

Evaluating the dietary micro-remain record in dental calculus and its application in deciphering hominin diets in Palaeolithic Eurasia Power, R.C.F.

Citation

Power, R. C. F. (2016, November 1). *Evaluating the dietary micro-remain record in dental calculus and its application in deciphering hominin diets in Palaeolithic Eurasia*. Retrieved from https://hdl.handle.net/1887/43970

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/43970

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/43970</u> holds various files of this Leiden University dissertation.

Author: Power, R.C.F. Title: Evaluating the dietary micro-remain record in dental calculus and its application in deciphering hominin diets in Palaeolithic Eurasia Issue Date: 2016-11-01

References

- Abraham J, Grenón M, Sánchez HJ, Pérez C, Barrea R. 2005. A case study of elemental and structural composition of dental calculus during several stages of maturation using SRXRF. J Biomed Mater Res A 75:623–8.
- Ackerknecht EH. 1948. Medicine and disease among Eskimos. Eskimo, Ciba Symp 10:916–21.
- Addy M, Shellis RP. 2006. Interaction between attrition, abrasion and erosion in tooth wear. In: Lussi A, editor. Dental Erosion: From Diagnosis to Therapy. Vol. 20. Basel: Monographs in Oral Science, Karger Publishers. p 17–31.
- Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W, Bradshaw CJA, Townsend G, Sołtysiak A, Alt KW, Parkhill J, Cooper A. 2013. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet 45:450–455.
- Aiello LC, Wheeler P. 1995. The Expensive-Tissue Hypothesis: The Brain and the Digestive System in Human and Primate Evolution. Curr Anthropol 36:199–221.
- Albert RM, Lavi O, Estroff L, Weiner S, Tsatskin A, Ronen A, Lev-Yadun S. 1999. Mode of Occupation of Tabun Cave, Mt Carmel, Israel During the Mousterian Period: A Study of the Sediments and Phytoliths. J Archaeol Sci 26:1249–1260.
- Albert RM, Ruíz JA, Sans A. 2016. PhytCore ODB: A new tool to improve efficiency in the management and exchange of information on phytoliths. J Archaeol Sci 68:98–105.
- Albert RM, Weiner S, Bar-Yosef O, Meignen L. 2000. Phytoliths in the Middle Palaeolithic Deposits of Kebara Cave, Mt Carmel, Israel: Study of the Plant Materials used for Fuel and Other Purposes. J Archaeol Sci 27:931–947.
- Ambrose SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. J Archaeol Sci 17:431–451.
- Van Andel TH, Davies W. 2003. Neanderthals and modern humans in the European landscape during the last glaciation: archaeological results of the Stage 3 Project. Cambridge: McDonald Institute for Archaeological Research.
- Van Andel TH, Davies W, Weninger B. 2004. The human presence in Europe during the last glacial period I: human migrations and the changing climate. In: Neanderthals and modern human in the European Landscape during the Last Glaciation. Cambridge: McDonald Institute Monographs. p 31–56.
- Van Andel TH, Tzedakis PC. 1996. Palaeolithic landscapes of Europe and environs, 150,000-25,000 years ago: An overview. Quat Sci Rev 15:481–500.
- Anderson JP. 1939. Plants Used by the Eskimo of the Northern Bering Sea and Arctic Regions of Alaska. Am J Bot 26:714–716.

- Antunes MT, Santinho-Cunha A. 1992. Neanderthalian remains from Figueira Brava cave, Portugal. Geobios 25:681–692.
- Arensburg B. 1996. Ancient dental calculus and diet. Hum Evol 11:139–145.
- Armitage PL. 1975. The extraction and identification of opal phytoliths from the teeth of ungulates. J Archaeol Sci 2:450–455.
- Armstrong RA, McGehee R. 1980. Competitive exclusion. Am Nat 115:151–170.
- Baer DJ, Gebauer SK, Novotny JA. 2012. Measured energy value of pistachios in the human diet. Br J Nutr 107:120–125.
- Bailey HP. 1960. A method of determining the warmth and temperateness of climate. Geogr Ann 42:1–16.
- Bank RA, Hettema EH, Muijs MA, Pals G, Arwert F, Boomsma DI, Pronk JC. 1992. Variation in gene copy number and polymorphism of the human salivary amylase isoenzyme system in Caucasians. Hum Genet 89:213–222.
- Barton H, Torrence R. 2015. Cooking up recipes for ancient starch: assessing current methodologies and looking to the future. J Archaeol Sci 56:194–201.
- Barton RNE, Currant AP, Fernández-Jalvo Y, Finlayson JC, Goldberg P, MacPhail R, Pettitt PB, Stringer CB. 1999. Gibraltar Neanderthals and results of recent excavations in Gorham's, Vanguard and Ibex Caves. Antiquity 73:13–23.
- Bar-Yosef O. 1998. The Natufian culture in the Levant, threshold to the origins of agriculture. Evol Anthropol Issues, News, Rev 6:159–177.
- Bates D, Maechler M, Bolker B. 2013. lme4: Linear mixed-effects models using S4 classes. R Packag version 0999999-2:999999.
- Beaumont J, Geber J, Powers N, Wilson A, Lee-Thorp JA, Montgomery J. 2013. Victims and survivors: stable isotopes used to identify migrants from the Great Irish Famine to 19th century London. Am J Phys Anthropol 150:87–98.
- de Beaune SA. 1993. Nonflint stone tools of the Early Upper Paleolithic. In: Knecht H, Pike-Tay A, White R, editors. Before Lascaux: The Complex Record of the Early Upper Paleolithic. Boca Raton: CRC Press. p 163–191.
- de Beaune SA. 2004. The invention of technology. Curr Anthropol 45:139–162.
- Beauval C, Lacrampe-Cuyaubère F, Maureille B, Trinkaus E. 2006. Direct radiocarbon dating and stable isotopes of the neandertal femur from Les Rochers-de-Villeneuve (Lussacles-Châteaux, Vienne). Bull Mémoires la Société d'anthropologie Paris 18:35–42.
- Behringer V, Borchers C, Deschner T, Möstl E, Selzer D, Hohmann G. 2013. Measurements of Salivary Alpha Amylase and Salivary Cortisol in Hominoid Primates Reveal Within-Species Consistency and Between-Species Differences. PLoS One 8.
- Belitz HD, Grosch W, Schieberle P. 2009. Food chemistry. Berlin: Springer-Verlag.

- Berbesque JC, Marlowe FW. 2009. Sex differences in food preferences of Hadza huntergatherers. Evol Psychol 7:601–616.
- Bergström J. 1999. Tobacco smoking and supragingival dental calculus. J Clin Periodontol 26:541–547.
- Bermúdez de Castro JM. 1997. A Hominid from the Lower Pleistocene of Atapuerca, Spain: Possible Ancestor to Neandertals and Modern Humans. Science (80-) 276:1392–1395.
- Binford LR. 1968. Post-Pleistocene adaptations. In: Binford SR, Binford LR, editors. New Perspectives in Archaeology. Chicago: Aldine. p 314–341.
- Binford LR. 1980. Willow Smoke and Dogs' Tails: Hunter-Gatherer Settlement Systems and Archaeological Site Formation. Am Antiq 45:4–20.
- Binford LR. 1985. Human ancestors: Changing views of their behavior. J Anthropol Archaeol 4:292–327.
- Binford LR. 2001. Constructing frames of reference: an analytical method for archaeological theory building using hunter-gatherer and environmental data sets. Berkeley: University of California Press.
- Bird DW, O'Connell JF. 2006. Behavioral ecology and archaeology. J Archaeol Res 14:143– 188.
- Blasco R, Fernández Peris J. 2009. Middle Pleistocene bird consumption at Level XI of Bolomor Cave (Valencia, Spain). J Archaeol Sci 36:2213–2223.
- Blasco R, Fernández Peris J. 2012. A uniquely broad spectrum diet during the Middle Pleistocene at Bolomor Cave (Valencia, Spain). Quat Int 252:16–31.
- Blasco R, Rosell J, Arsuaga JL, Bermúdez de Castro JM, Carbonell E. 2010. The hunted hunter: the capture of a lion (*Panthera leo fossilis*) at the Gran Dolina site, Sierra de Atapuerca, Spain. J Archaeol Sci 37:2051–2060.
- Blasco R, Rosell J, Fernández Peris J, Arsuaga JL, Bermúdez de Castro JM, Carbonell E. 2013. Environmental availability, behavioural diversity and diet: a zooarchaeological approach from the TD10-1 sublevel of Gran Dolina (Sierra de Atapuerca, Burgos, Spain) and Bolomor Cave (Valencia, Spain). Quat Sci Rev 70:124–144.
- Blondiaux J, Charlier P. 2008. Palaeocytology in skeletal remains: microscopic examination of putrefaction fluid deposits and dental calculus of skeletal remains from French archaeological sites. Int J Osteoarchaeol 18:1–10.
- Bocherens H. 2009. Neanderthal Dietary Habits: Review of the Isotopic Evidence. In: Hublin J-J, Richards MP, editors. The Evolution of Hominin Diets: Integrating Approaches to the Study of Palaeolithic Subsistence. Dordrecht: Springer Netherlands. p 241–250.
- Bocherens H, Drucker DG, Billiou D, Patou-Mathis M, Vandermeersch B. 2005. Isotopic evidence for diet and subsistence pattern of the Saint-Césaire I Neanderthal: review and use of a multi-source mixing model. J Hum Evol 49:71–87.

- Bocherens H, Drucker DG, Bonjean D, Bridault A, Conard NJ, Cupillard C, Germonpré M, Höneisen M, Münzel SC, Napierala H, Patou-Mathis M, Stephan E, Uerpmann H-P, Ziegler R. 2011. Isotopic evidence for dietary ecology of cave lion (*Panthera spelaea*) in North-Western Europe: Prey choice, competition and implications for extinction. Quat Int 245:249–261.
- Boesch C. 1997. Evidence for dominant wild female chimpanzees investing more in sons. Anim Behav 54:811–815.
- Boesch C. 2012. Wild Cultures: A Comparison between Chimpanzee and Human Cultures. Cambridge, UK: Cambridge University Press.
- Boesch C, Boesch H. 1983. Optimisation of Nut-Cracking with Natural Hammers by Wild Chimpanzees. Behaviour 86:265–286.
- Boesch C, Boesch H. 1984. Possible causes of sex differences in the use of natural hammers by wild chimpanzees. J Hum Evol 13:415–440.
- Boesch C, Boesch-Achermann H. 2000. The Chimpanzees of the Taï Forest: Behavioural Ecology and Evolution. Oxford, UK: Oxford University Press.
- Boesch C, Marchesi P, Marchesi N, Fruth B, Joulian F. 1994. Is nut cracking in wild chimpanzees a cultural behaviour? J Hum Evol 26:325–338.
- Boule M. 1889. La caverne de Malarnaud, près Montseron (Ariège). Bull la Société Philomath Paris 8th 1:83–86.
- Boule M. 1911. L'Homme fossile de La Chapelle-aux-Saints. Ann Paléontologie 6:106–172.
- Bouyssonie A, Bouyssonie J, Bardon L. 1913. La station Moustérienne de la "Bouffia" Bonneval a la Chapelle-aux-Saints. Anthropologie 24:609–640.
- Boyadjian CHC. 2012. Análise e identificação de microvestígios vegetais de cálculo dentário para a reconstrução de dieta sambaquieira: estudo de caso de Jabuticabeira II, SC.
- Boyadjian CHC, Eggers S, Reinhard K. 2007. Dental wash: a problematic method for extracting microfossils from teeth. J Archaeol Sci 34:1622–1628.
- Brand-Miller JC, Holt SH. 1998. Australian aboriginal plant foods: a consideration of their nutritional composition and health implications. Nutr Res Rev 11:5–23.
- Breiman L. 2001. Random forests. Mach Learn 45:5-32.
- Brown JK. 1970. A Note on the Division of Labor by Sex. Am Anthropol 72:1073–1078.
- Brown K, Fa DA, Finlayson G, Finlayson C. 2011. Small game and marine resource exploitation by Neanderthals: the evidence from Gibraltar. In: Trekking the Shore. New York, NY: Springer. p 247–268.
- Buck LT, Stringer CB. 2014. Having the stomach for it: a contribution to Neanderthal diets? Quat Sci Rev 96:161–167.

- Buckley S, Usai D, Jakob T, Radini A, Hardy K. 2014. Dental calculus reveals unique insights into food items, cooking and plant processing in prehistoric central Sudan. PLoS One 9:e100808.
- Bull ID, Matthew J. Lockheart, Mohamed M. Elhmmali, David J. Roberts, Richard P. Evershed. 2002. , Evershed RP (2002) The Origin of Faeces by Means of Biomarker Detection. Environ Int - Google Scholar. Environ Int 27:647–654.
- Butterworth PJ, Ellis PR, Wollstonecroft M. 2016. Why protein is not enough: the role of plants and plant processing in delivering the dietary requirements of modern and early Homo. In: Hardy K, Kubiak-Martens L, editors. Wild harvest: plants in the Hominin and pre-agrarian human worlds. Oxbow. p 31–55.
- Butterworth PJ, Warren FJ, Ellis PR. 2011. Human α -amylase and starch digestion: An interesting marriage. Starch Stärke 63:395–405.
- Cabanes D, Mallol C, Expósito I, Baena J. 2010. Phytolith evidence for hearths and beds in the late Mousterian occupations of Esquilleu cave (Cantabria, Spain). J Archaeol Sci 37:2947–2957.
- Cabanes D, Weiner S, Shahack-Gross R. 2011. Stability of phytoliths in the archaeological record: a dissolution study of modern and fossil phytoliths. J Archaeol Sci 38:2480–2490.
- Capitan L, Peyrony D. 1912a. Station préhistorique de La Ferrassie, commune de Savignacdu-Bugue (Dordogne). Rev Anthropol:29–50.
- Capitan L, Peyrony D. 1912b. Station préhistorique de La Ferrassie, commune de Savignacdu-Bugue (Dordogne). Rev Anthropol:76–99.
- Capitan L, Peyrony D. 1912c. Trois nouveaux squelettes humains fossiles. Rev Anthropol:439–442.
- Carpenter D, Dhar S, Mitchell LM, Fu B, Tyson J, Shwan NAA, Yang F, Thomas MG, Armour JAL. 2015. Obesity, starch digestion and amylase: association between copy number variants at human salivary (*AMY1*) and pancreatic (*AMY2*) amylase genes. Hum Mol Genet 24:3472–80.
- Carrión JS, Yll EI, Walker MJ, Legaz AJ, Chain C, Lopez A. 2003. Glacial refugia of temperate, Mediterranean and Ibero-North African flora in south-eastern Spain: new evidence from cave pollen at two Neanderthal man sites. Glob Ecol Biogeogr 12:119–129.
- Carter JA. 1999. Late devonian, permian and triassic phytoliths from antarctica. Micropaleontology 45:56–61.
- Castellano S, Parra G, Sánchez-Quinto FA, Racimo F, Kuhlwilm M, Kircher M, Sawyer S, Fu Q, Heinze A, Nickel B, Dabney J, Siebauer M, White L, Burbano HA, Renaud G, Stenzel U, Lalueza-Fox C, de la Rasilla M, Rosas A, Rudan P, Brajković D, Kucan Ž, Gušic I, Shunkov M V., Derevianko AP, Viola B, Meyer M, Kelso J, Andrés AM, Pääbo S. 2014. Patterns of coding variation in the complete exomes of three Neandertals. Proc Natl

Acad Sci U S A 111:6666–71.

- Cerling TE, Mbua E, Kirera FM, Manthi FK, Grine FE, Leakey MG, Sponheimer M, Uno KT. 2011. Diet of Paranthropus boisei in the early Pleistocene of East Africa. Proc Natl Acad Sci U S A 108:9337–41.
- Charlier P, Huynh-Charlier I, Munoz O, Billard M, Brun L, de la Grandmaison GL. 2010. The microscopic (optical and SEM) examination of dental calculus deposits (DCD). Potential interest in forensic anthropology of a bio-archaeological method. Leg Med 12:163–71.
- Christophersen KM, Pedersen PO. 1939. Investigations into dental conditions in the neolithic period and in the bronze age in Denmark. Dent Rec (London) 59:575.
- Churchill SE. 2014. Thin on the Ground: Neandertal Biology, Archeology and Ecology. Oxford, UK: John Wiley & Sons.
- Churchill SE, Rhodes JA. 2006. How strong were the Neandertals? Leverage and muscularity at the shoulder and elbow in mousterian foragers. Period Biol 108:457–470.
- Codron D, Lee-Thorp JA, Sponheimer M, de Ruiter D j., Codron J. 2008. What Insights Can Baboon Feeding Ecology Provide for Early Hominin Niche Differentiation? Int J Primatol 29:757–772.
- Collins MJ, Copeland L. 2011. Ancient starch: Cooked or just old? Proc Natl Acad Sci U S A 108:E145, author reply E146.
- Colliot G, Anderson Patricia C., Bonnet N. 1997. Preliminary classification of phytolith shapes using computerized image analysis and pattern recognition. In: The State-of-the-Art of Phytoliths in Soils and Plants. . p 275.
- Constantino PJ, Lee JJ-W, Chai H, Zipfel B, Ziscovici C, Lawn BR, Lucas PW. 2010. Tooth chipping can reveal the diet and bite forces of fossil hominins. Biol Lett 6:826–9.
- Cordain L, Miller JB, Eaton SB, Mann N, Holt SH, Speth JD. 2000. Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets. Am J Clin Nutr 71:682–92.
- Cortés-Sánchez M, Morales-Muñiz A, Simón-Vallejo MD, Lozano-Francisco MC, Vera-Peláez JL, Finlayson C, Rodríguez-Vidal J, Delgado-Huertas A, Jiménez-Espejo FJ, Martínez-Ruiz F, Martínez-Aguirre MA, Pascual-Granged AJ, Bergadà-Zapata MM, Gibaja-Bao JF, Riquelme-Cantal JA, López-Sáez JA, Rodrigo-Gámiz M, Sakai S, Sugisaki S, Finlayson G, Fa DA, Bicho NF. 2011. Earliest known use of marine resources by Neanderthals. PLoS One 6:e24026.
- Coster ACF, Field JH. 2015. What starch grain is that? A geometric morphometric approach to determining plant species origin. J Archaeol Sci 58:9–25.
- Crawford MA, Broadhurst CL, Ghebremeskel K, Sinclair AJ, Saugstad LF, Schmidt WF, Cunnane SC, Galli C, Holmsen H. 2008. The role of docosahexaenoic and arachidonic acids as determinants of evolution and hominid brain development. In: Tsukamoto K, Kawamura T, Takeuchi T, T. D. Beard J, M. J. Kaiser, editors. Fisheries for Global

Welfare and Environment, 5th World Fisheries Congress. Tokyo: Terrapub. p 57–76.

- Crevecoeur I, Bayle P, Rougier H, Maureille B, Higham T, van der Plicht J, De Clerck N, Semal P. 2010. The Spy VI child: A newly discovered Neandertal infant. J Hum Evol 59:641–656.
- Cromton AW, Hiiemae K. 1970. Molar occlusion and mandibular movements during occlusion in the American opossum, Didelphis marsupialis L. Zool J Linn Soc 49:21–47.
- Crowther A, Haslam M, Oakden N, Walde D, Mercader J. 2014. Documenting contamination in ancient starch laboratories. J Archaeol Sci 49:90–104.
- Damen JJM, Ten Cate JM. 1989. The effect of silicic acid on calcium phosphate precipitation. J Dent Res 68:1355–1359.
- Darlas A. 2012. Geomorphologic evolution and occupation of the caves of the western Mani peninsula during the Upper Pleistocene and the Holocene. Proc 5th Symp Hell Soc Archaeom:237–253.
- Debénath A, Jelinek AJ. 1998. Nouvelles fouilles à La Quina (Charente) : Résultats préliminaires. Gall Préhistoire 40:29–74.
- Dobney K, Brothwell D. 1986. Dental calculus: its relevance to ancient diet and oral ecology. In: Cruwys E, Foley RA, editors. Teeth and anthropology. Oxford: BAR International Series 291. p 55–81.
- Dobney K, Brothwell D. 1988. A scanning electron microscope study of archaeological dental calculus. In: Olsen SL, editor. Scanning electron microscopy in archaeology. Oxford: BAR International Series. p 372–385.
- Douglass GD, DeVreugd RT. 1997. The dynamics of occlusal relationships. In: McNeill C, editor. Science and practice of occlusion. Berlin: Quintessence. p 69–78.
- Dreher ML. 2012. Pistachio nuts: composition and potential health benefits. Nutr Rev 70:234–240.
- Dubreuil L, Nadel D. 2015. The development of plant food processing in the Levant: insights from use-wear analysis of Early Epipalaeolithic ground stone tools. Philos Trans R Soc London B Biol Sci 370:20140357-.
- Dudgeon J V, Tromp M. 2014. Diet, Geography and Drinking Water in Polynesia: Microfossil Research from Archaeological Human Dental Calculus, Rapa Nui (Easter Island). Int J Osteoarchaeol 24:634–648.
- Dupont E. 1872. Les temps préhistoriques en Belgique: L'homme pendant les âges de la pierre dans les environs de Dinant-sur-Meuse. Brussels: Murquardt.
- Dusseldorp GL. 2010. Studying Pleistocene Neanderthal and cave hyena Dietary Habits: Combining Isotopic and Archaeozoological Analyses. J Archaeol Method Theory 18:224–255.

