reclassified in a different 

CAC-risk category, the overall agreement within the traditional Agatston CAC score 

risk categories was good, thus providing accurate assessment of cardiovascular risk 

in correspondence with the Agatston CAC score derived from non-contrast CT. Based 

on these results, the novel software tool allows for accurate quantification of CAC 

on contrast CTA and could thus provide an important prognostic and well validated 

marker of risk. Omitting the non-contrast CT from the scan protocol could have 

potentially reduced the radiation exposure in this study cohort by 20%. 

Contrast CTA conversion factor

Different voxel size, contrast attenuation and applied threshold for calcium scoring 

influences the Agatston CAC score between the non-contrast CT images and contrast 

CTA.20, 21, 25, 33, 34 To adapt for this difference, a conversion factor is required. This 

factor was previously established by Mylonas et al.19 For this purpose, 92 patients 

underwent both a non-contrast CT scan and contrast CTA scan to measure CAC. 

Using linear regression analysis, a conversion factor of 2.74 for the CAC score on 

contrast CTA was established. A subsequent validation study in 47 patients, revealed 

an excellent correlation between Agatston CAC score derived from non-contrast CT 

and contrast CTA after applying the predefined conversion factor. The same conver-

sion factor was used in the present study to calculate the Agatston CAC score on 

contrast CTA. 
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Different methods for quantification of CAC score on contrast CTA

Several previous studies have focused on the feasibility of assessing and computing 

the CAC scores from contrast CTA images.18-22, 35 The main challenge in all these stud-

ies was to establish an accurate method to differentiate between CAC and coronary 

artery luminal contrast. 

Manual delineation of CAC.
Manually segmentation of  CAC from the contrast filled lumen by delineating the 

calcified spots was performed by Bijl et al. in 100 patients, of which 50 presented 

without  CAC36. To derive the Agatston CAC score from contrast CTA images, calcifica-

tions were manually delineated and thereafter quantified with a HU threshold of 130 

for each voxel within the marked area. The CAC score, derived from the contrast CTA, 

was well correlated with non-contrast CT CAC score. Similar to the present study, 

in only a small number of patients with a non-contrast CAC score of zero, CAC was 

detected on contrast CTA. Even though manual input was needed, the inter-observer 

agreement was as excellent for the CTA-derived Agatston scores.

Fixed HU thresholds.
Another method to differentiate between CAC and contrast was sought in increasing 

the HU threshold for CAC detection hence avoiding the need for manually drawn 

contours.  Glodny et al. used a detection threshold of 600 HU to compute the Ag-

atston CAC on CTA images.20 Although the increased attenuation threshold revealed 

an excellent correlation for the Agatston CAC score between non-contrast CT and 

contrast CTA, an overall underestimation of the calcium scoring in CTA images was 

observed. The authors provide no detail on the CAC-risk categories. In contrast, Hong 

et al. selected 50 patients to derive a Agatston CAC score on contrast CTA images, 

with a detection threshold of 350 HU.21 In this study, the CAC score on contrast CTA 

was significantly overestimated.  The under- and overestimation of the Agatston CAC 

score in the previous studies can be the result of inadequate threshold definitions 

in some patients. Luminal contrast could have exceeded the HU threshold level, 

thereby being detected as coronary artery calcium, or vice-versa, CAC being mistak-

enly characterized as luminal contrast.

Patient specific HU thresholds.
Previous publications have indicated that HU threshold for coronary plaque quan-

tification are dependent on luminal contrast intensity and CT scan protocol.33, 37 To 

account for this, a scan (or patient) specific threshold could be preferable. Mylonas 

et al. determined the HU threshold for CAC scoring based on contrast attenuation.19 

For this purpose, the calcium detection threshold was set at aortic attenuation (HU) 
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+ 2 standard deviations (SD). In this study, an excellent correlation was observed 

between CAC score on contrast CTA and non-contrast CT. Moreover, 83% of patients 

were classified in the same CAC risk category. However, this method needed manual 

threshold determination and manual CAC selection.

Similarly, Bischoff et al. used 150% of the mean attenuation (HU) in the ascending 

aorta as a threshold.22 An excellent correlation was observed between CAC score 

based on contrast CTA compared to non-contrast CT and  >90% of patients were 

classified in the same CAC risk category. However, manual interference forms part of 

the method; the study used a manual threshold determination and semi-automated 

system for CAC scoring. 

Advanced algorithms.
In the present study, a novel HU adaptive algorithm was used. This trend-line based 

algorithm facilitates patient specific calcium detection that adapts itself to the contrast 

attenuation. Similar to the present study, Ebersbergen et al. described a tool to fully 

automatically derive coronary artery calcium scores from contrast CTA studies in a 

cohort of 127 patients.35 This study used an automated model-based image process-

ing algorithm, whereas the present study used an algorithm based on HU intensities. 

Ebersbergen et al. demonstrated no significant difference in Agatston CAC scores 

between non-contrast CT calcium scoring and contrast coronary CTA. Moreover, a 

significant relation was noted between both methods as well as good agreement 

within the CAC score risk categories. Similar to our study, the approach of Ebersber-

gen et al. underlined the superiority of advanced algorithms for CAC scoring on CTA. 

These algorithms are accurate, reproducible and provide a patient specific approach, 

adaptive to luminal contrast attenuation. 

Clinical implications

Risk classifications.
The prognostic value of CAC score has been extensively studied.10, 23, 38, 39 For this 

purpose the CAC score is usually stratified into risk categories.23, 39 An increase in 

mortality was observed per increment in CAC score risk category.10, 38, 39 For clinical 

purpose, accurate determination of the CAC score risk category is sufficient for risk 

classification of patients (i.e. the exact CAC score is less important). In this study, a 

good agreement within the Agatston CAC risk categories was observed. This indicates 

that quantifying the Agatston CAC score on contrast CTA is sufficiently accurate for 

clinical decision making. In addition to the clinical value of the CAC score, the prog-

nostic value of CAC progression has been established.40, 41 However, in the present 
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study, no serial CAC-score or CTA were available. Therefore, the accuracy of the 

assessment of CAC progression could not be established.   

Radiation exposure reduction.
The risk of cancer per 10.000 CAC scans in female patients of 50 years old is 

3/10,000.42 Even though this number seems relatively small, it is estimated that the 

incidence of cancer induced by non- contrast CT for CAC score in the United States is 

around 80-400 per year. In the present patient cohort there is potential for 20% radia-

tion dose reduction, if the non-contrast CT scans are excluded from the protocol. 

Recently, modifications to contrast CTA scan protocol have resulted in decreased 

radiation dose, thus reducing CTA radiation exposure.43 These radiation dose reduc-

tion advances could not contribute to less radiation exposure by the non-contrast 

CT scan because the Agatston CAC score requires a fixed scan protocol.  Therefore, 

with the current low-dose scan protocols the radiation dose of the non-contrast CT is 

relatively high and the gain of omitting the non-contrast CT from the scan protocol 

even greater.

Limitations

Some limitations of the present study need to be considered. For this analysis, patients 

with poor quality images were excluded for the detection and quantification of Ag-

atston CAC score on contrast CTA. It is unclear how the software tool would perform 

in datasets with high noise levels or severe motion artifacts. In this study the algorithm 

performed suboptimal in the RCA. This coronary artery is most affected by motion 

during the cardiac cycle and therefore more prone for motion artefacts.44 Moreover, 

the relative lower correlation for LM calcifications could be due to low number of 

patients (n=38) with a positive CAC score in the LM. The observer variability for 

the assessment of the CAC-score on non-contrast CT was not assessed in this study. 

However, this method is widely used and accepted as a robust measurement. The 

observer variability for the contrast CTA CAC-score could not be assessed since this 

was a fully automatic method. All cardiac CTA datasets were performed with either a 

64-slice CT scanner or a 320-row volumetric scanner from one vendor. Therefore, the 

applicability of this algorithm to datasets acquired on other vendor machines needs 

to be further studied.  Differences in the detection of the Agatston CAC score between 

non-contrast CT and contrast CTA could have been caused by the difference in image 

slice thickness.45 CAC in non-contrast CT is visually detected in the axial plane in 3.0 

mm reconstructed images, whereas CAC in the contrast CTA scan was detected on 

MPRs based on images with a 0.5 mm slice thickness. Due to this difference, calcified 

spots located in-between slices of the non-contrast CT are detected on the contrast 

CTA, resulting in an overestimation of CAC score on contrast CTA. In clinical prac-
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tice, observers could perform an additionally manual verification of the contrast CTA 

Agatston CAC scores, thereby reducing the number of false positive/negative results. 

For the present study a predefined conversion factor was applied based on a previous 

study.19 It is expected that a conversion factor specific for the present algorithm would 

have provided even higher correlations and better agreement. 

Conclusion

A fully automatic detection and quantification of Agatston CAC score on contrast CTA 

is feasible and shows an excellent correlation with the Agatston CAC score derived 

from non-contrast CT. Furthermore, a good agreement was obtained between the 

non-contrast CT and the contrast CTA within the Agatston CAC score risk categories. 

Importantly, the accuracy to rule-out CAC on contrast CTA compared to non-contrast 

CT was excellent. By virtue of the excellent correlation between both methods, this 

fully automatic system could be applied in future clinical practice, thereby saving 

time on manual interpretation and potentially reduce radiation exposure, by obviat-

ing the need for a separate non-contrast CT scan. 
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Abstract

Purpose: Automated software tools have permitted more comprehensive, robust and 

reproducible quantification of coronary stenosis, plaque burden and plaque location 

of coronary computed tomography angiography (CTA) data. The independent asso-

ciation between these quantitative CTA parameters and the presence of myocardial 

ischemia has not been explored. The aim of the present investigation was to evaluate 

the association between quantitatively assessed parameters of coronary artery lesions 

(QCT) on CTA and the presence of myocardial ischemia on gated myocardial perfu-

sion single-photon emission computed tomography (SPECT).

Methods:Forty patients (mean age 58.2±10.9 years, 27 men) with known or suspected 

CAD who had undergone multi-detector row CTA and gated myocardial perfusion 

SPECT within 6 months were included. From CTA datasets, vessel and lesion-based 

visual analysis was performed. Consecutively, lesion-based QCT was performed to 

assess plaque length, plaque burden, percentage lumen area stenosis and remodeling 

index. Subsequently, the presence of myocardial ischemia was assessed using the 

summed difference score (SDS ≥2) on gated myocardial perfusion SPECT. 

Results:Twenty-five (62.5%) patients showed myocardial ischemia in 37 vascular ter-

ritories. Quantitative significant stenosis and quantitative assessment of lesion length 

were independently associated with myocardial ischemia (OR 7.72 [2.41 – 24.7], 

P <0.001 and OR 1.07 [1.00 – 1.45], P = 0.032, respectively) after correcting for clini-

cal variables and visually assessed significant stenosis. The addition of quantitative 

significant stenosis (χ2 = 20.7) and quantitative assessment of lesion length (χ2 = 26.0) 

to the clinical variables and the visual assessment (χ2 = 5.9) had incremental value in 

the association with myocardial ischemia.

Conclusion:Coronary lesion length and quantitative assessed significant stenosis 

were independently associated with myocardial ischemia. Both quantitative param-

eters have incremental value over baseline variables and visual significant stenosis. 

Potentially, QCT can refine assessment of CAD, which may be of potential use for 

identification of patients with myocardial ischemia. 
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Introduction

Computed tomography angiography (CTA) allows evaluation of coronary artery ste-

nosis with high image quality and diagnostic accuracy when compared to invasive 

coronary angiography.1-4 As CTA provides detailed information on coronary anatomy 

and stenosis, it has been proposed as a suitable rule-out test for the evaluation of low 

to intermediate risk patients with suspected coronary artery disease (CAD) 5. Although 

the degree of coronary luminal narrowing is of importance in patients with CAD, 

previous studies have shown that coronary stenosis is not an accurate predictor of 

myocardial ischemia.6 It has been previously reported that in 50% of patients with a 

significant stenosis, which was defined as ≥50% luminal narrowing on CTA, myocar-

dial ischemia was not detected on myocardial perfusion single photon emission com-

puted tomography (SPECT).6 Beyond coronary stenosis, additional coronary plaque 

parameters such as lesion extent, plaque composition as well as plaque location have 

shown to be significantly associated with myocardial ischemia.7, 8 However, these 

parameters are not systematically assessed in clinical practice and the assessment of 

CAD is mostly based on quantification of coronary artery calcium score and visual 

estimation of the luminal narrowing. Recent advances in post-processing MDCT 

data software have permitted automated quantification of coronary stenosis severity 

and plaque characteristics.9 This automated software provides good diagnostic ac-

curacy and reproducibility to assess significant coronary artery stenosis. Currently, 

the relation between quantitative CTA (QCT) derived parameters and the presence 

of myocardial ischemia on SPECT data is unknown. Accordingly, the present study 

aimed to assess the association between QCT parameters and presence of myocardial 

ischemia as assessed with myocardial perfusion SPECT.

Methods

Patient population

Forty patients from an ongoing clinical registry who were referred for multi-detector 

row CTA and stress-rest gated myocardial perfusion SPECT (performed within 6 

months) were included. Only patients with sufficient image quality of both modalities 

were selected. Cardiovascular risk factors and cardiac medication were derived from 

medical record data. Known CAD was defined as a history of myocardial infarc-

tion, or evidence of CAD on previously performed diagnostic tests. Patients who had 

undergone prior percutaneous coronary intervention or coronary artery bypass graft 

surgery were excluded. Patients with atrial fibrillation, renal insufficiency (glomerular 

filtration rate  <30 mL/min), known allergy to iodine-containing contrast agents or 
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pregnancy were also excluded. Also, patients with cardiac events or coronary revas-

cularization during the time elapsed between cardiac CTA and myocardial perfusion 

SPECT were excluded from further analysis.

The number of coronary plaques per vascular territory along with their location 

and characteristics were assessed visually from CTA. Subsequently, a novel auto-

mated post-processing imaging algorithm was applied which permits quantitative 

assessment of CTA datasets.  The most severe coronary lesion was identified in each 

coronary artery and QCT was performed to assess coronary stenosis parameters as 

described in Table 1. 

Stress-rest myocardial perfusion SPECT with 99mtechnetium tetrofosmin was per-

formed to assess the extent and location of myocardial ischemia. Myocardial ischemia 

was defined as a summed difference score (SDS) of ≥2.10 Clinical data were prospec-

tively entered into the departmental Cardiology Information System (EPD-Vision©, 

Leiden University Medical Center, the Netherlands) and retrospectively analyzed. 

The Institutional Review Board of the Leiden University Medical Center approved this 

retrospective evaluation of clinically collected data, and waived the need for written 

informed consent. 

Table 1: QCT derived parameters and their corresponding definitions.

QCT parameter Definition

Lesion length (mm) The distance between the proximal and distal 
ends of the coronary lesion

Mean plaque burden The sum of ((vessel wall area – lumen area) / 
vessel wall area) per slice / number of slices 

Minimal and maximal plaque thickness (mm) The minimal and maximal distance between the 
vessel wall and the lumen

Minimal Lumen Area (MLA) (mm2) The minimal lumen area at the point of maximal 
obstruction

Percentage lumen area stenosis at the level of 
the MLA (%)

1 - (MLA/corresponding reference lumen area)

Minimal lumen diameter (mm) The minimal lumen diameter (mm) at the point 
of maximal obstruction determined by the MLA

Diameter stenosis (%) The percentage diameter stenosis at the point 
of maximal obstruction determined by the MLA

Plaque burden at the MLA ((vessel wall area – lumen area) / vessel wall 
area) x 100% at the level of the MLA

Eccentricity index at the level of the MLA (maximum plaque thickness– minimum plaque 
thickness) / maximum plaque thickness 

Remodeling index at the level of the MLA Vessel wall area / corresponding reference 
vessel wall area at the level of the MLA), in 
which positive remodeling was defined as a 
remodeling index >1.0 32
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Cardiac CTA examination

Cardiac CTA imaging was performed using either a 64-detector row helical scanner 

(n=24) (Aquilion 64, Toshiba Medical Systems, Otawara, Japan) or a 320-detector 

row volumetric scanner (n=16) (Aquilion ONE, Toshiba Medical Systems, Otawara, 

Japan).

Patients with a heart rate above 65 beats/min received 50 or 100 mg metoprolol 

orally one hour before imaging, unless contraindicated. A non-contrast enhanced 

and contrast-enhanced scan was performed. Reconstructed images were transferred 

to a remote dedicated workstation with post-processing software (Vitrea FX 1.0, Vital 

Images, Minnetonka, MN, USA). The non-enhanced scans were used to assess the 

total amount of coronary artery calcium score according to the Agatston approach 11. 

CTA datasets were evaluated according during routine clinical practice independent 

of the quantitative CTA analysis. Image quality of the CTA scans was classified as: 

(1) good image quality (scans without motion artifacts), (2) moderate image quality 

(scans with motion artifacts or increased image noise) and (3) poor image quality 

(non-diagnostic scans); the last were excluded from the analysis. The number and lo-

cation of atherosclerotic plaques per vascular territory and plaque morphology were 

visually evaluated from CTA data sets. Significant coronary obstruction was defined 

as ≥50% luminal narrowing. Atherosclerotic plaques were morphologically classified 

as non-calcified (lesions with lower density compared to contrast-enhanced lumen), 

calcified (lesions with high density) or mixed (lesions having elements of both non-

calcified and calcified lesions).

Quantitative computed tomography coronary angiography 

Dedicated software (QAngioCT Research Edition, Medis Medical Imaging Systems, 

Leiden, the Netherlands) was used for automated quantification of all coronary le-

sions.9 The software automatically displays the centerline along the vessel and detects 

the contours of the lumen and vessel wall while allowing the observer to manually 

correct them if needed. First, a fast vessel-tracking algorithm was used to obtain the 

3-dimensional centerline (ranging from the proximal to distal marker) of the coronary 

artery. Based on this centerline, a straightened multi-planar reformatted (MPR) vol-

ume of the segment of interest was created. Consecutively, the lumen border contours 

and vessel wall borders were detected according to methods described previously.9 

The approach uses spatial first- and second-derivative gradient filters in combination 

with knowledge of the expected CT intensity values in the arteries; therefore, this 

method is insensitive to differences in attenuation values between data sets. Auto-

mated quantitative processing steps were independent from viewing settings. Next, 

automated quantification of each coronary lesion was performed. For each coronary 

lesion, reference lines for both lumen and vessel wall were generated using proximal 
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and distal non-diseased, non-bifurcated reference regions. The mean lumen or vessel 

wall area of these regions was used to define the reference slope for lumen and vessel 

wall contours, respectively. The reference lines for lumen and vessel wall represent an 

estimate of the normal proximal-to-distal tapering of the coronary artery. The minimal 

lumen area (MLA), the proximal start of the coronary lesion and the distal end of 

coronary lesion were automatically defined using the detected lumen contours and 

the difference with the normal tapering of the artery. A number of QCT parameters, 

listed in Table 1, were derived for each coronary lesion. In addition to coronary ves-

sels with atherosclerotic lesions, automated quantification of non-diseased coronary 

vessels was performed in the mid part of the coronary vessel, which was used as the 

best estimate of coronary luminal narrowing per non-diseased coronary artery. Le-

sions in diagonal branches were allocated to LAD, lesion in intermediate (IM) branch 

or marginal (OM) branch were allocated to CX. The reproducibility of QCT has been 

reported previously,9 showing good reproducibility of QCT for assessment of minimal 

lumen area and lumen area stenosis. 

Stress-rest gated SPECT

Gated myocardial perfusion SPECT with 99mtechnetium tetrofosmin (500 MBq, 

MYOVIEW, General Electric Healthcare, United Kingdom) was performed according 

to a 2-day stress-rest protocol. In patients who were able to exercise, a symptom-

limited bicycle test was performed. In patients unable to exercise, a pharmacologic 

stress test was performed with either adenosine or dobutamine infusion. Injection of 

the radiopharmaceutical was done at peak exercise; in the third minute of pharmaco-

logical stress induction for adenosine or at the maximum calculated target heart rate 

for dobutamine. Data-acquisition was performed with a triple-head SPECT camera 

system (GCA 9300/HG; Toshiba Corporation, Tokyo, Japan), equipped with low-ener-

gy high-resolution collimators, 45 minutes after injection of the radiopharmaceutical. 

A 20% window was used around the 140-keV energy peak of technetium-99m, after 

which the SPECT data were stored in a 64x64 matrix. 

Post-processing of stress- and rest-SPECT datasets was performed using previously 

validated automated software.12 Data-reconstruction was performed in vertical and 

horizontal long- and short-axis views perpendicular to the heart axis. The myocar-

dial segments were assigned to the different perfusion territories using a 20-segment 

model.13 Each segment was visually scored by an experienced observer (AJS) accord-

ing to the standard scoring scale of 0 to 4 (normal, mild, moderate, severe reduction 

or absence of tracer uptake).13, 14 To calculate the summed stress score (SSS) and the 

summed rest score (SRS), the total segmental perfusion scores during stress and rest 

were added, respectively. The summed difference score (SDS) was calculated as the 
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difference between the summed stress score and the summed rest score. Myocardial 

ischemia was defined as an SDS ≥ 2.10 

On a vessel basis, the presence of myocardial ischemia was assessed and allo-

cated to the corresponding vascular territory as previously described.15 Accordingly, 

myocardial ischemia of the anterior and septal wall was allocated to lesions in the 

left anterior descending coronary artery (LAD), whereas ischemia in the lateral wall 

was allocated to lesions in the left circumflex coronary artery (LCX). Furthermore, 

myocardial ischemia in the (postero) inferior wall was assigned to lesions in the right 

coronary artery (RCA). 

Statistical analysis

For reasons of uniformity, summary statistics for all continuous variables were pre-

sented as mean ± standard deviation (SD), whereas categorical variables were pre-

sented as frequencies and percentages. Vessel-based analysis was performed based 

on the most severe lesion per vessel according to the quantitatively assessed percent-

age lumen area stenosis. Independent-samples T tests were used to compare QCT 

parameters between patients with and without myocardial ischemia on SPECT. The 

agreement between both visual and quantitative assessment of significant coronary 

stenosis and SPECT was evaluated using the weighted kappa (k) statistics. Excellent, 

fair-to-good and poor agreement were defined by a k-value of > 0.75, between 0.4 

and 0.75, and < 0.4, respectively.16 To evaluate the association between baseline char-

acteristics, visual CTA parameters, QCT parameters and the presence of myocardial 

ischemia, multivariate regression analyses were performed. Myocardial ischemia was 

introduced as dependent variable. Relevant baseline clinical variables were entered 

into the first model. Variable selection was performed using a backward conditional 

method (entry, 0.05; removal, 0.10). Three nested models were subsequently created 

by introducing separately the following variables: visual significant stenosis (model 

2), quantitative significant stenosis (model 3) and quantitative assessed lesion length 

(model 4). For each variable in the model, an odds ratio (OR) with 95% confidence 

interval (CI) was calculated. The incremental value of the QCT parameters over 

clinical risk variables and visual assessed stenosis degree was assessed by compar-

ing the global χ2 values. The likelihood-ratio chi-square test was used to assess the 

significance of the incremental χ2 values.  All statistical tests were two-sided and a 

P-value <0.05 was considered to be statistically significant. All statistical analyses 

were performed with SPSS software (Version 20.0, SPSS Inc., Chicago, Illinois).
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Results

Patient population

A total of 40 patients (58.2 ± 10.9 years, 27 men) with known (n=16) or suspected 

(n=24) CAD were included. Of these patients, 16 (40%) presented with atypical chest 

pain, 12 (30%) with typical chest pain, the remaining 12 (30%) patients had diabetes 

and were evaluated because of an increased cardiac risk profile. The mean duration 

between cardiac CTA and gated myocardial perfusion SPECT examinations was 39.9 

± 42.2 days (median 33 days, interquartile range 10-52 days). Patients remained clini-

cally stable and no acute coronary events were recorded between evaluations. The 

clinical characteristics of the patients are listed in Table 2. 