- Dusseldorp GL. 2013. Neanderthals and Cave Hyenas: Co-existence, Competition or Conflict? In: Clark JL, Speth JD, editors. Zooarchaeology and Modern Human Origins. Springer. p 191–208.
- Ecker M, Bocherens H, Julien M-A, Rivals F, Raynal J-P, Moncel M-H. 2013. Middle Pleistocene ecology and Neanderthal subsistence: insights from stable isotope analyses in Payre (Ardèche, southeastern France). J Hum Evol 65:363–73.
- Eliasson AC, Larsson K. 1993. Cereals in breadmaking: a molecular colloidal approach. New York: CRC Press.
- Evers AD. 1971. Scanning electron microscopy of wheat starch. III. Granule development in the endosperm. Starch Stärke 5:157–192.
- Evins MA. 1982. The fauna from Shanidar Cave: Mousterian wild goat exploitation in northeastern Iraq. Paléorient 8:37–58.
- Fahy GE, Richards MP, Fuller BT, Deschner T, Hublin J-J, Boesch C. 2014. Stable nitrogen isotope analysis of dentine serial sections elucidate sex differences in weaning patterns of wild chimpanzees (*Pan troglodytes*). Am J Phys Anthropol 153:635–642.
- Fahy GE, Richards MP, Riedel J, Hublin J-J, Boesch C. 2013. Stable isotope evidence of meat eating and hunting specialization in adult male chimpanzees. Proc Natl Acad Sci U S A 110:5829–33.
- Falchi M, El-Sayed Moustafa JS, Takousis P, Pesce F, Bonnefond A, Andersson-Assarsson JC, Sudmant PH, Dorajoo R, Al-Shafai MN, Bottolo L, Ozdemir E, So H-C, Davies RW, Patrice A, Dent R, Mangino M, Hysi PG, Dechaume A, Huyvaert M, Skinner J, Pigeyre M, Caiazzo R, Raverdy V, Vaillant E, Field S, Balkau B, Marre M, Visvikis-Siest S, Weill J, Poulain-Godefroy O, Jacobson P, Sjostrom L, Hammond CJ, Deloukas P, Sham PC, McPherson R, Lee J, Tai ES, Sladek R, Carlsson LMS, Walley A, Eichler EE, Pattou F, Spector TD, Froguel P. 2014. Low copy number of the salivary amylase gene predisposes to obesity. Nat Genet 46:492–7.
- Fenwick RSH, Lentfer CJ, Weisler MI. 2011. Palm reading: A pilot study to discriminate phytoliths of four Arecaceae (Palmae) taxa. J Archaeol Sci 38:2190–2199.
- Fernandes R, Millard AR, Brabec M, Nadeau M-J, Grootes P. 2014. Food Reconstruction Using Isotopic Transferred Signals (FRUITS): A Bayesian Model for Diet Reconstruction. PLoS One 9:e87436.
- Field A. 2005. Discovering Statistics Using SPSS. Sage Publications Ltd.
- Filhol MH. 1889. Note sur une machoire humaine trouvée dans la caverne de Malarnaud près de Montseron (Ariège). Bull la Société Philomath Paris 8th 1:69–82.
- Finlayson C. 2008. On the importance of coastal areas in the survival of Neanderthal populations during the Late Pleistocene. Quat Sci Rev 27:2246–2252.
- Finlayson C, Pacheco FG, Rodríguez-Vidal J, Fa DA, Gutierrez López JM, Santiago Pérez A, Finlayson G, Allue E, Baena Preysler J, Cáceres I, Carrión JS, Fernández Jalvo Y, Gleed-

Owen CP, Jiménez-Espejo FJ, López P, López Sáez JA, Riquelme Cantal JA, Sánchez Marco A, Guzman FG, Brown K, Fuentes N, Valarino CA, Villalpando A, Stringer CB, Martinez Ruiz F, Sakamoto T. 2006. Late survival of Neanderthals at the southernmost extreme of Europe. Nature 443:850–3.

- Fiore I, Gala M, Tagliacozzo A. 2004. Ecology and subsistence strategies in the eastern Italian Alps during the Middle Palaeolithic. Int J Osteoarchaeol 14:273–286.
- Fiorenza L. 2015. Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis. J Anthropol Sci 93:1–15.
- Fiorenza L, Benazzi S, Henry AG, Salazar-García DC, Blasco R, Picin A, Wroe S, Kullmer O. 2015. To meat or not to meat? New perspectives on Neanderthal ecology. Am J Phys Anthropol 156 Suppl:43–71.
- Fiorenza L, Benazzi S, Tausch J, Kullmer O, Bromage TG, Schrenk F. 2011. Molar macrowear reveals Neanderthal eco-geographic dietary variation. PLoS One 6:e14769.
- Flannery K V. 1969. Origins and ecological effects of early domestication in Iran and the Near East. In: Ucko PJ, Dimbleby GW, editors. The domestication and exploitation of plants and animals. Chicago, IL: Gerald Duckworth and Co. p 73–100.
- Flensborg G. 2011. Dento-alveolar lesions and palaeodietary inferences from the Paso Alsina 1 site (eastern Pampean-Patagonian transition, Argentina). Homo Int Zeitschrift für die vergleichende Forsch am Menschen 62:335–50.
- Floate MJS. 1970. Decomposition of organic materials from hill soils and pastures. Soil Biol Biochem 2:173–185.
- Foley R, Lahr MM. 2003. On stony ground: Lithic technology, human evolution, and the emergence of culture. Evol Anthropol Issues, News, Rev 12:109–122.
- Follieri M, Giardini M, Magri D, Sadori L. 1998. Palynostratigraphy of the Last Glacial period in the volcanic region of central Italy. Quat Int 47–48:3–20.
- Fox CL, Pérez-Pérez A. 1993. The diet of the Neanderthal Child Gibraltar 2 (Devil's Tower) through the study of the vestibular striation pattern. J Hum Evol 24:29–41.
- Fox J, Weisberg S. 2002. An R Companion to Applied Regression. SAGE Publications.
- Frayer DW, Fiore I, Lalueza-Fox C, Radovčić J, Bondioli L. 2010. Right handed Neandertals: Vindija and beyond. J Anthropol Sci 88:113–127.
- Fu Q, Hajdinjak M, Moldovan OT, Constantin S, Mallick S, Skoglund P, Patterson N, Rohland N, Lazaridis I, Nickel B, Viola B, Prüfer K, Meyer M, Kelso J, Reich D, Pääbo S. 2015. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524:216–219.
- Galván Santos B, Hernández CM, Ortega F. 2006. Territorio y producción lítica en los valles de Alcoy (Alicante) durante el Paleolítico Medio. In: Martínez G, Morgado A, Alfonso JA, editors. Sociedades prehistóricas, recursos abióticos y territorio. Granada:

Fundación Ibn al-Jatib de Estudios de Cooperación Cultural. p 135-158.

- Garralda MD, Galván B, Hernández CM, Mallol C, Gómez JA, Maureille B. 2014. Neanderthals from El Salt (Alcoy, Spain) in the context of the latest Middle Palaeolithic populations from the southeast of the Iberian Peninsula. J Hum Evol 75:1–15.
- Gaudzinski-Windheuser S, Roebroeks W. 2011. On Neanderthal Subsistence in Last Interglacial Forested Environments in Northern Europe. In: Conard NJ, Richter J, editors. Neanderthal lifeways, subsistence and technology: one hundred fifty years of Neanderthal study. Dordrecht: Springer Science & Business Media. p 61–71.
- Germonpré M, Udrescu M, Fiers E. 2014. Possible evidence of mammoth hunting at the Neanderthal site of Spy (Belgium). Quat Int 337:28–42.
- Gobetz KE, Bozarth SR. 2001. Implications for Late Pleistocene mastodon diet from opal phytoliths in tooth calculus. Quat Res 55:115–122.
- Gomez-Robles A, Bermúdez de Castro JM, Arsuaga JL, Carbonell E, Polly PD. 2013. No known hominin species matches the expected dental morphology of the last common ancestor of Neanderthals and modern humans. Proc Natl Acad Sci U S A 110:18196– 18201.
- Goodale N, Otis H, Andrefsky W, Kuijt I, Finlayson B, Bart K. 2010. Sickle blade life-history and the transition to agriculture: an early Neolithic case study from Southwest Asia. J Archaeol Sci 37:1192–1201.
- Goodman MJ, Griffin PB, Estioko-Griffin AA, Grove JS. 1985. The compatibility of hunting and mothering among the agta hunter-gatherers of the Philippines. Sex Roles 12:1199–1209.
- Granger J-M, Lévêque F. 1997. Parure castelperronienne et aurignacienne: étude de trois séries inédites de dents percées et comparaisons. Comptes Rendus l'Académie des Sci -Ser IIA - Earth Planet Sci 325:537–543.
- Grayson DK, Delpech F. 2008. The large mammals of Roc de Combe (Lot, France): The Châtelperronian and Aurignacian assemblages. J Anthropol Archaeol 27:338–362.
- Greene TR, Kuba CL, Irish JD. 2005. Quantifying calculus: A suggested new approach for recording an important indicator of diet and dental health. HOMO J Comp Hum Biol 56:119–132.
- Griggo C. 2004. Mousterian fauna from Dederiyeh Cave and comparisons with fauna from Umm el Tlel and Douara Cave. Paléorient 30:149–162.
- Grine FE. 1986. Dental evidence for dietary differences in *Australopithecus* and *Paranthropus*: a quantitative analysis of permanent molar microwear. J Hum Evol 15:783–822.
- Grün R, Stringer CB. 1991. Electron Spin Resonance Dating and the Evolution of Modern Humans. Archaeometry 33:153–199.
- Guatelli-Steinberg D, Larsen CS, Hutchinson DL. 2004. Prevalence and the duration of linear

enamel hypoplasia: a comparative study of Neandertals and Inuit foragers. J Hum Evol 47:65–84.

- Guérin G, Frouin M, Talamo S, Aldeias V, Bruxelles L, Chiotti L, Dibble HL, Goldberg P, Hublin J-J, Jain M, Lahaye C, Madelaine S, Maureille B, McPherron SJP, Mercier N, Murray AS, Sandgathe D, Steele TE, Thomsen KJ, Turq A. 2015. A multi-method luminescence dating of the Palaeolithic sequence of La Ferrassie based on new excavations adjacent to the La Ferrassie 1 and 2 skeletons. J Archaeol Sci 58:147–166.
- Gunz P, Neubauer S, Maureille B, Hublin J-J. 2010. Brain development after birth differs between Neanderthals and modern humans. Curr Biol 20:R921–R922.
- Gurven M, Allen-Arave W, Hill K, Hurtado AM. 2001. Reservation food sharing among the Ache of Paraguay. Hum Nat 12:273–297.
- Guthrie DR. 2001. Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quat Sci Rev 20:549–574.
- Haber Uriarte M, Avilés Fernández A, Lomba Maurandi J. 2013. Estudio antropológico preliminar de los restos humanos calcolíticos del enterramiento múltiple de Camino del Molino (Caravaca de la Cruz, Murcia). In: Turbón D, Fañanás L, Rissech C, Rosa A, editors. Biodiversidad humana y evolución. Barcelona: Universidad de Barcelona. p 236–242.
- Halstead P. 2012. Feast, Food and Fodder in Neolithic-Bronze Age Greece: Commensality and the Construction of Value. eTopoi J Anc Stud 2:21–51.
- Hardy BL. 2010. Climatic variability and plant food distribution in Pleistocene Europe: Implications for Neanderthal diet and subsistence. Quat Sci Rev 29:662–679.
- Hardy BL, Kay M, Marks AE, Monigal K. 2001. Stone tool function at the paleolithic sites of Starosele and Buran Kaya III, Crimea: Behavioral implications. Proc Natl Acad Sci U S A 98:10972–10977.
- Hardy BL, Moncel M-H. 2011. Neanderthal use of fish, mammals, birds, starchy plants and wood 125-250,000 years ago. PLoS One 6:e23768.
- Hardy BL, Moncel M-H, Daujeard C, Fernandes P, Béarez P, Desclaux E, Chacon Navarro MG, Puaud S, Gallotti R. 2013. Impossible Neanderthals? Making string, throwing projectiles and catching small game during Marine Isotope Stage 4 (Abri du Maras, France). Quat Sci Rev 82:23–40.
- Hardy K, Blakeney T, Copeland L, Kirkham J, Wrangham RW, Collins MJ. 2009. Starch granules, dental calculus and new perspectives on ancient diet. J Archaeol Sci 36:248–255.
- Hardy K, Brand-Miller J, Brown KD, Thomas MG, Copeland L. 2015a. The Importance of Dietary Carbohydrate in Human Evolution. Q Rev Biol 90:251–268.
- Hardy K, Buckley S, Collins MJ, Estalrrich A, Brothwell D, Copeland L, García-Tabernero A, García-Vargas S, de la Rasilla M, Lalueza-Fox C, Huguet R, Bastir M, Santamaría D,

Madella M, Wilson J, Cortés AF, Rosas A. 2012. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99:617–26.

- Hardy K, Radini A, Buckley S, Sarig R, Copeland L, Gopher A, Barkai R. 2015b. Dental calculus reveals potential respiratory irritants and ingestion of essential plant-based nutrients at Lower Palaeolithic Qesem Cave Israel. Quat Int.
- Harlan JR. 1989. Wild-grass seed harvesting in the Sahara and sub-Sahara of Africa. In: Harris DR, Hillman GC, editors. Foraging and farming: the evolution of plant exploitation. London: Unwin Hyman. p 79–98.
- Harvati K, Darlas A, Bailey SE, Rein TR, El Zaatari S, Fiorenza L, Kullmer O, Psathi E. 2013. New Neanderthal remains from Mani peninsula, Southern Greece: the Kalamakia Middle Paleolithic cave site. J Hum Evol 64:486–99.
- Harvati K, Panagopoulou E, Runnels C. 2009. The Paleoanthropology of Greece. Evol Anthropol 18:131–143.
- Haslam M. 2004. The decomposition of starch grains in soils: implications for archaeological residue analyses. J Archaeol Sci 31:1715–1734.
- Hawkes K, Bird RB. 2002. Showing Off, Handicap Signaling, and the Evolution of Men's Work. Evol Anthropol 11:58–67.
- Hawkes K, Hill K, O'Connell JF. 1982. Why hunters gather: optimal foraging and the Ache of eastern Paraguay. Am Ethnol 9:379–398.
- Haws JA. 2004. An Iberian perspective on Upper Paleolithic plant consumption. Promontoria 2:49–105.
- Haws JA, Hockett BS. 2004. Theoretical perspectives on the dietary role of small animals in human evolution. Petits Animaux Soc Hum:173–184.
- Hedges REM, Clement JG, Thomas CDL, O'Connell TC. 2007. Collagen turnover in the adult femoral mid-shaft: modeled from anthropogenic radiocarbon tracer measurements. Am J Phys Anthropol 133:808–16.
- Henri-Martin G. 1961. Le niveau de Chatelperron a la Quina (Charente). Bull la Société Préhistorique Française 58:796–808.
- Henry AG. 2010. Plant Foods and The Dietary Ecology of Neandertals and Modern Humans.
- Henry AG. 2014. Formation and taphonomic processes affecting starch grains. In: Marston JM, Guedes JD, Warinner C, editors. Current Methods in Paleoethnobotany. Boulder: University of Colorado Press. p 35–50.
- Henry AG, Brooks AS, Piperno DR. 2011. Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proc Natl Acad Sci U S A 108:486–491.

- Henry AG, Brooks AS, Piperno DR. 2014. Plant foods and the dietary ecology of Neanderthals and early modern humans. J Hum Evol 69:44–54.
- Henry AG, Piperno DR. 2008. Using plant microfossils from dental calculus to recover human diet: a case study from Tell al-Raqā'i, Syria. J Archaeol Sci 35:1943–1950.
- Henry AG, Ungar PS, Passey BH, Sponheimer M, Rossouw L, Bamford M, Sandberg P, de Ruiter DJ, Berger L. 2012. The diet of *Australopithecus sediba*. Nature 487:90–3.
- Heyes P, MacDonald K. 2015. Neandertal energetics: Uncertainty in body mass estimation limits comparisons with Homo sapiens. J Hum Evol 85:193–7.
- Higham TFG. 2011. European Middle and Upper Palaeolithic radiocarbon dates are often older than they look: problems with previous dates and some remedies. Antiquity 85:235–249.
- Higham TFG, Douka K, Wood RE, Ramsey CB, Brock F, Basell L, Camps M, Arrizabalaga A, Baena J, Barroso-Ruíz C, Bergman C, Boitard C, Boscato P, Caparrós M, Conard NJ, Draily C, Froment A, Galván B, Gambassini P, Garcia-Moreno A, Grimaldi S, Haesaerts P, Holt B, Iriarte-Chiapusso M-J, Jelinek AJ, Jordá Pardo JF, Maíllo-Fernández J-M, Marom A, Maroto J, Menéndez M, Metz L, Morin E, Moroni A, Negrino F, Panagopoulou E, Peresani M, Pirson S, de la Rasilla M, Riel-Salvatore J, Ronchitelli A, Santamaría D, Semal P, Slimak L, Soler J, Soler N, Villaluenga A, Pinhasi R, Jacobi R. 2014. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512:306–9.
- Higham TFG, Jacobi R, Julien M, David F, Basell L, Wood RE, Davies W, Ramsey CB. 2010. Chronology of the Grotte du Renne (France) and implications for the context of ornaments and human remains within the Châtelperronian. Proc Natl Acad Sci U S A 107:20234–9.
- Higham TFG, Ramsey CB, Karavanić I, Smith FH, Trinkaus E. 2006. Revised direct radiocarbon dating of the Vindija G1 Upper Paleolithic Neandertals. Proc Natl Acad Sci U S A 103:553–7.
- Hill K. 1988. Macronutrient modifications of optimal foraging theory: An approach using indifference curves applied to some modern foragers. Hum Ecol 16:157–197.
- Hockett BS. 2012. The consequences of Middle Paleolithic diets on pregnant Neanderthal women. Quat Int 264:78–82.
- Hockett BS, Haws JA. 2003. Nutritional Ecology and Diachronic Trends in Paleolithic Diet and Health. Evol Anthropol 12:211–216.
- Hockett BS, Haws JA. 2005. Nutritional ecology and the human demography of Neandertal extinction. Quat Int 137:21–34.
- Hockett BS, Haws JA. 2009. Continuity in animal resource diversity in the Late Pleistocene human diet of Central Portugal. Before Farming 2009:1–14.
- Hohmann G, Potts K, N'Guessan A, Fowler A, Mundry R, Ganzhorn JU, Ortmann S. 2010.

Plant foods consumed by Pan: exploring the variation of nutritional ecology across Africa. Am J Phys Anthropol 141:476–85.

- Holm G. 1911. Ethnological sketch of the Angmagssalik Eskimo. In: Thalbitzer W, editor. The Ammassalik Eskimo : contributions to the Ethnology of the East Greenland Natives. Copenhagen: Meddelelser om Grønland. p 1–147.
- Holm J, Lundquist I, Björck I, Eliasson AC, Asp NG. 1988. Degree of starch gelatinization, digestion rate of starch in vitro, and metabolic response in rats. Am J Clin Nutr 47:1010–6.
- Hora M, Sladek V. 2014. Influence of lower limb configuration on walking cost in Late Pleistocene humans. J Hum Evol 67:19–32.
- Howell FC. 1957. The Evolutionary Significance of Variation and Varieties of "Neanderthal" Man. Q Rev Biol 32:330–347.
- Hublin J-J. 1998. Climatic changes, paleogeography, and the evolution of the Neandertals.
 In: Akazawa T, Aoki K, Bar-Yosef O, editors. Neandertals and modern humans in
 Western Asia. New York, NY: Kluwer Academic Publishers. p 295–310.
- Hublin J-J. 2009. The origin of Neandertals. Proc Natl Acad Sci U S A 106:16022-7.
- Hublin J-J. 2015. The modern human colonization of western Eurasia: when and where? Quat Sci Rev 118:194–210.
- Hublin J-J, Roebroeks W. 2009. Ebb and flow or regional extinctions? On the character of Neandertal occupation of northern environments. Comptes Rendus Palevol 8:503–509.
- Hublin J-J, Spoor F, Braun M, Zonneveld F, Condemi S. 1996. A late Neanderthal associated with Upper Palaeolithic artefacts. Nature 381:224–6.
- Hublin J-J, Talamo S, Julien M, David F, Connet N, Bodu P, Vandermeersch B, Richards MP.
 2012. Radiocarbon dates from the Grotte du Renne and Saint-Césaire support a Neandertal origin for the Châtelperronian. Proc Natl Acad Sci U S A 109:18743–8.
- Hublin J-J, Weston D, Gunz P, Richards M, Roebroeks W, Glimmerveen J, Anthonis L. 2009. Out of the North Sea: the Zeeland ridges Neandertal. J Hum Evol 57:777–85.
- Hughes DR. 1963. A study of a series of mandibles from the Mulu cave, Sarawak. J Anthropol Inst Gt Britain Irel 93:235–249.
- Hurtado MA, Hill KR. 1987. Early dry season subsistence ecology of Cuiva (Hiwi) foragers of Venezuela. Hum Ecol 15:163–187.
- Hutchinson GE. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93:145–159.
- ICSN. 2011. The International Code for Starch Nomenclature. Available from: http://fossilfarm.org/ICSN/Code.html
- Janis CM. 1990. The correlation between diet and dental wear in herbivorous mammals, and

its relationship to the determination of diets of extinct species. In: Boucot AJ, editor. Evolutionary paleobiology of behavior and coevolution. Amsterdam: Elsevier. p 241–259.

- Jin Y, Yip H-K. 2002. Supragingival calculus: formation and control. Crit Rev Oral Biol Med 13:426–441.
- Jones EL. 2016. In Search of the Broad Spectrum Revolution in Paleolithic Southwest Europe. Cham: Springer International Publishing.
- Jones M. 2009. Moving North: Archaeobotanical Evidence for Plant Diet in Middle and Upper Paleolithic Europe. In: Hublin J-J, Richards MP, editors. The Evolution of Human Diets: Integrating Approaches to the Study of Paleolithic Subsistence. Springer. p 171–180.
- Kaidonis JA. 2008. Tooth wear: the view of the anthropologist. Clin Oral Investig 12 Suppl 1:S21-6.
- Kaifu Y, Kasai K, Townsend GC, Richards LC. 2003. Tooth Wear and the "Design" of the Human Dentition: A Perspective from Evolutionary Medicine. Am J Phys Anthropol 122:47–61.
- Kaplan AR, Powell WE, Moorhouse AB, Hinko EN. 1976. Taste sensitivity and human variation: some biological and clinical implications. In: Kaplan AR, editor. Human Behaviour Genetics. Springfield: Charles C. Thomas. p 401–423.
- Karavanić I, Smith FH. 1998. The Middle/Upper Paleolithic interface and the relationship of Neanderthals and early modern humans in the Hrvatsko Zagorje, Croatia. J Hum Evol 34:223–248.
- Kay RF, Hiiemae KM. 1974. Jaw movement and tooth use in recent and fossil primates. Am J Phys Anthropol 40:227–56.
- Keeley LH. 1992. The Use of Plant Foods among Hunter-Gatherers : A Cross-Cultural Survey. In: Anderson PC, editor. Prehistoire de l'Agriculture. Nouvelles Approches Experimentales et Ethnographiques. Paris: National Center for Scientific Research. Monographie du CRA. p 29–38.
- Kelly RL. 1995. The Foraging Spectrum: Diversity in Hunter-Gatherer Lifeways. New York: Eliot Werner Publications.
- Klein RG. 2009. The human career: human biological and cultural origins. Chicago: University of Chicago Press.
- Klein RG, Steele TE. 2008. Gibraltar data are too sparse to inform on Neanderthal exploitation of coastal resources. Proc Natl Acad Sci U S A 105:E115; author reply E116.
- Kleinberg I. 1970. Biochemistry of the Dental Plaque. In: Staple PH, editor. Advances in Oral Biology, Volume 4. New York: Elsevier Science. p 40–93.
- Krause J, Orlando L, Serre D, Viola B, Prüfer K, Richards MP, Hublin J-J, Hänni C,

Derevianko AP, Pääbo S. 2007. Neanderthals in central Asia and Siberia. Nature 449:902–4.

- Krings M, Capelli C, Tschentscher F, Geisert H, Meyer S, von Haeseler A, Grossschmidt K, Possnert G, Paunović M, Pääbo S. 2000. A view of Neandertal genetic diversity. Nat Genet 26:144–146.
- Kucera M, Pany-Kucera D, Boyadjian CHC, Reinhard K, Eggers S. 2011. Efficient but destructive: A test of the dental wash technique using secondary electron microscopy. J Archaeol Sci 38:129–135.
- Kuhn SL. 1991. "Unpacking" reduction: Lithic raw material economy in the mousterian of west-central Italy. J Anthropol Archaeol 10:76–106.
- Kuhn SL, Stiner MC. 2006. What's a Mother to Do? The Division of Labor among Neandertals and Modern Humans in Eurasia. Curr Anthropol 47:953–981.
- Kuhnlein H V., Turner NJ. 1991. Traditional plant foods of Canadian indigenous peoples: nutrition, botany, and use v8. Amsterdam: Taylor & Francis.
- Kuitems M, van Kolfschoten T, van der Plicht J. 2012. Elevated δ15N values in mammoths: a comparison with modern elephants. Archaeol Anthropol Sci 7:289–295.
- Kullmer O, Benazzi S, Fiorenza L, Schulz D, Bacso S, Winzen O. 2009. Technical note: Occlusal fingerprint analysis: Quantification of tooth wear pattern. Am J Phys Anthropol 139:600–605.
- Laden G, Wrangham RW. 2005. The rise of the hominids as an adaptive shift in fallback foods: plant underground storage organs (USOs) and australopith origins. J Hum Evol 49:482–498.
- Lalueza C, Pérez-Pérez A, Turbón D. 1996. Dietary inferences through buccal microwear analysis of middle and upper Pleistocene human fossils. Am J Phys Anthropol 100:367– 87.
- Lalueza-Fox C, Gigli E, de la Rasilla M, Fortea J, Rosas A. 2009. Bitter taste perception in Neanderthals through the analysis of the *TAS2R38* gene. Biol Lett 5:809–11.
- Lalueza-Fox C, Juan J, Albert RM. 1996. Phytolith analysis on dental calculus, enamel surface, and burial soil: Information about diet and paleoenvironment. Am J Phys Anthropol 101:101–113.
- Lanfranco LP, Eggers S. 2012. Caries through time: an anthropological overview. In: Li M-Y, editor. Contemporary Approach to Dental Caries. InTech. p 3–34.
- Langejans GHJ. 2010. Remains of the day-preservation of organic micro-residues on stone tools. J Archaeol Sci 37:971–985.
- Langejans GHJ. 2011. Discerning use-related micro-residues on tools: testing the multistranded approach for archaeological studies. J Archaeol Sci 38:985–1000.

- Langejans GHJ. 2012. Middle Stone Age pièces esquillées from Sibudu Cave, South Africa: an initial micro-residue study. J Archaeol Sci 39:1694–1704.
- Larsen CS, Shavit R, Griffin MC. 1991. Dental caries evidence for dietary change: an archaeological context. In: Kelley M, Larsen C, editors. Advances in Dental Anthropology. New York, NY: Wiley-Liss. p 179–202.
- Laurence AR, Thoms A V., Bryant VM, McDonough C. 2011. Airborne Starch Granules as a Potential Contamination Source at Archaeological Sites. J Ethnobiol 31:213–232.
- Lazzati AMB, Levrini L, Rampazzi L, Dossi C, Castelletti L, Licata M, Corti C. 2015. The Diet of Three Medieval Individuals from Caravate (Varese, Italy). Combined Results of ICP-MS Analysis of Trace Elements and Phytolith Analysis Conducted on Their Dental Calculus. Int J Osteoarchaeol.
- Lebreton V, Psathi E, Darlas A. 2008. Environnement vegetal des neandertaliens de la Grotte deKalamakia (Aréopolis, Grèce). In: Darlas A, Mihailovi D, editors. The Palaeolithic of the Balkan. Proceedings of the XV UISPP World Congress. Oxford: BAR International Series 1819. p 61–68.
- Lee B-H, Bello-Pérez LA, Lin AH-M, Kim CY, Hamaker BR. 2013. Importance of Location of Digestion and Colonic Fermentation of Starch Related to Its Quality. Cereal Chem 90:335–343.
- Lee-Thorp JA, van der Merwe NJ, Brain CK. 1994. Diet of Australopithecus robustus at Swartkrans from stable carbon isotopic analysis. J Hum Evol 27:361–372.
- Lee-Thorp J, Sponheimer M. 2006. Contributions of biogeochemistry to understanding hominin dietary ecology. Yearb Phys Anthropol 43:131–148.
- Leigh RW. 1925. Dental pathology of Indian tribes of varied environmental and food conditions. Am J Phys Anthropol 8:179–199.
- Leonard C, Vashro L, O'Connell JF, Henry AG. 2015. Plant microremains in dental calculus as a record of plant consumption: A test with Twe forager-horticulturalists. J Archaeol Sci Reports 2:449–457.
- Leroi-Gourhan A. 1968. Le Neanderthalien IV de Shanidar. Bull la Société Préhistorique Française LXV:79–83.
- Leroi-Gourhan A. 1969. Pollen grains of Graminae and Cerealia from Shanidar and Zawi Chemi. In: Ucko PJ, Dimbleby GW, editors. The domestication and exploitation of plants and animals. Chicago: Aldine Transaction. p 141–148.
- Leroi-Gourhan A. 1975. The Flowers Found with Shanidar IV, a Neanderthal Burial in Iraq. Science (80-) 190:562–564.
- Lev E, Kislev ME, Bar-Yosef O. 2005. Mousterian vegetal food in Kebara Cave, Mt. Carmel. J Archaeol Sci 32:475–484.
- Lieverse AR. 1999. Diet and the Aetiology of Dental Calculus. Int J Osteoarchaeol 232:219-

232.

- Liu H. 2012. Research of plant remains of some sites in Shaanxi and Henan and their implication for the two millets of China.
- Liu L, Bestel S, Shi J, Song Y, Chen X. 2013. Paleolithic human exploitation of plant foods during the last glacial maximum in North China. Proc Natl Acad Sci U S A 110:5380– 5385.
- Lomba Maurandi J, López Martínez M, Ramos Martínez F, Avilés Fernández A. 2009. El enterramiento múltiple, calcolítico, de Camino del Molino (Caravaca, Murcia). Metodología y primeros resultados de un yacimiento exepcional. Trab Prehist 66:143– 159.
- Loring Brace C, Rosenberg KR, Hunt KD. 1987. Gradual change in human tooth size in the late Pleistocene and post-Pleistocene. Evolution (N Y) 41:705–720.
- Lothrop SK. 1928. The Indians of Tierra del Fuego. New York: Museum of the American Indian.
- Loy T, Barton H. 2006. Post-excavation contamination and measures for prevention. In: Torrence R, Barton H, editors. Ancient Starch Research. Walnut Creek: Left Coast Press. p 165.
- Lucas PW, Omar R, Al-Fadhalah K, Almusallam AS, Henry AG, Michael S, Thai LA, Watzke J, Strait DS, Atkins AG. 2013. Mechanisms and causes of wear in tooth enamel: implications for hominin diets. J R Soc Interface 10:20120923.
- Lukacs JR, Largaespada LL. 2006. Explaining sex differences in dental caries prevalence: saliva, hormones, and "life-history" etiologies. Am J Hum Biol 18:540–55.
- De Lumley H, Darlas A, Anglada R, Cataliotti-Valdina J, Desclaux E, Dubar M, Falguères C, Keraudren B, Lecervoisier B, Mestour B, Renault-Miskovsky J, Trantalidou K, Vernet JL. 1994. Grotte de Kalamakia (Aréopolis, Péloponnèse). Bull Corresp héllénique 118:535–559.
- Lyman RL. 2003. The influence of time averaging and space averaging on the application of foraging theory in zooarchaeology. J Archaeol Sci 30:595–610.
- MacArthur RH, Pianka ER. 1966. On Optimal Use of a Patchy Environment. Am Nat 100:603.
- MacDonald IA, Bokkenheuser VD, Winter J, McLernon AM, Mosbach EH. 1983. Degradation of steroids in the human gut. J Lipid Res 24:675–700.
- Macdonald K, Roebroeks W, Verpoorte A. 2009. An Energetics Perspective on the Neandertal Record. In: Hublin J-J, Richards MP, editors. The Evolution of Hominin Diets: Integrating Approaches to the Study of Palaeolithic Subsistence. Dordrecht: Springer. p 211–220.

Madella M, Alexandre A, Ball T. 2005. International code for phytolith nomenclature 1.0.

Ann Bot 96:253-260.

- Madella M, Jones MK, Goldberg P, Goren Y, Hovers E. 2002. The Exploitation of Plant Resources by Neanderthals in Amud Cave (Israel): The Evidence from Phytolith Studies. J Archaeol Sci 29:703–719.
- Magurran AE. 2004. Measuring biological diversity. Oxford: Blackwell Publishing.
- Mangafa M. 1998. Plant exploitation from the Middle Paleolithic to the Neolithic: from food gathering to farming. Archaeobotanical study of Theopetra cave. Theopetra Cave Proc Int Conf Trkala:6–7.
- Marlowe FW. 2010. The Hadza: hunter-gatherers of Tanzania. London: University of California Press.
- Martinoli DC. 2005. Plant food economy and environment during the epipalaeolithic in southwest Anatolia : an investigation of the botanical macroremains from Öküzini and Karain B.
- Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore TC, Shackleton NJ. 1987. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat Res 27:1–29.
- Matsutani A. 1987. Plant remains from the 1984 excavations at Douara Cave. In: Akazawa T, Sakaguchi Y, editors. Paleolithic Site of Douara Cave and Paleogeography of Palmyra Basin in Syria: Part IV: 1984 Excavations. Tokyo: The University of Tokyo Press.
- Mauch Lenardić J. 2014. Bank vole Myodes (=Clethrionomys) glareolus (Schreber, 1780): Rare species in the Late Pleistocene fauna of Croatia. Quat Int 328–329:167–178.
- McBrearty S, Brooks AS. 2000. The revolution that wasn't: a new interpretation of the origin of modern human behavior. J Hum Evol 39:453–563.
- Mellars P. 1986. A new chronology for the French Mousterian period. Nature 322:410–411.
- Mercader J, Bennett T, Raja M. 2008. Middle Stone Age starch acquisition in the Niassa Rift, Mozambique. Quat Res 70:283–300.
- Meriggi A, Rosa P, Brangi A, Matteucci C. 1991. Habitat use and diet of the wolf in northern Italy. Acta Theriol (Warsz) 36:141–151.
- Meyer M, Fu Q, Aximu-Petri A, Glocke I, Nickel B, Arsuaga J-L, Martinez I, Gracia A, de Castro JMB, Carbonell E, Paabo S. 2014. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505:403–406.
- Mickleburgh HL, Pagán-Jiménez JR. 2012. New insights into the consumption of maize and other food plants in the pre-Columbian Caribbean from starch grains trapped in human dental calculus. J Archaeol Sci 39:2468–2478.
- Molleson TI. 2000. The People of Abu Hureyra. In: Moore AMT, Hillman CC, Legge AJ, editors. Village on the Euphrates from Foraging to Farming at Abu Hureyra. Oxford:

Oxford University Press. p 301-34.

- Monge G, Jiménez-Espejo FJ, García-Alix A, Martínez-Ruiz F, Mattielli N, Finlayson C, Ohkouchi N, Sánchez MC, de Castro JMB, Blasco R, Rosell J, Carrión JS, Rodríguez-Vidal J, Finlayson G. 2015. Earliest evidence of pollution by heavy metals in archaeological sites. Sci Rep 5:14252.
- Monteiro da Silva A. M, Newman HN, Oakley DA, O'Leary R. 1998. Psychosocial factors, dental plaque levels and smoking in periodontitis patients. J Clin Periodontol 25:517–523.
- Morton JF. 1975. Cattails (*Typha* spp.) Weed Problem or Potential Crop? Econ Bot 29:7–29.
- Mulder MB, Schacht R. 2012. Human Behavioural Ecology. eLS.
- Murie A. 1944. The wolves of Mount McKinley. Fauna of the National Parks of the U. S. Fauna Series No. 5. Fauna Series No. 5.
- Murray J, Nasheuer HP, Seoighe C, McCormack GP, Williams DM, Harper DAT. 2015. The Contribution of William King to the Early Development of Palaeoanthropology. Irish J Earth Sci 33:1–16.
- N'guessan AK. 2012. Aspects quantitatifs et qualitatifs du régime alimentaire des chimpanzés au parc national de Taï, Côte d'Ivoire.
- N'guessan AK, Ortmann S, Boesch C. 2009. Daily energy balance and protein gain among *Pan troglodytes verus* in the Taï National Park, Côte d'Ivoire. Int J Primatol 30:481–496.
- Nabhan GP. 2009. Ethnoecology: Bridging Disciplines, Cultures and Species. J Ethnobiol 29:3–7.
- Nadel D, Danin A, Power RC, Rosen AM, Bocquentin F, Tsatskin A, Rosenberg D, Yeshurun R, Weissbrod L, Rebollo NR, Barzilai O, Boaretto E. 2013. Earliest floral grave lining from 13,700-11,700-y-old Natufian burials at Raqefet Cave, Mt. Carmel, Israel. Proc Natl Acad Sci U S A 110:1–5.
- Newman AW, Vitez IM, Kiesnowski C, Mueller RL. 1996. Starches and starch derivatives. In: Swarbrick J, Boylan JC, editors. Encyclopedia of pharmaceutical technology. New York: Marcel Dekker Inc. p 223–248.
- Newsom SWB, Shaw M. 1997. A survey of starch particle counts in the hospital environment in relation to the use of powdered latex gloves. Occup Med (Chic III) 47:155–158.
- Nicholson RA. 1996. Bone Degradation, Burial Medium and Species Representation: Debunking the Myths, an Experiment-based Approach. J Archaeol Sci 23:513–533.
- Niewind A, Krondl M, Shrott M. 1988. Genetic influences on the selection of brassica vegetables by elderly individuals. Nutr Res 8:13–20.
- Nilles J. 1942. Digging-Sticks, Spades, Hoes, Axes, and Adzes of the Kuman People in the Bismarck Mountains of East-Central New Guinea. Anthropos 37/40:205–212.

- Nishida T, Hasegawa T. 1992. Meat-sharing as a coalition strategy by an alpha male chimpanzee. In: Nishida T, Mcgrew WC, Marler P, Pickford M, de Waal MFB, editors. Topics in primatology. Tokyo: University of Tokyo Press. p 159–174.
- O'Connell JF. 2006. How did modern humans displace Neanderthals? Insights from huntergatherer ethnography and archaeology. In: Conard NJ, editor. When Neanderthals and modern humans met. Tübingen: Kerns Verlag. p 43–64.
- O'Connell JF, Hawkes K, Blurton Jones NG. 1999. Grandmothering and the evolution of homo erectus. J Hum Evol 36:461–85.
- Odum EP. 1975. Ecology. 2nd Editio. New York: Holt, Rinehart and Winston.
- Otte M. 1979. Le Paléolithique supérieur ancien en Belgique. Bruxelles: Musees Royaux d'art et d'histoire.
- Out WA, Madella M. 2015. Morphometric distinction between bilobate phytoliths from Panicum miliaceum and Setaria italica leaves. Archaeol Anthropol Sci.
- Out WA, Pertusa Grau JF, Madella M. 2014. A new method for morphometric analysis of opal phytoliths from plants. Microsc Microanal 20:1876–87.
- Ovchinnikov I V., Götherström A, Romanova GP, Kharitonov VM, Lidén K, Goodwin W. 2000. Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature 404:490–3.
- Oyebade T. 1973. Some aspects of developmental physiology of the Nigerian kola (*Cola nitida*) fruit. Econ Bot 27:417–422.
- Pacher M, Stuart AJ. 2009. Extinction chronology and palaeobiology of the cave bear (*Ursus spelaeus*). Boreas 38:189–206.
- Patou-Mathis M. 2000. Neanderthal subsistence behaviours in Europe. Int J Osteoarchaeol 10:379–395.
- Paunović M, Smith FH. 2002. Taphonomy of lower vertebrates from Vindija cave (Croatia): delicacy on Neandertal table of animal prey? J Hum Evol 42:A27–A27.
- Pennington HL, Weber SA. 2004. Paleoethnobotany: Modern Research Connecting Ancient Plants and Ancient Peoples. CRC Crit Rev Plant Sci 23:13–20.
- Pennington L. 1989. Bowes and Church's Food values of portions commonly used. New York: Harper and Row.
- Pérez Jordà G. 2005. Nuevos datos paleocarpológicos en niveles neolíticos del País Valenciano. In: Arias Cabal P, Ontañón Peredo R, García-Moncó Piñeiro C, editors. III Congreso del Neolítico en la Península Ibérica. Universidad de Cantabria. p 103–114.
- Pérez Jordà G, Carrión Marco Y. 2011. Los recursos vegetales. In: Pérez Jordà G, Bernabeu Aubán J, Carrión Marco Y, García Puchol O, Molina Balaguer LL, Gómez Puche M, editors. La Vital (Gandia, Valencia). Vida y muerte en la desembocadura del Serpis

durante el III y el I milenio a.C. Museo de Prehistòria de València-Diputación de Valencia.

- Pérez-Pérez A. 1994. Intraindividual and intragroup variability of buccal tooth striation pattern. Am J Phys Anthropol 94:175–187.
- Perkins D. 1964. Prehistoric Fauna From Shanidar, Iraq. Science (80-) 144:1565–1566.
- Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, Werner J, Villanea FA, Mountain JL, Misra R, Carter NP, Lee C, Stone AC. 2007. Diet and the evolution of human amylase gene copy number variation. Nat Genet 39:1256–1260.
- Perry GH, Kistler L, Kelaita MA, Sams AJ. 2015. Insights into hominin phenotypic and dietary evolution from ancient DNA sequence data. J Hum Evol 79:55–63.
- Peters KE, Walters CC, Moldowan JM. 2005. The Biomarker Guide. Volume 1: Biomarkers and Isotopes in the Environment and Human History. Cambridge University Press.
- Phillips C, Lancelotti C. 2014. Chimpanzee diet: phytolithic analysis of feces. Am J Primatol 76:757–73.
- Phinney SD. 1995. The functional effects of carbohydrate and energy underconsumption. In: Bernadette MM, editor. Not Eating Enough: Overcoming Underconsumption of Military Operational Rations. Washington, DC: National Academy Press. p 303–315.
- Pinhasi R, Higham TFG, Golovanova L V., Doronichev VB. 2011. Revised age of late Neanderthal occupation and the end of the Middle Paleolithic in the northern Caucasus. Proc Natl Acad Sci U S A 108:8611–6.
- Piperno DR. 2006. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. Lanham: AltaMira.
- Piperno DR, Dillehay TD. 2008. Starch grains on human teeth reveal early broad crop diet in northern Peru. Proc Natl Acad Sci U S A 105:19622–7.
- Power RC, Rosen AM, Nadel D. 2014a. The economic and ritual utilization of plants at the Raqefet Cave Natufian site: The evidence from phytoliths. J Anthropol Archaeol 33:49– 65.
- Power RC, Salazar-García DC, Henry, Amanda G. 2016. Dental calculus evidence of Gravettian diet and behaviour at Dolní Věstonice and Pavlov. In: Svoboda J, editor. Dolní Věstonice II: Chronostratigraphy, Paleoethnology, Paleoanthropology. Brno: Academy of Sciences of the Czech Republic, Institute of Archeology, p 345–352.
- Power RC, Salazar-García DC, Straus LG, González Morales MR, Henry AG. 2015a. Microremains from El Mirón on Cave human dental calculus suggest a mixed plantanimal subsistence economy during the Magdalenian in Northern Iberia. J Archaeol Sci 60:39–46.
- Power RC, Salazar-García DC, Wittig RM, Freiberg M, Henry AG. 2015b. Dental calculus evidence of Taï Forest Chimpanzee plant consumption and life history transitions. Sci

Rep 5:15161.