Computed tomography coronary angiography

Visual CTA.
The mean coronary artery calcium score was 451±1490. In the overall patient 

population (n=40), 83 coronary arteries showed atherosclerosis and a total of 162 

Table 2. Patient characteristics.

Baseline characteristics n = 40

Age (years) 58.2 ± 10.9

Male 27 (67.5%)

Known CAD 16 (40.0%)

Cardiovascular risk factors

      Hypertension† 20 (50.0%)

      Hypercholesterolemia‡ 15 (37.5%)

      Diabetes mellitus 21 (52.5%)

      Family history of CAD* 17 (42.5%)

      Smoking 15 (37.5%)

      Body Mass index ≥30 kg/m2. 6 (15.0%)

Calcium score 450 ± 1490
28 (0-8730)

Left ventricular ejection fraction 61 ± 13

Data are represented as mean ± SD, median(range) or as number and percentages of patients.
†Defined as systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90
mm Hg or the use of antihypertensive medication.
‡Serum total cholesterol ≥230 mg/dL or serum triglycerides ≥200 mg/dL or treatment with lipid lower-
ing drugs. 
*Defined as the presence of coronary artery disease in first-degree family members at <55 years in men 
and <65 years in women.
Abbreviations: CAD, coronary artery disease
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coronary lesions were identified. Visual CTA analysis showed 57 (35%) non-calcified 

lesions, 71 (44%) mixed lesions and 34 (21%) calcified lesions. In total, 25 coronary 

arteries contained a visually assessed significant stenosis of ≥50% luminal narrowing. 

Quantitative CTA.
QCT was performed in all 162 lesions to assess quantitative stenosis parameters as 

described in Table 1. Subsequently, in the 83 coronary arteries with atherosclerosis, 

the most severe lesion per main vascular territory (using the quantitatively assessed 

percentage lumen area stenosis) was determined. In Table 3 the results of the quanti-

tative analyses of all coronary lesions and the most severe lesion per artery is demon-

strated. In addition, in the remaining 37 non-diseased coronary arteries, QCT analysis 

was performed in the mid part of the vessel, which was used as a representative of 

the coronary artery. In total, 45 coronary arteries contained a quantitative assessed 

significant stenosis of ≥50% luminal narrowing (defined according the percentage 

area stenosis).

Stress-rest gated myocardial perfusion SPECT

Gated myocardial perfusion SPECT showed a mean SRS of 2.8 ± 3.9, a mean summed 

stress score of 5.7 ± 6.3, and a mean SDS of 3.8 ± 4.9. Myocardial ischemia (SDS 

of ≥2) was observed in 25 (62.5%) patients. Using a 20-segment model, myocardial 

ischemia was present in 31% (n=37) of the 120 vascular territories. The remaining 

69% (n=83) vascular territories showed no ischemia. A comparison was made be-

tween vascular territories with ischemia versus vascular territories without ischemia. 

In vascular territories showing myocardial ischemia, lesion length, percentage lumen 

area stenosis, percentage lumen diameter stenosis, mean plaque burden and maxi-

Table 3. Quantitative analysis of coronary lesions. 

QCT parameter All coronary lesions 
(n = 162)

Most severe lesion 
per artery (n=83)

Lesion length (mm) 12.10 ± 8.99 12.48 ± 9.14

Mean plaque burden (%) 76.12 ± 7.78 76.90 ± 7.92

Maximal plaque thickness (mm) 2.33 ± 0.71 2.39 ± 0.77

MLA (mm2) 2.97 ± 2.19 2.70 ± 1.81

Percentage lumen area stenosis (%) 47.80 ± 18.65 52.76 ± 19.67

Minimal lumen diameter (mm) 1.84 ± 0.64 1.76 ± 0.60

Percentage diameter stenosis (%) 29.10 ± 13.79 32.90 ± 14.96

Plaque burden at the MLA (%) 82.30 ± 8.39 83.29 ± 8.59

Eccentricity index at the level of the MLA 0.60 ± 0.15 0.60 ±0.16

Remodeling index at the level of the MLA 1.05 ± 0.21 1.07 ± 0.23

Abbreviations: MLA, minimal lumen area
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mal plaque thickness were significantly higher when compared to vascular territories 

without myocardial ischemia (Table 4).

Agreement between visual significant stenosis and quantitative assessed 
stenosis versus myocardial ischemia

On a vessel-based analysis, the number of significant culprit coronary lesions (≥50% 

luminal narrowing) was significantly higher using QCT as compared to visual CT 

analysis (45 (37.5%) vs. 25 (20.8%), P<0.001). Importantly, myocardial ischemia 

was present in 22 (48.9%) of those significant lesions assessed with QCT (k = 0.30, 

P=0.001), whereas ischemia was only present in 9 (36.0%) of the significant lesions 

visually assessed (k = 0.06, P=0.53). Figure 2 represents an example of  a female pa-

tient with an obstructive lesion in the LAD coronary artery and myocardial ischemia 

on gated myocardial perfusion SPECT.

Independent association between quantitative coronary CTA parameters 
and myocardial ischemia on gated myocardial SPECT

To evaluate the independent association between visual CTA, quantitative parameters 

and myocardial ischemia, 4 nested multivariate models were created. In model 1, 

Table 4. Vessel based comparison of visual and quantitative CTA parameters between coronary arter-
ies of vascular territories with and without myocardial ischemia. 

Ischemia
(37 vascular territories)

No ischemia
(83 vascular territories)

P-value

Visual CTA (per vessel (n=120))

No. of lesionsº 1.76 ± 1.57 1.17 ± 1.19 0.026

No. of bifurcation lesionsº 0.46 ± 0.61 0.22 ± 0.44 0.015

No. of non-calcified lesionsº 0.59 ± 0.72 0.42 ± 0.65 0.195

No. of mixed lesionsº 0.84 ± 1.32 0.45 ± 0.78 0.045

No. of calcified lesionsº 0.32 ± 0.71 0.30 ± 0.66 0.863

QCT parameters (per vessel (n=120))

Lesion length (mm)‡ 13.41 ± 12.09 6.68 ± 7.32 <0.001

Mean plaque burden (%)‡ 75.27 ± 11.59 70.98 ± 9.85 0.039

Max. plaque thickness (mm)‡ 2.31 ± 1.08 1.75 ± 0.83 0.003

Lumen area stenosis (%)‡ 48.40 ± 27.81 35.04 ± 25.35 0.011

Lumen diameter stenosis (%)‡ 30.94 ± 20.00 21.17 ± 16.87 0.007

Eccentricity index‡ 0.54 ± 0.14 0.54 ± 0.18 0.846

Remodeling index‡ 1.10 ± 0.22 1.03 ± 0.20 0.406

Data are represented as mean ± SD. ºTotal number of lesions, bifurcation lesions, non-calcified, mixed 
and calcified lesions per vascular territory. ‡Results of the selected most severe lesion per vascular ter-
ritory.
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Figure 1. Bar graph of the multivariable models.
The bar graph shows the incremental value of quantitative CT parameters over visual CT in the associa-
tion with myocardial ischemia on gated myocardial perfusion SPECT on a vessel-basis (n=120). The 
presence of quantitative signifi cant stenosis (≥50% percentage area stenosis) showed a signifi cant in-
cremental value over conventional clinical risk variables and visual assessed signifi cant stenosis (≥50% 
stenosis). Furthermore, lesion length provided a signifi cant incremental value over both clinical risk 
variables and the presence of a quantitative signifi cant stenosis (≥50% percentage area stenosis.

Figure 2. An example of a 53 year-old female patient with an obstructive lesion in the left anterior 
descending (LAD) coronary artery.
The quantitative computed tomography (QCT) processing steps of the culprit lesion are illustrated be-
low. At fi rst, automated QCT was used to detect both lumen (yellow) and vessel wall (orange) contours. 
Longitudinal lumen and vessel wall contours are shown in panel A, whereas transversal lumen and 
vessel wall contours at the level of the minimal lumen area (MLA) are shown in panel B. Quantifi cation 
of the culprit lesion was performed using proximal (green) and distal (red) reference markers as well 
as lumen (yellow) and vessel wall (orange) reference lines, as illustrated in panel C. Stress-rest gated 
myocardial perfusion SPECT is shown in panel D. The patient had corresponding myocardial ischemia 
in the LAD vascular territory on gated myocardial perfusion SPECT. For this patient, summed rest score 
was 0 and summed stress score was 2, resulting in a summed difference score of 2. QCT showed a le-
sion length of 23.7 mm, percentage lumen area stenosis of 69.6% and a mean plaque burden of 81.5%.
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clinical baseline variables were entered using backward selection. Subsequently, the 

presence of significant coronary stenosis as assessed with visual CTA was introduced 

in model 2 and the presence of significant coronary stenosis and lesion length as-

sessed with QCT were included in models 3 and 4, respectively. The results of the 

4 nested multivariate models are described in Table  5. Visual CTA assessment of 

luminal narrowing was not independently associated with the presence of ischemia 

(OR=1.84, P=0.246). In contrast, the presence of a quantitative assessed significant 

stenosis and lesion length were independently associated with the presence of 

myocardial ischemia on gated myocardial SPECT when added to relevant clinical 

variables (OR=7.36, P<0.01 and OR=1.07, P=0.028). 

Furthermore the incremental contribution of all parameters was assessed as shown 

in Figure  1. Visual significant stenosis provided no significant contribution to the 

model over relevant baseline risk factors (χ2 change from 4.6 in model 1 to 5.9 in 

model 2, P=0.248). The introduction of quantitative significant stenosis in model 3 

provided a significant increase in χ2 over model 1 (from 15.9 to 20.8, P<0.01). Ad-

ditionally, introducing lesion length into model 4 provided significant increment over 

quantitative stenosis (increase in model χ2 = 4.2, P=0.022).

Discussion

The present study demonstrated that quantitative derived CTA parameters are associ-

ated with the presence of myocardial ischemia on gated myocardial perfusion SPECT.  

The QCT derived parameters, coronary lesion length, mean plaque burden, maxi-

mal plaque thickness, percentage lumen area stenosis, and presence of significant 

coronary stenosis (≥50% percentage lumen area stenosis) were significantly higher 

in coronary artery lesions of vascular territories presenting with myocardial ischemia 

(Table 4). Furthermore, both coronary lesion length and the presence of quantitative 

significant coronary stenosis showed a significant incremental value in the associa-

tion with myocardial ischemia independent of conventional clinical risk variables 

and the presence of a visual assessed significant stenosis (≥50% percentage lumen 

area stenosis). 

CTA has a high diagnostic accuracy for the non-invasive detection of coronary 

atherosclerosis, but a large percentage of lesions are not associated with ischemia on 

SPECT, since it is considered that non-obstructive coronary stenoses do not induce 

ischemia.17 However, various studies have shown that myocardial ischemia is not 

only dependent on the presence of obstructive CAD, pointing to other potentially 

important plaque characteristics.18-20 It has also been reported that diffuse atheroscle-

rosis contributes to myocardial ischemia,21, 22 in which plaque extent as well as the 
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number of diseased segments have been identified as important parameters for the 

prediction of myocardial ischemia.8

In this perspective, cardiac CTA represents a useful non-invasive imaging technique 

as it provides information beyond coronary obstruction, including plaque composi-

tion, plaque burden, lesion length as well as plaque remodeling. These plaque char-

acteristics have shown to be independently associated with the extent, severity and 

reversibility of myocardial ischemia,23 even showing an incremental predictive value 

for myocardial ischemia over the presence of obstructive CAD.8 

Quantification of plaque parameters including lesion length, degree of luminal ob-

struction, plaque burden and remodeling could be more accurate than visual assess-

ment to evaluate the coronary atherosclerosis burden and the risk of ischemic events. 

In addition, quantitative assessment may provide a more reliable and reproducible 

approach than visual estimation to evaluate and follow-up patients with coronary 

atherosclerosis.

Previous attempts in quantifying coronary stenosis using either manual24 or semi-

automated25,26 approaches have been suboptimal due to the large variability intro-

duced by manual interference as well as difficulties in quantifying heavily calcified 

lesions.

Thus far, the feasibility of a novel dedicated algorithm for automated quantification 

of stenosis severity on CTA has been demonstrated in comparison with quantita-

tive coronary angiography showing improved diagnostic accuracy for assessment of 

significant coronary lesions compared to visual CTA analysis 27. Furthermore, QCT 

showed good correlations with quantitative intravascular ultrasound (IVUS) for as-

sessment of coronary stenosis.9 Although the feasibility of automated QCT analyses 

has been demonstrated, no study has currently been performed evaluating the value 

of QCT in the association with the presence of myocardial ischemia on myocardial 

perfusion SPECT. The current study is the first study that has evaluated the correlates 

of QCT parameters, derived by a novel algorithm for automated quantification of 

coronary lesions, with myocardial ischemia. Vessel-based analysis showed that 

vascular territories with ischemia had a significantly higher number of coronary le-

sions, bifurcation lesions as well as mixed lesions. QCT plaque parameters including, 

lesion length, mean plaque burden, maximal plaque thickness, percentage lumen 

area stenosis and percentage lumen diameter stenosis were significantly higher in 

vascular territories showing ischemia as compared to vascular territories without 

ischemia. These results indicate the presence of a significant association between 

quantitatively derived plaque parameters, representing the extent and severity of 

atherosclerotic lesions, and the presence of myocardial ischemia. Furthermore, in 

the present study these quantitatively derived plaque parameters were significantly 

associated with the presence of myocardial ischemia. Once corrected for clinical 
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risk variables and visually assessed stenosis degree, both lesion length and the pres-

ence of a quantitatively assessed significant stenosis were independently associated 

with myocardial ischemia. These results are in line with previous studies showing a 

significant association angiographically assessed lesion length and stenosis severity 

with myocardial infarction.28 Additionally, the presence of quantitative significant 

coronary stenosis (with a cutoff percentage area stenosis of ≥50% luminal narrowing) 

showed incremental value in a nested multivariate model using myocardial ischemia 

as the endpoint, whereas, the visual assessment of significant lesions (≥50% luminal 

narrowing) did not. This underlines the hypothesis that QCT provides a more accurate 

lesion analysis as compared to a visual assessment of the CTA images. 

Furthermore, lesion length as a representative of diffuse atherosclerosis provided 

a significant incremental value over the clinical risk variables, visually assessed sig-

nificant stenosis and quantitative significant stenosis. These results are supported by 

earlier findings that the additive effect of multiple mild stenoses in series eventually 

causes perfusion defect.21 The increase in lesion length represents a more extensive 

atherosclerotic involvement of the coronary artery, which may lead to considerable 

more myocardial ischemic damage than might be the case with a short localized 

obstructive lesion.

In addition, the number of quantitatively assessed significant coronary stenosis 

was significantly higher compared to the number of visually assessed significant 

coronary stenosis. Even though the correlation between the presence of myocardial 

ischemia and stenosis degree assessed using either a visual approach or QCT was 

poor, there was a significantly improved association between QCT and myocardial 

ischemia when compared to visual CTA and myocardial ischemia. This discrepancy 

between visual and QCT for assessment of significant coronary lesions may indicate 

the importance of using a more accurate quantitative approach for CTA. Accordingly, 

QCT allows an improved and comprehensive evaluation of coronary plaques which 

may cause myocardial ischemia.

Limitations

Some limitations need to be considered. In the current study, the prevalence of myo-

cardial ischemia was relatively low on a vessel basis. It would have been preferred 

to evaluate the performance of QCT in a larger population with higher prevalence 

of ischemia. However, since CTA is generally performed in low to intermediate risk 

patients, the present cohort is representative for a general CT population. In addi-

tion, QCT was only used in CTA data sets with good or moderate image quality. 

Furthermore, the present study was subject to selection bias caused by the exclusion 

criteria for CTA and SPECT. Finally, patients underwent 64- or 320-slice CTA, and 

currently the diagnostic accuracy of these two techniques has not been evaluated 
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in a head-to-head comparison; on the other hand, individual 64- and 320-slice CTA 

studies reported similar diagnostic accuracy for detection of CAD5.

Clinical implications

Recent observations have emphasized the discrepancy between coronary artery ste-

nosis (severity) and the presence of ischemia. As recently demonstrated in the FAME 

trials,29, 30 fractional flow reserve (FFR) guided coronary revascularization is superior 

to angiographic stenosis assessment. Also, the DEFACTO trial31 demonstrated that 

assessment of FFR from the CTA images provides incremental value over stenosis 

degree assessment. At present, it is unknown if either stenosis severity or ischemia 

has the largest influence on prognosis. Possibly, additional characteristics of coronary 

lesions other than stenosis degree are more related to the presence of myocardial 

ischemia. As QCT provides an accurate and comprehensive assessment of coronary 

plaques together with an improved association with myocardial ischemia when com-

pared to visual CT, QCT can be used to improve the diagnostic value of cardiac CTA. 

Accordingly, it may result in improved risk stratification and less subsequent testing. 

It has been shown that non-invasive coronary angiography with cardiac CTA allows 

detection of CAD (i.e. the detection of hemodynamically non-significant CAD) at a 

much earlier stage than gated myocardial perfusion SPECT. Besides, a normal myo-

cardial perfusion scan does not exclude CAD.17 Potentially, QCT can facilitate early 

detection of CAD and accurate identification of patients who may have myocardial 

ischemia. 

Conclusion

Coronary lesion length and the presence of a quantitatively assessed significant 

stenosis as derived from QCT are significantly correlated with myocardial ischemia 

on gated myocardial perfusion SPECT. Furthermore, QCT provides incremental value 

over CTA and baseline clinical risk factors in the association with ischemia on SPECT. 

Potentially, QCT can refine assessment of CAD, which may be of potential use for 

identification of patients with myocardial ischemia.
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Abstract

Purpose: Computed tomography coronary angiography (CTA) has important prognos-

tic value. Additionally, quantitative CTA (QCT) provides a more detailed, accurate 

assessment of coronary artery disease (CAD) on CTA. Potentially, a risk score incor-

porating all quantitative stenosis parameters allows for accurate risk stratification. 

Therefore, the purpose of this study was to determine if an automatic, quantitative 

assessment of CAD using QCT combined into a CTA risk score allows risk stratifica-

tion of patients.

Methods: In 300 patients QCT was performed to automatically detect and quantify 

all lesions in the coronary tree. Using QCT, a novel CTA risk score was calculated 

based on plaque extent, severity, composition and location on a segment basis. Dur-

ing follow-up the composite endpoint of all-cause mortality, revascularization and 

non-fatal infarction was recorded. 

Results: In total, 10% of patients experienced an event during a median follow-up 

of 2.14 years. The CTA risk score was significantly higher in patients with an event 

(12.5(IQR8.6–16.4) versus 1.7(IQR0–8.4), P<0.001). Among 127 patients with ob-

structive CAD (≥50% stenosis), 27 events were recorded, all in patients with a high 

CTA risk score. 

Conclusion: The present study demonstrated that a fully automatic QCT analysis of 

CAD is feasible and can be applied for risk stratification of patients with suspected 

CAD. Furthermore, a novel CTA risk score incorporating location, severity and com-

position of coronary lesion was developed. This score may improve risk stratification 

but needs to be confirmed in larger studies. 
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Introduction

The aim of the present study was to evaluate patients with suspected CAD undergoing 

CTA and: 1) perform a fully automatic quantitative assessment of coronary CTA da-

tasets to assess the location, severity and composition of CAD, and 2) to incorporate 

all these variables into one risk score. Further aims were: 3) to assess the value of 

this integrated score for risk stratification and 4) to compare the risk classification 

according to this new score as compared to existing risk scores.

Methods

Patients

The population consisted of 300 patients, referred for the evaluation of (a)typical 

chest pain or dyspnea. Patients with previous percutaneous coronary intervention 

(PCI) or coronary artery bypass graft (CABG) were excluded. Clinical  data were 

prospectively entered into the departmental Cardiology Information System (EPD-

Vision©, Leiden University Medical Center, the Netherlands) and retrospectively 

analyzed. The Institutional Review Board of the Leiden University Medical Center 

approved this retrospective evaluation of clinically collected data, and waived the 

need for written informed consent. 

CTA acquisition 

Patients were scanned either with a 64-slice CT scanner (Aquilion 64, Toshiba 

Medical System, Otowara, Japan) or a 320-row volumetric scanner (Aquilion ONE, 

Toshiba Medical System, Otowara, Japan). Coronary CTA was performed according 

to standard clinical practice as previously described.1  Only patients with clinical 

diagnostic image quality of the coronary CTA were included. 

Quantitative computed tomography 

QCT was performed in five automatic steps, as depicted in Figure 1. 

1) The coronary tree was automatically extracted from the coronary CTA dataset.2 

Using a tree labeling algorithm, the segments of the coronary tree were automatically 

labeled according the American Heart Association (AHA) 17-segements model.3;4 2) 

Curved multi-planar reformations (CMPR) of each coronary vessel and side-branch 

were created.2 3) The lumen and vessel wall were automatically segmented using a 

previously validated software tool (QAngio CT Research Edition version 1.3.6, Medis 

Medical Imaging Systems, Leiden, the Netherlands).5 4) Coronary plaque constitu-

tion was assessed using a dedicated tissue characterization algorithm as previously 
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described.6 This tissue characterization algorithm allows for the differentiation into 

four different plaque types. Currently, it is unclear how this should be translated 

to the commonly used classification of non-calcified, partially calcified and calci-

fied plaque. For this analysis, the percentage ratio between dense calcium (DC) and 

necrotic core (NC) (DC/(NC + DC)*100) was used to differentiate between partially 

calcified, non-calcified and calcified plaques. Lesions with a ratio <10% were con-

sidered non-calcified plaque as well as lesion without NC or DC, lesions with a 

ratio >75% were classified as calcified plaque. Coronary plaques with ratios ≥10% 

and ≤75% were classified as partially calcified plaque. 5) Coronary lesions were au-

tomatically detected. Within each segment, a regression analysis is performed on the 

lumen area graph to define a lumen reference line. A lesion is defined on the region 

surrounding the minimal lumen area (MLA) where the lumen area is smaller than this 

CTA 
Risk 
score 

D E F 

A B C 

Figure 1. Schematic overview of the automatic quantitative CT algorithm.
The 3-dimensional coronary tree was extracted from the coronary CTA data set (Panel A). Using an automatic 
labeling algorithm the coronary tree was labeled according to the AHA 17-segment model (Panel B). Of each 
coronary artery a curved multiplaner reformation (CMPR) was constructed (Panel C). Next, a fully automatic 
detection of the lumen and vessel wall was performed (Panel D). Finally, each atherosclerotic lesion was auto-
matically detected based on the lumen and vessel wall contours as well as the corresponding reference lines 
(estimate of normal tapering of the coronary artery), as shown in panel E.  Stenosis parameters were calculated 
at the level of the minimal lumen area (MLA, vertical yellow marker). Additionally, plaque volumes and plaque 
types were derived for the whole coronary artery lesion, ranging from the proximal to the distal lesion marker 
(blue vertical markers). Fibrotic tissue was labeled in dark green, fibro-fatty tissue in light green, dense calcium 
in white and necrotic core in red. Finally, the CTA risk score per patient is automatically generated (Panel F).
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reference. If needed, this lesion is enlarged to include calcified spots located near the 

MLA (within 50 mm and >1 mm3). Lesions with negative stenosis degree and steep 

reference slopes (<-0.35 mm2/mm) were removed as well as short lesions (<1.5 mm), 

lesions in segments with small vessel and lumen areas (<8 mm2 and <1.5 mm2 re-

spectively), and distally located lesions (>150 mm from ostium).