- Power RC, Salazar-García DC, Wittig RM, Henry AG. 2014b. Assessing use and suitability of scanning electron microscopy in the analysis of micro remains in dental calculus. J Archaeol Sci 49:160–169.
- Privat KL, O'Connell TC, Hedges REM. 2007. The distinction between freshwater- and terrestrial-based diets: methodological concerns and archaeological applications of sulphur stable isotope analysis. J Archaeol Sci 34:1197–1204.
- Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, Heinze A, Renaud G, Sudmant PH, de Filippo C, Li H, Mallick S, Dannemann M, Fu Q, Kircher M, Kuhlwilm M, Lachmann M, Meyer M, Ongyerth M, Siebauer M, Theunert C, Tandon A, Moorjani P, Pickrell J, Mullikin JC, Vohr SH, Green RE, Hellmann I, Johnson PLF, Blanche H, Cann H, Kitzman JO, Shendure J, Eichler EE, Lein ES, Bakken TE, Golovanova L V., Doronichev VB, Shunkov M V., Derevianko AP, Viola B, Slatkin M, Reich D, Kelso J, Pääbo S. 2014. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505:43–9.
- Pryor AJE, Steele M, Jones MK, Svoboda J, Beresford-Jones DG. 2013. Plant foods in the Upper Palaeolithic at Dolní Věstonice? Parenchyma redux. Antiquity 87:971–984.
- Puech PF. 1999. Usures des dents et sédentarisation? Doss Pour la Sci 22:90.
- de Puydt M, Lohest M. 1887. L'homme contemporain du Mammouth à Spy (Namur). In: de Radiguès de Chennevière H, editor. Fédération archéologique et historique de Belgique. Namur. p 205–240.
- R Core Team. 2014. R: A language and environment for statistical computing. R Found Stat Comput Vienna, Austria:URL http://www.R-project.org/.
- Reinhard KJ, Mendonça de Souza SMF, Rodrigues C, Kimmerle E, Dorsey-Vinton S. 2001.
 Microfossils in dental calculus: a new perspective on diet and dental disease. In:
 Williams E, editor. Human Remains: Conservation, Retrieval and Analysis. London:
 British Archaeology Research Council. p 113–118.
- Revedin A, Aranguren B, Becattini R, Longo L, Marconi E, Lippi MM, Skakun N, Sinitsyn A, Spiridonova E, Svoboda J. 2010. Thirty thousand-year-old evidence of plant food processing. Proc Natl Acad Sci U S A 107:18815–9.
- Richards MP, Pettitt PB, Stiner MC, Trinkaus E. 2001. Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic. Proc Natl Acad Sci U S A 98:6528–6532.
- Richards MP, Pettitt PB, Trinkaus E, Smith FH, Paunović M, Karavanić I. 2000. Neanderthal diet at Vindija and Neanderthal predation: the evidence from stable isotopes. Proc Natl Acad Sci U S A 97:7663–7666.
- Richards MP, Schmitz RW. 2008. Isotope evidence for the diet of the Neanderthal type specimen. Antiquity 82:553–559.

- Richards MP, Taylor G, Steele TE, McPherron SP, Soressi M, Jaubert J, Orschiedt J, Mallye JB, Rendu W, Hublin J-J. 2008. Isotopic dietary analysis of a Neanderthal and associated fauna from the site of Jonzac (Charente-Maritime), France. J Hum Evol 55:179–185.
- Richards MP, Trinkaus E. 2009. Out of Africa: modern human origins special feature: isotopic evidence for the diets of European Neanderthals and early modern humans. Proc Natl Acad Sci U S A 106:16034–9.
- Rink WJ, Schwarcz HP, Valoch K, Seitl L, Stringer CB. 1996. ESR Dating of Micoquian Industry and Neanderthal Remains at Kůlna Cave, Czech Republic. J Archaeol Sci 23:889–901.
- Roberts-Harry EA, Clerehugh V. 2000. Subgingival calculus: where are we now? A comparative review. J Dent 28:93–102.
- Roebroeks W, Hublin J-J, Macdonald K. 2011. Continuities and Discontinuities in Neandertal Presence: A Closer Look at Northwestern Europe.
- Roger T, Darlas A. 2008. Upper-Pleistocene bird remains from Kalamakia Cave. In: Darlas A, Milhailović D, editors. The Palaeolithic of the Balkans. Proceedings of the XV UISPP World Congress. Oxford: BAR International Series 1819. p 69–76.
- Rosen A. 2010. Natufian plant exploitation: Managing risk and stability in an environment of change. Eurasian Prehistory 7:117–131.
- Rosner A. 2011. Roasting Green Wheat in Galilee. Gastronomica 11:60-68.
- Ross C. 1998. Primate Life Histories. Evol Anthropol 6:54-63.
- Rothman JM, Van Soest PJ, Pell AN. 2006. Decaying wood is a sodium source for mountain gorillas. Biol Lett 2:321–4.
- Rougier H, Crevecoeur I, Beauval C, Bocherens H, Flas D, Germonpré M, Semal P, Van der Plicht J. 2012. New data from an old site : Neandertals at Goyet (Belgium) and their mortuary behavior. Am J Phys Anthropol 147:252–253.
- Rougier H, Crevecoeur I, Beauval C, Flas D, Bocherens H, Wißing C, Germonpré M, Semal P, van der Plicht J. 2014. New fossils at the "Troisième Caverne" of Goyet (Belgium) and the mortuary practises of late Neandertals. In: Middle Palaeolithic in North West Europe: Multidisciplinary Approaches. Namur. p 35.
- Ruebens K, McPherron SJP, Hublin J-J. 2015. On the local Mousterian origin of the Châtelperronian: Integrating typo-technological, chronostratigraphic and contextual data. J Hum Evol.
- Salazar-García DC. 2012. Isótopos, dieta y movilidad en el País Valenciano. Aplicación a restos humanos del Paleolítico medio al Neolítico final.
- Salazar-García DC, Power RC, Sanchis Serra A, Villaverde V, Walker MJ, Henry AG. 2013. Neanderthal diets in central and southeastern Mediterranean Iberia. Quat Int 318:3–18.

- Salazar-García DC, Richards MP, Nehlich O, Henry AG. 2014. Dental calculus is not equivalent to bone collagen for isotope analysis: a comparison between carbon and nitrogen stable isotope analysis of bulk dental calculus, bone and dentine collagen from same individuals from the Medieval site of El Raval (Alicante. J Archaeol Sci 47:70–77.
- Samuel D. 1996. Investigation of Ancient Egyptian Baking and Brewing Methods by Correlative Microscopy. Science (80-) 273:488–490.
- Sanchis A. 2012. Los lagomorfos del Paleolítico medio en la vertiente mediterránea ibérica. Diputación De Valencia.
- Sandgathe DM, Hayden B. 2003. Did Neanderthals eat inner bark? Antiquity 77:709–718.
- Sankararaman S, Patterson N, Li H, Pääbo S, Reich D. 2012. The date of interbreeding between Neandertals and modern humans. PLoS Genet 8:e1002947.
- Santos JL, Saus E, Smalley S V., Cataldo LR, Alberti G, Parada J, Gratacòs M, Estivill X. 2012. Copy number polymorphism of the salivary amylase gene: implications in human nutrition research. J Nutrigenet Nutrigenomics 5:117–31.
- Saul H, Wilson J, Heron CP, Glykou A, Hartz S, Craig OE. 2012. A systematic approach to the recovery and identification of starches from carbonised deposits on ceramic vessels. J Archaeol Sci 39:3483–3492.
- Savard M, Nesbitt M, Jones MK. 2006. The role of wild grasses in subsistence and sedentism: new evidence from the northern Fertile Crescent. World Archaeol 38:179–196.
- Schoch WH, Bigga G, Böhner U, Richter P, Terberger T. 2015. New insights on the wooden weapons from the Paleolithic site of Schöningen. J Hum Evol 89:214–225.
- Schwarcz HP, Schoeninger MJ. 1991. Stable isotope analyses in human nutritional ecology. Am J Phys Anthropol 34:283–321.
- Scott RS, Teaford MF, Ungar PS. 2012. Dental microwear texture and anthropoid diets. Am J Phys Anthropol 147:551–79.
- Selwitz RH, Ismail AI, Pitts NB. 2007. Dental caries. Lancet 369:51-9.
- Semal P, Rougier H, Crevecoeur I, Jungels C, Flas D, Hauzeur A, Maureille B, Germonpré M, Bocherens H, Pirson S, Cammaert L, De Clerck N, Hambucken A, Higham T, Toussaint M, Van der Plicht J. 2009. New data on the late Neandertals: Direct dating of the Belgian Spy fossils. Am J Phys Anthropol 138:421–428.
- Sergi S. 1954. La mandibola neandertaliana Circeo II. Riv Di Antropol 41:305-344.
- Simms SR. 1985. Acquisition Cost and Nutritional Data on Great Basin Resources. J Calif Gt Basin Anthropol 7:117–126.
- Simopoulos AP. 2004. Omega-3 Fatty Acids and Antioxidants in Edible Wild Plants. Biol Res 37:263–277.
- Sistiaga A, Mallol C, Galván B, Summons RE. 2014. The Neanderthal meal: a new

perspective using faecal biomarkers. PLoS One 9:e101045.

- Slimak L, Svendsen JI, Mangerud J, Plisson H, Heggen HP, Brugere A, Pavlov PY. 2011. Late Mousterian Persistence near the Arctic Circle. Science (80-) 332:841–845.
- Smith CI, Chamberlain AT, Riley MS, Cooper A, Stringer CB, Collins MJ. 2001. Neanderthal DNA: Not just old but old and cold? Nature 410:771–772.
- Smith EA. 2011. Endless forms: human behavioural diversity and evolved universals. Philos Trans R Soc London B Biol Sci 366:325–332.
- Smith FH, Boyd DC, Malez M. 1985. Additional upper pleistocene human remains from Vindija cave, Croatia, Yugoslavia. Am J Phys Anthropol 68:375–383.
- Smith TM, Toussaint M, Reid DJ, Olejniczak AJ, Hublin J-J. 2007. Rapid dental development in a Middle Paleolithic Belgian Neanderthal. Proc Natl Acad Sci U S A 104:20220–5.
- Snodgrass JJ, Leonard WR. 2009. Neandertal energetics revisited: insights into population dynamics and life history evolution. PaleoAnthropology:220–237.
- Solecki RS. 1960. Three adult Neanderthal skeletons from Shanidar cave, northern Iraq. Annu Rep Board Regents Smithson Inst:603–635.
- Solecki RS. 1961. New anthropological discoveries at Shanidar, northern Iraq. Trans N Y Acad Sci 23:690–699.
- Sołtysiak A. 2012. Comment: low dental caries rate in Neandertals: the result of diet or the oral flora composition? Homo Int Zeitschrift für die vergleichende Forsch am Menschen 63:110–3.
- Sorensen M V., Leonard WR. 2001. Neandertal energetics and foraging efficiency. J Hum Evol 40:483–95.
- Speth JD. 2010. The Paleoanthropology and Archaeology of Big-Game Hunting. New York, NY: Springer New York.
- Speth JD, Clark JL. 2006. Hunting and overhunting in the Levantine Late Middle Palaeolithic. Before Farming 3:1–42.
- Speth JD, Spielmann KA. 1983. Energy source, protein metabolism, and hunter-gatherer subsistence strategies. J Anthropol Archaeol 2:1–31.
- Speth JD, Tchernov E. 2001. Neandertal hunting and meat processing in the Near East, Evidence from Kebara cave (Israel). In: Stanford C, Bunn H, editors. Meat-eating and Human evolution. Oxford: Oxford University Press. p 52–72.
- Spoor F, Hublin J-J, Braun M, Zonneveld F. 2003. The bony labyrinth of Neanderthals. J Hum Evol 44:141–165.
- Squires BT. 1953. Human salivary amylase secretion in relation to diet. J Physiol 119:153–156.
- Sroubek P, Diehl JF, Kadlec J, Valoch K. 2001. A Late Pleistocene palaeoclimate record based

on mineral magnetic properties of the entrance facies sediments of Kulna Cave, Czech Republic. Geophys J Int 147:247–262.

- Ståhlberg S, Svanberg I. 2010. Gathering Food from Rodent Nests in Siberia. J Ethnobiol 30:184–202.
- Ståhlberg S, Svanberg I. 2012. Gathering dog's tooth violet (*Erythronium sibiricum*) in Siberia. J la Soc Finno-Ougrienne 91:349–351.
- Stahler DR, Smith DW, Guernsey DS. 2006. Foraging and feeding ecology of the gray wolf (*Canis lupus*): lessons from Yellowstone National Park, Wyoming, USA. J Nutr 136:19238–1926S.
- Stefansson V. 1956. The Fat of the Land. New York: The Macmillan Company.
- Stewart JR. 2005. The ecology and adaptation of Neanderthals during the non-analogue environment of Oxygen Isotope Stage 3. Quat Int 137:35–46.
- Stiner MC. 1994. Honor among thieves: a zooarchaeological study of Neandertal ecology. Princeton: Princeton University Press.
- Stiner MC. 1999. Paleolithic Population Growth Pulses Evidenced by Small Animal Exploitation. Science (80-) 283:190–194.
- Stiner MC. 2001. Thirty years on the "Broad Spectrum Revolution" and paleolithic demography. Proc Natl Acad Sci U S A 98:6993–6996.
- Stiner MC. 2013. An Unshakable Middle Paleolithic? Trends versus Conservatism in the Predatory Niche and Their Social Ramifications. Curr Anthropol 54:S288–S304.
- Stiner MC, Kuhn SL. 1992. Subsistence, Technology, and Adaptive Variation in Middle Paleolithic Italy. Am Anthropol 94:306–339.
- Stiner MC, Kuhn SL. 2006. Changes in the "Connectedness" and Resilience of Paleolithic Societies in Mediterranean Ecosystems. Hum Ecol 34:693–712.
- Stiner MC, Kuhn SL. 2009. Paleolithic Diet and the Division of Labor in Mediterranean Eurasia. In: Hublin J-J, Richards MP, editors. The Evolution of Hominin Diets: Integrating Approaches to the Study of Palaeolithic Subsistence. Dordrecht: Springer. p 155–168.
- Stiner MC, Munro ND. 2002. Approaches to Prehistoric Diet Breadth, Demography, and Prey Ranking Systems in Time and Space. J Archaeol Method Theory 9:181–214.
- Stiner MC, Munro ND, Surovell TA. 2000. The Tortoise and the Hare: Small Game Use, the Broad Spectrum Revolution, and Paleolithic Demography. Curr Anthropol 41:39–79.
- Stoneking M, Krause J. 2011. Learning about human population history from ancient and modern genomes. Nat Rev Genet 12:603–14.
- Straus LG. 1992. Iberia Before the Iberians: The Stone Age Prehistory of Cantabrian Spain. Albuquerque: University of New Mexico Press.

- Stringer CB, Barton RNE, Finlayson JC. 2000. Neanderthals on the edge: papers presented at the conference marking the 150th anniversary of the Forbes' Quarry discovery, Gibralta. (Stringer CB, Barton RNE, Finlayson JC, editors.). Oxford: Oxbow.
- Stringer CB, Finlayson JC, Barton RNE, Fernández-Jalvo Y, Cáceres I, Sabin RC, Rhodes EJ, Currant AP, Rodríguez-Vidal J, Giles Pacheco F, Riquelme-Cantal JA. 2008. Neanderthal exploitation of marine mammals in Gibraltar. Proc Natl Acad Sci U S A 105:14319–14324.
- Szczęsna T. 2007. Concentration of selected elements in honeybee-collected pollen. J Apic Sci 51:5–13.
- Szpak P. 2011. Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. J Archaeol Sci 38:3358–3372.
- Tao D, Zhang J, Zheng W, Cao Y, Sun K, Jin S. 2015. Starch grain analysis of human dental calculus to investigate Neolithic consumption of plants in the middle Yellow River Valley, China: A case study on Gouwan site. J Archaeol Sci Reports 2:485–491.
- Tattersall I, Schwartz JH. 1999. Hominids and hybrids: The place of Neanderthals in human evolution. Proc Natl Acad Sci U S A 96:7117–7119.
- Teaford MF, Ungar PS. 2000. Diet and the evolution of the earliest human ancestors. Proc Natl Acad Sci U S A 97:13506–13511.
- Thieme H. 2000. Lower Palaeolithic Hunting Weapons From Schöningen, Germany The Oldest Spears in the World. Acta Anthropol Sin 19:136–143.
- Thissen L, Özbal H, Türkekul Bıyık A, Gerritsen F, Özbal R. 2010. The land of milk? Approaching dietary preferences of Late Neolithic communities in NW Anatolia. Leiden J Pottery Stud 26:157–172.
- Tillier A, Arensburg B, Rak Y, Vandermeersch B. 1995. Middle Palaeolithic dental caries: new evidence from Kebara (Mount Carmel, Israel). J Hum Evol 29:189–192.
- Toepfer V. 1958. Steingeräte und Palökologie der mittelpaläolithischen Fundstelle Rabutz bei Halle (Saale). Jahresschrift für Mitteldeutsche Vor 41/42:140–177.
- Tomczyk J. 2012. Comments on Soltysiak's paper: "Comment: Low dental caries rate in Neandertals: The result of diet or the oral flora compositions?" HOMO - J Comp Hum Biol 63:311–314.
- Torrence R, Barton H. 2006. Ancient Starch Research. (Torrence R, Barton H, editors.). Walnut Creek: Left Coast Press.
- Torrence R, Wright R, Conway R. 2004. Identification of starch granules using image analysis and multivariate techniques. J Archaeol Sci 31:519–532.
- Toussaint M. 2006. Research in the caves of Goyet (Gesves, Province of Namur, Belgium). In: Demarsin B, Otte M, editors. Neanderthals in Europe. Liege. p 115–134.

- Trinkaus E. 1981. Neanderthal limb proportions and cold adaptation. In: Stringer CB, editor. Aspects of Human Evolution. London: Taylor and Francis. p 187–224.
- Trinkaus E, Walker MJ. The People of Palomas: The Neandertals from the Sima de las Palomas del Cabezo Gordo, Southeastern Spain. College Station: Texas A & M University Press.
- Tromp M. 2012. Large-scale Analysis of Microfossils Extracted from Human Rapanui Dental Calculus: a Dual-Method Approach Using SEMEDS and Light Microscopy to Address Ancient Dietary Hypotheses.
- Tromp M, Dudgeon J V. 2015. Differentiating dietary and non-dietary microfossils extracted from human dental calculus: the importance of sweet potato to ancient diet on Rapa Nui. J Archaeol Sci 54:54–63.
- Tsartsidou G, Lev-Yadun S, Albert RM, Miller-Rosen A, Efstratiou N, Weiner S. 2007. The phytolith archaeological record: strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. J Archaeol Sci 34:1262–1275.
- Ungar PS. 1998. Dental allometry, morphology, and wear as evidence for diet in fossil primates. Evol Anthropol Issues, News, Rev 6:205–217.
- Ungar PS, Grine FE, Teaford MF. 2008. Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei. PLoS One 3:e2044.
- Ungar PS, Sponheimer M. 2011. The Diets of Early Hominins. Science (80-) 334:190–193.
- Valensi P, Psathi E. 2004. Faunal Exploitation during the Middle Palaeolithic in South-eastern France and North-western Italy. Int J Osteoarchaeol 14:256–272.
- Valoch K. 1970. Early Middle Palaeolithic (Stratum 14) in the Kulna Cave near Sloup in the Moravian Karst (Czechoslovakia). World Archaeol 2:28–38.
- Van der Veen M. 2007. Formation processes of desiccated and carbonized plant remains the identification of routine practice. J Archaeol Sci 34:968–990.
- Venables WN, Ripley BD. 2002. Modern Applied Statistics with S. 4th Editio. New York: Springer.
- Vernot B, Akey JM. 2015. Complex History of Admixture between Modern Humans and Neandertals. Am J Hum Genet 96:448–453.
- Verpoorte A. 2006. Neanderthal energetics and spatial behaviour. Before Farming 3:1-6.
- Verpoorte A. 2009. Limiting factors on early modern human dispersals: The human biogeography of late Pleniglacial Europe. Quat Int 201:77–85.
- Villa P, Soriano S. 2010. Hunting weapons of Neanderthals and early modern humans in South Africa: similarities and differences. J Anthropol Res 66:5–38.
- Wadley L, Langejans GH. 2014. Preliminary Study Of Scrapers Around Combustion Features In Layer Ss, Sibudu, 58000 Years Ago. South African Archaeol Bull 69:19–33.

- Wales N. 2012. Modeling Neanderthal clothing using ethnographic analogues. J Hum Evol 63:781–95.
- Walker M, Ortega J. 2011. Morphology, body proportions, and postcranial hypertrophy of a female Neandertal from the Sima de las Palomas, southeastern Spain. Proc Natl Acad Sci 108:10087–10091.
- Walker MJ, Gibert J, López M V., Lombardi AV, Pérez-Pérez A, Zapata J, Ortega J, Higham T, Pike A, Schwenninger J-L, Zilhão J, Trinkaus E. 2008. Late neandertals in southeastern Iberia: Sima de las Palomas del Cabezo Gordo, Murcia, Spain. Proc Natl Acad Sci U S A 105:20631–6.
- Walker MJ, Gibert J, Sánchez F, Lombardi AV, Serrano I, Gómez A, Eastham A, Ribot F, Arribas A, Cuenca A, Gibert L, Albadalejo S, Andreu JA. 1999. Excavations at new sites of early man in Murcia: Sima de las Palomas del Cabezo Gordo and Cueva Negra del Estrecho del Río Quípar de la Encarnación. Hum Evol 14:99–123.
- Walker MJ, Lombardi AV, Zapata J, Trinkaus E. 2010. Neandertal mandibles from the Sima de las Palomas del Cabezo Gordo, Murcia, southeastern Spain. Am J Phys Anthropol 142:261–72.
- Walker MJ, López-Martínez, M. V., Ortega-Rodrigáñez, J. Haber-Uriarte M, López-Jiménez A, Avilés-Fernández A, Polo-Camacho, J. L., Campillo-Boj M, García-Torres J, Carrión-García JS, San Nicolás del Toro, M., Rodríguez-Estrella T. 2012. The excavation of buried articulated Neanderthal skeletons at Sima de las Palomas (Murcia, SE Spain),. Quat Int 259:7–21.
- Walker MJ, Ortega J, López M V., Parmová K, Trinkaus E. 2011a. Neandertal postcranial remains from the Sima de las Palomas del Cabezo Gordo, Murcia, southeastern Spain. Am J Phys Anthropol 144:505–15.
- Walker MJ, Zapata J, Lombardi A V., Trinkaus E. 2011b. New evidence of dental pathology in 40,000-year-old Neandertals. J Dent Res 90:428–32.
- Vander Wall SB. 2001. The evolutionary ecology of nut dispersal. Bot Rev 67:74–117.
- Warinner C, Rodrigues JFM, Vyas R, Trachsel C, Shved N, Grossmann J, Radini A, Hancock Y, Tito RY, Fiddyment S, Speller C, Hendy J, Charlton S, Luder HU, Salazar-García DC, Eppler E, Seiler R, Hansen LH, Castruita JAS, Barkow-Oesterreicher S, Teoh KY, Kelstrup CD, Olsen J V., Nanni P, Kawai T, Willerslev E, von Mering C, Lewis CM, Collins MJ, Gilbert MTP, Rühli F, Cappellini E. 2014. Pathogens and host immunity in the ancient human oral cavity. Nat Genet 46:336–44.
- Watts DP, Mitani JC. 2015. Hunting and Prey Switching by Chimpanzees (*Pan troglodytes schweinfurthii*) at Ngogo. Int J Primatol 36:728–748.
- Weiss E, Wetterstrom W, Nadel D, Bar-Yosef O. 2004. The broad spectrum revisited: evidence from plant remains. Proc Natl Acad Sci U S A 101:9551–5.
- Weyrich LS, Dobney K, Cooper A. 2015. Ancient DNA analysis of dental calculus. J Hum

Evol 79:119-124.

- Wiessner P. 2003. Owners of the future: Calories, cash, and self-sufficiency in the Nyae Nyae area between 1996 and 2003. Vis Anthropol Rev 19:149–159.
- Wild EM, Paunović M, Rabeder G, Steffan I, Steier P. 2001. Age determination of fossil bones from the Vindija Neanderthal site in Croatia. Radiocarbon 43:1021–1028.
- Wilson J, Hardy K, Allen R, Copeland L, Wrangham RW, Collins MJ. 2010. Automated classification of starch granules using supervised pattern recognition of morphological properties. J Archaeol Sci 37:594–604.
- Winterhalder B. 1986. Diet choice, risk, and food sharing in a stochastic environment. J Anthropol Archaeol 5:369–392.
- Winterhalder B, Smith EA. 2000. Analyzing adaptive strategies: Human behavioral ecology at twenty-five. Evol Anthropol 9:51–72.
- Wißing C, Rougier H, Crevecoeur I, Germonpré M, Naito YI, Semal P, Bocherens H. 2015. Isotopic evidence for dietary ecology of late Neandertals in North-Western Europe. Quat Int.
- Wolpoff MH, Smith FH, Malez M, Radovčić J, Rukavina D. 1981. Upper pleistocene human remains from Vindija cave, Croatia, Yugoslavia. Am J Phys Anthropol 54:499–545.
- Wood RE, Barroso-Ruíz C, Caparrós M, Jordá Pardo JF, Galván Santos B, Higham TFG.
 2013a. Radiocarbon dating casts doubt on the late chronology of the Middle to Upper Palaeolithic transition in southern Iberia. Proc Natl Acad Sci U S A 110:2781–6.
- Wood RE, Higham TFG, De Torres T, Tisnérat-Laborde N, Valladas H, Ortiz JE, Lalueza-Fox C, Sánchez-Moral S, Cañaveras JC, Rosas A, Santamaría D, de la Rasilla M. 2013b. A New Date for the Neanderthals from El Sidrón Cave (Asturias, Northern Spain). Archaeometry 55:148–158.
- Wrangham RW. 2000. Why are male chimpanzees more gregarious than mothers? In: Kappeler P, editor. Primate Males: Causes and Consequences of Variation in Group Composition. Cambridge: Cambridge University Press. p 248–258.
- Wrangham RW, Smuts BB. 1980. Sex differences in the behavioural ecology of chimpanzees in the Gombe National Park, Tanzania. J Reprod Fertil Suppl Suppl 28:13–31.
- Wright KI. 1994. Ground-Stone Tools and Hunter-Gatherer Subsistence in Southwest Asia: Implications for the Transition to Farming. Am Antiq 59:238–263.
- Xia J, Zheng J, Huang D, Tian ZR, Chen L, Zhou Z, Ungar PS, Qian L. 2015. New model to explain tooth wear with implications for microwear formation and diet reconstruction. Proc Natl Acad Sci U S A 112:10669–10672.
- Yellen JE. 1991a. Small mammals: !Kung San utilization and the production of faunal assemblages. J Anthropol Archaeol 10:1–26.

- Yellen JE. 1991b. Small mammals: Post-discard patterning of !Kung San faunal remains. J Anthropol Archaeol 10:152–192.
- Yesner DR. 1989. Moose hunters of the boreal forest? A re-examination of subsistence patterns in the western subarctic. Arctic 42:97–108.
- Young TK. 1996. Obesity, Central Fat Patterning, and Their Metabolic Correlates among the Inuit of the Central Canadian Arctic. Hum Biol 68:245–263.
- El Zaatari S. 2007. Ecogeographic variation in Neandertal dietary habits: evidence from microwear texture analysis.
- El Zaatari S. 2010. Occlusal microwear texture analysis and the diets of historical/prehistoric hunter-gatherers. Int J Osteoarchaeol 20:67–87.
- El Zaatari S, Grine FE, Ungar PS, Hublin J-J. 2011. Ecogeographic variation in Neandertal dietary habits: evidence from occlusal molar microwear texture analysis. J Hum Evol 61:411–24.
- El Zaatari S, Grine FE, Ungar PS, Hublin J-J. 2016. Neandertal versus Modern Human Dietary Responses to Climatic Fluctuations. PLoS One 11:e0153277.
- El Zaatari S, Hublin J-J. 2014. Diet of upper paleolithic modern humans: evidence from microwear texture analysis. Am J Phys Anthropol 153:570–81.
- Zeder MA. 2012. The Broad Spectrum Revolution at 40: Resource diversity, intensification, and an alternative to optimal foraging explanations. J Anthropol Archaeol 31:241–264.
- Zhang J, Lu H, Huang L. 2014. Calciphytoliths (calcium oxalate crystals) analysis for the identification of decayed tea plants (*Camellia sinensis* L.). Sci Rep 4:6703.
- Zilhão J, Angelucci DE, Badal-García E, D'Errico F, Daniel F, Dayet L, Douka K, Higham TFG, Martínez-Sánchez MJ, Montes-Bernárdez R, Murcia-Mascarós S, Pérez-Sirvent C, Roldán-García C, Vanhaeren M, Villaverde V, Wood RE, Zapata J. 2010. Symbolic use of marine shells and mineral pigments by Iberian Neandertals. Proc Natl Acad Sci U S A 107:1023–8.
- Zilhão J, d'Errico F, Bordes J-G, Lenoble A, Texier J-P, Rigaud J-P. 2006. Analysis of Aurignacian interstratification at the Chatelperronian-type site and implications for the behavioral modernity of Neandertals. Proc Natl Acad Sci U S A 103:12643–8.
- Zimov SA, Zimov NS, Tikhonov AN, Chapin FS. 2012. Mammoth steppe: a high-productivity phenomenon. Quat Sci Rev 57:26–45.
- Zwyns N, Roebroeks W, McPherron SP, Jagich A, Hublin J-J. 2012. Comment on "Late Mousterian Persistence near the Arctic Circle." Science (80-) 335:167–167.

Appendixes

7

7.1 Chapter three appendix

Appendix tables

Appendix table 1: Elemental composition of standards from EDX.

No.	Grouping	С	0	Na	Mg	Al	Si	Р	Ca	F	Ν	Κ	S	Cl	Cr	Mn
Fru.1	Fructose	90.8	9.17													
Fru. 2	Fructose	92.2	7.78													
Fru. 3	Fructose	90.4	9.58													
Fru. 4	Fructose	91.4	8.62													
Fru 5	Fructose	93.2	6.8													
Suc. 1	Sucrose	90.3	9.75													
Suc. 2	Sucrose	91.8	8.21													
Suc. 3	Sucrose	89.9	10.1													
Suc. 4	Sucrose	92.9	7.15													
Suc. 5	Sucrose	92.4	7.58													
Mal. 1	Maltose	60.7	39.3													
Mal. 2	Maltose	62	38													
Mal. 3	Maltose	58	42													
Mal. 4	Maltose	62.8	37.2													
Mal. 5	Maltose	58	42													
Glu. 1	Glucose	62.3	37.7													
Glu. 2	Glucose	57.9	42.1													
Glu. 3	Glucose	57.9	42.1													
Glu. 4	Glucose	59.1	40.9													
Glu. 5	Glucose	60.1	39.9													
Corn 1	Corn starch	58	42													
Corn 2	Corn starch	61.7	38.3													
Corn 3	Corn starch	61.6	38.4													
Corn 4	Corn starch	59.2	40.8													
Corn 5	Corn starch	62.1	37.9													
Cola 3.2	Kola starch	81.8	14.3	14.9	0.3	0.5	0.2	0.17	0.3	0.67		1.4		0	0.25	
Cafr-2	Kola starch	54.8	5.28	1.51	2.02							23		4	5	4.7
Cola 2.3	Kola starch	67.5	26.2	0.24	0.88	0.4	0.2	0.67		0.51		2.4	0.59	0		
Cola 2.4	Kola starch	70	22.8	0.16	0.61	0.5	0.5	0.86		1.4		1.9	0.75	1		
Cola 2.5	Kola starch	66.1	25.9		0.7	0.2	0.3	0.76		0.13			0.7	0		
Xylia 1	Xylia starch	76.8	21.4	0.17	0.21	0.5	0.1	0.11		0.1		0.2	0.24	0		
Xylia 2	Xylia starch	78.1	21.1				0.8									
Xylia 3	Xylia starch	74.7	20.2		0.42	0.4		0.94				2.5	0.89			

Xylia 4	Xylia starch	79.7	16.2	0.62	1	0.8			0.7	0.92
Xylia 5	Xylia starch	75.8	22.2	0.43	0.6	0.18			0.5	0.25
Pot. 1	Potato starch	82.8	17.2							
Pot. 2	Potato starch	83.1	16.9							
Pot. 3	Potato starch	84.3	15.7							
Pot. 4	Potato starch	84.1	15.9							
Pot. 5	Potato starch	82.1	16.5				1.4			
wtfr-1	Wheat starch	86.2	13.8					6.9		
wtfr-2	Wheat starch	86.1	13.9							
wtfr-3	Wheat starch	89.9	10.1							
wheat n	Wheat starch	91	8.97							
wheat n2	Wheat starch	90.2	9.81							

Appendix table 2: Elemental composition of degraded and native starch.

No.	Grouping	С	0	Na	Mg	Al	Si	Р	F	Κ	S	Cl	Cr	Mn
Cafr-1	Kola native	64.7	3.8	1.46	0.91					18		4.44	3.03	3.97
Cafr-2	Kola native	54.8	5.3	1.51	2.02					23		3.92	4.97	4.67
Cafr-3	Kola native	60.1	6.0	1.47	1.66					17		5.25	3.81	5.03
Cola 2 1	Kola native	65.3	29.6							5.1				
Cola 2 2	Kola native	67.8	28.5							3.7				
Cola 2 3	Kola native	67.5	26.2	0.24	0.88	0.35	0.24	0.67	0.51	2.4	0.59	0.46		
Cola 3 1	Kola native	80.8	15.3	0.32	0.56	0.3	0.08	0.21	0.55	1.5				
Cola 3 2	Kola native	81.8	14.3	0.3	0.51	0.15	0.17	0.27	0.67	1.4	0.35	0.15		
Cola 3 3	Kola native	77.5	18.0	0.28	0.62	0.26	0.18	0.43	0.47	1.8	0.3	0.13		
Csfr-11	Gabon nut native	75.1	24.9											
Csfr-1 2	Gabon nut native	94.9	5.1											
Csfr-13	Gabon nut native	94.9	5.1											
Csfr-21	Gabon nut native	74.5	20.3											
Csfr-2 2	Gabon nut native	69.2	25.4											
Csfr-23	Gabon nut native	68.4	24.8											
Csfr-31	Gabon nut native	65.4	28.9											
Csfr-3 2	Gabon nut native	62.6	33.7											
Csfr-33	Gabon nut native	65.1	30.9											
Wtfr-11	Wheat native	86.2	13.8											
Wtfr-12	Wheat native	86.1	13.9											
Wtfr-13	Wheat native	89.9	10.1											
Wtfr-21	Wheat native	67.4	32.6											
Wtfr-22	Wheat native	76.7	23.3											
Wtfr-23	Wheat native	73.1	26.2											
Wtfr-31	Wheat native	67.9	32.1											
Wtfr-3 2	Wheat native	68.5	31.5											
Wtfr-33	Wheat native	68.9	31.1											
Ca301-1	Kola 30 mins	84.4	15.6											
Ca301-2	Kola 30 mins	85.6	14.4											
Ca301-3	Kola 30 mins	86.6	13.4											
Ca302-1	Kola 30 mins	86.9	13.1											
---------	-------------------	------	------											
Ca302-2	Kola 30 mins	88.4	11.6											
Ca302-3	Kola 30 mins	89.9	10.1											
Ca303-1	Kola 30 mins	88.5	11.6											
Ca303-2	Kola 30 mins	87.8	12.2											
Ca303-3	Kola 30 mins	92.9	7.1											
Cs301-1	Gabon nut 30 mins	90.5	9.5											
Cs301-2	Gabon nut 30 mins	90.7	9.3											
Cs301-3	Gabon nut 30 mins	86.7	13.3											
Cs302-1	Gabon nut 30 mins	88.6	11.4											
Cs302-2	Gabon nut 30 mins	87.6	12.4											
Cs302-3	Gabon nut 30 mins	89.6	10.4											
Cs303-1	Gabon nut 30 mins	90.0	10.0											
Cs303-2	Gabon nut 30 mins	87.6	12.4											
Cs303-3	Gabon nut 30 mins	89.6	10.4											
Wt301-1	Wheat 30 mins	88.9	11.1											
Wt301-2	Wheat 30 mins	85.7	14.3											
Wt301-3	Wheat 30 mins	87.3	12.7											
Wt302-1	Wheat 30 mins	84.2	15.9											
Wt302-2	Wheat 30 mins	84.2	15.8											
Wt302-3	Wheat 30 mins	87.6	12.4											
Wt303-1	Wheat 30 mins	88.3	11.7											
Wt303-2	Wheat 30 mins	87.0	13.0											
Wt303-3	Wheat 30 mins	88.3	11.8											
Ca901-1	Kola 90 mins	86.7	13.3											
Ca901-2	Kola 90 mins	86.8	13.2											
Ca901-3	Kola 90 mins	89.7	10.3											
Ca902-1	Kola 90 mins	86.6	13.5											
Ca902-2	Kola 90 mins	91.6	8.4											
Ca902-3	Kola 90 mins	90.0	10.0											
Ca903-1	Kola 90 mins	84.3	15.7											
Ca903-2	Kola 90 mins	90.0	10.0											
Ca903-3	Kola 90 mins	89.3	10.7											
Cs901-1	Gabon nut 90 mins	90.6	9.4											
Cs901-2	Gabon nut 90 mins	89.0	11.0											
Cs901-3	Gabon nut 90 mins	84.9	15.1											
Cs902-1	Gabon nut 90 mins	88.0	12.0											
Cs902-2	Gabon nut 90 mins	89.6	10.4											
Cs902-3	Gabon nut 90 mins	92.5	7.5											
Cs903-1	Gabon nut 90 mins	86.0	14.0											
Cs903-2	Gabon nut 90 mins	88.4	11.6											
Cs903-3	Gabon nut 90 mins	90.5	9.5											
Wt901-1	Wheat 90 mins	86.5	13.5											
Wt901-2	Wheat 90 mins	86.1	13.9											
Wt901-3	Wheat 90 mins	85.8	14.2											
Wt902-1	Wheat 90 mins	82.8	17.2											

Wt902-2	Wheat 90 mins	85.4	14.6
Wt902-3	Wheat 90 mins	88.7	11.3
Wt903-1	Wheat 90 mins	84.0	16.0
Wt903-2	Wheat 90 mins	84.8	15.3
Wt903-3	Wheat 90 mins	84.93	15.07

Appendix table 3: Elemental composition of calculus and microremains in calculus from EDX. T=Taï Forest Chimpanzee, C=Camino de Molino.

No.	Type	Category	С	0	Na	Mg	Al	Si	Р	Ca	F	N	K	Ва	La	Т
	Т	Venus exposed starch	95.1	5.0												
	Т	Venus starch clump mantel	61.5	5.0				16.3	7.1	10.2						
	Т	Castor calculus matrix	14.2	9.9	0.5	0.63	0.5	0.8	22.8	50.6						
1a	Т	Castor starch cluster	63.1	8.2	1.4	1.87	0.8	0.7	12.3	11.7						
1b	Т	Castor starch cluster	60.1	6.4	1.4	1.62	1.2	2.3	13.4	13.8						
3	Т	Castor unknown microf	13.0	14.4	0.7	0.61	0.2	0.1	25.4	45.6						
4	Т	Castor unknown microf	16.1	10.4	0.7	0.78	0.4	0.3	24.1	47.3						
5	Т	Castor unknown microf	25.3	10.9	0.6	0.71	0.5	0.6	19.8	41.6						
1	Т	Fanny unknown microf	13.7	10.2	0.4	0.59	1.0	1.1	22.7	50.3						
2	Т	Fanny unknown particle	5.1	19.2	0.2	7.12	17.9	35.1	4.8	10.6						
3	Т	Fanny unknown particle	9.4	8.7	0.5	0.63	0.6	0.6	24.3	55.2						
4	Т	Fanny unknown particle	26.2	9.0	0.7	0.67	1.2	0.5	18.5	42.9						
5	Т	Fanny unknown particle	6.4	15.5		0.15	0.5	71.2	2.0	4.3						
6	Т	Fanny unknown microf	61.3	4.3	0.2	0.29	11	2.7	9.9	21.3						
7	Т	Fanny unknown microf	79.9	7.1	0.6	0.1	0.2	3.9	2.6	5.6						
8	Т	Fanny unknown microf	10.4	3.3	0.2	0.61	0.4	0.1	23.5	61.5						
9	Т	Fanny unknown microf	47.3	7.8	0.4	0.8	0.4	0.5	11	31.8						
12	Т	Fanny phytolith	16.3	14.2	1.2	1	0.4	31.1	11.8	23.9						
16	Т	Fanny unknown microf	46.2	8.0	0.7	1.13	1.3	1.5	17.2	24.0						
17	Т	Fanny unknown microf	7.2	4.5		0.47	3.2	6.3	13.7	64.7						
	Т	Goma calculus matrix	6.8	9.9	0.3	1.16	2.0	2.6	24.0	51.2	0.1	1.6	0.5			
1	Т	Goma phytolith	6.3	15.9	0.6	3.88	7.8	15	17.0	27.0	0.7	1.0	5			
2	Т	Goma microremain	44.4	5.3	1	1.16	0.3	1	19.7	22.6		3.2	1.4			
3	Т	Goma diatom	3.4	9.7	0.1	0.28	2.3	79.3	0.7	2.4		1.1	0.7			
5	Т	Goma microremain	3.5	5.8	0.4	1.66	6.8	8.2	11.0	59.0	0.2	2.2	1.4			
11	Т	Goma microremain	7.7	15.1	0.7	2.45		0.4	36.5	34.8		0.8	1.6			
	Т	Leo calculus matrix	6.9	11.0	0.4	1.53	0.6	1.2	26.4	51.9						
1	Т	Leo microremain	38	9.3	0.4	0.62	12.1	18.1	8.0	13.5						

3	Т	Leo palm phytolith	7.1	20.1				7.8						
11	Т	Leo invertebrate	91.7	8.3										
15	Т	Leo microremain	8.0	9.5	0.8	2.21	2.3	3.7	9.5	61.0		1	2	
18	Т	Leo unknown		21.6				78.4						
	Т	Rubra unknown	13.4	17.2	0.4	1.74			26.4	41.0				
1	Т	Rubra unknown	8.7	18.1		0.54	26.2	39.8		6.7				
2	Т	Rubra unknown	5.1	13.8	0.7	2.35			28.6	48.7				
4	Т	Rubra diatom	41.0	11.9	0.1	0.28	0.9	20.5	7.7	17.6				
14	Т	Rubra starch cluster	5.0	14.7	0.4	1.15	0.9	35.6	15.8	26.6				
15	Т	Rubra diatom	4.3	12.4	0.1	0.38	19.9	57.6	1.9	3.5				
20	Т	Rubra diatom	4	21.5	0.1	0.11	28.5	43.1	0.7	2.0				
	С	SJ-13-32_1 rectangle	5.6	12.1	0.8	0.76	1.8	4.6	17.1	57.9				
	С	SJ-13-32_2 unknown	7.1	13.1		9.62	16.9	41.9	1.7	4.5	3.4			2
	С	SJ-13-32_7 unknown	7.8	5.2	0.4		2.8	3	3.1	77.8				
	С	SJ-13-32_10 unknown	3.0	7.1		0.7	1			88.2				
	С	SJ-13-32_12 spicule	2.3	5.0		0.46	1.4	4.3		85.8	0.9			
	С	SJ-13-32_16 unknown	1.8	9.2		1.08	3.4	8.8		75.4	0.4			
	С	SJ-13-32_18 unknown	6.9	17.2		0.61	5.5	18.8	2.7	44.3	4.1			
	С	SJ-13-33 unknown	4.4	10.0	0.2	0.35	0.3	1	21.2	62.5				
	С	SJ-13-36 phytolith	4.1	11.6		0.27	19.9	31.2	1.4	31.6				
	С	SJ-13-39 -3 unknown	3.6	7.5			0.9	2.3	9.4	76.2				
	С	SJ-13-39 -7 spicule	2.5	9.0		0.46	0.6	1.5	6.5	79.5				
	С	SJ-13-39 -11 unknown	5.4	14.5		1.3	4.8	13.2	14.7	46.1				

7.2 Chapter four appendix

7.2.1 Study population

The chimpanzee calculus samples derive from the Taï Chimpanzee osteology collection of 77 chimpanzees curated at the Max Planck Institute for Evolutionary Anthropology (MPI-EVA) in Leipzig, Germany. The remains were collected with as many details as possible on sex, age and cause of death. All Taï Forest material and data collected complied with the requirements and guidelines of the Ministère de l'Enseignement Supérieure et de la Recherche Scientifique of Côte d'Ivoire, and adhered to its legal requirements. When possible we sampled chimpanzees who had known life histories, and ideally with comprehensive dietary records. Much of the observational data relate to chimpanzees that are not part of this osteology collection. Dietary records vary from thousands of observations over a decade to a limited number over the course of a single day. After death, these individuals were interred for defleshing and then later exhumed. Some of the skeletal material was cleaned using strong disinfectants before storage to minimise the risk of disease transmission.