The automatic lesion detection was confirmed by an experienced observer. The 

software allows the observer to override the automatic lesion detection. If needed, 

small adjustments were made.

CTA risk score

A novel comprehensive risk score was created to combine the information on location, 

extent, severity and composition of each coronary lesion. As described in Figure 2, 

the score consists of three components for each segment; a segment location weight 

factor, a stenosis severity weight factor and a plaque weight factor. 1) The location of 

each lesion is represented by a segment weight factor based on the Leaman score.4;7  

A different set of weight factors is applied to left or right dominant coronary artery 

systems. 2) Stenosis severity was described by the stenosis severity weight factor. A 

previous meta-analysis reported a hazard ratio (HR) of 1.35 (1.09 – 1.67)  for each 

significant stenosis in each segment of the coronary tree.8 Therefore 1.4 was chosen 

as the weight factor for a significant stenosis (≥50% area stenosis). 3) In a study 

performed by Gaemperli et al., stratifying the diseased segments according to plaque 

composition, the authors reported a HR of 1.21 (1.11 – 1.32) for segments with calci-

fied plaques, 1.57 (1.38-1.79) for segments with partially calcified plaques and 1.71 

(1.14-2.56) for segments with non-calcified plaques.9 This was translated in the score 

by a weight factor of 1.2 for calcified plaque, 1.6 for partially calcified plaque and 

1.7 for non-calcified plaque.

The CTA risk score is automatically calculated using QCT. When coronary plaque 

is absent (<30% area stenosis) the score is 0. When a stenosis is present, a score is 

given according to the location of the lesion in the coronary artery tree, this score is 

multiplied by the stenosis weight factor and multiplied by the plaque weight factor. 

The final score  is calculated by summation of the individual segment scores (range 

0-55) (Figure 2).

Modified Duke prognostic CAD index 

In addition, the modified Duke prognostic CAD index was applied to the QCT re-

sults.10;11  The score consist of 6 categories;1: <50% stenosis, 2: ≥2 stenoses 30% to 

49% (including 1 artery with proximal disease or 1 vessel with 50% to 69% stenosis, 

3: 2 stenoses 50% to 69% or 1 vessel with ≥70% stenosis, 4: 3 stenoses 50% to 69% 

or 2 vessels with ≥70% stenosis or proximal left anterior descending stenosis ≥70%, 
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5: 3 vessels  ≥70% stenoses or 2 vessels  ≥70% stenosis with proximal left anterior 

descending, 6: Left main stenosis ≥50%.Subsequently, the distribution of the novel 

CTA risk score within the Duke CAD categories was assessed. 

Follow-up and event definition

Patient follow-up data were gathered using clinical visits or standardized telephone 

interviews. A composite endpoint was constructed using all-cause mortality, revascu-

larization after 30-days and non-fatal myocardial infarction. This 30-day interval was 

Segment Weight Factor 
Segment           Right Dominant              Left Dominant 
LM  5  6 

Prox LAD  3.5  3.5 

Mid LAD  2.5  2.5 

Dist LAD  1  1 

D1  1  1 

D2  0.5  0.5 

Prox LCx  1.5  2.5 

Dist LCx  1  1.5 

AL/IM  1  1 

OM  1  1 

L-PL  0.5  0.5 

L-PDA  0  1 

Prox RCA  1  0 

Mid RCA  1  0 

Dist RCA  1  0 

R-PL  0.5  0 

R-PDA  1  0 

Plaque Weight Factor 
 

Calcified  1.2 
Mixed  1.6 
Non-Calcified   1.7 

Stenosis Weight Factor 
 

<50%  1 
≥50%  1.4 

Segment(n) Score = 
 

Plaque Weight Factor 

X 

Stenosis Weight Factor 

X 

Segment (n) Weigt Factor  

 

CTA risk Score = Σ Segment (1-17) Score 

Figure 2. Schematic overview of the CTA risk score.
The CTA risk score is calculated by the summation of the individual segment scores, which are obtained by 
multiplying the segment weight factor, the stenosis weight factor and the plaque weight factor. 
 AL: anterolateral segment; D1: diagonal 1; D2: diagonal 2; IM: intermediate segment; LAD: left anterior de-
scending coronary artery; LCA: left coronary artery; LCx: left circumflex coronary artery; LM: left main segment; 
L-PDA: left posterior descending artery; L-PL: left posterolateral segment; OM: obtuse marginal segment; RCA: 
right coronary artery; R-PDA: right posterior descending artery; R-PL: right posterolateral segment.
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used to exclude coronary CTA-driven events (referral for angiography mainly based 

on coronary CTA findings).12  Non-fatal myocardial infarction was defined based 

on criteria of typical chest pain, elevated cardiac enzyme levels, and typical ECG 

changes.13

Statistical analysis 

Continuous data are presented as mean ± SD if normally distributed or as median 

(interquartile range, IQR) if non-normally distributed. Categorical data are presented 

as absolute numbers and percentages. First, the QCT parameters were compared 

between both patients groups (with versus without events). Second, both the novel 

CTA risk score and the modified Duke prognostic CAD index were compared be-

tween both groups. Third, the ability of the CTA risk score for risk stratification of 

patients was assessed. For this purpose, the CTA risk score was stratified into a low 

and high risk category based on receiver operating characteristic (ROC) curve analy-

sis, ensuring the highest negative predictive value. First, the distribution of the risk 

score in patients with and without obstructive CAD (≥50% area stenosis in QCT) 

was assessed; and correlated to the occurrence of an event. In a similar fashion, 

the distribution within the Duke CAD categories was assessed. For this purpose, the 

Duke CAD categories were divided in three groups: Mild CAD, defined as Duke CAD 

category 1; Moderate CAD, defined as Duke CAD category 2-3; Severe CAD, defined 

by the three most severe categories. Fourth, to evaluate the independent predictive 

value of the CTA risk score, univariate and multivariate Cox-regression analyses were 

performed. All baseline or univariate significant clinical variables were entered into 

the multivariate model. All statistical tests were two-sided and a P-value <0.05 was 

considered statistically significant. All statistical analyses were performed with SPSS 

software (Version 20.0, SPSS Inc., Chicago, Illinois).

Results

The patient population consisted of 300 patients referred for the evaluation of chest 

pain during the period January 2008 - May 2010. Baseline characteristics are sum-

marized in Table 1.The median follow-up duration was 2.14 years (IQR1.07-3.48); 

28(9%) patients were lost to follow-up. During the follow-up period the composite 

endpoint occurred in 29 patients (event rate 10%) ; 25 (8%) patients underwent re-

vascularization (23 PCI and 2 CABG) after 30-day of CTA acquisition. Death occurred 

in 4 patients (1%). In patients with an event, mean age was higher and diabetes and 

hypertension were more often prevalent.
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QCT characteristics

The results of the QCT lesion analysis on a patient basis are depicted in Table 2. In 

patients with an event, significant obstructive lesions were more frequently observed. 

Furthermore, in patients with an event the mean number of partially calcified or 

calcified lesions was higher compared to patients without events. 

Table 1. Patient characteristics.

Event

 Variable Total
(300)

No 
(N=271)

Yes
(N=29)

P- value

Age (years) 55±11.5 54±11.6 60±8.5 <0.001

Men 180(60%) 161(59%) 19(66%) 0.526

Diabetes Mellitus 90(30%) 76(28%) 14(48%) 0.024

Hypertension† 111(37%) 95(35%) 16(55%) 0.034

Hypercholesterolemia‡ 100(33%) 88(32%) 12(41%) 0.334

Smoker 52(17%) 47(17%) 5(17%) 0.988

Obesity* 56(19%) 49(18%) 7(24%) 0.432

Calcium score 146±420
1(0–86)

118±388
1(0-54)

407±596
148(30-514)

<0.001

Data are represented as mean ± SD, median (interquartile range) or as number and percentages of 
patients.
†Defined as systolic blood pressure ≥140 mm Hg and/or diastolic blood pressure ≥90
mmHg or the use of antihypertensive medication.
‡Defined as serum total cholesterol ≥230 mg/dL or serum triglycerides ≥200 mg/dL or treatment with 
lipid lowering medication. 
* Defined as a body mass index of ≥ 30 Kg/m2

Table 2. Comparison of quantitative computed tomography coronary angiography results between 
patients with and without events.

Event

Variable

No
(N=271)

Yes
(N=29)

P-value

No of plaques ≥30% 1.54±2.14 3.83±2.04 <0.001

No of plaques 30-50% 0.82±1.17 1.45±1.12 <0.001

No of obstructive lesions ≥50% 0.51±0.87 1.83±0.97 <0.001

No of severe lesions ≥70% 0.17±0.92 0.69±1.07 <0.001

No of calcified lesions 0.95±1.67 2.66±2.10 <0.001

No of partially calcified lesions 0.31±0.73 0.76±0.87 <0.001

No of non-calcified lesions 0.29±0.60 0.41±0.63 0.189
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CTA risk score

 In the overall population, the median CTA risk score was 3.0(IQR0.0-9.8). The me-

dian CTA risk score was significantly higher in patients with an event as compared to 

event-free patients (12.5(IQR8.6–16.4) versus 1.7(IQR0–8.4), P<0.001). Accordingly, 

in patients with a CTA risk score of 0, the event rate was <1% (1 of 130). Based on 

ROC curve analysis, a CTA risk score of 7 was defined as a cut-off value between 

low and high CTA risk score to ensure the highest negative predictive value. Figure 3 

provides a patient example of the QCT analysis. The distribution of patients with a 

high and low CTA risk score between patients with and without obstructive CAD is 

depicted in Figure 4.  Of interest, in the 112 patients with obstructive CAD, all events 

occurred in patients with a high CTA risk score.

Reclassification according to the presence of obstructive CAD and 
modified Duke prognostic CAD index

The results of the modified Duke prognostic CAD index calculation based on the QCT 

results are summarized in Figure 5. The majority of the patients were categorized in 

Duke CAD category 1. Indeed, all events in patients within Duke CAD category 2 

or 3 occurred in patients with a high CTA risk score. Only one event occurred in a 

patient with a low CTA risk score, this patient was classified in Duke CAD category 1. 

Cox-regression analysis

In the univariate Cox-regression analysis (Table  3), age and CTA risk score were 

significantly associated with the occurrence of an event. In the multivariate analysis, 

adjusted for significant baseline characteristics, the CTA risk score was independently 

associated with events. 

Table 2. (Continued)

Event

Variable
No
(N=271)

Yes
(N=29)

P-value

No of narrowed coronary arteries 0.51±0.87 1.83±0.97 <0.001

Left main lesion 6(2%) 4(13%) 0.001

Right coronary artery lesion 45(16%) 11(37%) 0.005

Left anterior descending artery lesion 63(23%) 24(82%) <0.001

Left circumflex artery lesion 25(9%) 13(44%) <0.001

Lesions in proximal segments 0.34±0.68 1.07±1.0 <0.001

Lesions only in distal segments 0.38±0.89 1.31±1.17 <0.001

Percentage of proximal lesions 52±37 48±37 0.961
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Discussion

The present study assessed the feasibility of a novel, fully automatic QCT algorithm to 

quantify the location, severity and composition of coronary artery atherosclerosis on 

a patient basis. Particularly, differences in QCT derived CAD parameters were shown 

between patients with and without subsequent events. Second, a novel CTA risk score 

was developed, enabling to express the location, extent, severity and composition 

of CAD in a number for each individual patient. This score was significantly higher 

in patients who experienced an adverse event. Finally, the distribution of the CTA 

risk according to the presence of obstructive CAD and within the Duke CAD score 

categories was established.

A B C D 

E 

Figure 3. Patient example of the QCT analysis.
An example of a 54-year old man with a CTA risk score of 8.3. Panel A shows the MPR of the LAD of 
this patient in which a significant non-calcified plaque was present. In panel C, the cross-section at the 
minimal lumen area with corresponding proximal and distal reference regions is shown (Panels B and 
D).  The lesion was automatically detected and quantified (panel E) by the algorithm as depicted in 
Figure 1. The stenosis degree was 61% and the lesion was characterized as non-calcified plaque. Three 
months after the coronary CTA, the patient underwent invasive coronary angiography for progressive 
chest pain, followed by PCI of the LAD.
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Quantitative computed tomography coronary angiography (QCT)

The assessment of CAD on CTA images is mainly performed visually. However, the 

accuracy and reproducibility of visually analysed CTA images is limited.14 This may 

result in misclassification of obstructive or non-obstructive CAD; for example, in 

the multi-centre ACCURACY study a visually assessed obstructive CAD on CTA was 

confirmed in only 64% of patients using quantitative coronary angiography (QCA).15

These observations underscore the need for a robust, reproducible method for 

quantification of CAD on CTA.  Novel software tools have been designed allowing 

quantitative assessment of CTA datasets similarly to QCA.5;6;16;17 Leber et al. performed 

a quantitative analysis of CAD on CTA and compared the results to ICA and IVUS.17 In 

total, 798 segments were analyzed, illustrating a clear relation between plaque bur-

den as quantified on CTA and IVUS. However, for quantification of stenosis severity 

only modest correlations between CTA and ICA were shown. Voros et al. included 50 

    











   
   


 

 







    







   
   




 


 




    

     

     

  

     

     

Figure 4. Distribution of the CTA risk score according to the presence of a significant stenosis.
Upper panel: Bar graph representing the distribution of patients with a low or high CTA risks score.
Lower panel: Bar graph representing the event rates in patients with a low or high CTA risk score in 
patients with and without obstructive CAD. In the patients with obstructive CAD, all events occurred in 
patients with a high CTA risk score. 
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patients who underwent cardiac CTA, ICA and IVUS.16  In this study, stenosis sever-

ity as derived from QCT correlated well with stenosis severity on QCA. Moreover, 

QCT and IVUS correlated significantly in the assessment of lumen and vessel area. 

These different findings between the study by Leber et al.18 and Voros et al.16, can be 

explained by the fact that Voros et al. used an automated method for assessment of 

the coronary artery lumen and vessel wall. The reproducibility of QCT has also been 

     












   
   

         


 

 







     

      

      

     










   
   

         




 


 




   

      

      

Figure 5. Distribution of the CTA risk score according to the grouped Duke CAD category. 
Upper panel: Bar graph representing the distribution of patients with a low or high CTA risk score in 
the three groups. In the patients with mild CAD, a large proportion of patients (73%) were reclassified 
by a high CTA risk score. 
Lower panel: Bar graph representing the event rates in patients with a low or high CTA risk score in the 
three Duke CAD groups. In the patients with Duke CAD category 2- 3, all events occurred in patients 
with a high CTA risk score. 
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addressed by Papadopoulou et al. illustrating high inter- and intra-observer agreement 

for assessment of geometrical measurements of coronary atherosclerosis 19  

Quantitative assessment of coronary artery atherosclerosis and plaque constitu-

tion is clinically relevant.  Versteylen et al. performed a semi-quantitative analysis of 

CTA data and demonstrated that the 21 patients who developed an ACS more often 

presented with larger (non-calcified) plaque volumes and higher plaque burden as 

compared to  control patients.20  Importantly, the authors demonstrated incremental 

predictive value of semi-quantitative coronary CTA analysis over visual CTA interpre-

tation and Framingham risk score. 

For complete analysis of coronary artery atherosclerosis, not only quantitative 

analysis of stenosis severity and plaque burden is needed but also assessment and 

quantification of plaque constitution. Earlier studies have shown the agreement be-

tween plaque constitution on QCT as compared with IVUS Virtual Histology (IVUS 

VH). Brodoefel et al. compared QCT and IVUS VH in 22 coronary lesions, showing 

good correlations for assessment of overall plaque volume and non-calcified plaque 

volume, but the agreement between the 2 techniques for assessment of plaque con-

stitution was limited.21 The more sophisticated software for quantification of plaque 

constitution that was used in the current study has been shown to correlate well 

with IVUS VH in 57 patients (108 coronary lesions).6 Particularly, distinction and 

quantification of coronary plaque volume and plaque constitution is feasible with 

this software.

Novel CTA risk score

In the present study, a novel CTA risk score was developed. This score consists of three 

components per coronary lesion (i.e. plaque location, severity and composition). 

Table 3. Univariate and multivariate Cox-regression analysis for the prediction of events.

Variable Univariate
HR (95%CI)

P-value Multivariate
HR (95%CI)

P-value

Age 1.05(1.01;1.09) 0.008 1.02(0.98;1.07) 0.238

Gender 1.30(0.61;2.80) 0.499

Diabetes Mellitus 1.86(0.90;3.86) 0.095 2.02(0.95;4.29) 0.067

Hypertension 2.13(1.02;4.42) 0.044 1.07(0.48;2.38) 0.866

Hypercholesterolemia 1.19(0.57;2.50) 0.640

Family history of CAD 1.41(0.68;2.92) 0.354

Smoking 0.95(0.36;2.48) 0.910

Obesity 1.41(0.60;3.29) 0.432

CTA risk score 1.12(1.07;1.16) <0.001 1.10(1.01;1.15) <0.001

CAD: coronary artery disease; CI: confidence interval; CTA: computed tomography angiography; HR: 
hazard ratio
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Each component has been demonstrated to provide important prognostic information 

for risk stratification of patients with CAD. 

Stenosis location. The location of a coronary atherosclerotic lesion has important 

prognostic value. Patients with lesions located proximally in the coronary arteries 

have a worse prognosis as compared to patients with  distally located lesions.10 In 

the early 1980s, the Leaman score was developed to provide weight factors for each 

segment in the coronary artery tree based on the amount of myocardium at risk 

per coronary segment.7 This score was thereafter implemented in the angiographic 

SYNTAX-score, designed to quantify the complexity of CAD and its value has been 

established in clinical studies.22-24 The same Leaman weight factors were directly 

incorporated in the novel score used in the present study.

Stenosis severity. Currently, the assessment of CAD on coronary CTA is mainly 

targeting the detection or exclusion of obstructive CAD. However, the presence of 

non-obstructive CAD on coronary CTA is also associated with worse prognosis. In the 

CONFIRM registry, Chow et al. demonstrated a 3-fold increase in annual mortality rate 

for patients with non-obstructive CAD as compared to patients without atherosclero-

sis.25 To account for the clinical value of atherosclerotic burden and non-obstructive 

CAD, previously proposed scores have focused on the number of lesions and the 

extent of CAD. Min et al. for example applied the Duke modified CAD index to CTA 

images.16 In this score, patients were categorized according to the extent of CAD. The 

prognostic value of these scoring systems has recently been reported.10;26 However, in 

these scores only rough estimates are implemented, whereas in the present CTA risk 

score established values from literature were applied per coronary segment.8 

More recently, a novel score was designed based on the CONFIRM data.27 This score 

combines both clinical and CTA data. Similar to the CTA risk score, more weight is 

assigned to proximal lesions. In contrast, in the CONFIRM score non-calcified plaque 

was not incorporated, whereas in the CTA risk score this score was weighted a higher 

risk than calcified plaque.

Plaque constitution. Next to assessment of stenosis severity, CTA permits assess-

ment of plaque constitution, which provides additional prognostic value; Hou et al. 

showed in 4,425 patients that the presence of partially calcified and non-calcified 

plaques was associated with worse prognosis as compared to calcified plaques.28 

These results may suggest that non-calcified and partially calcified plaques represent 

a more vulnerable stadium of CAD, whereas calcified plaques may reflect more stable 

CAD. To account for this difference in prognosis, in the present score, different weight 

factors were applied for the different plaque constitutions.
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Limitations

Some limitations need to be considered. The current evaluation should be considered 

a feasibility study, to demonstrate the potential use of QCT, and to introduce the 

concept of a novel CTA risk score. Further studies in larger populations are needed 

to confirm the current observations. In addition, although QCT was automatically 

performed, still limited user input was needed to confirm the automatic lesion detec-

tion, which may potentially have introduced observer bias. Moreover, only scans with 

clinical diagnostic image quality were included. 

Conclusion

The CTA risk score only includes CTA derived information and no details on patients 

risk factors or symptoms. For clinical decision making the risk score should be con-

sidered in combination with the patients history.
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Abstract

Purpose: The aim of this study was to evaluate the feasibility of quantitative com-

puted tomography angiography (QCT) for the assessment of coronary atherosclerosis 

changes over time on serial coronary computed tomography angiography (CTA) in 

patients with stable chest pain.

Methods: The patient population consists of 53 patients clinically referred for the 

evaluation of chest pain who underwent a coronary CTA. After a minimum of 2 years 

CTA was repeated to evaluate changes in coronary atherosclerosis over time. For 

accurate and reproducible assessment of coronary artery disease (CAD) changes, all 

CTAs were quantitatively analysed using QAngioCT. All parameters of dimension and 

composition of CAD were compared between patients to assess possible regression 

and progression of CAD. 

Results: Of the 53 patients, 32(60%) showed regression of coronary total atheroma 

volume (TAV) whereas 21(40%) showed progression of coronary atheroma. In patients 

with progression of coronary atheroma, median TAVindexed increase was 117.73(56.76; 

236.01)mm3 compared to -82.49(-114.17; -42.58)mm3 for patients with regression. 

Patients with progression of coronary atheroma had progression of all four plaque 

types. However, patients with regression demonstrated a regression of all plaque 

components except for dense calcium, for which progression was observed. 

Conclusion: The assessment of changes in CAD with QCT is feasible. In patients with 

stable chest pain syndrome both regression and progression of coronary atheroma is 

observed. Potentially QCT could be applied to assess the efficacy of anti-atheroscle-

rotic therapy. 
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Introduction

Progression of coronary atherosclerosis is of clinical importance. Serial intravascular 

ultrasound (IVUS) or invasive coronary angiography (ICA) studies have been used to 

assess progression of atherosclerosis over time, mostly as part of an evaluation on the 

efficacy of anti-atherosclerotic therapy.1 However, these methods are invasive, time 

consuming and expensive. Computed tomography coronary angiography (CTA) is a 

suitable method for non-invasive assessment of coronary atherosclerosis. Its value in 

clinical practice has been extensively established.2, 3 For accurate and robust assess-

ment of coronary atherosclerosis, novel quantitative computed tomography (QCT) 

algorithms are available which allow quantification of coronary atherosclerosis 

dimensions and composition.4, 5 The accuracy and reproducibility of these tools have 

been previously validated.6 Potentially, these algorithms can be applied to quantify 

coronary atherosclerosis in serial CTA studies. Therefore, the aim of this study was to 

evaluate the feasibility of QCT for the assessment of coronary atherosclerosis changes 

over time on serial coronary CTA in patients with stable chest pain.

Methods

Patients

This prospective study included 137 patients clinically referred for the evaluation of 

chest pain to the Rijnland Hospital between July 2009 and June 2011. Patients un-

derwent a non-contrast computed tomography (CT) scan for coronary artery calcium 

(CAC) score and coronary CTA. By protocol, after a minimum of 2 years CAC-score 

and CTA were repeated to evaluate changes in coronary atherosclerosis over time. 

Patients who had undergone prior, myocardial infarction, percutaneous coronary 

intervention (PCI) or coronary artery bypass graft surgery (CABG) were excluded. The 

clinical data were prospectively entered into the hospital’s electronic patient file and 

retrospectively analysed. The Institutional Review Board approved this clinical study. 

Informed consent was obtained in all patients.  

CTA acquisition

All patients underwent a non-contrast and contrast coronary CTA. Contra-indica-

tions for CTA were, 1) impaired renal function (glomerular filtration rate  <30 ml/

min/1.73m2), 2) pregnancy, 3) (supra-) ventricular arrhythmias, 4) known allergy to 

contrast agent, 5) severe claustrophobia. CTA was performed according to standard 

clinical practice using a Philips Brilliance 64-slice CT scanner. Prior to CTA exami-

nation, beta-blocking medication was administered if the heart rate was ≥65 beats 
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per minute, unless contra-indicated. Scan parameters were as follows: tube voltage 

120kV, automated tube current modulation 250–400mA, pitch 0.2–0.3, collimation 

64 × 0.625mm, and gantry rotation time 420ms. Images were acquired prospectively 

and reconstructed at 75% and at the best phase of the R-R interval. All data were 

stored for offline analysis. The CAC-score was calculated by the Agatston approach. 

Contrast CTA image quality was classified as: (1) good image quality (scans with-

out motion artefacts), (2) moderate image quality (scans with motion artefacts or 

increased image noise) and (3) poor image quality (non-diagnostic scans); the last 

were excluded from the analysis.

Quantitative CTA

For accurate and reproducible assessment of CAD changes, all CTAs were quanti-

tatively analysed using QAngioCT Research Edition version 1.3.6 (Medis medical 

imaging systems, Leiden, The Netherlands). This software allows for quantitative 

assessment of both dimension and composition of coronary atherosclerosis. QCT 

was performed as previously described.4 In brief, the following automatic processing 

steps were performed. The 3-dimensional coronary tree was automatically extracted 

from the coronary CTA dataset. Using an automatic tree labelling algorithm, the seg-

ments of the coronary tree were automatically labelled according to the American 

Heart Association (AHA) 17-segment model. The extracted and labelled coronary 

tree was verified by an experienced observer. Next, of each coronary, multiplanar 

reformations (MPRs) were constructed based on the centrelines of the detected coro-

naries. Thereafter, the lumen and vessel wall were automatically segmented using 

a previously validated software tool and coronary artery atherosclerosis dimension 

quantified.5 If necessary, limited manual input was used to improve the automatic 

processing steps. With the help of a dedicated tissue characterization algorithm, 

coronary plaque composition was determined. This algorithm allows differentiating 

the detected coronary plaque into four different plaque types: fibrotic (FI) plaque, 

fibro-fatty (FF) plaque, necrotic core (NC) and dense calcium (DC). For the present 

study, a previously validated method using adaptive HU thresholds was used.5 

The four major coronaries were studied (i.e. right coronary artery (RCA), left main 

(LM) artery, left anterior descending (LAD) artery and left circumflex (LCx) artery). 

Moreover, segments with cross-sectional lumen areas (<1.5mm2 ) were excluded as 

well as segments shorter than 10 mm. The reproducibility of this algorithm has been 

previously addressed.6 The reported inter-observer concordance correlation coef-

ficient was 0.96 for plaque burden and plaque area. 
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Quantitative CTA atherosclerosis parameters 

Figure 1 depicts the definitions of the quantitative derived CTA parameters of athero-

sclerosis dimensions and composition used in this study. For all four plaque types 

(i.e. FI, FF, NC, DC0 volumes and percentages were derived from the software. All 

parameters were indexed to the mean segment length of the total population to ac-

count for different segment lengths per patient and per scan providing the possibility 

to compare these parameters over time.1 This was performed by calculating: 

Total volumeindexed(i) =
total volume

× mean segment length population
total segment length

To compare patients with regression and progression of coronary atheroma, ΔTAVi 

was calculated by subtracting TAVi baseline from TAVi follow-up. There is limited data in the 

literature to serve as a cut-off to define progression or regression of coronary atheroma 

volume on coronary CTA. To be as sensitive and accurate as possible, we prospec-

tively determined that any change in ΔTAVi  was considered as a change in coronary 

atheroma volume. Thus, ΔTAVi<0 mm3 was classified as regression and ΔTAVi>0 mm3 

as progression of coronary atheroma volume. Subsequently, the change over time in 

volume of the different coronary plaque types in relation to ΔTAVi was established.  

Statistical analysis

For reasons of clarity, all continuous parameters are reported as mean ± SD and me-

dian (interquartile range (IQR)). Categorical data are presented as absolute numbers 

and percentages. All analyses were performed on a patient-basis. First, both baseline 

and follow-up plaque characteristics were described. Moreover, the changes over 

time in these parameters were assessed. Second, a comparison was made between 

patients with progression or regression of coronary atheroma volume. The change 

over time in the different atherosclerosis parameters (dimension and composition) 

Parameter 
 

Definition 
 

Segment length (mm) Total distance between the proximal and distal point of the extracted segment.  

Lumen volume (mm3) Total volume of the vessel lumen of the extracted segment  

Vessel wall volume (mm3) Total volume of the vessel wall of the extracted segment 

Total atheroma volume (TAVi) (mm3) Total vessel volume – total lumen volume. 

Percentage atheroma volume (PAV) (%) [(Total vessel volume – total lumen volume) / total vessel volume] x 100%.  

Total (FI/FF/NC/DC)volume(mm3)  Total volume per plaque type 

Percentage (FI/FF/NC/DC) (%)  [(Volume of plaque type – plaque volume) / total plaque volume] x 100% 

Figure 1. Definitions of QCT plaque parameters.
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was compared between patients with regression or progression of coronary atheroma 

volume. The baseline patient characteristics were compared between patients with 

regression or progression of coronary atheroma volume. Lastly, the difference in 

baseline plaque characteristics was compared between patients with regression or 

progression of coronary atheroma volume.  All statistical tests were two-sided and 

a P-value <0.05 was considered statistically significant. All statistical analyses were 

performed with SPSS software (Version 20.0, SPSS Inc., Chicago, Illinois).

Results

Patient population

For this study, 137 consecutive patients were included with diagnostic qualitative 

CTA images. The flow diagram in Figure 2 illustrates the selection of patients eligible 

for inclusion as well as the reasons for exclusion. Of these patients, 65 did not have 

a follow-up appointment scheduled for logistic reasons or were lost to follow-up. 

Moreover, 7 patients only had a CAC-score at baseline. The remaining 65 patients 

completed the study with a CTA scan at baseline and follow-up. In 10 of the 65 

patients, the CTA image quality was insufficient. Furthermore, 2 of the remaining 

55 patients underwent revascularization between the two studies and were also 

excluded. In total, 53 patients with 377 segments were analysed. The median time 

between baseline and follow-up CTA was 25 (IQR 24-26) months. The patient char-

acteristics at baseline and follow-up are listed in Table 1. Mean age was 54 ± 8.7 

years and 28 (52.8%) of the patients were male. At baseline, 30% of patients received 

Initial study population 
(N=137) 

No follow-up scan (N=65) 

Baseline CA-score only (N=7) 

Baseline and follow-up 
scan available 

(N=65) 

Insufficient quality (N=10) 

Complete dataset 
(N=53) 

Revascularization between two 
studies (N= 2) 

Figure 2. Flowchart of the study population.



173

QCT for coronary atherosclerosis change

Table 1. Patient characteristics.

Patient characteristics (n=53) Baseline Follow-up

Age (yrs.) 54 ± 8.7 N/A

Gender (% male) 28 (52%) N/A

Non AP complaints 8 (15%) 9 (17%)

AP Complaints 45 (85%) 44 (83%)

 Atypical AP complaints 32 (60%) 29 (55%)

 Typical AP complaints 12 (22%) 14 (26%)

 Typical and Atypical AP complaints 1 (2%) 1 (2%)

Cardiovascular risk factors

 Hypertension† 18 (34%) 17 (32%)

 Hypercholesterolemia ‡ 6 (11%) 6 (11%)

 Diabetes Mellitus 4 (8%) 5 (9%)

 Family history of CAD* 37 (70%) N/A

 Current Smoking 12 (23%) 12 (23%)

 Ex-Smoker 9 (17%) 9 (17%)

 Obesity (BMI ≥ 30 kg/m2) 2 (4%) 2 (4%)

Medication

 ACE/ATII 8 (15%) 8 (15%)

 Calcium channel blockers 4 (8%) 7(13%)

 NTG 7 (13%) 9 (17%)

 Bèta blockers 20 (38%) 16 (30%)

 Diuretics 7 (13%) 7 (13%)

 Asprin 19 (36%) 20 (38%)

 Statines 16 (30%) 22 (42%)

Triglycerides 1.31 ± 0.59 1.20 ± 0.50 

Cholesterol 5.53 ± 0.84 5.02 ± 1.38

 HDL Cholesterol 1.61 ± 0.57 1.54 ± 0.61

 LDL Cholesterol 3.44 ± 0.80 2.90 ± 1.04 

 VLDL Cholesterol 0.44 ± 0.50 0.42 ± 0.50

Creatinine 82.54 ± 13.03 79.58 ± 16.72 

Agatston CAC score 35 ± 60
1.00 (IQR 0 – 51)

51 ± 77
18 (0 – 73)

Increase in Agatston CAC score 15 ± 25
5 (0 – 20)

Data are represented as mean ± SD, median (interquartile range) or as number and percentages of patients.
†Defined as systolic blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg or treatment for 
hypertension
‡Serum total cholesterol ≥230 mg/dL or serum triglycerides ≥200 mg/dL or treatment with lipid lowering drugs. 
*Defined as the presence of coronary artery disease in first-degree family members at <55 years in men 
and <65 years in women.
Abbreviations: ACE: Angiotensin Converting Enzyme, AP: Angina pectoris, BMI: body mass index, CAC: coro-
nary artery calcium, IQR: Interquartile Range, NTG: Nitro-glycerine
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statins, compared to 42% at follow-up. The mean Agatston CAC-score at baseline was 

35 ± 60 compared to 51 ± 77 at follow-up. 

Comparison of QCT parameters between baseline and follow-up

Both baseline and follow-up coronary artery plaque characteristics were reported on a 

patient-basis (Table 2). The percentage atheroma volume (PAV) was 34.6(32.6-39.3)% 

at baseline and 36.1(32.5-41.2)% at follow-up, (P=0.241). The TAVi significantly 

increased from 737.6(629.1-901.5)mm3 at baseline, to 812.7(687.9-951.6)mm3 at 

follow-up (P=0.043). Overall, the median increase in TAVi was 5.10(-6.32-16.71)%. 

Overall both NCi and DCi were significantly increased at follow-up. NCi had in-

creased from 20.33(6.45-41.30)mm3 to 29.66(11.45-49.09)mm3, DCi had increased 

from 5.36(2.07-12.75)mm3 to 9.63(2.79-24.00)mm3. Figure 3 presents a case example 

with progression of atherosclerosis. 

Table 2. QCT plaque characteristics.

Baseline and follow-up plaque 
quantitative parameters

Baseline Follow-Up Change P-Value

Percent atheroma volume (PAV) (%)

 Mean ± SD 36.0 ± 5.31 37.1 ± 5.51 1.10 ± 4.52

 Median 
 (IQR)

34.6 
(32.6-39.3)

36.1 
(32.5-41.2)

0.33 
(-1.97-3.63)

0.241

Total atheroma volume (TAVi) (mm3)

 Mean ± SD 768.1 ± 182.8 832.8 ± 237.4 64.78 ± 208.65

 Median 
 (IQR)

737.6 
(629.1-901.5)

812.7 
(687.9-951.6)

34.80 
(-58.95-175.91)

<0.043

% Change in total atheroma volume 

 Mean ± SD 8.49 ± 22.08

 Median 
 (IQR)

5.10 
(-6.32-16.71)

Total fibrotic tissue volume (FIi) (mm3)

 Mean ± SD 285.18 ± 89.07 308.25 ± 
109.57

23.07 ± 85.60

 Median 
 (IQR)

270.81 
(222.68-332.13)

303.19 
(227.81-367.70)

17.80 
(-41.42-77.25)

0.079

Total fibro-fatty tissue volume (FFi) 
(mm3)

 Mean ± SD 89.32 ± 48.96 100.49 ± 50.60 11.17 ± 49.98

 Median 
 (IQR)

69.23 
(47.16-128.50)

94.56 
(57.10-128.46)

5.66 
(-14.70-22.12)

0.186  

Total necrotic core volume (NCi) (mm3)

 Mean ± SD 24.75 ± 19.38 36.18 ± 35.43 11.42 ± 36.15
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Patients with regression vs. progression of coronary atheroma volume

Of the 53 patients, 32(60%) showed regression of coronary atheroma volume 

(ΔTAVi <0 mm3) whereas 21(40%) showed progression of coronary atheroma volume 

(ΔTAVi >0 mm3). In 29 (55%) patients an increase in PAV was observed, whereas 

24 (45%) patients showed a   decrease in PAV. Moreover, 26 (49%) patients had 

an increase in PAV  >1%, which is considered a relevant threshold for significant 

change under intensive lipid-lowering therapy in clinical studies.7, 8 A decrease in 

PAV >1% was observed in 22 (42%) patients. As depicted in Table 3, in patients with 

progression of coronary atheroma volume, median TAVi increase was 117.73(56.76; 

236.01)mm3. Patients with regression of coronary atheroma volume presented with 

a median decrease in TAVi of -82.49(-114.17; -42.58) mm3. Of particular interest, in 

patients with regression of coronary atheroma volume an increase in total DCi vol-

ume was observed 0.42(-0.96; 5.50) mm3 The other plaque types showed regression 

in these patients. In contrast, patients with progression of coronary atheroma volume, 

Table 2. (Continued)

Baseline and follow-up plaque 
quantitative parameters

Baseline Follow-Up Change P-Value

 Median 
 (IQR)

20.33. 
(6.45-41.30)

29.66 
(11.45-49.09)

5.08 
(-0.14-14.14)

<0.001 

Total dense calcium volume (DCi) 
(mm3)

 Mean ± SD 10.51 ± 11.59 17.25 ± 22.40 6.74 ± 13.73

 Median 
 (IQR)

5.36 
(2.07-12.75)

9.63 
(2.79-24.00)

2.23 
(-0.29-9.99)

<0.001

% fibrotic tissue 

 Mean ± SD 36.77 ± 4.33 36.53 ± 4.38 -0.25 ± 4.22

 Median 
 (IQR)

36.10 
(34.20-39.65)

36.49 
(33.58-39.35)

0.06 
(-3.58-2.95)

0.821

% fibro-fatty tissue 

 Mean ± SD 11.00 ± 4.13 11.59 ± 3.39 0.59 ± 3.87

 Median 
 (IQR)

10.06 
(7.67-14.60)

12.10 
(8.27-14.59)

-0.01 
(-1.49-1.58)

0.767  

% necrotic core

 Mean ± SD 2.95 ± 1.99 3.93 ± 2.61 0.98 ± 2.65

 Median 
 (IQR)

2.69 
(1.03-4.63)

3.79 
(1.93-5.17)

0.57 
(-0.09-1.79)

<0.001 

% dense calcium 

 Mean ± SD 1.34 ± 1.34 2.04± 2.36 0.70 ± 1.44

 Median 
 (IQR)

0.90 
(0.29-1.93)

1.27 
(0.34-2.63)

0.28 
(-0.22-1.07)

<0.001
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Figure 3. Case example of a case with progression of coronary atherosclerosis.
Example of a the left anterior descending (LAD) artery of 48 years old female with stable angina. Panel 
A show the multiplanar reformation (MPR) of the LAD at baseline. Panel B demonstrated the corre-
sponding quantitative computed tomography data; the lower part of the graphs represents the lumen 
cross-sectional area, the upper part the vessel wall cores sectional area. The part between the graphs 
represents the plaque area. Dark-green represent fibrotic plaque, the light-green represent fibro-fatty 
plaque, red marks necrotic core and white marks dense calcium. Panel C shows a 3D-representation of 
the coronary vessel with the same color coding. Panel D-F represent the same vessel but after two year 
follow-up. Overall, progression of atherosclerosis is observed, specifically of calcified plaque. 
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showed an increase in in volume of all four plaque types. The differences in base-

line characteristics between patients with regression and patients with progression 

of coronary atheroma volume were assessed. Besides hypercholesterolemia, there 

were no significant differences between the two patients groups. Worth mentioning, 

there was no difference in increase in CAC-score between patients with regression 

or progression of coronary atheroma volume. Table 4 demonstrates the difference in 

baseline coronary atherosclerosis dimensions and composition between patients with 

regression or progression of coronary atheroma volume. Patients with regression of 

coronary atheroma had significantly higher baseline PAV compared to patients with 

progression of disease (36.64% (33.72; 40.62) vs 33.44% (31.50; 37.58), P=0.040). 

Both groups had comparable baseline composition of coronary atherosclerosis. 

Table 3. Comparison of change in coronary plaque dimension and composition over timebetween 
patients with regression vs. progression of coronary atheroma volume.

Change in plaque quantitative 
parameters

Regression of coronary 
atheroma volume (n=21)

Progression of 
coronary atheroma 
volume (n=32) 

P-Value

Change in PAV 

 Mean ± SD -2.63 ± 1.88 4.19 ± 3.63

 Median (IQR) -2.18 (-3.60; -1.10) 3.08 (1.08; 7.81) NA

Change TAVi

 Mean ± SD -104.81 ± 101.12 176.07 ± 184.82

 Median (IQR) -82.49 (-114.17; -42.58) 117.73 (56.76; 236.01) NA

Change in total fibrotic tissue volume 
(FIi) (mm3)

 Mean ± SD -46.00 ± 49.07 68.40 ± H73.38

 Median (IQR) -49.09 (-64.74; -10.48) 59.11 (24.60; 107.86) NA

Change in total fibro-fatty tissue 
volume (FFi) (mm3)

 Mean ± SD -20.35 ± 33.06 31.86 ± 48.68

 Median (IQR) -15.68 (-28.43; 2.20) 14.13 (2.08; 47.13) NA

Change in total necrotic core volume 
(NCi) (mm3)

 Mean ± SD -4.92 ± 17.69 22.15 ± 41.11

 Median (IQR) 0.53 (-8.12; 6.50) 10.55 (3.68; 26.55) NA

Change in dense calcium volume (DCi) 
(mm3)

 Mean ± SD 3.29 ± 14.27 9.00 ± 13.10

 Median (IQR) 0.42 (-0.96; 5.50) 6.29 (0.41; 14.72) NA
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Discussion

The present study addressed the feasibility of a novel CTA quantification tool to assess 

changes of coronary atherosclerosis in a CTA population evaluated for stable chest 

pain. In addition to the assessment of progression of coronary atheroma volume, the 

change in specific coronary plaque components was assessed. In 40% of the patients 

progression of coronary atheroma volume was observed, whereas 60% showed 

regression of atheroma volume. Patients with progression of coronary atheroma had 

progression of all four plaque types. However, patients with regression of atheroma 

demonstrated a regression of all plaque components except for dense calcium, for 

which progression was observed. 

Table 4. Comparison of baseline coronary plaque dimensions and composition between patients with 
regression vs. progression of coronary atheroma volume.

Baseline plaque 
quantitative parameters

Regression of coronary 
atheroma volume (n=21)

Progression of coronary 
atheroma volume (n=32) 

P-Value

Baseline PAV (N)

 Mean ± SD 37.80 ± 5.88 34.76 ± 4.60

 Median (IQR) 36.64 (33.72; 40.62) 33.44 (31.50; 37.68) 0.040

Baseline TAVi (N)

 Mean ± SD 801.09 ± 132.59 746.38 ± 208.59

 Median (IQR) 810.78 (697.84; 905.59) 695.04 (570.18; 856.84) 0.102

Baseline % fibrotic tissue 
(FI)

 Mean ± SD 69.88 ± 8.38 72.13 ± 9.80

 Median (IQR) 69.69 (64.00; 76.20) 73.82 (63.28; 78.11) 0.536

Baseline % fibro-fatty 
tissue (FF)

 Mean ± SD 21.83 ± 5.16 20.02 ± 7.07

 Median (IQR) 21.70 (17.51; 25.81) 18.77 (15.46; 25.54) 0.335

Baseline % necrotic core 
(NC)

 Mean ± SD 5.96 ± 3.34 5.10 ± 3.55

 Median (IQR) 5.97 (2.92; 8.06) 3.75 (2.08; 8.49) 0.383

Baseline % dense 
calcium (DC)

 Mean ± SD 2.32 ± 2.71 2.75 ± 2.52

 Median (IQR) 1.21 (0.38; 2.83) 2.16 (0.85; 4.04) 0.317
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Assessments of coronary atherosclerosis progression

Currently, the standard for evaluating coronary atherosclerosis changes is IVUS. This 

method allows evaluation of lumen and vessel wall dimensions as well as assessment 

of coronary atheroma volume. By applying radiofrequency backscatter analysis, IVUS 

Virtual Histology (VH) allows for assessment of coronary plaque components. IVUS 

VH has been validated against histopathology.9 Both IVUS and IVUS VH are often 

used in studies assessing coronary atherosclerosis progression or regression.1, 10-13 

However, since IVUS is an invasive and costly method, new research has focused 

on the value of CTA for the assessment of coronary atherosclerosis progression. By 

applying novel imaging quantification tools, coronary atherosclerosis dimension can 

be quantified on CTA and used to follow-up changes of atherosclerosis in patients.4, 6 

The validity of these tools has been established and QCT has become accepted as a 

research tool. More recently, using a Hounsfield Unit (HU) threshold, different plaque 

components can be individually assessed and quantified using QCT.5 This allows 

for a more advanced assessment of coronary atherosclerosis, similar to IVUS VH. 

Especially with decreasing radiation exposures for CTA, QCT techniques become 

more available for serial evaluation of coronary atherosclerosis. Another advantage of 

CTA over IVUS is that CTA allows for visualization of the entire coronary artery tree, 

whereas IVUS only allows assessment of large coronaries in which a catheter can 

be introduced. However, a major advantage of IVUS is the higher spatial resolution 

as compared to CTA. This allows for assessment of more subtle changes in coronary 

atherosclerosis.14

Quantification of CAD progression on CTA

Previous studies have focussed on the validity of quantifying CAD progression with 

CTA and quantification software. Papadopoulou et al. studied the natural history of 

coronary atherosclerosis in 32 patients with acute coronary syndrome.8 Patients were 

serially scanned with a mean interval of 39 months. Overall, the mean change in 

TAV was 6.7% and 34% of the patients demonstrated regression of coronary athero-

sclerosis, whereas 44% showed progression of disease. More recent investigations 

have addressed the feasibility of CTA to study plaque progression or regression as 

influenced by statin therapy. Hoffman et al. performed a second CTA in 63 patients 

who had 18-36 month earlier been clinically referred to CTA.15 Using commercially 

available software coronary atherosclerosis was quantified in a volumetric approach. 