It has been noted that chimpanzees produce less salivary α -amylase than humans, especially humans from agricultural societies that consume high levels of starch (Perry et al., 2007). Thus, starch entering the chimpanzee mouth may be less readily hydrolysed than in human groups, which may make it more likely for starches to enter and preserve in chimpanzee dental calculus than in human dental calculus. However, if this patterns occurs in our samples it is unclear and it cannot testable with our data.

7.2.2 Collection of calculus samples

Occasionally, chimpanzee calculus showed substantial flecks of dark material that did not resemble calculus and appeared to be sediment contamination. Chimpanzee samples where sediment contamination was suspected were omitted. All chimpanzee remains sampled are curated at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany. Samples from two chimpanzees (Vanessa and 13438) were omitted from analysis because their age at death was not recorded. A sample from a further chimpanzee (Loukoum) was omitted due to surface adherents on the calculus. The calculus we chose for the final complete

analysis came from molars of 24 individuals (12 males and 12 females) ranging in age from between 12 and 552 months (1 and 46 years) old (Table 8).

7.2.3 Taï Forest plant reference collection

A microremain reference collection with 119 plant species was built using the most frequently consumed chimpanzee plant foods in the Taï forest (Appendix table 4). Taï Chimpanzees consume a particularly diverse range of foods. We collected plant parts that were documented as a specific component of the diet (fruits, seeds, piths, leaves, stems, bark, flowers, and roots.) We also include fungal fruiting bodies known to be consumed. Effort was made to include other rainforest edible plants not recorded as chimpanzee foods. Although our reference collection is not exhaustive, it incorporates the most important plants foods of the Taï Chimps, achieving coverage of 89 % of the total dietary observations. Plants collected in the Taï Forest were immediately preserved onsite either by freezing or by drying in 15 or 50 ml centrifuge tubes with silica gel (Roth- T858.1 and P077.1, Karlsruhe, Germany). Additionally, we collected some plant material from the University of Leipzig Botanical Garden (marked as fresh in Appendix table 4) and analysed this material fresh for starch or dried for phytoliths. We did not make a reference collection for unsilicified plant microremains, as these microremains are unlikely to be nondiagnostic.

Starch was analysed by directly mounting finely sliced dry plant material on slides with approximately 10 μ l of distilled water and 10 μ l of a 25 % glycerol solution. Starches were observed at 200-640 x magnification using a Zeiss Axioscope. Phytoliths were isolated from plant material by dissolving weighed dried plant material in \geq 65 % nitric acid with a heating block to expedite the reaction. Small quantities of the oxidiser potassium chlorate were added to encourage the process.

In most chimpanzee foods we observed either very few starch grains or none at all, suggesting quantities too negligible to be detected or a complete lack of starch in the plant. Plants that produced negligible numbers of starches were not analysed for the identification model, because they did not have enough starch grains to build a reference set of 50 starches. We found phytoliths were common in many species, but many morphotypes are poorly studied in morphometric studies and cannot be easily described using the variables we chose for our model (e.g. hair cells, epidermal, cylindroids, plates and tracheid phytoliths). These morphotypes were found in a number of genera in the reference collection plant but only in low numbers.

Plants that had few phytoliths were not included. Furthermore, if microremains were found in parts of a plant that chimpanzees do not eat, the plants were not included (e.g. starch from Beilschmedia mannii seed). Thirteen starch- and seven phytolith-producing plants were selected for developing identification criteria. We chose to measure or quantify several variables on 50 microremains per species, focusing on variables that past studies have shown to be effective in distinguishing among starches and phytoliths (Torrence et al., 2004; Fenwick et al., 2011). Our variables include max length, max width, area, shape, surface regularity, the number of echinate spines, length of longest cross axis, type, number and length of cracks, number of facets and lamellae (Appendix table 6). If abundant starches or phytoliths were recovered, their abundance was analysed in order to assess the expected starch and phytolith contribution to dental calculus. Starch content was established by combining previous nutritional content studies (Oyebade, 1973; N'guessan, 2012). For species where this data was not available we assessed starch content per gram dried plant material colourimetrically using an Amyloglucosidase/ α -amylase method with a Megazyme Total Assay Kit (AA/AMG 11/01, AOAC Method 996.11, AACC Method 76.13, ICC Standard Method No. 168). Phytolith content was estimated by calculating the total weight of sample left after nitric acid digestion.

7.2.4 Identification of microremains by classification

Statistical approaches are increasingly used for the study and classification of microremains (Wilson et al., 2010; Fenwick et al., 2011; Saul et al., 2012; Zhang et al., 2014; Coster and Field, 2015). A variety of approaches have been implemented in past studies such as image analysis (Colliot et al., 1997), linear discrimination (Torrence et al., 2004), and factor regression analysis by principal components (Fenwick et al., 2011). We used random forest-based classification because it is robust, non-parametric and easily accommodates both large number of variables and categorical data. Using this approach, we can easily see the most important variables that drive the differences among the microremain types. The most important variables in our phytolith model include length and the number of spines (Appendix table 14). In the starch random forest model, area and length were the most important variables (Appendix table 14).

7.2.5 Model design and formulae

We predicted that number of microremains should increase with age, and might vary by sex. We tested this using a negative binomial regression, with microremain count as the response, and age and sex as predictors, weighting each observation by the weight of the calculus sample (see detailed methods below). We ran separate tests for phytoliths, unsilicified remains and starches.

The models described in R terminology are as follows:

Microremain type count~ chimpanzee age + chimpanzee sex, weights=calculus sample weight

Expressed as a mathematical formula, this analysis is written as follows:

$$y_i = Negbin(\mu_i, k)$$

$$log(\mu_j) = \beta_0 + X_j\beta_j + \varepsilon$$

where $\beta_0 = 0$
$$log(\mu_j) = \beta_0 + \sum_{j=1}^{p} [\beta_{11j}\text{chimp_age}_j + \beta_{12j}\text{chimpanzee sex}_j] + \varepsilon_j$$

where $\beta_0 = 0$

We predicted that more frequently consumed plants should be highly represented in the chimpanzee calculus. To test this, we used an observational random effect Poisson model. The count of microremains (starches or phytoliths) belonging to a particular genus was our response variable, and the fixed predictors were: (a) minutes spent consuming each genus, and (b) chimpanzee age in months. Sex was included as a control predictor, and both calculus sample weight and successful identification rate of each genus were included as weights. We accounted for the variation in production of microremains in different genera by using microremains content as an offset. We used counts of each genus predicted to be present with the total minutes spent consuming each genus. The chimpanzee individual was included as a random slope term, while year of death, tooth and food type were treated as random intercept terms

The models described in R terminology are as follows:

The observational feeding records model. Key: obs_id=observation id, plant_id=Plant genus, death_year=year that chimpanzee died, mr_content=Prevalence of starch in each plant species, wt=Milligrams in each sample, class_rate=Rate of successful identification in this species.

Count of each plant species~mins+age+sex+(1|obs_id)+(1|plant_id)+(1|tooth)+ (1|chimp_name)+(1|death_year)+(0+mins|chimp_name)+(0+mins|tooth)+(0+mins|d eath_year)+(0+age|plant_id)+(0+age|tooth)+offset(log(mr_content)), weight=class_rate+ calculus samples weight

In mathematical notation, the models are written as follows:

$$log_{e}(\lambda) = -n\lambda + log_{e}(\lambda) \sum_{j=1}^{p} [\beta_{11j} \text{mins}_{j} + \beta_{12j} \text{age}_{j} + \beta_{13j} \text{sex}_{j}) + \beta_{21j} + u_{11j}) \text{tooth}_{j} + (\beta_{22j} + u_{12j}) \text{death_year}_{j} + (\beta_{23j} + u_{13j}) \text{plant_id}_{j} + (\beta_{24j} + u_{14j}) \text{age}_{j} - \sum_{j=1}^{p} \ln[\beta_{11j} \text{mins}_{j} + \beta_{12j} \text{age}_{j} + \beta_{13j} \text{sex}_{j}) + \beta_{21j} + u_{11j}) \text{tooth}_{j} + (\beta_{22j} + u_{12j}) \text{death_year}_{j} + (\beta_{23j} + u_{13j}) \text{plant_id}_{j} + (\beta_{24j} + u_{14j}) \text{age}_{j}] ! + u_{01} + u_{02} + u_{03} + u_{04} + u_{05} + \varepsilon_{j}$$

Appendix fig. 1: Starches per mg in each chimpanzee calculus sample and year of death. Starches/mg incudes the possible starch microremain category. Treatment of the skeletal remains and year of chimpanzee death does not predict variation of starches per mg.

Appendix fig. 2: Chimpanzee plant foods, ranked by minutes consumed. Plants in random forest model are in red and those that are not are in blue. Chart omits foods eaten for <40 minutes. Our sample includes plants that are frequently consumed (e.g. *Sacoglottis* and *Coula*) as well as those less often eaten (e.g. *Piper* and *Napoleona*).

Tables

Appendix table 4: Inventory of plants and fungi analysed in reference collection. x=no microremain found. o=microremains found and used for identification model. 1=found but not used in classification model due to their complex morphology, 2=found but not included as they are very rare, 3=found but only in parts that are not eaten. Prep=preparation. d=dried, fn=frozen and fh=fresh.

		Leaf	Fruit pulp	Seed	Stem	Pith	Shell	Flower	USO	Bark	Leaf	Fruit pulp	Seed	Stem	Pith	Shell	Flower	USO	Bark	Prep
Plant genus	Plant species	Starc	h								Phy	toliths								
Aframomum	<i>exscapum</i> (Sims) Hepper	x		x																d
Aframomum	(Hook.f.) K Schum										х		x							d
Afzelia	bella Harms										1									d
Agaricus	bispourus (J.E.Lange)				x															d
Anchomanes	Emil J. Imbach <i>difformis</i> (Bl.) Engl.													x						fn
Antiaris	toxicaria subsp. welwitschii (Engl.) C.C.Berg		x	2																d
Auricularia	<i>auricula-judae.</i> (Bull.) I.Schröt.				х									х						d
Beilschmiedia	<i>mannii</i> (Meisn.) Benth. & Hook.f.			2																d
Bombax	buonopozense P.Beauv.			x																d
Bombax	ceiba L.	х									2									fh
Calpocalyx	Sp.		0																	d
Calpocalyx	<i>aubrevillei</i> Pellegr.	x									Х									d
Canarium	schweinfurtii Engl.		х	х																fn
Castanola	<i>paradoxa</i> (Gilg) Schellenb.											х	х							d
Chrysophyllum	taiense Aubrév. & Pellegr.	х	х	х							Х	х	х							d
Cola	nitida (Vent) Schott & Endl.	x	x	x							1	x	x							d, fh
Cola	heterophylla (P Beauv.)	x	x	x							1	х	x							d
	Schott. & Endl.																			
Cola	<i>laterita</i> K Schum.											х	х							d
Cordia	platythyrsa Baker		x	x								x	x							d
Coula	edulis Baill.	х		х			х				1		х			1				d
Dacryodes	<i>klainaea</i> (Pierre) H.I.Lam		х									x								fn
Desplatsia	chrysochlamys (Mildbr. & Burret) Mildbr. & Burret	х									Х									d
Detarium	senegalense I.F.Gmel.											х	x							d

Dialium	aubrevillei x	х				Х	х							d
D: 1:	Pellegr.													1
Dialium	ainkiagei Harme	х	х											a
Dichanetalum	nurms heudelotii x					x								d
Biennpennin	(Planch.) Baill.													ů
Dioscorea	burkilliana												x	d
	J.Miège													
Diospyros	chevalieri De						x							d
	Wild.						_							
Diospyros	manıı Hıern	х				Х	1							d
Diospyros	sanza minika A						х							d
Diagnumag	Chev.					v								d
Diospyros	F White					л								u
Drypetes	aubrevillei			х				х			х			d
51	Léandri													
Duboscia	viridifolia	х												d
	(K.Schum.)													
Durantia	Mildbr.	2	2											L.
Duguetia	stauatti (Engl. & Diels)	3	3											a
	Chatrou													
Elaeis	guineenis Jacq. x	х				0	0		0					d,
	0 1													fh
Entandrophragma	angolense	х	х											d
	(Welw.) C.													
г (1	DC.													,
Eremospatna	<i>macrocarpa</i>			0						0				a
Fruthronhleum	inorensis							Y						fn
2. gun op mount	A.Chev							~						
Ficus	barteri					1								d
	Sprague													
Ficus	elastica Roxb.	х				1								fh
Ficus	elasticoides De	х												d
	Wild													
Ficus	lutea Vahl	х												d
Ficus	nolita Vahl					1								d
1 10110	ponna vali					-								ů
Gilbertiodendron	splendidum	0	0				х	х						d
	(Hutch. & Diole) I													
	Léonard													
Glyphaea	brevis x					3								d
51	(Spreng.)													
	Monach.													
Grewia	biloba	х	х				х	х						d
	(Bunge.)Hand.													
Cuarnia	Mazz.													J.
Grewiu	Mast	х	X											u
Guibourtia	tessmannii											x		d
	(Harms)													
	J.Léonard													
Halopegia	azurea			х	х	Х	х			х		х		d
	(K.Schum.)													
Harunoana	K.Schum.	v	v											fn
1 Iur ungunu	ex Poir.	х	л											
Heisteria	parvifolia Sm.		х											d
Hexalobus	crispiflorus		х											fn
	A.Rich													
Hypselodelphys	violacea (Ridl.)			х						1				d
	Milne-Redh													
irvingia	gavonensis (Aubry	х	х											d
	Lecomte ex													
	O'Rorke) Baill.													
Irvingia	grandifolia	х												d
	(Engl.) Engl.													
Keayodendron	bridelioides	х												d

	(Gilg & Mildbr. ox													
	Hutch. &													
	Dalziel)													
	Leandri													
Klainedoxa	gabonensis Pierre		3											fn, d
Laccosperma	secundiflorum				х						х			d
	(P.Beauv.)													
Laccosperma	Kuntze				Y						v			d
Еиссоэрстти	opucum Drude				~						~			u
Landolphia	dulcis (Sabine		х						х				х	fn
	Pichon													
Magnistipula	butayei		x											d
	DeWild													
Mammea	<i>africana</i> Sabine		х						х					a
Manilkara	obovata		х	х										fn
	(Sabine & C Don)													
	J.H.Hemsl.													
Manniophyton	fulvum	х												d
Managalan	Müll.Arg.		N											fm
Niemecylon	эр.		х											ш
Musanga	Sp.		х						1	1				d
Myrianthus	Sp.						х							fn
Myrianthus	arboreus		х											fn
Napoleona	P.Beauv. leonensis			0										d
Napoleonaea	<i>vogelii</i> Hook.	x						х		х				fh
1	& Planch													
Nauclea	diderrichii (De		х											d
	T Durand)													
	Merr.ill													
Nauclea	xanthoxylon		х						х					d
Pachira	cubensis	x												fh
	(A.Robyns)													
Palisota	barteri Hook.f.		2	2					x	x	x			d
D I' A	1 .		-	-							~			
Palisota	bracteosa C B Clarke		х	x										d
Palisota	hirsuta										х			d
	(Thunb.)													
Dauda	K.Schum.							v						-i
Punuu	oleosu rierre	х		0				Λ		x				u
Parinari	excelsea Sabine	х	х					1	х					fn
Parkia	bicolor		х						х					fn
Pentaclethra	A.Chev. macronhulla					x								d
1 0111401011114	Benth					~								u
Pentaclethra	macrophylla					х						х		d
Pentadesma	Benth huturacea		Y											fn
1 Стинсони	Sabine		^											d
Piper	betle L.	x				x		1				1		fh
Piper	guineense		0	0										d
	Schumach. &													
Dinar	Thonn.			X										d
riper	iongum L.		х	х										a
Piper	arboreum	х						1						fh
Piper	ornatum	x												fh
	N.E.Br.													
Pouteria	pierrei		х	х					х	х				d
	(A.Cnev.)													

	Baehni													
Pseudospondias	Sp.		x	x										fn
Pseudospondias	microcarpa		x	x										d
Psychotria	Engl bacteriophila		x	x										d
Pycnanthus	Valeton angolensis		x											d
Raphia	(Welw.) Warb. sudanica										1	x		d
	A.Chev.													
Rhodognaphalon	brevicuspe (Sprague) Babartu		х	х										d
Rudgea	ciliata (Ruiz &	x	x	x				Х						d
Sacoglottis	gabonensis	x	0					1	1					d
Sarcocephalus	pobeguinii Hua		x											d
Sarcophrynium	prionogonium (K.Schum.)		0	0					0	x				d
Scottellia	K.Schum. coriacea		x											d
Scytopetalum	A.Chev. & al. <i>tieghemii</i> Hutch. &	x												d
Strombosia	Dalziel glaucescens								x					d
Strychnos	Engl. <i>aculeata</i> Soler.	x	x					х	x	x				d
Syzygium	guineensis (Willd) DC			3										fh
Syzygium	paniculatum	x	2	2		x		1		1				fh
Tamitia	utilis							Х						d
Treculia	<i>africana</i> Decne. ex Trécul	x	x					Х	2	x				d
Trichophyton	Sp.					х								d
Trichoscypha	arborea (A.Chev.)		x	3										d
Triclisia	A.Chev. macrophylla (Baill) Diols		x						1					d
Tristemma	hirtum P Beaux		x											d
Uapaca	corbisieri DeWild	x	х					Х	x					d
Uapaca	guineensis Müll Arg								x					fn
Uvariastrum	pierreanum Fngl & Diels		x	x					1					d
Vitex	doniana Sweet		x	x										fn
Xylia	evansii Hutch.	х		0				1						d
Xylopia	quintas		x	х										d
Xylopia	villosa Chipp						x							d
Zanha	<i>golungensis</i> Hiern		х	х										d
Fungus														
Agaricus	bispourus (J.E.Lange)				х									d
Auricularia	<i>auricula-judae.</i> (Bull.) J.Schröt.				х						x			d

Appendix table 5: Additional details of Chimpanzee calculus samples. Recovered plant microremains, both in the full sample and per milligram of calculus with cause of death of the sampled chimpanzees, colour and condition of their dental calculus and skeleton treatment during curation. Cur: Curation a) Buried for unknown duration, cleaned and dried (1984-1994, 1996-2004 b) Necropsy, burial for 1 year, possible boiling and dried (1994-1996) and c) Necropsy, burial for 1 year, disinfection with chlorine, 10 % formalin and dried (2004- onwards).

Name	Phytoli	th	Star	ch	Unsilic Remain	ified	Cause of death	Colour	Cur
	Total	/mg	To tal	/mg	Total	/mg			
Ophelia	0	0	1	40	0	0	Pneumonia	White	С
Leonardo	0	0	0	0	0	0	Starvation	White/grey	А
Bambou	0	0	0	0	1	7.41	Tree fall	White	А
Piment	0	0	0	0	0	0	Ebola	White	В
Oreste	40	74.63	4	7.46	1	1.87	Pneumonia	Grey	С
Hector	24	34.83	2	2.9	6	8.71	Anthrax	Orange	А
Noah	47	52.51	2	2.23	32	35.75	Unknown	Brownish	А
Lefkas	19	31.93	11	18.49	13	21.85	Pneumonia	White	А
Tina	29	21.21	8	5.85	6	4.39	Leopard	Brownish	А
Dorry	159	214.29	5	6.74	4	5.39	Unknown	White	А
Zerlina	147	167.43	0	0	9	10.25	Ebola?	Moderate	В
Clyde	27	23.87	4	3.54	3	2.65	Poacher	White	А
Agathe	94	15.47	13	2.14	22	3.62	Ebola?	Brown/creamy	А
Bijou	87	17.26	10	1.98	22	4.36	Unknown disease	Brownish	А
Leo	126	116.13	5	4.61	9	8.29	Unknown	Brownish	А
Castor	65	9.31	25	3.58	6	0.86	Pneumonia	White	А
Fanny	109	27.84	54	13.79	11	2.81	Ebola?	White brown	В
Kendo	233	235.59	0	0	25	25.28	Ebola?	Grey	В
Venus	96	59.26	16	9.88	2	1.23	Unknown	Brownish	С
Goma	98	7.42	18	13.7	17	1.29	Anthrax	White	А
Rubra	120	17.78	1 10	1.48	30	4.44	Anthrax?	Mixed/white	С
Ondine	26	17	0	0	10	6.54	Ebola?	Brown/ green	А
Mkubwa	11	33.95	0	0	1	3.09	Unknown	Whitish green	А
Brutus	161	49.6	5	1.54	25	7.7	Unknown	Brownish	А