It was demonstrated that statin therapy induced a decrease in the growth rate of 

non-calcified plaque but not of plaques containing calcium (i.e. mixed or calcified 

plaque). Similarly, Zeb et al. included 100 patients who underwent serial CTA with 

a mean interval of 13 months.16 In statin users, total plaque progression was signifi-

cantly reduced compared to non-statin users (33.3 mm3 ±90.5 vs. 31.0 mm3 ± 84.5). 
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Moreover, a significantly larger reduction in non-calcified plaque was observed in 

statin users compared to non-statin users. However, in both groups an increase in 

calcium was noted on the CTA. It seems that anti-atherosclerotic therapy leads to 

a reduction of non-calcified plaque without affecting the growth-rate of calcified 

plaque. Similarly, in the present study, in patients with regression of coronary ath-

eroma volume over time, an increase in calcium volume was observed. This has 

previously been shown in several IVUS VH studies that investigated the change in 

coronary plaque composition over time influenced by statin therapy.10-13 In the major-

ity of these studies, the volume and relative percentage of NC, FI or FF changed over 

time in patients receiving statin therapy. However, in none of the studies a significant 

change in DC was noted neither in patients receiving statin therapy, nor in the control 

cases.

Limitations

The study is hampered by some limitations. First, the study included a limited number 

of patients. Therefore the lack of significant differences in baseline characteristics 

between patient groups should be considered with care. Second, the patients were 

relatively disease free (mean CAC-score 35) and the results cannot be extrapolated 

to a population with a higher disease burden. Moreover, in current literature there 

is limited evidence for standard procedures for serial plaque imaging on coronary 

CTA. We have used a very sensitive parameter to define regression or progression of 

coronary atherosclerosis, namely any change in TAV. However, establishing standard 

procedures for assessing changes on CTA is needed. Additionally there was no refer-

ence data to compare the quantification results with (i.e. no IVUS or ICA); therefore 

the present study should be seen as a feasibility study. 

Conclusion

The assessment of changes in CAD with QCT is feasible. In patients with stable chest 

pain both regression and progression of coronary atheroma is observed. Potentially 

QCT could be applied to assess the efficacy of anti-atherosclerotic therapy. 
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Abstract

Purpose: The study aims 1) to evaluate changes in myocardial ischemia on single 

photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) 

after 2 years in a cohort of high risk patients with diabetes without cardiac symp-

toms or known coronary artery disease (CAD) and 2) to assess the value of baseline 

computed tomography coronary angiography (CTA) derived coronary atherosclerosis 

parameters to predict changes in myocardial ischemia.

Methods: The population consisted of 100 high risk patients with diabetes without 

cardiac symptoms referred for cardiovascular risk stratification. All patients underwent 

coronary artery calcium (CAC) scoring, CTA and SPECT MPI. After 2 years follow-up, 

SPECT MPI was repeated to evaluate potential progression of ischemia.

Results: In total, 20% of patients presented with ischemia at baseline. Of these 20 pa-

tients, 7 (35%) still had ischemia at follow-up, whereas 13 (65%) showed resolution 

and 4(20%) showed progression of ischemia at follow-up. Of the 80 patients without 

ischemia at baseline, 65 (81%) had a normal MPI at follow-up and 15 patients (19%) 

presented with new ischemia. There were no significant differences in the CAC score 

or the extent, severity and composition of CAD on CTA between patients with and 

without ischemia at baseline. Similarly, no differences could be demonstrated be-

tween patients with and without ischemia at follow-up or between patients with and 

without progression of ischemia. 

Conclusion: The rate of progression of ischemia in high risk patients with diabetes 

without cardiac symptoms is limited. Few patients presented with new ischemia, 

whereas some patients show resolution of ischemia. Atherosclerosis parameters on 

CTA were not predictive of new onset ischemia or progression of ischemia. 
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Introduction

Cardiovascular death is the main cause of death in patients with diabetes mellitus 

(DM).1 Moreover, patients with DM often have silent myocardial ischemia on single 

photon emission tomography (SPECT) myocardial perfusion imaging (MPI) and coro-

nary artery disease (CAD) in an advanced stage on coronary computed tomography 

angiography (CTA).2-8 After 2-3 years of follow-up, a limited number of patients pres-

ent with new ischemia.9 However, no clinical variables predictive of new ischemia 

have yet been established. Potentially, atherosclerotic plaque characteristics on CTA 

could be associated with the onset of new ischemia. Therefore, the aim of this study 

was to: 1) evaluate changes in myocardial ischemia after 2 years in a cohort of high 

risk patients with diabetes without cardiac symptoms and 2) to assess the value of 

baseline CTA derived coronary atherosclerosis parameters to predict changes in 

myocardial ischemia on SPECT MPI in these patients.

Methods

Patients 

The patient population consisted of 159 high risk patients with diabetes without 

cardiac symptoms referred from a diabetic out-patient clinic for cardiovascular risk 

stratification as previously described.10, 11 Inclusion criteria for the study were: con-

firmed diagnosis of type 2 DM, normal resting electrocardiogram (ECG), absence of 

cardiac symptoms. Patients with known CAD or treated with anti-anginal medication 

were excluded, as well as patients with a previous stress test or coronary angiography. 

All patients underwent clinical evaluation, including laboratory testing, coronary 

artery calcium (CAC) scoring, coronary CTA and SPECT MPI between May 2005 and 

January 2006. After 2 years follow-up, SPECT MPI was repeated as prospectively 

scheduled to evaluate myocardial ischemia as indicated in the guidelines that were 

applicable at that time.12 Patients were treated according standard clinical care and 

based on test results.

The patient’s medical records were evaluated to assess if the patient underwent 

coronary revascularization between the 2 SPECT MPI studies. Clinical  data were 

prospectively entered into the departmental Cardiology Information System (EPD-

Vision©, Leiden University Medical Center, the Netherlands) and retrospectively 

analysed. The Institutional Review Board of the Leiden University Medical Center 

approved this retrospective evaluation of clinically collected data, and waived the 

need for written informed consent.
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SPECT myocardial perfusion imaging

Image acquisition.
ECG-gated technetium-99m sestamibi (99mTc-sestamibi;1000MBq) SPECT MPI was 

performed using a 2-day stress and rest protocol. Patients had to refrain from caffeine-

containing products 24-hours before testing. Vasodilator stress was performed using 

adenosine (140µg/kg/minute, intravenous for 6 minutes) with simultaneous handgrip 

exercise. Blood pressure and 12-lead ECG were recorded during adenosine stress. 

SPECT imaging was performed, 120 minutes after injection of the radiopharmaceuti-

cal, using a triple-head SPECT gamma camera (GCA 9300/HG, Toshiba Corporation, 

Tokyo, Japan). Images were acquired using a circular 360 degrees orbit in 64 projec-

tions and 20 second per projection.13 Attenuation correction was not performed.

Quantification of myocardial ischemia.
The  SPECT MPI datasets  were sent to an independent, dedicated core-lab (INVIA, 

Ann Arbor, Michigan, USA), blinded of patients’ history or scan order. By using Cor-

ridor4DM (INVIA, Ann Arbor, Michigan, USA), myocardial perfusion and reversibility 

(ischemia) was quantified as follows. 14, 15 First, the stress dataset was normalized to 

the maximum pixel intensity within the myocardium; all values were multiplied by 

100/value of the maximum pixel. Second, the rest dataset was normalized in the 

same manner using the peak in the location of the peak intensity in the stress map. 

The extent of hypoperfusion in the stress study was expressed as a percentage of the 

entire left ventricle. Comparing the rest and the stress study, allowed for assessment 

of reversibility by comparing the areas of hypoperfusion on the stress study to the 

same areas in the rest study; a ≥10% increase in tracer uptake was used to define 

reversibility. Reversibility was expressed as percentage of the entire left ventricle. 

Change in ischemia was calculated as the differences in reversibility between the 

baseline and follow-up study. To facilitate the analysis, patients were stratified into 

two groups based on differences in reversibility between the baseline and follow-up 

study. Any increase in ischemia was defined as progression, whereas a decrease in 

ischemia was defined as regression.

Coronary computed tomography angiography

Image acquisition.
Patients were scanned with either a 64-slice CT scanner (Aquilion 64, Toshiba Medi-

cal System, Otowara, Japan) or a 320-row volumetric scanner (Aquilion ONE, Toshiba 

Medical System, Otowara, Japan). Contra-indications for CTA were, 1) impaired renal 

function (glomerular filtration rate  <60 ml/min/1.73m2), 2) pregnancy, 3) (supra-) 
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ventricular arrhythmias, 4) known allergy to contrast agent, 5) severe claustrophobia. 

Non-contrast CT and contrast CTA were performed according to standard clinical 

practice. Prior to CT examination, beta-blocking medication was administered if the 

heart rate was ≥65 beats per minutes, unless contra-indicated. Datasets were sent to 

a remote workstation for analysis.

Image analysis.
Evaluation of the CTA was performed on a dedicated workstation (Vitrea FX, Vital Im-

ages, Minnetonka, MN, USA). For each patient the Agatston CAC score was measured. 

Thereafter, the CTA datasets were evaluated for the presence, severity and composition 

of coronary atherosclerosis as previously described.16  In brief, each segment of the 

coronary tree was scored as normal (<30%), non-obstructive (30-50%) or obstructive 

(≥50%) CAD. Coronary plaque composition was assessed as non-calcified, calcified 

or mixed-plaque.  Per patient, the number of segments with atherosclerosis and the 

number of each type of plaque were assessed. Significant coronary artery disease was 

defined by the presence of a coronary lesion with ≥50% stenosis.

Statistical analysis

For reasons of uniformity summary statistics for all continuous data are presented as 

mean ± SD. Normality of the data was confirmed by comparing the histogram with 

a normal probability curve. Categorical data are presented as absolute numbers and 

percentages. First, clinical patient characteristics were compared between patients 

with and without ischemia at baseline. Second, in a similar fashion, patients with 

and without ischemia at follow-up were compared. Third, patients with and without 

progression of ischemia were compared likewise. Thereafter, the CTA parameters 

of the extent, severity and composition of coronary atherosclerosis were compared 

between all patient groups. Statistical significance was assessed using non-parametric 

tests for continuous data with a non-normal distribution and t-test for data with a 

normal distribution. Chi-square tests were applied to categorical data. All statistical 

tests were two-sided and a P-value  <0.05 was considered statistically significant. 

All statistical analyses were performed with SPSS software (Version 20.0, SPSS Inc., 

Chicago, Illinois).

Results

Patient characteristics

The population consisted of 159 patients. In 36 patients, one of the two SPECT MPI 

studies was not performed (for logistical reasons). The datasets of the remaining 
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123 patients were sent to an independent core-lab for quantification of myocardial 

ischemia. In 16 patients quantitative analysis could not be performed due to protocol 

violations or insufficient image quality. The results of 107 patients were available for 

analysis, 7 patients underwent planned revascularization between the two studies and 

were therefore excluded.  The final patient cohort consisted of 100 patients.  Table 1 

demonstrates the baseline characteristics of the population. In total, 62 patients were 

male, half of the patients presented with hypertension or hypercholesterolemia. 

Mean diabetes duration was 113 ± 87 months. In Table 1, the medical therapy at 

baseline is described. In total, 52 patients received statin therapy, 17 aspirin and 31 

ACE-inhibitors. At follow-up, in 23 patients statin therapy was added and 8 patients 

received additional ACE-inhibitors. Aspirin was added in 22 patients. At follow-up, 

19 patients received anti-angina medication (i.e. beta-blockers, calcium-antagonists 

or nitrates). 

SPECT MPI results 

Median time between the 2 SPECT MPI studies was 30 (IQR 27-33) months. As shown 

in Figure 1, 20% of patients presented with ischemia at baseline, without need of re-

vascularization. Of these 20 patients, 7 (35%) patients still had ischemia at follow-up, 

whereas 13 (65%) patients showed resolution of ischemia and 4 showed progression 

of ischemia at follow-up. Of the 80 of patients without ischemia at baseline, 65 (81%) 

had a normal study at follow-up and 15 patients (19%) presented with new ischemia.  

Figure 2 demonstrates the rate of progression of ischemia. In patients with a normal 

baseline SPECT MPI, 19% of the patients presented with progression of ischemia. In 

Table 1, the baseline results stratified according to the presence of baseline ischemia 

are demonstrated.  Except for family history and low-density lipoprotein (LDL)-

cholesterol, there were no significant differences between patients with or without 

myocardial ischemia at baseline. In Table 2, the difference in characteristics between 

patients with and without ischemia at follow-up is shown. Remarkably, there were no 

significant differences between both patients groups. Table 3 summarizes the differ-

ences between baseline characteristics between patients with and without progres-

sion of ischemia. DM duration was significantly longer among patients who showed 

progression of ischemia (180 ± 97 vs. 135 ± 83 months, P=0.049). The remaining 

baseline characteristics were comparable between patients with and without progres-

sion of ischemia.  At follow-up, 5 patients presented with onset of chest-pain, of 

which 1 had progression of ischemia and 4 presented without new ischemia. Of the 

19 patients in whom anti-anginal medication was added, 2 presented with progres-

sion of ischemia (P=0.295). There was no relation between the onset of symptoms 

and new ischemia or progression of ischemia. 



193

Changes in ischaemia in DM patients: relation with CTA

Table 1. Clinical characteristics of the population in relation to baseline ischemia.

Total
( N=100)

 Ischemia
(n=20)

No ischemia
(n=80)

P- value

Age(years) 53 ± 10 54 ± 11 53 ± 10 0.791

Gender(% male) 62 (62%) 15 (75%) 47 (59%) 0.181

Hypertension† n(%) 52 (52%) 7 (35%) 45 (56%) 0.089

Hypercholesterolemia‡ n(%) 51 (51%) 11 (55%) 40 (50%) 0.689

Family history of CAD* n(%) 56 (65%) 5 (25%) 51 (64%) 0.002

Smoking n(%) 19 (19%) 6 (30%) 13 (13%) 0.161

Diabetes-related factors

 Age at time of 
diagnosis(years)

43 ± 12 45 ± 15 43 ± 11
0.443

 Diabetes duration(months) 113 ± 87 99 ± 95 117 ± 85 0.409

 HbA1C(%) 7.5 ± 1.6 7.7 ± 1.5 7.5 ± 1.7 0.633

Diabetes-related complications 0.857

 PVD n(%) 9 (9%) 2 (10%) 7 (9%)

 PNP n(%) 23 (23%) 6 (30%) 17 (21%)

 PVD and PNP n(%) 10 (10%) 2 (10%) 8 (10%)

Diabetes-related treatment 0.617

 Oral 61 (61%) 14 (70%) 47 (59%)

 Insulin 19 (19%) 2 (10%) 17 (21%)

 Oral and insulin 17 (17%) 3 (15%) 14 (17%)

Medication at baseline

 Aspirin n(%) 17 (17%) 6 (30%) 11 (14%) 0.084

 ACE-inhibitors n(%) 31 (31%) 7 (35%) 24 (30%) 0.665

 ARB 26 (26%) 5 (25%) 21 (26%) 0.909

 Statins n(%) 52 (52%) 14 (70%) 38 (48%) 0.072

Serum markers at baseline

 Total cholesterol(mmol/l) 4.8 ± 1.1 4.4 ± 1.0 3.9 ± 1.3 0.074

 LDL(mmol/l) 3.1 ± 1.1 2.7 ± 0.9 3.3 ± 1.1 0.049

 HDL(mmol/l) 1.4 ± 0.6 1.3 ± 0.4 1.4 ± 0.6 0.401

 Cholesterol/HDL ratio 3.9 ± 1.4 3.9 ± 1.5 3.9 ± 1.3 0.971

 Triglycerides(mmol/l) 2.0 ± 1.3 1.9 ± 0.8 2.1 ± 1.3 0.602

Abbreviations: ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker; CAD, coronary 
artery disease; DM, diabetes mellitus;  HDL, high density lipoprotein;  LDL, low density lipoprotein; 
PNP, polyneuropathy;  PVP, peripheral vessel disease
†Blood pressure ≥140/90 mmHg or treatment with antihypertensive medication; ‡ total cholesterol 
level >5.0mmol/L or use of cholesterol lowering medication; *defined as the presence of coronary 
artery disease in first-degree family members at age <55 years in men and <65 years in women; #body 
mass index ≥30
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CTA results

93 of the 100 patients underwent coronary CTA and 98 patients CAC scoring. The 

median time between the first SPECT MPI and CTA was 22 (IQR 4 - 46) days. In 

Table  4 the CTA results are demonstrated, stratified according to the presence of 

baseline and follow-up ischemia. A comparison was made for the presence, extent 

and composition of coronary atherosclerosis on CTA.  For all parameters, there were 

no significant differences between patients with and without ischemia at baseline. 

20; 20% 

80; 80% 

7; 35% 

13; 65% 

15; 19% 

65; 81% 

Baseline Follow-up 

Figure 1. Distribution of myocardial ischemia on SPECT MPI at baseline and after 2 years follow-up. 
Pie charts of the distribution of myocardial ischemia on SPECT MPI stratified according to baseline 
ischemia. Black represents ischemia, white represents a normal SPECT MPI.

20; 20% 

80; 80% 

Baseline Progression 

4; 20% 

16; 80% 

15; 19% 

65; 81% 

Figure 2. Distribution of progression of myocardial ischemia on SPECT MPI at baseline and after 2 
years follow-up. 
Pie charts of the distribution of progression myocardial ischemia on SPECT MPI stratified according to 
baseline ischemia. At baseline black marks ischemia, white represents a normal SPECT MPI. For follow-
up, black marks progression of ischemia.
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Similarly, no differences could be demonstrated between patients with and without 

ischemia at follow-up or between patients with and without progression of ischemia. 

Overall, 24 (26%) patients presented with obstructive CAD on CTA (of note: pa-

tients who underwent revascularization between the two SPECT MPI studies were 

Table 2. Clinical characteristics of the population in relation to follow-up ischemia.

FU ischemia
(n=22)

FU no ischemia
(n=78)

P- value

Age(years) 54 ± 12 53 ± 9 0.641

Gender(% male) 13 (59%) 49 (62%) 0.750

Hypertension† n(%) 11 (50%) 41 (53%) 0.832

Hypercholesterolemia‡ n(%) 11 (50%) 40 (51%) 0.915

Family history of CAD* n(%) 10 (46%) 46 (59%) 0.259

Smoking n(%) 4 (18%) 15 (19%) 0.912

Diabetes-related  factors at FU

 Age at time of diagnosis(years) 43 ± 15 43 ± 10 0.912

 Diabetes duration(months) 136 ± 99 113 ± 85 0.300

 HbA1C(%) 7.7 ± 1.8 7.7 ± 1.5 0.876

Diabetes-related complications at FU 0.571

 PVD n(%) 2 (9%) 7 (9%)

 PNP n(%) 6 (27%) 18 (23%)

 PVD and PNP n(%) 7(32%) 4 (5%)

Diabetes-related treatment at FU 0.224

 Oral 9 (41%) 42 (54%)

 Insulin 3 (14%) 18 (23%)

 Oral and insulin 9 (41%) 16 (21%)

Medication at FU 

 Aspirin n(%) 12 (55%) 25 (32%) 0.054

 ACE-inhibitors n(%) 10 (45%) 28 (36%) 0.415

 ARB  n(%) 6 (27%) 22 (28%) 0.931

 Statins n(%) 17 (77%) 57 (73%) 0.692

 Beta-blockers  n(%) 2 (9%) 6 (8%) 0.831

 Calcium-antagonists  n(%) 1 (5%) 12 (15%) 0.182

 Nitrates  n(%) 0 (0%) 1 (1%) 0.594

Serum markers at FU

 Total cholesterol(mmol/l) 4.2 ± 1.1 4.5 ± 1.0 0.382

 LDL(mmol/l) 2.6 ± 0.9 2.7 ± 0.9 0.548

 HDL(mmol/l) 1.2 ± 0.3 1.3 ± 0.4 0.432

 Cholesterol/HDL ratio 3.6 ± 1.0 3.7 ± 1.2 0.645

 Triglycerides(mmol/l) 2.0 ± 1.7 1.9 ± 1.0 0.751

 Abbreviations and definitions as in Table 1.
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excluded). In patients with ischemia at baseline, more had obstructive CAD (33% 

vs. 24%, P=0.476) but these differences were not significant. These patients also 

had a higher mean CAC score (19 (IQR 0-115) vs. 4 (IQR 0-101), P=0.390), but the 

Table 3. Clinical characteristics of the population in relation to progression of ischemia.

Progression
 (n=19)

No progression
/regression
(n=81)

P- value

Age(years) 53 ± 12 53 ± 10 0.794

Gender(% male) 10 (53%) 52 (64%) 0.350

Hypertension† n(%) 9 (47%) 43 (53%) 0.653

Hypercholesterolemia‡ n(%) 9 (47%) 42 (52%) 0.725

Family history of CAD* n(%) 10 (53%) 46 (57%) 0.742

Smoking n(%) 4 (21%) 15 (19%) 0.800

Diabetes-related risk factors at FU

 Age at time of diagnosis(years) 41 ± 13 44 ± 11 0.320

 Diabetes duration(months) 180 ± 97 135 ± 83 0.049

 HbA1C(%) 8.1 ± 1.5 7.7 ± 1.6

Diabetes-related complications at FU 0.455

 PVD n(%) 2 (11%) 7 (9%)

 PNP n(%) 4 (21%) 20 (25%)

 PVD and PNP n(%) 4 (21%) 7 (9%)

Diabetes-related treatment at FU 0.249

 Oral 8 (42%) 43 (53%)

 Insulin 3 (16%) 18 (22%)

 Oral and insulin 8 (42%) 17 (21%)

Medication at FU 

 Aspirin n(%) 10 (53%( 27 (33%) 0.117

 ACE-inhibitors n(%) 9 (47%) 29 (36%) 0.350

 ARB  n(%) 5 (26%) 23  (29%) 0.856

 Statins n(%) 16 (84%) 58 (73%) 0.260

 Beta-blockers  n(%) 2 (11%) 6 (32%) 0.652

 Calcium-antagonists  n(%) 0 (0%) 13 (16%) 0.061

 Nitrates  n(%) 0 (0%) 1 (1%) 0.626

Serum markers at FU

 Total cholesterol(mmol/l) 4.3 ± 1.0 4.5 ± 1.0 0.469

 LDL(mmol/l) 2.6 ± 0.9 2.7 ± 0.9 0.653

 HDL(mmol/l) 1.2 ± 0.25 1.3 ± 1.2 0.435

 Cholesterol/HDL ratio 3.7 ± 1.2 3.7 ± 1.2 0.154

 Triglycerides(mmol/l) 1.9 ± 1.7 1.9 ± 1.0 0.435

 Abbreviations and definitions as in Table 1.
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difference was not statistically different.  In patients presenting with progression of 

ischemia, obstructive CAD occurred more often (35% vs. 24%, P=0.546) and CAC 

scores were slightly higher (16 (IQR 0-81) vs. 4 (IQR 0-112), P=0.408), but these 

differences were also not significant.

Discussion

The present study demonstrated a low rate of progression of ischemia after 2 years 

in high risk patients with diabetes without cardiac symptoms. Moreover, no relation 

between atherosclerosis parameters on CTA and changes of ischemia was observed.  

Previous studies have investigated the role of screening with SPECT MPI for silent 

ischemia in asymptomatic diabetic patients.17 Most importantly, in the Detection of 

Ischemia in Asymptomatic Diabetics (DIAD) study, 1123 diabetic patients without 

any suspicion of CAD were randomized between screening with SPECT MPI and no 

screening.18 Of the 522 patients who underwent SPECT MPI, 133 (22%) presented 

with an abnormal study, the majority (73%) of which were regional perfusion abnor-

malities.9 Except for gender, diabetes duration and heart rate response to Valsalva 

(performed as part of cardiac autonomic function testing), no clinical characteristics 

or laboratory markers could accurately predict the presence of silent ischemia in these 

patients.  Second, Lorenzo et al. included 180 asymptomatic diabetic patients who 

underwent SPECT MPI and were followed for a mean period of 36 months.19 In total, 

46 patients (26%) of the patients presented with an abnormal MPI. No differences in 

characteristics were observed between patients with and without myocardial isch-

emia. However, at present only one study has focused on progression of ischemia in 

these patients. In DIAD-2, 358 of the initial 522 patients underwent a second SPECT 

MPI study to evaluate the change in myocardial perfusion after a 3 year interval.9 

Similar to the present study, of the 71 (20%) patients who presented with an abnormal 

SPECT MPI study at baseline, 56 (79%) showed resolution of ischemia after 3 years, 

whereas only a limited number of patients (10%) with a normal baseline examination 

presented with new ischemia. Likely this resolution of ischemia was caused by inten-

sified medical therapy after recommendations in the American Diabetes Association 

(ADA) guidelines.20 Similarly, in the present report medical therapy was intensified at 

follow-up. However, no relation between added anti-anginal medication and isch-

emia progression could be established. Comparable to the present report, in DIAD-2 

the value of clinical characteristics to predict the risk of new ischemia was limited. 

Only peripheral vessel disease (PVD) and elevated LDL-cholesterol levels where as-

sociated with new onset of ischemia. 
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Presumably, the relative low rate of progression of ischemia is caused by accurate 

medical therapy. If these diabetic patients are treated according guidelines based on 

the outcomes of testing, the clinical follow-up is prosperous. It seems that medical 

treatment outweighs the potential negative effect of other clinical characteristics. It 

would however have been unethical to refrain patients from appropriate medical 

therapy. 

In the present report, there was no significant difference between the median 

CAC score in patients with and without baseline ischemia. In contrast, Anand et al. 

showed a significant association between the CAC score and myocardial ischemia in 

510 asymptomatic diabetic patients.21  MPI was performed in all patients with a CAC 

score >100 and in a random sample of patients with a CAC score ≤100. The CAC 

score was significantly associated with the presence of myocardial ischemia. Of 

particular interest, all patients with a CAC score ≤10 presented with a normal SPECT 

MPI. Furthermore, in the current report, no correlation was demonstrated between 

coronary atherosclerosis parameters of the extent, severity or composition of coronary 

atherosclerosis on CTA and baseline ischemia on SPECT MPI. Indeed, several studies 

have previously demonstrated the limited correlation between the coronary stenosis 

severity on CTA and ischemia on SPECT MPI, both in patients with stable angina and 

asymptomatic diabetic patients.11, 22  However, for the present study, it was hypoth-

esized that CTA could be able to identify different coronary atherosclerotic plaque 

characteristics which could predict changes in myocardial ischemia on SPECT MPI. 

The relation between coronary plaque type and the presence of myocardial ischemia 

has previously been studied.23-25 Lin et al. included 163 low-to-intermediate risk 

symptomatic patients who underwent both CTA and SPECT MPI.25 Besides stenosis 

severity, mixed plaque was significantly associated with the presence of myocardial 

ischemia. Moreover, van Velzen et al. evaluated 514 patients with SPECT MPI and 

coronary CTA.23 The presence of mixed or calcified plaque independently predicted 

myocardial ischemia. In contrast, Bauer et al. focused on the relation between non-

calcified CAD on CTA and myocardial ischemia in 72 patients.24 It was demonstrated 

that coronary arteries with a perfusion defect in the corresponding vascular territory 

had significantly larger non-calcified plaque volumes, but there was no difference 

in calcified plaque volume. The underlying pathophysiological relation between 

coronary plaque composition and myocardial ischemia is unknown. Possible, mixed 

plaques with a relatively large plaque burden are prone to rupture, causing myocardial 

ischemia, whereas the more advanced stage of calcified plaque is relatively stable. 

Especially in a patient without baseline ischemia, rupture of a hemodynamically non-

significant plaque could cause onset of ischemia. However, the relation between CTA 

atherosclerosis parameters and progression of atherosclerosis has not been described 

earlier. Moreover, in the present study, no association could be established between 
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CTA coronary atherosclerosis and changes in myocardial ischemia. There was no 

significant difference in the different plaque types between patients with and without 

onset of new ischemia or progression of ischemia. Nor could a difference in the 

presence of non-obstructive CAD between both patient groups be established. More-

over, the CAC score was similar in both groups. The relative disagreement between 

atherosclerosis on CTA and ischemia on SPECT MPI could be caused by the fact that 

the two different modalities evaluate different manifestations of CAD. CTA only al-

lows assessment of coronary artery stenosis in the major epicardial coronary arteries. 

On the other hand, SPECT MPI visualizes perfusion defects which could be caused by 

either stenosis in a major epicardial coronary artery and/or by microvascular disease 

and endothelial dysfunction. However, it is well known that especially in diabetic 

patients, microvascular disease plays an important role in the onset of myocardial 

ischemia.6 

Limitations 

Some limitations need to be considered. First, a limited number of patients is in-

cluded. Second, patients who underwent revascularization were excluded, which 

may have affected results. And furthermore, additional SPECT parameters such as left 

ventricular ejection fraction, transient ischemic dilatation or ECG abnormalities were 

not incorporated in the current analysis.

Conclusions

The rate of progression of ischemia in high risk patients with diabetes without 

cardiac symptoms is limited. Few patients presented with new ischemia, whereas 

some patients show resolution of ischemia. Atherosclerosis parameters on CTA were 

not predictive of new onset ischemia or progression of ischemia.  Neither baseline 

characteristics, CAC score nor atherosclerosis parameters on CTA were predictive of 

the onset of new ischemia or were correlated with progression of ischemia. 
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Abstract

Purpose: Diabetic patients with coronary artery disease (CAD) are often free of chest 

pain syndrome. A useful modality for non-invasive assessment of CAD is coronary 

computed tomography angiography (CTA). However, the prognostic value of CAD on 

coronary CTA in diabetic patients without chest pain syndrome is relatively unknown. 

Therefore, the aim was to investigate the long term prognostic value of coronary CTA 

in a large population diabetic patients without chest pain syndrome. 

Methods: Between 2005 and 2013, 525 diabetic patients without chest pain syn-

drome were prospectively included to undergo coronary artery calcium (CAC)-scoring 

followed by coronary CTA. During follow-up the composite endpoint of all-cause 

mortality, non-fatal myocardial infarction (MI) and late revascularization (>90 days) 

was registered. 

Results: In total, CAC-scoring was performed in 410 patients and coronary CTA in 

444 patients (431 interpretable). After median follow-up of 5.0(IQR 2.7-6.5) years 

the composite endpoint occurred in 65(14%) patients. Coronary CTA demonstrated a 

high prevalence of CAD (85%), mostly non-obstructive CAD (51%). Furthermore, pa-

tients with a normal CTA had an excellent prognosis (event-rate 3%). An incremental 

increase in event-rate was observed with increasing CAC-risk category or coronary 

stenosis severity. Finally, obstructive (50-70%) or severe CAD (>70%) was indepen-

dently predictive of events (HR=11.10[2.52;48.79](P=0.001), HR=15.16[3.01;76.36]

(P=0.001)). Obstructive (50-70%) or severe CAD (>70%) provided increased value 

over baseline risk factors.

Conclusion: Coronary CTA provided prognostic value in diabetic patients without 

chest pain syndrome. Most importantly, the prognosis of patients with a normal CTA 

was excellent.
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Introduction

Diabetes mellitus (DM) is a major and rapidly growing global health problem. In 

2013 DM was responsible for 8.4% of all-cause mortality in patients between 20-

79 years old and 10.8% of total health expenditure worldwide.1  Cardiovascular 

complications are the leading cause of mortality in diabetic patients.2 Accordingly, 

the European Society of Cardiology (ESC) classifies patients with DM as high risk for 

coronary artery disease (CAD).3 However, not all patients with DM have CAD and 

also diabetic patients with CAD are often free of chest pain syndrome.4 Coronary 

computed tomography angiography (CTA) is a useful modality for non-invasive as-

sessment of CAD.  Indeed, in diabetic patients without chest pain syndrome a high 

prevalence of CAD is present on coronary CTA.5-7 Potentially CTA could be used to 

risk stratify DM patients. However, the prognostic value of CAD on coronary CTA in 

these patients is relatively unknown. As a consequence, the value of coronary CTA for 

risk stratification of these patients is unestablished.8, 9 Therefore, the aim of this study 

is to investigate the long term prognostic value of coronary CTA in a large population 

of diabetic patients without chest pain syndrome.

Methods

Patients

The study population consisted of 525 diabetic patients without chest pain syn-

drome, referred from an outpatient diabetic clinic for assessment of cardiovascular 

risk between May 2005 and August 2013. The cardiovascular assessment include 

coronary artery  calcium (CAC) score and CTA to evaluate the presence and severity 

of CAD.5, 10 After enrolment in the prospective clinical registry, patients underwent 

a non-contrast CT for CAC-scoring followed by a contrast coronary CTA. Inclusion 

criteria consisted of confirmed diagnosis of DM type 1 or 2 (fasting plasma glucose 

level ≥126 mg/dL, use of oral glucose lowering medication or insulin) and absence of 

chest pain syndrome.11 Exclusion criteria were known or suspected coronary artery 

disease (CAD), previous coronary revascularization, cardiac arrhythmias, pregnancy 

and contraindications for the use of iodinated contrast media. 

Clinical data were prospectively entered into the departmental Cardiology Informa-

tion System (EPD-Vision©, Leiden University Medical Center, the Netherlands) and 

retrospectively analyzed. The Institutional Review Board of the Leiden University 

Medical Center approved this evaluation of clinically collected data, and waived the 

need for written informed consent.
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Coronary CTA acquisition

Patients were scanned using a 64-slice or 320-row multidetector scanner (64-slice: 

Aquillon 64, Toshiba Medical Systems, Otawara, Japan; 320-row: Aquillon ONE, 

Toshiba Medical System, Otawara, Japan). Scan-protocol was followed as previously 

described.12, 13 Post-processing of scans was performed with application of dedicated 

software (Vitrea FX 1.0, Vital Images, Minnetonka, MN, USA). Uninterpretable scans 

were excluded from the analysis.

CAC-scoring

CAC-scoring was performed according to the algorithm of Agatston. CAC-score was 

stratified into four risk categories: 0, 1-99, 100-399, ≥400.12 

Coronary CTA

All coronary CTAs were analysed by consensus of experienced observers according 

to the modified 17 segments American Heart Association (AHA) classification. 

First, each segment was assessed for interpretability. Segments were defined as 

uninterpretable in case of severe motion artefacts or low contrast resolution. Ad-

ditionally, segments with a diameter ≤1.5 mm were excluded.5 Second, interpretable 

segments were evaluated for stenosis. Stenosis was stratified into four categories: nor-

mal if no plaques were present on CTA, non-obstructive if the plaque covered <50%, 

obstructive if the plaque covered 50-70%, severe if the plaque covered >70% of the 

coronary artery lumen. If plaque was present, plaque composition was determined 

(calcified, mixed, and non-calcified). One type of plaque composition was assigned 

per segment. 

Follow-up

Follow-up data were retrospectively gathered by review of electronic medical re-

cords, blinded from CTA results, between December 2013 and February 2014, both 

the medical records of the department of cardiology and of the referring outpatient 

diabetic clinic have been analysed. Three endpoints were registered: all-cause mor-

tality, non-fatal myocardial infarction (MI), late revascularization. Non-fatal MI was 

defined based on criteria of typical chest pain, elevated cardiac enzyme levels and 

typical changes on the ECG.14 Late revascularization was defined as percutaneous 

coronary intervention (PCI) or coronary artery bypass grafting (CABG) after 90 days of 

scan acquisition.15 All revascularization procedures within 90 days were considered 

coronary CTA-driven. For the analysis a composite endpoint was constructed of all 

three endpoints.
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Statistical analysis

All continuous data (normally distributed, non-normally distributed) are presented 

as mean ±SD for reasons of uniformity. Categorical data are presented as absolute 

numbers and percentages. 

First, baseline characteristics were compared between patients with and without 

obstructive CAD (≥50%), similarly between patients with and without events. Second, 

results of both CAC-scoring and coronary CTA were compared between patients with 

and without events. Third, survival analyses were performed by the Kaplan-Meier 

method. Cumulative event rates for CAC-score and coronary stenosis were obtained 

by this method, using the composite endpoint. Note that these survival analyses were 

crude, because no corrections for baseline characteristics were performed. Fourth, 

the independent prognostic value of baseline characteristics, CAC-scoring and coro-

nary CTA was assessed. For this purpose univariate and multivariate Cox-regression 

analyses were performed. To avoid over fitting of the model a selection of univariate 

significant variables was entered into the multivariate model. 

All statistical tests were two-sided. Comparisons between groups were performed 

with the Independent-Samples T test or Mann-Whitney U test for continuous data and 

the χ2 test for categorical data. Comparisons of Kaplan-Meier curves were performed 

with the Log-Rank test. To compare the model fit of the multivariate Cox-regression 

models for CTA and CAC-score the -2 log likelihood was used. However, it should be 

noted that for non-nested models (i.e Model 2 vs Model 4), this only provides a crude 

comparison for which no P-values could be calculated. All statistical analyses were 

performed with SPSS software (Version 22.0, SPSS IBM Corp., Armonk, New York). A 

P-value <0.05 was considered statistically significant.

Results

Patients

The study population consisted of 525 patients. As depicted in Figure 1, 76(14%) 

patients were excluded from this analysis because of logistical reasons (i.e. patients 

who did not attend appointment). The results of 449 patients were available for the 

present analysis: 405 patients underwent both CAC-scoring and coronary CTA, 5 

patients underwent only CAC-scoring, 39 patients underwent only coronary CTA. In 

total, CAC-scoring was performed in 410 patients and coronary CTA in 444 patients. 

Mean age was 54±11 years, 265(59%) patients were male and median DM duration 

was 12(IQR 6-22) years. Baseline characteristics of the population are depicted in 

Table 1.
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Included 
n=525 

Available for analysis 
n=449 

Only CAC-score 
n=5 

Only coronary CTA 
n=39 

 Both CAC-score + coronary CTA  
n=405 

No scans performed 
 because of logistical reasons 

n=76 

Figure 1. Flowchart of the study population.

Table 1. Baseline characteristics stratified according to coronary CTA results and events.

Obstructive CAD (≥50%) Events

Baseline Total
(n=449)

Yes
(n=147)

No 
(n=284)

P-value Yes
(n=65)

No
(n=384)

P-value

Age(years) 54±11 60±9 50±11 <0.001 59±10 53±11 <0.001

Male n(%) 265(59%) 101(69%) 154(54%) 0.004 47(72%) 218(57%) 0.018

BMI(kg/m2) 28.6±5.7 28.5±5.0 28.5±6.0 0.942 28.7±5.3 28.6±5.8 0.912

Hypertension† n(%) 145(33%) 65(44%) 72(26%) <0.001 28(43%) 117(31%) 0.051

Hypercholesterolemia‡ 
n(%)

162(36%) 68(46%) 85(30%) 0.001 33(51%) 129(34%) 0.009

Family history of CAD* 
n(%)

190(43%) 60(41%) 125(45%) 0.448 29(45%) 161(42%) 0.735

Smoker n(%) 101(23%) 41(28%) 59(21%) 0.114 23(35%) 78(21%) 0.008

DM-related risk factors

DM type 2 n(%) 312(70%) 111(76%) 185(65%) 0.028 51(79%) 261(68%) 0.089

DM duration(years) 15±13
12(IQR 
6-22) 

18±14
15(IQR 
9-24)

14±12
10(IQR 
5-20)

<0.001

17±14
14(IQR 
8-22)

15±12
12(IQR 
5-22)

0.240

HbA1C

NGSP (%) 7.8±1.5 7.9±1.6 7.7±1.5 0.211 8.0±1.7 7.7±1.5 0.287

IFCC (mmol/mol) 62±16 63±18 61±16 0.211 64±19 61±16 0.287

Serum creatinine 78±19 82±19 76±19 0.002 83±21 77±18 0.012

eGFR (MDRD) 76±22 70±20 79±22 <0.001 69±21 77±22 0.006

DM-related 
complications

<0.001 0.002

PVD n(%) 20(5%) 12(8%) 7(3%) 7(11%) 13(3%)

PNP n(%) 97(22%) 41(28%) 50(18%) 20(31%) 77(20%)
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Events

The composite endpoint of all-cause mortality, non-fatal MI and late revascularization 

occurred in 65(14%) patients. All-cause mortality occurred in 13(3%) patients and 

late revascularization in 52(12%) patients (PCI: 30 patients, CABG: 22 patients). Of 

the 52 patients who underwent revascularization, 27(52%) patients were referred to 

invasive coronary angiography because of new-onset angina, 20 (38%) patients had 

documented ischemia on a SPECT myocardial perfusion imaging (MPI) performed 

after CTA and 5 (10%) patients presented with new ischemia on SPECT MPI during 

follow up. Non-fatal MI did not occur. Early revascularization, which was excluded 

from the composite endpoint, occurred in 16(4%) patients (PCI: 13 patients, CABG: 

Table 1. (Continued)

Obstructive CAD (≥50%) Events

Baseline Total
(n=449)

Yes
(n=147)

No 
(n=284)

P-value Yes
(n=65)

No
(n=384)

P-value

PVD and PNP n(%) 26(6%) 14(10%) 12(4%) 6(9%) 20(5%)

DM-related treatment 0.578 0.083

Oral 131(29%) 47(32%) 79(28%) 21(32%) 110(29%)

Insulin 170(38%) 50(34%) 116(41%) 18(28%) 152(40%)

Oral and insulin 99(22%) 33(22%) 58(20%) 21(32%) 78(20%)

Medication 

Aspirin n(%) 99(22%) 47(32%) 46(16%) <0.001 27(42%) 72(19%) <0.001

ACE-inhibitors n(%) 155(35%) 73(50%) 73(26%) <0.001 34(52%) 121(32%) 0.001

ARB n(%) 36(8%) 10(7%) 25(9%) 0.464 6(9%) 30(8%) 0.715

Statins n(%) 248(56%) 97(66%) 138(49%) 0.001 45(69%) 203(53%) 0.018

Beta-blockers  n(%) 41(9%) 20(14%) 19(7%) 0.018 11(17%) 30(8%) 0.018

Calcium-antagonists  
n(%)

14(3%) 9(6%) 5(2%)
0.015

6(9%) 8(2%)
0.002

Serum markers

Total 
cholesterol(mmol/l)

4.7±1.1 4.6±1.2 4.7±1.0
0.183

4.9±1.2 4.6±1.0
0.051

LDL(mmol/l) 2.9±1.0 2.8±1.1 2.9±1.0 0.503 3.0±1.1 2.8±1.0 0.176

HDL(mmol/l) 1.4±0.5 1.4±0.5 1.5±0.5 0.062 1.4±0.5 1.4±0.5 0.729

Cholesterol/HDL ratio 3.6±1.5 3.7±1.4 3.6±1.6 0.594 3.8±1.3 3.6±1.5 0.310

Triglycerides(mmol/l) 1.7±1.2 1.7±1.1 1.6±1.2 0.462 1.8±1.2 1.6±1.1 0.262

Abbreviations: ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker; BMI, body 
mass index, CAD, coronary artery disease; DM, diabetes mellitus; eGFR, estimated glomerular filtra-
tion rate; HDL, high density lipoprotein; IFCC, International Federation of Clinical Chemistry; LDL, low 
density lipoprotein; MDRD, Modification of Diet in Renal Disease; NGSP, National Glycohemoglobin 
Standardization Program; PNP, polyneuropathy;  PVD, peripheral vessel disease.
Definitions: † Blood pressure ≥140/90 mmHg or treatment with antihypertensive medication; ‡ total 
cholesterol level >5.0mmol/L or use of cholesterol lowering medication; * presence of coronary artery 
disease in first-degree family members at age <55 years in men and <65 years in women.
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3 patients). Median follow-up was 5.0(IQR 2.7-6.5) years.  No patients were lost to 

follow-up.

Patients with events demonstrated a higher mean age (59±10 vs. 53±11(P<0.001)) 

and number of males (47(72%) vs. 218(57%)(P=0.018)) compared to patients without 

events. Furthermore, hypercholesterolemia (33(51%) vs. 129(34%)(P=0.009)), smoker 

(23(35%) vs. 78(21%)(P=0.008)) and overall DM-related complications (P=0.002) 

were more frequently observed in this group (Table 1). 

CAC-scoring

CAC-scoring was performed in 410 patients. Median CAC-score was 29(IQR 0-294). 

The distribution within the CAC-risk categories was as follows: CAC-score=0 in 

144(35%) patients, CAC-score=1-99 in 106(26%) patients, CAC-score=100-399 in 

67(16%) patients, CAC-score≥400 in 93(23%) patients. In total, CAC-score=0 and 

CAC-score≥1 were observed in respectively 35% and 65% of patients (Table 2). 

The results of CAC-scoring, stratified according to events, are depicted in Table 2. 

Patients with events demonstrated a higher median CAC-score compared to patients 

without events (543(IQR 141-1310) vs. 13(IQR 0-177)(P<0.001)). Moreover, patients 

with events were more often classified in a higher CAC-risk category (P<0.001).

Coronary CTA

Coronary CTA was performed in 444 patients, of which 13 were uninterpretable. 

The remaining results of 431 patients were used for the present analysis. A high 

prevalence of CAD (85%) was demonstrated on coronary CTA: non-obstructive CAD 

(<50%) in 219(51%) patients, obstructive CAD (50-70%) in 117(27%) patients, severe 

CAD (>70%) in 30(7%) patients. A normal CTA was observed in 65(15%) patients 

(Table 2).

The baseline characteristics, stratified according to coronary CTA results, are de-

picted in Table 1. Patients with obstructive CAD (≥50%) demonstrated a higher mean 

age (60±9 vs. 50±11(P<0.001)), number of males (101(69%) vs. 154(54%)(P=0.004)) 

and median diabetes duration (15(IQR 9-24) vs. 10(IQR 5-20)(P<0.001)) compared to 

patients with no or non-obstructive CAD (<50%). Furthermore, hypertension (65(44%) 

vs. 72(26%)(P<0.001)), hypercholesterolemia (68(46%) vs. 85(30%)(P=0.001)) and 

overall DM-related complications (P<0.001) were more frequently observed in this 

group. 