Species	Length	Width	LW Ratio	Brea	Area	Irregular	Spinelen	Spineno	Spineang		Shape	Conjoined
Elaeis	13.0	10.9	1.2	10.9	108.3	1	0.96	24	81	prolate		1
Elaeis	8.5	6.1	1.4	6.1	35.7	1	0.76	13	80	ovoid		1
Elaeis	10.4	9.2	1.1	9.2	71.4	2	1.2	17	98	prolate		1
Elaeis	9.3	8.6	1.1	8.6	50.8	3	0.9	14	75	spherical		1
Elaeis	12.5	10.3	1.2	10.3	105.8	2	0.95	16	80	spherical		1
Elaeis	13.3	10.5	1.3	10.5	115.5	2	1.2	19	78	prolate		1
Elaeis	8.4	7.7	1.1	7.7	45.8	1	0.68	18	83	spherical		1
Elaeis	12.7	10.0	1.3	10.0	100.0	4	1	16	95	spherical		1
Elaeis	17.8	16.7	1.1	16.7	246.0	3	1.74	18	96.25	spherical		1
Elaeis	15.5	15.0	1.0	15.0	210.1	2	2	13	94	spherical		1
Elaeis	8.6	8.6	1.0	8.6	59.0	3	1.05	14	85	spherical		1
Elaeis	11.7	8.1	1.4	8.1	75.7	4	1.2	20	90	ovoid		1
Elaeis	10.8	7.9	1.4	7.9	70.2	4	1.02	14	80.59	ovoid		1
elaeis	12.1	11.2	1.1	11.2	125.6	4	1.33	24	83	spherical		1
elaeis	7.3	6.5	1.1	6.5	46.0	4	1.13	11	103	ovoid		1
elaeis	11.0	8.3	1.3	8.3	84.6	3	1.23	17	84.43	prolate		1
elaeis	13.2	11.5	1.1	11.5	107.4	2	1.74	11	103	prolate		1
elaeis	7.8	7.2	1.1	7.2	47.1	4	1.74	10	64	spherical		1
elaeis	6.5	5.6	1.1	5.6	29.8	8	0.63	10	85	ovoid		1
elaeis	11.2	8.4	1.3	8.4	82.0	3	1.19	13	80.86	prolate		1
elaeis	13.2	11.4	1.2	11.4	125.4	3	1.17	11	82	prolate		1
elaeis	11.2	9.5	1.2	9.5	87.8	4	1.23	20	83.97	prolate		1
elaeis	8.6	7.1	1.2	7.1	45.6	5	0.92	13	99.37	ovoid		1
elaeis	9.3	6.9	1.4	6.9	49.5	4	0.79	12	69.05	prolate		1
elaeis	10.6	9.0	1.2	9.0	75.6	3	1.3	14	75.56	spherical		1
elaeis	7.8	6.2	1.2	6.2	33.0	4	0.89	14	102	ovoid		1
elaeis	5.4	5.3	1.0	5.3	22.5	4	1.1	6	96	polygon		1
elaeis	7.8	5.9	1.3	5.9	33.4	2	1.03	14	85	ovoid		1
elaeis	7.1	4.8	1.5	4.8	20.0	4	0.8	11	93	polygon		1
elaeis	7.3	3.5	2.1	3.5	17.2	4	0.84	3	50	elongate		1
elaeis	3.3	2.2	1.5	2.2	5.4	4	0.37	3	94	polygon		1
elaeis	5.7	4.1	1.4	4.1	18.4	5	0	0	0	polygon		1
elaeis	7.5	5.6	1.3	5.6	29.6	3	0.94	8	84.36	polygon		1
elaeis	6.7	4.2	1.6	4.2	20.7	4	0.6	10	70	polygon		1
elaeis	6.3	4.5	1.4	4.5	15.5	4	0.9	12	93	elongate		1
elaeis	6.5	5.8	1.1	5.8	34.4	2	0.89	12	110	polygon		1
elaeis	5.5	3.1	1.8	3.1	12.6	2	0.77	14	80	elongate		1
elaeis	7.4	3.1	2.4	3.1	16.4	3	0.78	7	81	elongate		1
elaeis	11.0	8.6	1.3	8.6	66.6	4	1.28	8	71	polygon		1
elaeis	7.4	4.1	1.8	4.1	21.3	2	0.63	10	95	prolate		1

Appendix table 6: Metrics of reference phytoliths and starches. Phytoliths=first part of table. Starches=second part of table.

elaeis	7.4	5.0	1.5	5.0	24.9	4	0.92	10	86	polygon	1
elaeis	9.4	8.0	1.2	8.0	54.6	1	1.1	16	108	prolate	1
elaeis	8.0	6.1	1.3	6.1	34.2	3	0.6	13	115	prolate	1
elaeis	7.5	5.5	1.4	5.5	30.7	3	0.72	13	98	ovoid	1
elaeis	9.1	6.3	1.4	6.3	41.8	4	0.94	12	75.83	elongate	1
elaeis	5.7	4.0	1.4	4.0	16.0	5	0.87	11	77	polygon	1
elaeis	8.3	6.4	1.3	6.4	36.4	4	0.7	11	102	polygon	1
elaeis	8.7	7.1	1.2	7.1	54.1	4	0.87	19	101	ovoid	1
elaeis	8.3	7.3	1.1	7.3	51.0	4	0.62	9	101	polygon	1
elaeis	6.8	6.2	1.1	6.2	33.0	4	0.92	15	82.61	ovoid	1
eremo	7.8	7.6	1.0	7.6	41.4	1	1	9	70	spherical	1
eremo	6.9	6.5	1.1	6.5	36.2	2	0.7	10	115	spherical	1
eremo	6.3	5.6	1.1	5.6	25.1	3	0.7	6	96	prolate	1
eremo	7.5	7.2	1.0	7.2	37.2	1	0.87	10	90	spherical	1
eremo	8.2	6.1	1.3	6.1	40.7	2	0.78	8	82	ovoid	1
eremo	7.5	7.3	1.0	7.3	42.6	1	0.87	9	78	prolate	1
eremo	6.2	6.1	1.0	6.1	27.5	4	0.82	5	86	spherical	1
eremo	5.5	5.1	1.1	5.1	22.4	2	0.5	6	90	spherical	1
eremo	8.1	6.3	1.3	6.3	38.1	3	0.6	9	81	prolate	1
eremo	7.0	6.0	1.2	6.0	35.0	2	0.94	10	70	prolate	1
eremo	7.8	7.6	1.0	7.6	40.1	2	1.7	8	90	spherical	1
eremo	5.9	4.4	1.3	4.4	23.1	4	0.88	6	89	ovoid	1
eremo	6.7	6.6	1.0	6.6	31.0	2	0.92	9	79	spherical	1
eremo	5.4	4.3	1.3	4.3	17.9	2	0.5	2	112	prolate	1
eremo	6.6	6.2	1.1	6.2	25.0	2	0.64	7	110	spherical	1
eremo	6.6	5.4	1.2	5.4	27.0	2	0.68	12	0.96	spherical	1
eremo	6.2	5.4	1.1	5.4	24.2	1	0.79	8	109	spherical	1
eremo	6.2	4.9	1.3	4.9	21.3	2	0.63	8	99	triangular	1
eremo	4.9	4.1	1.2	4.1	12.6	5	0.51	4	104	triangular	1
eremo	7.6	7.1	1.1	7.1	33.8	1	1.6	8	80	spherical	1
eremo	7.1	6.3	1.1	6.3	36.0	2	0.88	9	99	spherical	1
eremo	4.5	4.2	1.0	4.2	16.3	1	0.41	7	110	spherical	1
eremo	7.4	6.1	1.2	6.1	34.3	3	0.68	10	105	polygon	1
eremo	5.5	5.2	1.1	5.2	22.8	2	0.61	5	86	spherical	1
eremo	7.5	7.5	1.0	7.5	38.2	2	0.94	8	62.81	spherical	1
eremo	5.9	5.6	1.1	5.6	27.6	2	1.02	8	91	spherical	1
eremo	6.5	4.8	1.3	4.8	21.1	4	0.83	9	114	ovoid	1
eremo	5.6	5.1	1.1	5.1	22.1	3	0.72	3	111	spherical	1
eremo	6.0	5.0	1.2	5.0	25.6	4	0.94	9	91	spherical	1
eremo	5.9	5.9	1.0	5.9	26.2	3	0.92	9	99	spherical	1
eremo	3.7	3.6	1.0	3.6	12.6	3	0.61	4	127	spherical	1
eremo	6.2	6.2	1.0	6.2	34.7	3	1.02	12	99.69	spherical	1
eremo	6.5	4.8	1.4	4.8	28.1	3	0.83	8	95	prolate	1
eremo	7.9	6.7	1.2	6.7	44.2	3	0.94	13	84.53	spherical	1
eremo	6.1	4.0	1.5	4.0	19.2	3	0.69	8	122.88	prolate	1
eremo	6.8	6.1	1.1	6.1	33.5	4	1.02	6	110	polygon	1

eremo	5.6	5.1	1.1	5.1	21.9	3	0.74	6	92	spherical	1
eremo	4.9	4.4	1.1	4.4	17.5	2	0.5	8	89	spherical	1
eremo	4.6	4.4	1.0	4.4	20.2	5	0.83	5	95	polygon	1
eremo	7.9	6.2	1.3	6.2	35.6	4	0.83	10	102	polygon	1
eremo	5.5	5.2	1.1	5.2	22.1	3	0.52	7	124	spherical	1
eremo	6.1	5.5	1.1	5.5	30.9	4	0.95	7	92	polygon	1
eremo	3.9	3.3	1.2	3.3	10.1	3	0.74	2	94	prolate	1
eremo	6.9	6.7	1.0	6.7	38.8	4	1.17	10	90.68	spherical	1
eremo	5.8	4.7	1.2	4.7	26.1	4	0.83	6	75	polygon	1
eremo	3.9	3.3	1.2	3.3	10.6	5	0.62	7	85	polygon	1
eremo	4.5	3.4	1.3	3.4	13.7	4	0.66	2	107	polygon	1
eremo	6.2	5.3	1.2	5.3	27.1	3	0.66	8	87.47	prolate	1
eremo	6.5	6.1	1.1	6.1	36.2	3	0.8	11	36.22	spherical	1
eremo	6.5	4.1	1.6	4.1	24.4	5	0.72	6	91.39	polygon	1
aframomum	10.9	9.9	1.1	9.9	85.0	3	0.6	6	0	ovoid	1
aframomum	11.4	10.2	1.1	10.2	86.6	3	0	0	0	spherical	1
aframomum	10.5	7.6	1.4	7.6	66.5	4	0.55	5	0	ovoid	1
aframomum	8.4	7.5	1.1	7.5	70.7	4	0	0	0	quadrangular	1
aframomum	9.1	6.0	1.5	6.0	50.0	3	0	0	0	prolate	1
aframomum	10.0	6.1	1.6	6.1	48.6	3	0	0	0	prolate concave-convex	1
aframomum	11.4	10.4	1.1	10.4	94.5	4	0	0	0	spherical	1
aframomum	10.1	9.5	1.1	9.5	83.7	3	0	0	0	spherical	1
aframomum	14.2	9.7	1.5	9.7	14.2	4	0.5	10	0	ovoid	1
aframomum	9.9	6.6	1.5	6.6	52.5	3	0	0	0	quadrangular	1
aframomum	10.4	6.1	1.7	6.1	53.9	3	0	0	0	quadrangular	1
aframomum	11.9	10.2	1.2	10.2	96.3	3	0.55	14	0	spherical	2
aframomum	12.5	7.4	1.7	7.4	82.7	4	0.6	11	0	prolate	1
aframomum	8.5	5.5	1.5	5.5	47.8	4	0	0	0	polygon	2
aframomum	9.5	7.3	1.3	7.3	62.0	4	0	0	0	prolate concave-convex	1
aframomum	10.5	5.2	2.0	5.2	53.4	5	0	0	0	prolate concave-convex	1
aframomum	7.2	3.5	2.1	3.5	28.2	2	0	0	0	polygon concave	1
aframomum	9.6	6.3	1.5	6.3	43.1	4	0.75	9	0	prolate	1
aframomum	8.8	6.6	1.3	6.6	54.4	0	0	0	0	polygon concave	1
aframomum	7.4	4.7	1.6	4.7	31.0	0	0	0	0	polygon	1
aframomum	8.1	6.3	1.3	6.3	39.7	0	0	0	0	polygon	1
aframomum	11.0	9.6	1.1	9.6	83.5	4	0.5	15	0	spherical	1
aframomum	9.1	6.6	1.4	6.6	48.2	5	0.6	5	0	prolate concave-convex	1
aframomum	9.1	7.9	1.2	7.9	55.0	5	0.7	7	0	ovoid	1
aframomum	9.0	8.1	1.1	8.1	52.4	5	0	0	0	ovoid	1
aframomum	5.7	4.9	1.1	4.9	20.7	3	0.6	3	47	spherical	1
aframomum	7.3	6.1	1.2	6.1	35.4	3	1	11	41	spherical	1
aframomum	7.2	6.3	1.1	6.3	37.3	4	0.9	8	59	spherical	1
aframomum	6.0	6.0	1.0	6.0	30.2	3	1	6	64.88	spherical	1
aframomum	7.0	5.0	1.4	5.0	22.2	4	0.4	6	99	spherical	1
aframomum	5.3	4.1	1.3	4.1	20.4	4	0.4	3	47	spherical	1
aframomum	5.2	5.1	1.0	5.1	22.6	4	0.4	2	41	quadrangular	1
	_	_		_	-			-			

•	aframomum	5.5	4.7	1.2	4.7	20.7	1	0.26	1	54	spherical	1
	aframomum	6.0	5.7	1.0	5.7	26.2	3	0.5	5	89	spherical	1
	aframomum	5.8	4.6	1.3	4.6	23.5	4	0	0	0	spherical	1
	aframomum	5.6	4.2	1.3	4.2	12.9	3	0.6	4	47	spherical	1
	aframomum	5.5	5.0	1.1	5.0	28.8	4	0.72	8	64	spherical	1
	aframomum	9.4	7.1	1.3	7.1	44.4	3	0	0	0	angularpoint	1
	aframomum	6.0	5.1	1.2	5.1	20.2	0	0	0	0	spherical	1
	aframomum	6.9	4.4	1.6	4.4	26.2	5	0	0	0	spherical	1
	aframomum	6.4	4.3	1.5	4.3	21.6	4	0.55	6	66	spherical	1
	aframomum	6.0	5.6	1.1	5.6	28.3	3	0.6	6	82	spherical	1
	aframomum	5.9	5.4	1.1	5.4	28.0	3	0.4	7	70	spherical	1
	aframomum	6.1	3.5	1.7	3.5	34.5	4	0.7	10	53	spherical	1
	aframomum	6.8	6.0	1.1	6.0	33.0	3	0.7	8	82	spherical	1
	aframomum	6.6	5.8	1.1	5.8	30.0	3	0.52	7	77	spherical	1
	aframomum	5.8	4.9	1.2	4.9	22.2	5	0.83	5	41	spherical	1
	aframomum	6.4	5.7	1.1	5.7	22.1	5	0.83	4	42	polygon	1
	aframomum	6.5	5.5	1.2	5.5	30.2	3	0.9	8	78	spherical	1
	aframomum	7.2	6.3	1.1	6.3	40.0	4	0.5	6	100	ovoid	1
	ancistrophy	6.0	6.0	1.0	6.0	27.8	2	0.7	7	116	spherical	1
	ancistrophy	5.4	4.2	1.3	4.2	18.9	4	0.55	4	105	ovoid	1
	ancistrophy	4.9	4.8	1.0	4.8	21.2	2	0.58	4	116	spherical	1
	ancistrophy	3.7	3.2	1.2	3.2	10.2	2	0	0	0	polygon	1
	ancistrophy	5.9	4.4	1.3	4.4	19.8	4	0.46	3	191	ovoid	1
	ancistrophy	3.2	2.5	1.3	2.5	7.2	4	0	0	0	polygon	1
	ancistrophy	4.8	4.5	1.1	4.5	18.0	3	0.51	3	90	polygon	1
	ancistrophy	5.8	5.7	1.0	5.7	22.9	4	0.75	4	108.06	polygon	1
	ancistrophy	5.0	4.1	1.2	4.1	15.4	3	0.52	3	120.35	polygon	1
	ancistrophy	4.9	2.9	1.7	2.9	12.4	5	0	0	0	elongate	1
	ancistrophy	3.5	2.8	1.3	2.8	8.2	5	0	0	0	polygon	1
	ancistrophy	3.2	2.3	1.4	2.3	5.3	5	0	0	0	polygon	1
	ancistrophy	5.8	5.0	1.2	5.0	18.8	4	0.51	7	0	spherical	1
	ancistrophy	4.9	4.2	1.2	4.2	16.8	3	0.32	3	95.28	prolate	1
	ancistrophy	4.1	3.3	1.2	3.3	11.7	5	0.5	4	91	polygon	1
	ancistrophy	4.7	3.7	1.3	3.7	13.3	4	0	0	0	prolate	1
	ancistrophy	4.5	3.6	1.2	3.6	11.5	3	0.4	3	118	polygon	1
	ancistrophy	5.2	3.5	1.5	3.5	16.3	5	0.62	4	87	ovoid	1
	ancistrophy	3.6	2.8	1.3	2.8	8.1	4	0	0	0	ovoid	1
	ancistrophy	3.4	2.8	1.2	2.8	7.5	4	0	0	0	spherical	1
	ancistrophy	5.1	3.9	1.3	3.9	15.3	4	0.55	3	109	polygon	1
	ancistrophy	4.3	3.9	1.1	3.9	13.4	3	0.4	3	116	spherical	1
	ancistrophy	3.6	2.9	1.3	2.9	8.0	5	0	0	0	polygon	1
	ancistrophy	3.8	2.9	1.3	2.9	9.6	5	0	0	0	polygon	1
	ancistrophy	4.9	3.8	1.3	3.8	13.5	5	0.3	4	111	polygon	1
	ancistrophy	7.2	4.2	1.7	4.2	27.3	4	0.62	9	27.27	prolate	1
	ancistrophy	5.6	5.3	1.0	5.3	24.0	2	1.07	5	61.83	spherical	1
	ancistrophy	7.3	6.5	1.1	6.5	43.5	1	1.2	8	83.46	spherical	1
-	1 2										*	

· · · · · ·											
ancistrophy	8.9	7.6	1.2	7.6	53.5	1	1.1	12	85.57	spherical	1
ancistrophy	6.1	5.8	1.0	5.8	29.5	3	1.27	8	82	spherical	1
ancistrophy	5.3	4.3	1.2	4.3	20.2	4	1.25	8	76.85	spherical	1
ancistrophy	7.2	5.2	1.4	5.2	34.2	2	1.05	9	79.57	prolate	1
ancistrophy	7.5	5.0	1.5	5.0	29.1	4	0.88	6	73.5	ovoid	1
ancistrophy	8.5	7.2	1.2	7.2	44.5	1	1.11	10	86.09	spherical	1
ancistrophy	5.8	5.4	1.1	5.4	24.9	3	0.88	9	106	spherical	1
ancistrophy	7.5	5.9	1.3	5.9	38.1	3	1.23	9	85	spherical	1
ancistrophy	7.5	6.5	1.2	6.5	36.8	3	1.2	7	81	spherical	1
ancistrophy	6.3	5.8	1.1	5.8	32.5	3	1.11	7	84.33	spherical	1
ancistrophy	5.9	5.4	1.1	5.4	27.4	3	0.97	9	69.85	ovoid	1
ancistrophy	7.0	4.9	1.4	4.9	31.0	5	0.65	7	96	spherical	1
ancistrophy	9.7	8.8	1.1	8.8	82.7	2	1.64	11	92	spherical	1
ancistrophy	7.6	7.1	1.1	7.1	47.5	2	1.25	9	86.23	spherical	1
ancistrophy	8.8	6.2	1.4	6.2	49.3	3	1.33	10	82.53	prolate	1
ancistrophy	6.5	6.2	1.0	6.2	35.8	3	1.02	8	84.17	spherical	1
ancistrophy	7.0	6.6	1.1	6.6	35.3	4	1.24	6	88.91	spherical	1
ancistrophy	6.8	5.8	1.2	5.8	30.9	3	0.97	6	97	spherical	1
ancistrophy	5.6	5.6	1.0	5.6	24.5	3	0.55	7	115	spherical	1
ancistrophy	5.4	3.8	1.4	3.8	17.9	4	0.92	5	77	prolate	1
ancistrophy	8.9	6.9	1.3	6.9	57.3	3	1.2	2	72	prolate	1
ancistrophy	7.9	5.8	1.4	5.8	37.5	4	1.5	10	84	spherical	1
sarcoph	17.5	6.6	2.7	6.6	87.8	4	0	0	0	angularpoint	1
sarcoph	15.5	6.1	2.6	6.1	63.0	3	0	0	0	angularpoint	1
sarcoph	16.5	6.3	2.6	6.3	81.6	3	0	0	0	angularpoint	1
sarcoph	16.3	7.6	2.2	7.6	82.0	3	0	0	0	angularpoint	1
sarcoph	14.4	7.2	2.0	7.2	55.6	4	0	0	0	angularpoint	1
sarcoph	14.7	7.4	2.0	7.4	73.3	5	0	0	0	angularelongate	1
sarcoph	19.8	7.5	2.6	7.5	108.6	5	0	0	0	angularpoint	1
sarcoph	19.4	7.2	2.7	7.2	70.0	4	0	0	0	angularpoint	1
sarcoph	19.3	7.3	2.6	7.3	92.5	4	0	0	0	angularpoint	1
sarcoph	14.3	5.3	2.7	5.3	66.5	3	0	0	0	angularpoint	1
sarcoph	14.2	6.7	2.1	6.7	83.5	3	0	0	0	quadrangular	1
sarcoph	14.8	12.9	1.1	12.9	133.9	5	0	0	0	triangular	1
sarcoph	15.9	5.7	2.8	5.7	76.7	4	0	0	0	angularpoint	1
sarcoph	14.1	8.7	1.6	8.7	89.1	4	0	0	0	angularpoint	1
sarcoph	16.1	6.2	2.6	6.2	87.1	4	1.68	1	40	angularpoint	1
sarcoph	16.7	6.4	2.6	6.4	92.0	4	0	0	0	angularpoint	1
sarcoph	15.0	7.8	1.9	7.8	82.2	4	0	0	0	angularpoint	1
sarcoph	11.8	7.6	1.6	7.6	57.4	5	0	0	0	angularpoint	1
sarcoph	16.2	6.3	2.6	6.3	80.8	5	0	0	0	angularelongate	1
sarcoph	11.6	5.1	2.3	5.1	56.8	4	0	0	0	angularpoint	1
sarcoph	10.3	7.6	1.3	7.6	49.5	4	0	0	0	angularpoint	1
sarcoph	16.4	6.6	2.5	6.6	95.1	4	0	0	0	angularelongate	-
sarcoph	19.3	63	31	63	74 7	4	0	0	0	angularelongate	-
sarcoph	20.4	7.6	27	7.6	136.4	4	0	0	0	angularelongate	1
satoph	20.4	7.0	2.7	7.0	100.4	7	0	0	U	angulatelongale	1

Sa	arcoph	14.4	6.8	2.1	6.8	81.0	3	0	0	0	angularelongate	1
Si	arcoph	14.7	8.6	1.7	8.6	87.8	3	0	0	0	angularelongate	1
Si	arcoph	14.7	8.6	1.7	8.6	71.7	4	0	0	0	angularelongate	1
Si	arcoph	23.6	21.7	1.1	21.7	294.8	3	5	12	40.2	spherical	1
Si	arcoph	14.0	6.9	2.0	6.9	89.5	3	0	0	0	quadrangular	1
Si	arcoph	21.3	8.8	2.4	8.8	130.9	4	0	0	0	angularpoint	1
Si	arcoph	13.3	7.2	1.8	7.2	75.9	5	0	0	0	angularelongate	1
Si	arcoph	19.5	8.4	2.3	8.4	114.5	5	0	0	0	angularpoint	1
Si	arcoph	11.5	4.6	2.5	4.6	37.9	3	0	0	0	angularpoint	1
Si	arcoph	13.8	7.6	1.8	7.6	71.4	4	0	0	0	angularpoint	1
Si	arcoph	15.2	6.5	2.3	6.5	84.9	4	0	0	0	quadrangular	1
Si	arcoph	15.3	9.3	1.6	9.3	127.6	3	0	0	0	quadrangular	1
Si	arcoph	11.5	6.6	1.8	6.6	51.2	4	0	0	0	angularpoint	1
Si	arcoph	13.8	6.2	2.2	6.2	56.3	4	0	0	0	angularpoint	1
Si	arcoph	11.4	6.6	1.7	6.6	56.1	3	0	0	0	quadrangular	1
Si	arcoph	16.8	6.0	2.8	6.0	78.3	4	0	0	0	angularpoint	1
Si	arcoph	19.7	6.2	3.2	6.2	94.7	4	0	0	0	angularpoint	1
Si	arcoph	13.8	6.7	2.0	6.7	74.2	5	0	0	0	angularpoint	1
Si	arcoph	17.6	9.4	1.9	9.4	94.9	4	0	0	0	angularpoint	1
Si	arcoph	13.8	8.4	1.6	8.4	105.4	3	0	0	0	quadrangular	1
Si	arcoph	17.3	6.6	2.6	6.6	70.2	4	0	0	0	angularpoint	1
Si	arcoph	16.6	9.3	1.8	9.3	91.9	4	2.3	1	58	angularpoint	1
Si	arcoph	15.2	7.5	2.0	7.5	89.7	3	0	0	0	angularpoint	1
Si	arcoph	16.5	7.7	2.1	7.7	101.4	5	0	0	0	angularpoint	1
Si	arcoph	20.2	7.8	2.6	7.8	118.8	5	0	0	0	angularpoint	1
Sa	arcoph	12.2	6.5	1.9	6.5	57.2	5	0	0	0	angularpoint	1

Metrics of reference starches.