The results of coronary CTA, stratified according to events, are depicted in Table 2. 

Patients with events presented with more severe coronary stenosis compared to 

patients without events (P<0.001). Moreover, a higher mean number of plaques 

(9.7±4.4 vs. 7.7±5.7(P=0.002)), mean number of obstructive lesions (2.8±2.8 vs. 

0.6±1.4(P<0.001)) and mean number of severe lesions (0.3±0.8 vs. 0.1±0.4(P=0.009)) 
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were observed in this group. In addition, a higher mean number of calcified lesions 

(2.6±3.5 vs. 0.8±1.8(P<0.001)) and mixed lesions (3.0±3.0 vs.1.3±2.1(P<0.001)) 

were present in patients with events.

Kaplan-Meier analysis

The results of the Kaplan-Meier survival analyses, stratified according to CAC-score, 

are depicted in Figure 2 Panel A and B. Crude event-rate was lower in patients with 

CAC-score=0 compared to patients with CAC-score≥1 (5/144(3%) vs. 54/266(20%)

Table 2. Results of CAC-scoring and coronary CTA stratified according to events. 

Events

CAC-scoring Total
(n=410)

Yes
(n=59)

No
(n=351)

P-value

CAC-score 355±800
29(IQR 0-294)

1043±1449
543(IQR 141-1310)

239±554
13(IQR 0-177) <0.001

CAC-risk category <0.001

CAC-score=0 144(35%) 5(9%) 139(40%)

CAC-score=1-99 106(26%) 7(12%) 99(28%)

CAC-score=100-399 67(16%) 12(20%) 55(16%)

CAC-score≥400 93(23%) 35(59%) 58(17%)

Coronary CTA Total
(n=431)

Yes
(n=64)

No
(n=367)

P-value

Coronary stenosis <0.001

No. of patients with normal CTA 
n(%) 65(15%) 2(3%) 63(17%)

No. of patients with non-obstructive 
CAD (<50%) n(%) 219(51%) 11(17%) 208(57%)

No. of patients with obstructive CAD 
(50-70%) n(%) 117(27%) 39(61%) 78(21%)

No. of patients with severe CAD 
(>70%) n(%) 30(7%) 12(19%) 18(5%)

Coronary plaques (stenosis)

No. of plaques 8.0±5.6 9.7±4.4 7.7±5.7 0.002

No. of non-obstructive lesions 7.0±5.3 6.9±4.1 7.1±5.4 0.724

No. of obstructive lesions 1.0±1.9 2.8±2.8 0.6±1.4 <0.001

No. of severe lesions 0.1±0.5 0.3±0.8 0.1±0.4 0.009

Coronary plaques (composition)

No. of calcified lesions 1.1± 2.2 2.6±3.5 0.8±1.8 <0.001

No. of mixed lesions 1.5±2.4 3.0±3.0 1.3±2.1 <0.001

No. of non-calcified lesions 0.9±1.5 1.3±2.2 0.8±1.4 0.067

Abbreviations: CAC, coronary artery calcium; CAD, coronary artery disease; CTA, computed tomogra-
phy coronary angiography.
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Figure 2. Kaplan-Meier curves for the composite endpoint (all-cause mortality, non-fatal MI, late re-
vascularization) according to CAC-score and coronary stenosis.
Panel A: event-free survival difference between patients with CAC-score=0 and CAC-score≥1  Pan-
el B: event-free survival difference between patients with CAC-score=0, CAC-score=1-99, CAC-
score=100-399 and CAC-score≥400  Panel C: event-free survival difference between patients with no 
or non-obstructive CAD (<50%) and obstructive CAD (≥50%). Panel D: event-free survival difference 
between patients with normal CTA, non-obstructive CAD (<50%), obstructive CAD (50-70%) and se-
vere CAD (>70%).
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(P<0.001)) (Panel A). Additionally, an incremental increase in event-rate was observed 

with increasing CAC-risk category: 5/144(3%) for CAC-score=0, 7/106(7%) for CAC-

score=1-99, 12/67(18%) for CAC-score=100-399, 35/93(38%) for CAC-score≥400 

(P<0.001). Thus, event-rate was highest in patients with CAC-score≥400 (Panel B).

The results of the Kaplan-Meier survival analyses, stratified according to coronary 

stenosis, are depicted in Figure 2 Panel C and D. Crude event-rate was lower in pa-

tients with no or non-obstructive CAD (<50%) compared to patients with obstructive 

CAD (≥50%) (13/284(5%) vs. 51/147(35%)(P<0.001)) (Panel C). An excellent prog-

nosis was observed in patients with a normal CTA (event-rate 2/65(3%)). Of note, the 

2 patients with a normal CTA presented with complications not related to diabetes 

and died of a (presumably) non-cardiac course. Additionally, an incremental increase 

in event-rate was observed with increasing coronary stenosis severity: 11/219(5%) 

for non-obstructive CAD (<50%), 39/117(33%) for obstructive CAD (50-70%), 

12/30(40%) for severe CAD (>70%) (P<0.001). Event-rate was highest in patients 

with severe CAD (>70%) (Panel D). 

Cox-regression analysis

The results of univariate Cox-regression analyses for the prediction of events are de-

picted in Table 3 and Table 4. CAC-score≥100, obstructive (50-70%) or severe CAD 

(>70%), total number of plaques, number of plaques stratified to stenosis (obstructive, 

severe) and number of plaques stratified to plaque composition (calcified, mixed, 

non-calcified) were all significant univariate predictors of the composite endpoint 

(Table 4). 

The results of the multivariate Cox-regression analyses for the prediction of events 

are depicted in Table 5. To avoid over fitting of the model (limited number of events, 

n=65) only a selection of the univariate significant variables was entered into the mul-

tivariate model (i.e. age, male gender, smoker, CAC-risk category, coronary stenosis 

grade). The variable smoker was selected over hypertension and hypercholesterolemia, 

assuming it correlated less with age and male gender. Moreover, replacing smoking 

with either hypertension or hypercholesterolemia did not have a strong influence 

on the results. In the multivariate analyses, corrected for the selected baseline vari-

ables (Model 2), CAC-score≥100 was independently predictive of events. Moreover, 

CAC-score≥400 provided incremental prognostic value over CAC-score=100-399 

(HR=12.52[95%CI 4.29;36.54](P<0.001) vs. HR=5.13[95%CI 1.68;15.60](P=0.004)). 

Accordingly, obstructive (50-70%) or severe CAD (>70%) remained an independent 

predictor of events. The presence of severe CAD (>70%) provided incremental 

prognostic value over obstructive CAD (50-70%) (HR=15.16[95%CI 3.01;76.36]

(P=0.001) vs. HR=11.10[95%CI 2.52;48.79](P=0.001)).  Adding the CTA results tot 

Model 2 (including baseline variables and CAC-score) resulted in a significant change 
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in -2 log likelihood (17.60, P 0.001) (Model 3). Moreover, adding the CTA results to 

the baseline model resulted in a larger increase in the -2 log likelihood compared to 

the adding of the CAC-score (43.78 vs. 36.30) (Model 4). 

Table 3. Univariate Cox-regression analyses of baseline characteristics for the prediction of events.

Baseline Univariate
HR [95%CI]

P-value

Age 1.06[1.04;1.09] <0.001

Male 1.97[1.14;3.38] 0.015

BMI 1.00[0.96;1.04] 0.959

Hypertension 1.79[1.10;2.93] 0.020

Hypercholesterolemia 2.15[1.32;3.51] 0.002

Family history of CAD 0.95[0.58;1.56] 0.846

Smoker 1.98[1.19;3.30] 0.008

DM-related risk factors

DM type 2 1.58[0.87;2.85] 0.132

DM duration 1.00[1.00;1.00] 0.160

HbA1C 1.08[0.92;1.27] 0.326

DM-related complications

PVD 3.01[1.37:6.60] 0.006

PNP 1.66[0.98;2.82] 0.058

PVD and PNP 1.77[0.76;4.10] 0.184

DM-related treatment

Oral 1.13[0.67;1.90] 0.646

Insulin 0.60[0.35;1.04] 0.069

Oral and insulin 1.79[1.06;3.01] 0.028

Medication 

Aspirin 2.78[1.69;4.55] <0.001

ACE-inhibitors 2.39[1.47;3.89] <0.001

ARB 1.03[0.44;2.39] 0.946

Statins 1.97[1.16;3.34] 0.012

Beta-blockers  2.29[1.20;4.39] 0.012

Calcium-antagonists 3.94[1.70;9.14] 0.001

Serum markers

Total cholesterol 1.23[0.99;1.54] 0.067

LDL 1.13[0.89;1.43] 0.317

HDL 0.92[0.55;1.54] 0.756

Cholesterol/HDL ratio 1.06[0.93;1.22] 0.364

Triglycerides 1.09[0.91;1.31] 0.364

Abbreviations and definitions as in Table 1.
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Discussion

The present study assessed the long term prognostic value of coronary CTA in a large 

prospective registry of diabetic patients without chest pain syndrome. Coronary 

CTA demonstrated high prevalence of CAD (85%), mostly non-obstructive. Most 

importantly, patients with a normal CTA had an excellent prognosis. Furthermore, an 

incremental increase in event-rate was observed with increasing coronary stenosis 

severity. Finally, obstructive (50-70%) or severe CAD (>70%) was independently 

predictive of events, with increased value over baseline risk factors (i.e. age, male 

gender, smoker). Moreover, the CAC-score demonstrated a similar independent 

predictive value for the occurrence of events. However,  the model including CTA 

performed better than the model with CAC-score, and CTA provided some additional 

value over the CAC-score. Although it should be noted that this was a crude analysis 

Table 4. Univariate Cox-regression analyses of CAC-scoring and coronary CTA for the prediction of 
events.

CAC-scoring Univariate
HR [95%CI]

P-value

CAC-risk category Overall <0.001 

CAC-score=0 Ref. category

CAC-score=1-99 1.92[0.61;6.05] 0.265

CAC-score=100-399 6.11[2.15;17.35] 0.001

CAC-score≥400 15.79[6.16;40.50] <0.001

Coronary CTA Univariate
HR [95%CI]

P-value

Coronary stenosis Overall <0.001

Normal CTA Ref. category

Non-obstructive CAD (<50%) 1.92[0.43;8.67] 0.397

Obstructive CAD (50-70%) 16.18[3.90;67.21] <0.001

Severe CAD (>70%) 29.03[6.40;131.73] <0.001

Coronary plaques (stenosis) 

No. of plaques 1.09[1.04;1.14] <0.001

No. of non-obstructive lesions 1.02[0.98;1.07] 0.375

No. of obstructive lesions 1.40[1.31;1.51] <0.001

No. of severe lesions 2.42[1.77;3.30] <0.001

Coronary plaques (composition)

No. of calcified lesions 1.22[1.14;1.30] <0.001

No. of mixed lesions 1.24[1.16;1.33] <0.001

No. of non-calcified lesions 1.17[1.04;1.31] 0.007

Abbreviations and definitions as in Table 2
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and that the present study was not designed to assess the difference in performance 

between CTA and CAC-score. 

CAC-score

Previous studies widely established the prevalence of CAC in diabetic patients 

without chest pain syndrome.16-18 The present study assessed the prognostic value of 

CAC by demonstrating CAC-score≥100 as independent predictor of events in diabetic 

patients without chest pain syndrome. Prior to our study, Raggi et al. investigated the 

prognostic value of CAC-scoring for all-cause mortality in asymptomatic individu-

als.19 In this study 10377 asymptomatic individuals were prospectively included to 

undergo electron beam computed tomography (EBCT): 903(9%) individuals with 

DM, 9474(91%) individuals without DM. This study, with mean follow-up of 5 years, 

demonstrated CAC as independent predictor of all-cause mortality in both diabetic 

and non-diabetic asymptomatic individuals. Moreover, Anand et al. investigated the 

prognostic value of EBCT for short term events in 510 asymptomatic patients with 

DM type 2.20 This study, with median follow-up of 2.2 years, demonstrated CAC-

score≥100 as independent predictor of cardiac death, MI, acute coronary syndrome 

(ACS), late coronary revascularization (>60 days after EBCT) and non-haemorrhagic 

stroke over established cardiovascular risk factors . Additionally, the PREDICT (pro-

spective evaluation of diabetic ischemic disease by computed tomography) study 

investigated the prognostic value of EBCT for cardiovascular events in 589 asymp-

tomatic patients with DM type 2.21 Cardiovascular events, which were defined as 

death due to MI or other cardiovascular causes, non-fatal MI, unstable angina, other 

objective evidence of CAD and stroke, occurred in 66(11%) patients after median 

follow-up of 4 years. In the multivariate analyses CAC-score≥101 was independently 

predictive of cardiovascular events. These findings were in line with the present study. 

Moreover, similar to the present study, incremental prognostic value was provided 

with increasing CAC-risk category. 

Coronary stenosis on CTA 

Several large cohort studies assessed the prevalence of CAD in the specific setting of 

diabetic patients without chest pain syndrome.6, 17, 22, 23  Similar to the present study, 

in these studies the majority of asymptomatic diabetic patients presented with CAD 

on coronary CTA (64-93 %). Accordingly, non-obstructive CAD (<50%) was most 

frequently observed (44-64%), whereas obstructive CAD (≥50%) was less prevalent 

(17-29%). 

Only a few studies assessed the prognostic value of coronary CTA in diabetic 

patients without chest pain syndrome.15, 22, 24 From the CONFIRM (coronary CT 

angiography evaluation for clinical outcomes: an international multicentre) registry 
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of 27125 patients, Min et al. selected 400 asymptomatic diabetic patients who under-

went coronary CTA.15 The prognostic value of CTA was investigated using the same 

composite endpoint as in the present study. Events occurred in 33(8%) patients after 

mean follow-up of 2.4±1.1 years: all-cause mortality in 13(3%) patients, non-fatal 

MI in 8(2%) patients, late revascularization in 12(3%) patients. In the multivariate 

analyses, corrected for selected variables (i.e. age, male gender, CAC-score), maximal 

stenosis severity, number of vessels with obstructive CAD (≥50%) and segment steno-

sis score (a marker of overall atherosclerosis extent) were independently predictive 

of events. Indeed, obstructive (50-70%) or severe (>70%) CAD provided prognostic 

value in the present study. Also Faustino et al. investigated the prognostic value of 

coronary CTA for cardiovascular events in 85 asymptomatic patients with DM type 

2.24 Cardiovascular events occurred in 10(11.8%) patients after median follow-up of 

48(IQR 18-68) months: cardiovascular death in 2(2.4%) patients, unstable angina 

in 1(1.2%) patients, stroke 7(8.4%) in patients. In the multivariate analyses, cor-

rected for univariate significant variables, absence of obstructive CAD (≥50%) was 

independently protective of events. Indeed, no or non-obstructive CAD (<50%) was 

not associated with increased risk for events in the present study. Most importantly, 

patients with a normal CTA had an excellent prognosis. Last, Park et al. investigated 

the prognostic value of coronary CTA for cardiovascular events in 557 asymptomatic 

Korean patients with DM type 2.22 Cardiovascular events were defined as cardiovas-

cular death, non-fatal MI, ACS requiring hospitalization and late revascularization (>6 

months after coronary CTA). More cardiovascular events and lower 3 year event-free 

survival rates were observed in patients with obstructive CAD (≥50%) compared to 

patients without obstructive CAD (<50%). Accordingly, in the present study a higher 

crude event-rate was observed in patients with obstructive CAD (≥50%) compared to 

patients with no or non-obstructive CAD (<50%). 

Coronary plaque composition on CTA

Multiple studies assessed plaque composition on coronary CTA in diabetic patients 

without chest pain syndrome. Comparable to the present study, the majority of these 

studies described an increased prevalence of mixed lesions in asymptomatic diabetic 

patients.6, 17, 25

The prognostic value of coronary plaque composition on coronary CTA for cardio-

vascular events in the specific setting of diabetic patients without chest pain syndrome 

has not been previously established. The present study demonstrated all coronary 

plaque compositions (calcified, mixed, non-calcified) as univariate significant predic-

tors of events. The prognostic value of calcified and mixed lesions was highest. These 

findings suggest an independent association between plaque composition and events. 
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However, the role of coronary plaque composition remains controversial. Gaem-

perli et al. demonstrated the prognostic value of coronary plaque composition in 220 

symptomatic patients.26  In contrast to the present study, mixed and non-calcified 

demonstrated highest predictive value for events. On the other hand, in the CONFIRM 

registry, including both symptomatic and asymptomatic patients with and without 

DM, calcified and mixed plaque provided the strongest predictive value.27 Further 

research is needed to understand the underlying pathophysiological mechanism of 

the different coronary plaque compositions. 

Single positron Emission Tomography (SPECT) Myocardial perfusion 
imaging (MPI)

The role of SPECT MPI for screening for silent ischemia in asymptomatic diabetic 

patients has been previously addressed.28, 29 Anand et al. included 510 asymptomatic 

diabetic patients of whom 180 patients underwent SPECT MPI.29 In those patients, 

the event-rate was significantly increased with increasing ischemic burden on SPECT 

MPI demonstrating the value for risk stratification. The most important study in this 

field was the DIAD (detection of Ischemia in Asymptomatic Diabetics) study.28 In this 

randomized controlled trial 1123 asymptomatic diabetic participants were random-

ized to SPECT MPI or no screening. After a mean follow-up of 4.8 years the incidence 

of cardiac events was higher in patients with significant MPI abnormalities. However, 

there was no significant prognostic benefit of screening. 

Clinical implications

The present observations demonstrate the prognostic value of CTA in diabetic patients 

without chest pain syndrome. Recent ESC guidelines indicate patients with DM as 

high risk for CAD (or very high risk if  ≥1 cardiovascular risk factor was present) 

irrespective of chest pain symptoms. Indeed, in the present study a great majority 

of patients presented with CAD on coronary CTA and the presence of obstructive 

(50-70%) or severe CAD (>70%) was associated with an impaired prognosis. Still, 

CAD was ruled-out in 15% of patients based on a normal CTA. Most importantly, the 

prognosis of these patients was excellent. 

The value of screening for CAD in high risk diabetic patients without chest pain 

syndrome was recently addressed by Muhlestein et al.30 In this trial, 900 asymp-

tomatic patients were randomized to CAD screening using coronary CTA or optimal 

medical treatment (OMT). The trial demonstrated no survival benefit from screening 

with coronary CTA. Therefore, this study does not support screening in all diabetic 

patients. Similarly, the American Diabetes Association position statement on cardio-

vascular disease and risk management only recommend screening using advanced 

cardiac testing in patients with cardiac symptoms or ECG abnormalities.31 However, 
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as also demonstrated in the present study, a large proportion of the patients had CAD 

on CTA and coronary CTA could identify patients with excellent prognosis. This sup-

ports the need to enrich the screening population to a high risk population who will 

mostly benefit from screening using coronary CTA. Especially since coronary CTA 

may lead to radiation exposure and may result in unnecessary invasive testing such as 

coronary angiography and revascularization procedures.31 Potentially, coronary CTA 

can provide a pivotal role in tailored therapy in these diabetic patients. Patients with a 

normal CTA have an excellent prognosis and could be treated conservatively (OMT), 

whereas patients with an abnormal CTA may benefit from additional non-invasive or 

invasive evaluation.

Limitations

Several limitations of the present study need to be considered. First, the present study 

was a single centre study. Second, the composite event-rate was relatively low. As a 

consequence, the study was underpowered to include all baseline risk factors into 

the multivariate model. Second, the endpoint mainly consisted of late revasculariza-

tion, therefore conclusions regarding hard endpoints are not justified based on this 

study. We cannot  rule out that, despite the wide time interval,  some referral bias 

has occurred in the patients who underwent late revascularization.  Moreover, it is 

possible that events that have occurred in other medical centres were missed in the 

analysis. Third, coronary CTA only visualizes coronary atherosclerosis and provides 

no information on the hemodynamic significance of coronary stenosis. 

Conclusion

Coronary CTA provided prognostic value in a large prospective registry of diabetic 

patients without chest pain syndrome. Most importantly, the prognosis of patients 

with a normal CTA was excellent. In addition, an incremental increase in event-rate 

was observed with increasing CAC-risk category and coronary stenosis severity. The 

highest event rate was observed in patients with severe CAD (>70%). Both CAC-score 

and coronary stenosis severity were independently predictive of events, after correc-

tion for baseline risk factors. 
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The aim of this thesis was to explore the value of coronary computed tomography 

angiography in clinical practice. Specifically, the thesis focuses on the feasibility of  

quantitative assessment of coronary atherosclerosis on CTA. Additionally, the clinical 

value of coronary CTA in the specific setting of high risk diabetic patients without 

chest pain syndrome was established.

The general introduction in Chapter 2 of this thesis discusses the evolving role of 

cardiac CT in the diagnosis of patients with suspected CAD. An overview is provided 

of the performance of cardiac CTA and CAC score in the specific setting of patients 

with stable angina and patients presenting with acute chest pain at the emergency 

department. Furthermore, novel applications as myocardial perfusion and CT derived 

fractional flow reserve are discussed. 

Part 1

Part 1 of this thesis established the value of quantitative assessment of coronary ath-

erosclerosis on coronary CTA in clinical practice.

Chapter 3 provides an overview of the different imaging modalities for quantita-

tive assessment of coronary atherosclerosis and progression of coronary plaque. The 

clinical value of progression of atherosclerosis and corresponding medical therapy 

is discussed.

The value of QCT to assess coronary plaque constitution is assessed in Chapter 4-6. 

For this purpose the QCT datasets were registered based on anatomical landmarks 

with IVUS VH as reference standard. 

In Chapter 4 the ability of QCT to assess coronary plaque composition was as-

sessed. For this purpose 57 patients who had undergone CTA prior to IVUS VH were 

included. QCT was performed in all patients. CTA plaque volume was differentiated 

in 4 different plaque types: necrotic core, dense calcium, fibrotic and fibro-fatty tissue. 

The same parameters were derived from IVUS VH and compared. The performance 

of two different approaches for tissue characterization was evaluated. The first used 

fixed Hounsfield unit (HU) cut-off values to different the different components. The 

second used a dynamic threshold model, for which the HU threshold were adapted 

to the lumen HU intensity.  The different plaque types on QCT were well-correlated 

with IVUS VH. The dynamic threshold approach performed better, compared to the 

fixed threshold approach, as demonstrated by more narrow limits of agreement on 

the Bland–Altman analyses. Based on these results it was concluded that automatic, 

quantitative CTA tissue characterization is feasible using a dedicated software tool. 
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The relation between coronary atherosclerosis on QCT as compared to IVUS VH 

is further explored in Chapter 5. A major limitation of IVUS VH is the inability of the 

echo signal to penetrate coronary calcium. As a result, tissue located in the acoustic 

shadow behind calcium is difficult to classify. Using a novel algorithm this shadow 

can be automatically detected and quantified. The quantified volumes were added to 

the total volume of calcium to compensate for the expected underestimation of cal-

cium by IVUS VH. Indeed, by applying the novel algorithm, the agreement between 

IVUS VH and QCT for the assessment of coronary calcium improved. 

In Chapter 6 the ability of QCT to assess the Agatston coronary artery calcium 

score (CAC) was investigated. For this purpose 100 patients, 20 patients for each CAC 

category (i.e. 0, 1–99, 100–399, 400–999,  ≥1,000), were randomly selected. The 

Agatston CAC score on non-contrast CT was calculated manually, while the novel 

algorithm was used to automatically detect and quantify Agatston CAC score in con-

trast CTA images. The resulting Agatston CAC scores were validated against the non-

contrast images. The automatically computed CAC score showed a high correlation 

and intra-class correlation with non-contrast CT CAC score. Moreover, agreement 

within the CAC categories was good. It was concluded that fully automatic detection 

of Agatston CAC score on contrast CTA is feasible and showed high correlation with 

the non-contrast CT CAC score. This could imply a radiation dose reduction and time 

saving by omitting the non-contrast scan.

Previous studies have demonstrated the disagreement between significant stenosis 

on CTA and ischemia on SPECT MPI. Potentially, QCT can improve the correlation 

between stenosis severity and the presence of ischemia. Therefore, the aim of Chapter 

7 was to evaluate the association between QCT parameters of coronary artery lesions 

and the presence of myocardial ischemia on gated myocardial perfusion SPECT. Forty 

patients were included with known or suspected coronary artery disease who had 

undergone CTA and gated myocardial perfusion SPECT within 6 months. From the 

CTA datasets, vessel-based and lesion-based visual analyses were performed. Con-

secutively, lesion-based QCT was performed to assess plaque length, plaque burden, 

percentage lumen area stenosis and remodelling index. Subsequently, the presence 

of myocardial ischemia was assessed using the summed difference score (SDS ≥2) 

on gated myocardial perfusion SPECT. Myocardial ischemia was seen in 25 patients 

(62.5%) in 37 vascular territories. Coronary lesion length and quantitatively assessed 

significant stenosis were independently associated with myocardial ischemia. Both 

quantitative parameters had incremental value over baseline variables and traditional 

visual assessment of significant stenosis. It was concluded that QCT can possibly en-

hance assessment of CAD, which may be of potential use for identification of patients 

with myocardial ischemia.
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To evaluate the prognostic value of the severity, location and composition of CAD 

combined in a CTA risk score, the study of Chapter 8 was designed. The hypothesis 

was that a risk score incorporating all quantitative stenosis parameters allows for 

accurate risk stratification. Therefore, the purpose of this study was to determine if 

an automatic quantitative assessment of CAD using QCT combined into a single CTA 

risk score allows risk stratification of patients. In 300 patients QCT was performed 

to automatically detect and quantify all lesions in the coronary tree. Using QCT, 

the novel CTA risk score was calculated based on plaque extent, severity, composi-

tion, and location on a segment basis. During follow-up, the composite end point 

of all-cause mortality, revascularization, and nonfatal infarction was recorded. In 

127 patients with obstructive CAD (≥50% stenosis), 27 events were recorded, all in 

patients with a high CTA risk score. In conclusion, the present study demonstrated 

that a fully automatic QCT analysis of CAD is feasible and can be applied for risk 

stratification of patients with suspected CAD. The novel CTA risk score incorporating 

location, severity, and composition of coronary lesion may improve risk stratification, 

but this needs to be confirmed in larger studies. 

The aim of the study in Chapter 9 was to evaluate the feasibility of QCT for the as-

sessment of coronary atherosclerosis changes over time on serial CTA in patients with 

stable chest pain. For this study 53 patients clinically referred for the evaluation of 

chest pain who underwent a coronary CTA at the Rijnland Hospital. After a minimum 

of 2 years CTA was repeated to evaluate changes in coronary atherosclerosis over 

time. For accurate and reproducible assessment of CAD changes, all CTAs were quan-

titatively analysed using QCT. All parameters of dimension and composition of CAD 

were compared between patients to assess possible regression and progression of 

CAD. It was demonstrated that 32(60%) showed regression of coronary total atheroma 

volume whereas 21(40%) showed progression of coronary atheroma. Patients with 

progression of coronary atheroma had progression of all four plaque types. However, 

patients with regression demonstrated a regression of all plaque components except 

for dense calcium, for which progression was observed. This study demonstrated that 

the assessment of changes in CAD with QCT is feasible. Potentially QCT could be 

applied to assess the efficacy of anti-atherosclerotic therapy.

Part 2

Part 2 of this thesis discusses the value of CTA in high risk diabetic patients without 

chest pain syndrome. 

Chapter 10 primarily evaluated changes in myocardial ischemia on SPECT myo-

cardial perfusion imaging after 2 years in a cohort of high-risk patients with diabetes 
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without cardiac symptoms or known CAD. Secondly, this chapter assessed the value 

of baseline CTA-derived coronary atherosclerosis parameters to predict changes in 

myocardial ischemia. The population consisted of 100 high-risk patients with diabetes 

without cardiac symptoms referred for cardiovascular risk stratification. All patients 

underwent CAC scoring, CTA, and SPECT MPI. After 2 years of follow-up, SPECT MPI 

was repeated to evaluate potential progression of ischemia.  The rate of progression 

of ischemia in high-risk patients with diabetes without cardiac symptoms is limited. 

Few patients presented with new ischemia, whereas some patients showed resolution 

of ischemia. Atherosclerosis parameters on CTA were not predictive of new-onset 

ischemia or progression of ischemia.

Chapter 11 aims to investigate the long term prognostic value of coronary CTA in a 

large population of high risk diabetic patients without chest pain syndrome. 525 dia-

betic patients without chest pain syndrome were prospectively included to undergo 

coronary artery calcium (CAC)-scoring followed by coronary CTA. During follow-up 

the composite endpoint of all-cause mortality, non-fatal myocardial infarction and 

late revascularization (>90 days) was registered. After median follow-up of 5.0(IQR 

2.7-6.5) years the composite endpoint occurred in 65(14%) patients. Coronary CTA 

demonstrated a high prevalence of CAD (85%), mostly non-obstructive CAD (51%). 

Furthermore, patients with a normal CTA had an excellent prognosis (event-rate 

3%). An incremental increase in event-rate was observed with increasing CAC-risk 

category or coronary stenosis severity. Finally, obstructive (50-70%) or severe CAD 

(>70%) was independently predictive of events It was concluded that coronary CTA 

provided prognostic value in high risk diabetic patients without chest pain syndrome. 

Most importantly, the prognosis of patients with a normal CTA was excellent. 

Conclusions

The objective of this dissertation was to establish the value of QCT to further enhance 

the clinical applicability and accuracy of coronary CTA. The automatic characteriza-

tion of coronary atherosclerosis with QCT is feasible and correlates well with IVUS 

VH. However, further work is needed to provide quantification of coronary stents 

and coronary blood flow.  In the near future, the parameters of dimension and com-

position of coronary atherosclerosis will likely gain more clinical interest. It appears 

that coronary CTA can provide more clinically relevant information than the mere 

presence of coronary atherosclerosis or obstructive stenosis. Therefore, a novel CTA 

risk score was created incorporating detailed information on the location, severity 

and composition of atherosclerosis as assessed with QCT. This CTA risk score allows 
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accurate risk stratification of patients with suspected CAD. The work on this CTA risk 

score is continued to further validate the CTA risk score in external patient cohorts. 

In this thesis the feasibility of QCT to assess changes over time in coronary ath-

erosclerosis on CTA was explored. For clinical practice, disease progression (or 

regression) is an important variable which could be used to evaluate the efficacy 

of drugs, but also provide a more detailed insight in the natural history of coronary 

atherosclerosis on CTA. 

A drawback of coronary CTA is the fact that the hemodynamic significance of a le-

sion cannot be evaluated. In this thesis it was demonstrated that QCT provided better 

correlation with the presence of myocardial ischemia on SPECT MPI as compared to 

current visual assessment of coronary CTA.  

With regards to the specific setting of high risk diabetic patients without chest pain 

syndrome several conclusion can be derived from this thesis. First, if treated with 

optimal medical therapy, very few patients present with progression of myocardial 

ischemia. Second, the prognosis of these patients is good; the overall long-term event-

rate is limited. Especially diabetic patients without CAD on coronary CTA have an 

excellent prognosis. Even though the prognostic value of CTA was demonstrated in 

this thesis, it is unclear if screening using cardiac imaging influences the outcome 

of these patients. Additionally, cardiac CTA or CAC-score could help tailor medical 

therapy in this challenging patient population. 
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Het doel van dit proefschrift was het bestuderen van de rol van computer tomografie 

(CT) coronairangiografie in de klinische praktijk. Het onderzoek van de thesis richt 

zich met name op de toepasbaarheid van een kwantitatieve analyse van coronairath-

erosclerose op CT coronairangiografie. Daarnaast wordt in dit proefschrift de klinische 

waarde van CT coronairangiografie in hoog-risico diabetes patiënten zonder angina 

pectoris klachten onderzocht.

De algemene introductie in Hoofdstuk 2 bespreekt de rol van cardiale CT in de 

diagnostiek van patiënten met verdenking op coronairlijden. Er wordt een overzicht 

geschetst van de waarde van cardiale CT en de coronair calcium score, in zowel 

patiënten met stabiele pijn op de borst, als patiënten met acute cardiale klachten die 

zich presenteren op de spoedeisende hulp. Daarnaast wordt ingegaan op nieuwe to-

epassingen van CT zoals myocardperfusie CT en ‘fractional flow reserve’ bepalingen 

op CT.

Deel 1

Deel 1 van dit proefschrift legt zich toe op de klinische toepasbaarheid van kwantita-

tieve analyse van atherosclerose op CT coronairangiografie. 

In hoofdstuk 3 wordt een overzicht geschetst van de verschillende beeldvorm-

ingstechnieken voor kwantificatie van coronairatherosclerose. Daarnaast wordt 

besproken hoe progressie van ziekte bepaald kan worden en wat de relatie is met 

medicamenteuze therapie. 

De waarde van QCT voor het bepalen van plaquecompositie werd bestudeerd in 

Hoofdstuk 4-6. Hiervoor werden de QCT datasets geregistreerd met de IVUS VH 

datasets op basis van anatomische herkenningspunten. 

In Hoofstuk 4 wordt gekeken naar de mogelijkheid om middels QCT de compositie 

van coronairatherosclerose op CT te bepalen. Hiervoor werden 57 patiënten geïnclu-

deerd die zowel CT coronairangiografie als IVUS VH hadden ondergaan. 

In alle patiënten werd QCT verricht. Plaquevolume werd gedifferentieerd in 4 

verschillende plaquetypes: necrotische plaque, ‘dense calcium’, fibreuze plaque en 

fibreus-vet weefsel. Dezelfde parameters werden bepaald in IVUS VH en vergeleken. 

Er werden twee verschillende algoritmes voor plaquedifferentiatie gebruikt. De eerste 

methode gebruikt vaste (‘fixed’) HU afkapwaardes. De tweede methode gebruikt een 

dynamisch algoritme, waarbij de HU afkapwaardes worden aangepast aan de intens-
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iteit van het lumen. De differentiatie tussen de verschillende plaquetypes middels 

QCT toonde een goede correlatie met IVUS VH. Het dynamische algoritme presteerde 

beter, zoals bleek uit smallere Bland-Altman ‘limits of agreement’. Op basis van deze 

resultaten werd geconcludeerd dat middels QCT, automatische kwantificatie van 

verschillende plaquetypes mogelijk is. 

De relatie tussen coronairatherosclerose op QCT en op IVUS VH wordt verder 

onderzocht in Hoofdstuk 5. Een belangrijke beperking van IVUS VH is het feit 

dat het echosignaal niet doordringt door coronair calcium. Hierdoor ontstaat een 

akoestische schaduw, waarbinnen plaquekarakterisatie moeilijk is. Middels een 

nieuw algoritme werd deze akoestische schaduw gedetecteerd en gekwantificeerd. 

Deze gekwantificeerde volumina werden meegenomen met de totale hoeveelheid 

calcium. Hiermee werd getracht te compenseren voor de verwachte onderschatting 

van coronair calcium op IVUS VH. Het bleek dat het toepassen van dit akoestische 

schaduwalgoritme de overeenkomst tussen IVUS VH en QCT voor het bepalen van 

coronair calcium verbeterde.

In Hoofdstuk 6 wordt de mogelijkheid om met QCT de Agatston coronair calcium 

(CAC) score te bepalen in contrast-CT datasets onderzocht. Hiervoor werden 100 

patiënten random geselecteerd uit verschillende CAC score categorieën (0, 1–99, 

100–399, 400–999, ≥1,000).. Een nieuw algoritme werd gebruikt om automatisch de 

CAC score te detecteren en kwantificeren in contrast-CT datasets. Deze CAC score 

werd gevalideerd met de Agatston CAC-score bepaald uit non-contrast CT datasets, 

zoals nu klinisch gebruikt wordt. De automatisch bepaalde CAC score uit contrast CT 

had een hoge correlatie en intra-class correlatie met de CAC score uit non-contrast 

CT. Daarnaast was er een goede overeenstemming binnen de verschillende CAC 

categorieën. Op basis hiervan werd geconcludeerd dat automatische detectie van 

de CAC score op contrast CT mogelijk is en een goede correlatie heeft met de non-

contrast CAC score. Mogelijk leidt het klinisch toepassen van dit algoritme tot een 

reductie van de stralingbelasting voor de patiënt en tijdswinst omdat het verrichten 

van een non-contrast scan niet langer nodig is.

Eerdere studies hebben laten zien dat er een beperkte overeenkomst is tussen de 

aanwezigheid van een obstructieve stenose op CT en de aanwezigheid van myo-

cardischemie op ‘single-photon emission CT’ SPECT. Mogelijkerwijs kan QCT deze 

correlatie verbeteren. 

In hoofdstuk 7 wordt daarom de relatie onderzocht tussen QCT parameters van 

coronairatherosclerose en de aanwezigheid van myocardischemie op SPECT. Veertig 

patiënten werden geïncludeerd die zowel CT coronairangiografie als SPECT hadden 
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ondergaan, binnen een tijdsinterval van 6 maanden. De CT coronairangiografie da-

tasets werden eerst visueel geanalyseerd, per vat en per laesie. Vervolgens werd QCT 

verricht van elke laesie in de coronairvaatboom, om plaquelengte, ‘plaqueburden’, 

percentage stenosegraad en ‘remodellingindex’ te bepalen. Daarnaast werd de aan-

wezigheid van myocardischemie bepaald aan de hand van de ‘summed difference 

score’. In totaal presenteerde 25 (62.5%) patiënten zich met myocardischemie in 

37 stroomgebieden. Zowel stenosegraad als plaque-lengte was onafhankelijk gecor-

releerd aan de aanwezigheid van myocardischemie. Beide kwantitatieve parameters 

hadden toegevoegde waarde bovenop baseline patiëntkarakteristieken en visueel 

bepaalde stenosegraad. Geconcludeerd werd dat QCT mogelijk een verbeterde 

bepaling van atherosclerose op CT mogelijk maakt en dus mogelijk geschikt kan zijn 

voor het beter identificeren van patiënten met myocardischemie. 

In hoofdstuk 8 wordt gekeken naar de prognostische waarde van een CTA-risicoscore 

die de ernst, locatie en compositie van coronairlijden op CTA combineert in één getal. 

De hypothese was dat een dergelijke score die meerdere kwantitatieve atherosclerose 

parameters samenvoegt in een getal, gebruikt kan worden voor risicostratificatie van 

patiënten. Het doel van deze studie was om te bepalen of een CTA risico score op 

basis van automatische kwantitatieve analyse van coronairlijden met QCT, risico-

stratificatie van patiënten mogelijk maakt. In 300 patiënten werd QCT verricht voor 

het automatisch detecteren en kwantificeren van alle coronairstenosen in de coro-

nairvaatboom. Een nieuwe CTA-risicoscore werd gecreëerd die een weergave geeft 

van de totale atherosclerose belasting van een patiënt. Deze score is de optelsom van 

de locatie, ernst en compositie van atherosclerose per coronairsegment. Gedurende 

follow-up werden de volgende eindpunten geregistreerd: sterfte, myocardinfarct en 

late-revascularizatie (>90 dagen). In de 27 patiënten met obstructief coronairlijden 

(≥50% stenose) vonden 27 events plaats, allen in patiënten met een hoge CTA risico 

score. Deze studie liet zien dat een volledig automatische analyse van coronairlijden 

op CT coronair angiografie middels QCT mogelijk is en gebruikt kan worden voor 

risicostratificatie van patiënten. Daarnaast toonde deze studie aan dat een nieuwe 

CTA-risicoscore die verschillende parameters van atherosclerose in één getal samen-

vat, nauwkeurige risicostratificatie van patiënten mogelijk maakt. De exacte klinische 

waarde van deze score moet echter nog worden bevestigd in grotere studies. 

In de studie beschreven in Hoofdstuk 9, wordt gekeken naar de mogelijkheid om 

middels QCT veranderingen in coronairatherosclerose op seriële CT coronair an-

giografie te meten. Hiervoor werden 53 patiënten met stabiele angina geïncludeerd. 

Deze patiënten waren verwezen voor klinische evaluatie van pijn op de borst middels 

CT in het Rijnlandziekenhuis. Na minimaal 2 jaar werd de CT coronair angiografie 
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herhaald, om de verandering in coronairatherosclerose in de tijd te bepalen. Om de 

veranderingen zo accuraat mogelijk te bepalen werd alle CT data geanalyseerd met 

QCT. Parameters van dimensie en compositie van atherosclerose werden vergeleken 

om te bepalen of er progressie of regressie van atherosclerose was. In 32 patiënten 

(60%) was er regressie van het totale atheromavolume, terwijl 21 patiënten (40%) 

progressie van atheroma hadden. Patiënten met progressie hadden progressie van 

alle vier verschillende plaque componenten. Patiënten met regressie van ziekten had-

den regressie van alle plaquecomponenten, behalve calcium. Middels deze studie 

werd aangetoond dat het bepalen van progressie van atherosclerose mogelijk is met 

QCT. Mogelijk kan QCT in de toekomst worden gebruikt voor het bepalen van de 

effectiviteit van anti-atherosclerose therapie. 

Deel 2

Deel 2 van deze thesis bespreekt de waarde van CT coronair angiografie in hoog- 

risico diabetespatiënten zonder angina pectoris klachten.

Hoofdstuk 10 is een evaluatie van veranderingen in myocardischemie op SPECT in 2 

jaar tijd, in een cohort diabetes patiënten zonder cardiale klachten of bekend coro-

nairlijden. Daarnaast wordt in dit hoofdstuk gekeken naar de waarde van parameters 

van atherosclerose op CT om veranderingen in myocardischemie te voorspellen. De 

patiënten populatie bestond uit 100 hoog risico patiënten zonder cardiale klachten 

die waren verwezen voor cardiovasculaire risico analyse. Alle patiënten kregen 

een CAC-score, CT coronairangiografie en SPECT myocardperfusie scintigrafie op 

baseline. Na 2 jaar werd SPECT myocardperfusie scintigrafie herhaald om eventuele 

progressie van myocardischemie vast te stellen. Het aantal patiënten met toename van 

ischemie was zeer beperkt. Slechts weinig patiënten presenteerden zich met nieuwe 

ischemie, terwijl andere patiënten afname van ischemie lieten zien. Atherosclerose 

parameters op CT coronairangiografie waren niet gerelateerd aan veranderingen in 

myocardischemie. 

In hoofdstuk 11 wordt de prognostische waarde onderzocht van CT coronair an-

giografie in een groot cohort diabetes patiënten zonder cardiale klachten. In totaal 

werden 525 patiënten geïncludeerd, die zowel een CAC score als een CT coronai-

rangiografie ondergingen. Gedurende follow-up werd gekeken naar sterfte, myocar-

dinfarct en late-revascularisatie (>90dagen). Na een mediane follow-up van 5 (IQR 

2.7-6.5)  jaar, trad een event op in 65(14%) patiënten. CT coronairangiografie toonde 

een hoge prevalentie van coronairlijden (85%), met name niet obstructief (51%). De 
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prognose van patiënten met een normale CT was zeer gunstig (incidentie 3%). Er 

was een toename in incidentie van events met toenemende CAC-score of ernst van 

coronairstenose. Daarnaast had de aanwezigheid van obstructief of ernstig coronair-

lijden onafhankelijke voorspellende waarde voor het optreden van events. Op basis 

hiervan werd geconcludeerd dat CT coronairangiografie voorspellende waarde heeft 

in diabetes patiënten zonder cardiale klachten. Met name de prognose van patiënten 

zonder coronairlijden op CT is uitstekend.

Conclusies

Dit proefschrift onderzoekt de waarde van QCT voor het verder verbreden van 

klinische toepasbaarheid en verhogen van diagnostische waarde van CT coronairan-

giografie.  Automatisch karakterisatie van coronairatherosclerose is mogelijk en toont 

een goede correlatie met IVUS VH. In de toekomst is meer onderzoek nodig om ook 

kwantificatie van stents en coronaire bloedstroom mogelijk te maken. 

Waarschijnlijk krijgen kwantitatieve parameters van afmetingen en plaque samen-

stelling in de toekomst meer klinische waarde. CT coronairangiografie faciliteert meer 

dan alleen analyse van de aanwezigheid van atherosclerose of obstructieve stenose. 

Daarom werd in dit proefschrift een nieuwe CT risico score ontwikkelend op basis 

van QCT, welke informatie over de locatie, compositie en ernst van coronairathero-

sclerose samenvoegt in een score. Deze CTA risico score kan gebruikt worden voor 

risicostratificatie van patiënten met verdenking op coronairlijden. Verder onderzoek 

zal worden gedaan om de klinische waarde van deze CT risico score verder te beves-

tigen in externe patiëntcohorten. 

In deze dissertatie is ook gekeken naar de mogelijkheid om met QCT veranderingen 

in atherosclerose over de tijd te kwantificeren. Dit zou in de toekomst klinisch goed 

toepasbaar zijn voor het meten van de effectiviteit van antiarteriosclerose therapie. 

Ook zou deze techniek meer inzicht kunnen verschaffen over het natuurlijk beloop 

van coronairatherosclerose. 

Een nadeel van CT coronairangiografie is het feit dat deze techniek geen inzicht ver-

schaft in thermodynamische consequenties van coronairstenosen. Dit proefschrift laat 

zien dat QCT een betere correlatie heeft met de aanwezigheid van myocardischemie 

op SPECT in vergelijking tot reguliere visuele analyse van CT coronairangiografie. 

Met betrekking tot de klinische setting van hoog risico diabetes patiënten zonder 

angina pectoris kunnen op basis van dit proefschrift twee dingen worden gecon-

cludeerd. Ten eerste: indien patiënten met diabetes een accurate farmacologische 

behandeling krijgen, is het aantal patiënten dat zich presenteert met toename van 

myocardischemie zeer beperkt. Ten tweede is de prognose van deze patiënten goed. 
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De lange termijn overleving, laat weinig events zien. Met name diabetes patiënten 

zonder coronairlijden op CT coronairangiografie hebben een goede prognose. Hoewel 

dit proefschrift de prognostische waarde van CTA heeft bevestigd, is vooralsnog niet 

duidelijk of het doen van beeldvorming in deze patiënten groep invloed heeft op 

overleving en uitkomst. Mogelijk kan CT coronairangiografie of coronair calcium 

score in de toekomst worden gebruikt voor het individualiseren van medicamenteuze 

therapie in deze uitdagende patiëntenpopulatie. 
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