	Species	Length	Width	LW Ratio	Brea	Area		Shape	Facets	Striaelen	Striaeno	Type	Lam	Dist
cola		27.82	23.59	1.18	18.9	515	ovoid	0)	6.48	1	1	3	12.19
cola		21.85	20.68	1.06	13	396.24	elongate conovoid	C)	5.86	2	2	3	10.24
cola		13.13	8.4	1.56	8.4	70.65	pyriform	0)	0	0	1	2	6.56
cola		11.87	8.54	1.39	8.54	82.8	elongate conovoid	C)	0	0	2	2	6.04
cola		11.16	8.61	1.3	8.61	75.1	elongate conovoid	C)	0	0	2	2	4.72
cola		3.42	3.42	1	2.39	7.52	oblate conovoid	C)	0	0	2	0	1.13
cola		22.39	17.83	1.26	12.3	300.88	ovoid	0)	4.36	1	1	2	8.33
cola		9.19	7.6	1.21	7.6	61.36	prolate	1		0	0	1	0	3.25
cola		8.41	6.67	1.26	6.67	42.84	prolate	1		0	0	1	0	2.59
cola		11.68	8.94	1.31	7.65	79.98	triangular	0)	0	0	1	0	4.65
cola		12.73	9.8	1.3	9.8	88.7	prolate	1		2.62	1	1	0	5.02
cola		5.86	4.51	1.3	4.51	20.95	oblate conovoid	2	2	0	0	2	0	2.06
cola		13.18	9.99	1.32	9.99	105.93	ovoid	0)	0	0	1	0	5.88

cola	6.04	4.92	1.23	4.92	25.57	ovoid	1	0	0	1	0	2.62
cola	4.18	3.21	1.3	3.21	15.26	ovoid	1	0	0	1	0	1.23
cola	7.62	7.62	1	6.69	103.45	oblate	2	0	0	2	0	4.09
cola	4.75	3.69	1.29	3.69	21.38	conovoid prolate	1	0	0	1	0	1.79
cola	3.57	3.57	1	2.7	9.79	oblate	1	0	0	2	0	1.35
cola	11.59	9.34	1.24	9.34	83.96	conovoid ovoid	0	0	0	1	0	4.61
cola	8.78	7.92	1.11	7.92	58.53	ovoid	0	0	0	1	0	3.71
cola	4.85	4.08	1.19	4.08	18.63	polygon	3	0	0	2	0	1.33
cola	6.4	4 42	1 45	4 42	22.9	ovoid	2	0	0	1	0	1.85
cola	27.23	19 54	1 39	18	402	ovoid	-	8	4	1	2	11.84
cola	26.46	17.45	1.52	17.5	346 76	ovoid	0	7	5	1	0	15 59
cola	14 34	12.99	1.02	12.99	143 36	prolate	0	0	0	1	2	6.18
cola	20.34	14.36	1.1	14.4	226.20	ovoid	0	78	4	1	0	9.62
cola	20.34	19.64	1.42	10.64	108.6	ovoid	0	0.87	2	1	2	15.02
cola	14.7	17.04	1.30	11.04	144 5	alamanta	0	2.07	1	1	2	7.62
cola	14.7	11.09	1.20	11.09	144.5	conovoid	0	2.27	1	2	Z	7.62
cola	10.22	8.71	1.17	8.71	68.55	prolate	0	0	0	1	0	2.91
cola	9.52	7.2	1.32	7.2	64.07	ovoid	0	0	0	1	2	2.97
cola	8.26	6.45	1.28	6.45	42.47	ovoid	0	0	0	1	0	2.46
cola	10.59	7.91	1.34	7.91	76.69	ovoid	0	0	0	1	2	4.12
cola	11.43	8.14	1.4	8.14	73.02	pyriform	0	0	0	1	0	4.16
cola	8.91	6.6	1.35	6.6	48.02	ovoid	1	0	0	1	0	2.69
cola	7.45	5.73	1.3	5.73	39.98	ovoid	0	0	0	1	0	2.67
cola	5.6	3.7	1.51	3.7	18.25	prolate	0	0	0	1	0	1.37
cola	6.52	4.86	1.34	4.86	45	polygon	3	0	0	2	0	1.83
cola	14.55	14.55	1	10.4	119.07	elongate	0	2.9	2	2	2	7.89
cola	8.7	6.15	1.41	6.15	39.45	ovoid	0	0	0	1	0	3.8
cola	12.24	9.38	1.3	9.38	89.29	ovoid	0	1.62	2	1	0	1.85
cola	12.82	10.55	1.22	10.55	120.54	prolate	0	0	0	1	0	4.51
cola	6.6	5.03	1.31	5.03	25.85	ovoid	0	0	0	1	0	2.46
cola	6.65	5.36	1.24	5.36	50.82	triangular	0	0	0	1	0	1.84
cola	15.39	9.32	1.65	9.32	99.78	pyriform	0	0	0	1	0	3.69
cola	4.5	3.69	1.22	3.69	16.32	spherical	0	0	0	1	0	2.15
cola	14.47	12.81	1.13	12.81	130.47	prolate	0	0	0	1	0	3.07
cola	3.6	3.08	1.17	3.08	11.8	spherical	0	0	0	1	0	1.45
cola	7.32	5.32	1.38	5.32	33.19	oblate	2	0	0	1	0	1.65
cola	13.82	10.61	1.3	10.61	104.83	conovoid ovoid	0	0	0	1	0	2.97
cola	16.98	11.45	1.48	11.45	128.62	triangular	0	0	0	1	0	2.46
aframomum	2.86	2.73	1.05	2.73	4.95	hemispherical	1	0	0	3	0	1.43
aframomum	2.36	2.1	1.12	2.1	3.87	spherical	0	0	0	3	0	1.18
aframomum	2.39	2.18	1.1	2.18	3.71	spherical	1	0	0	3	0	1.195
aframomum	2.32	1.99	1.17	1.99	4.08	spherical	0	0	0	3	0	1.16
aframomum	3.13	2.83	1.11	2.83	4.7	spherical	0	0	0	3	0	1,565
aframomum	2.47	2.18	1.13	2.18	4.1	spherical	0	0	0	3	0	1.235
aframomum	3.26	2.85	1 14	2.85	7.5	spherical	1	0	0	3	0	1.63
aframomum	2.20	2.55	1 1 2	2.55	5 59	enhorical	-	0	0	3	0	1.00
anamontum	2.00	2.37	1.12	2.07	5.59	apricillai	T	U	U	5	U	1.44

aframomum	4.81	4.45	1.08	4.45	16	spherical	2	0	0	3	0	2.405
aframomum	3.52	3.4	1.04	3.4	7.18	spherical	2	0	0	3	0	1.76
aframomum	2.57	2.46	1.04	2.46	4.36	spherical	1	0	0	3	0	1.285
aframomum	2.46	2.15	1.14	2.15	3.5	spherical	1	0	0	3	0	1.23
aframomum	3.25	2.4	1.35	2.4	5.67	ovoid	0	0	0	3	0	1.625
aframomum	2.9	2.1	1.38	2.1	4.91	spherical	1	0	0	3	0	1.45
aframomum	2.54	2.21	1.15	2.21	4.31	spherical	2	0	0	3	0	1.27
aframomum	2.73	2.63	1.04	2.63	5.54	spherical	2	0	0	3	0	1.365
aframomum	2.5	2.2	1.14	2.2	5.99	spherical	3	0	0	3	0	1.25
aframomum	2.15	2.02	1.06	2.02	3.8	spherical	2	0	0	3	0	1.075
aframomum	2.95	2.16	1.37	2.16	5.55	spherical	1	0	0	3	0	1.475
aframomum	3.71	3.56	1.04	3.56	10	spherical	2	0	0	3	0	1.855
aframomum	3.49	2.98	1.17	2.98	6.23	spherical	2	0	0	3	0	1.745
aframomum	3.69	3.69	1	3.69	9.25	spherical	1	0	0	3	0	1.845
aframomum	3.49	3.19	1.09	3.19	9.97	spherical	2	0	0	3	0	1.745
aframomum	1.99	1.87	1.06	1.87	2.71	spherical	1	0	0	3	0	0.995
aframomum	3.04	2.58	1.18	2.58	5.08	spherical	0	0	0	3	0	1.52
aframomum	5.65	5.45	1.04	5.45	21.99	spherical	2	0	0	3	0	2.825
aframomum	3.85	2.82	1.37	2.82	8.69	spherical	2	0	0	3	0	1.925
aframomum	2.66	2.05	1.3	2.05	4.82	hemispherical	1	0	0	3	0	1.33
aframomum	2.86	2.21	1.29	2.21	4.96	hemispherical	2	0	0	3	0	1.43
aframomum	2.83	2.53	1.12	2.53	6.78	spherical	2	0	0	3	0	1.415
aframomum	3.11	2.88	1.08	2.88	9.42	spherical	3	0	0	3	0	1.555
aframomum	1.9	1.68	1.13	1.68	3	spherical	3	0	0	3	0	0.95
aframomum	3.58	3.38	1.06	3.38	9.45	spherical	1	0	0	3	0	1.79
aframomum	1.78	1.54	1.16	1.54	1.8	spherical	1	0	0	3	0	0.89
aframomum	2.05	1.64	1.25	1.64	2.22	spherical	2	0	0	3	0	1.025
aframomum	2.78	2.36	1.18	2.36	3.99	spherical	2	0	0	3	0	1.39
aframomum	1.81	1.69	1.07	1.69	2.57	spherical	0	0	0	3	0	0.905
aframomum	5.12	4.5	1.14	4.5	16.4	spherical	1	0	0	3	0	2.56
aframomum	2.57	1.96	1.31	1.96	3.89	spherical	1	0	0	3	0	1.285
aframomum	2.73	2.32	1.18	2.32	5.95	polygon	4	0	0	3	0	1.365
aframomum	4.27	4.08	1.05	4.08	14	polygon	4	0	0	3	0	2.135
aframomum	2.02	1.7	1.19	1.7	3.5	hemispherical	1	0	0	3	0	1.01
aframomum	2.82	2.67	1.06	2.67	6.37	spherical	1	0	0	3	0	1.41
aframomum	3.09	2.15	1.06	2.15	5.59	polygon	4	0	0	3	0	1.02
aframomum	3.49	2.87	1.06	2.87	8.31	polygon	4	0	0	3	0	1.45
aframomum	3.18	3.08	1.06	3.08	8.34	spherical	0	0	0	1	0	1.13
aframomum	4.3	3.28	1.06	3.28	11.5	spherical	1	0	0	1	0	1.13
aframomum	2.27	1.64	1.06	1.64	3.4	spherical	1	0	0	1	0	1.21
aframomum	5.03	3.18	1.06	3.18	12.83	polygon	3	0	0	3	0	1.5
aframomum	3.41	3.24	1.06	3.24	7.96	polygon	4	0	0	3	0	1.6
piper	5.15	3.8	1.36	3.8	14.67	polygon	7	0	0	3	0	2.36
piper	2.58	2.25	1.15	2.25	3.61	polygon	6	0	0	3	0	1.3
piper	4.18	2.84	1.47	2.84	9.52	polygon	5	0	0	3	0	2
piper	3.86	3.4	1.14	3.4	7.37	hemispherical	4	0	0	3	0	1.9
						1		-		-		

piper	3.4	2.7	1.26	2.7	7.49	polygon	7	0	0	3	0	1.7
piper	3.21	2.79	1.15	2.79	8.9	polygon	6	0	0	3	0	1.6
piper	3	2	1.5	2	10	polygon	6	0	0	3	0	1.5
piper	3.98	3.28	1.21	3.28	15	polygon	7	0	0	3	0	1.49
piper	3.95	3.58	1.1	3.58	13.99	polygon	7	0	0	3	0	1.49
piper	3.18	2.9	1.1	2.9	10.17	polygon	6	0	0	3	0	1.64
piper	3.32	3.11	1.07	3.11	9.15	polygon	6	0	0	3	0	1.67
piper	3.04	2.58	1.18	2.58	6.68	polygon	7	0	0	3	0	1.52
piper	3.25	2.27	1.43	2.27	9.73	polygon	7	0	0	3	0	1.63
piper	4.98	3.92	1.27	3.92	14.44	polygon	6	0	0	3	0	2.5
piper	4.87	4.82	1.01	4.87	17.68	hemispherical	5	0	0	3	0	2.3
piper	5.94	3.62	1.64	3.62	11.91	polygon	7	0	0	3	0	2.8
piper	4.45	3.98	1.12	3.98	16	oblate	4	0	0	3	0	2.2
	4.22	2.0	1 11	2.0	10.00	conovoid	4	0	0	2	0	0.15
piper	4.33	3.9	1.11	3.9	12.22	conovoid	4	0	0	3	0	2.15
piper	2.84	2.17	1.31	2.17	5.07	polygon	6	0	0	3	0	1.4
piper	5.33	5.24	1.02	3	19	hemispherical	3	0	0	3	0	2.6
piper	4.66	3.92	1.19	3	16.72	hemispherical	3	0	0	3	0	2.33
piper	3.7	2.56	1.45	2.56	10.55	polygon	5	0	0	3	0	1.8
piper	2.95	2.25	1.31	2.25	8.38	oblate	3	0	0	3	0	1.8
piper	4.23	3.11	1.36	3.11	18.74	polygon	6	0	0	3	0	2.1
piper	4.41	3.75	1.18	3.75	10.84	oblate	5	0	0	3	0	2.2
piper	3.52	2.62	1.34	2.62	18	conovoid polygon	6	0	0	3	0	1.75
piper	4.17	3.12	1.34	3.12	11.77	polygon	6	0	0	3	0	1.07
piper	3.15	2.43	1.3	2.43	18.55	quadrangular	6	0	0	3	0	1.6
piper	3.49	2.93	1.19	2.93	10.6	polygon	7	0	0	3	0	1.7
piper	2.98	2.53	1.18	2.53	7.22	polygon	7	0	0	3	0	1.5
piper	3.71	3.41	1.09	3.41	10.94	polygon	7	0	0	3	0	1.87
piper	3.47	2.33	1.49	2.33	8.52	oblate	3	0	0	3	0	1.72
piper	4.03	3.33	1.21	3.33	8.55	conovoid polygon	6	0	0	3	0	2
piper	5.82	5.82	1	3.62	16.57	hemispherical	2	0	0	3	0	2.8
piper	5.41	5.41	1	3.91	18.7	hemispherical	2	0	0	3	0	2.7
piper	6.01	6.01	1	5.07	18.37	oblate	3	0	0	3	0	3
niper	3 92	3.85	1.02	3.85	11 54	conovoid polygon	7	0	0	3	0	1 95
piper	5	3.85	1.02	3.85	15.22	polygon	7	0	0	3	0	1.55
piper	3 39	3.12	1.09	3.12	13.91	guadrangular	6	0	0	3	0	2.9
piper	3.82	2.07	1.05	2.07	6.73	oblate	5	0	0	3	0	1 35
piper	0.02	2.07	1.00	2.07	0.70	conovoid	0	0	0	0	0	1.00
piper	2.71	2.27	1.19	2.27	4.84	oblate conovoid	5	0	0	3	0	1.35
piper	3.58	2.76	1.3	2.76	7.99	polygon	7	0	0	3	0	1.79
piper	2.27	2.05	1.11	2.05	6.1	polygon	6	0	0	3	0	1.13
piper	4.16	3.75	1.11	3.75	15.12	polygon	4	0	0	1	0	1.64
piper	4.23	3.85	1.1	3.85	14.17	polygon	4	0	0	3	0	2.15
piper	2.77	2.13	1.3	2.13	4.12	polygon	2	0	0	3	0	0.87
piper	4.57	3.27	1.4	3.27	15.01	polygon	4	0	0	3	0	1.85
piper	3.84	3.61	1.06	3.61	14.88	polygon	6	0	0	3	0	1.88

piper2.252.061.092.064.78polygon40030sacog5.994.771.26321.57polygon30020sacog5.554.031.38218.73polygon20020	1.13 1.77 1.74 1.71
sacog 5.99 4.77 1.26 3 21.57 polygon 3 0 0 2 0 sacog 5.55 4.03 1.38 2 18.73 polygon 2 0 0 2 0	1.77 1.74 1.71
sacog 5.55 4.03 1.38 2 18.73 polygon 2 0 0 2 0	1.74 1.71
	1.71
sacog 6.96 5.88 1.18 3.4 36.03 oblate 3 0 0 2 0	
sacog 5.03 4.18 1.2 3 16.51 quadrangular 3 0 0 1 0	1.77
sacog 5.74 5.3 1.08 5.3 32.7 polygon 3 0 0 1 0	1.77
sacog 6.06 5.69 1.07 5.69 34 polygon 3 0 0 1 0	2.46
sacog 6.93 6.02 1.15 6.02 30.27 polygon 2 0 0 1 0	2.79
sacog 6.49 6.49 1 4.57 25.49 oblate 2 0 0 2 0	2.63
conovoid sacog 6.23 6.23 1 4.37 18.06 oblate 2 0 0 2 0	2.39
sacog 6.81 6.81 1 3.92 19.054 oblate 2 0 0 2 0	2.15
sacog 5.37 5.37 1 4.23 19.02 oblate 2 0 0 2 0	1.33
sacog 4.82 4.42 1.09 3 18.94 oblate 2 0 0 2 0	1.43
conovoid sacog 6.72 6.72 1 4.3 22.45 oblate 2 0 0 2 0	1.64
conovoid sacog 7.41 7.25 1.02 7.25 37.49 oblate 2 0 0 2 0	2.46
sacog 7.8 7.01 1.11 3 41.67 oblate 2 0 0 2 0	2.36
conovoid sacog 6.51 6.51 1 5.44 24.12 oblate 2 0 0 2 0	1.96
sacog 8.7 6.65 1.31 6.65 56.62 oblate 2 0 0 2 0	3.08
sacog 7.75 7.7 1.01 5.21 33.52 oblate 2 0 0 2 0	2.36
sacog 5.96 5.96 1 4.02 18.37 oblate 2 0 0 2 0 conovoid	1.96
sacog 4.92 3.82 1.29 3.82 23 quadrangular 3 0 0 1 0	1.96
sacog 3.7 3.7 1 2.9 10.5 oblate 3 0 0 2 0 conovoid	1.75
sacog 6.29 5.49 1.15 5.49 27.54 polygon 3 0 0 1 0	2.25
sacog 5.22 4.21 1.24 4.21 20.85 polygon 4 0 0 1 0	2.16
sacog 3.69 3.07 1.2 3.07 8.21 oblate 2 0 0 2 0	1.03
sacog 4.88 4.27 1.14 4 14.7 oblate 3 0 0 2 0	1.75
sacog 6.97 6.97 1 5.2 34.78 polygon 4 0 0 1 0	2.05
sacog 7.77 6.45 1.2 5.12 37.23 polygon 4 0 0 1 0	2.61
sacog 4.28 4.02 1.06 3.28 31.28 polygon 4 0 0 1 0	2.35
sacog 6.8 5.88 1.16 4.6 31.59 polygon 2 0 0 1 0	2.36
sacog 4.69 4.69 1 3.33 14.7 polygon 2 0 0 1 0	1.59
sacog 7.07 5.68 1.24 4.67 34.16 polygon 2 0 0 1 0	1.97
sacog 6.78 6.45 1.05 6.41 40.39 ovoid 1 0 0 1 0	2.17
sacog 6.35 6.13 1.04 5.68 24.12 polygon 3 0 0 1 0	3.01
sacog 6.74 6.26 1.08 3.98 19.55 polygon 3 0 0 1 0	2.27
sacog 6.23 4.9 1.27 4.51 19.3 polygon 2 0 0 1 0	1.81
sacog 7.63 7.63 1 4.13 27.61 hemispherical 1 0 0 2 0	2.01
sacog 7.77 7.77 1 5.15 32.7 hemispherical 1 0 0 2 0	2.05
sacog 6.79 6.1 1.11 6.1 33.09 quadrangular 1 0 0 1 0	2.05
sacog 6.99 5.79 1.21 5.79 28.54 hemispherical 2 0 0 2 0	2.15
sacog 5.37 2.88 1.86 2.88 15.25 hemispherical 1 0 0 2 0	2.97

sacog	4.77	3.26	1.46	3.26	14.97	hemispherical	1	0	0	2	0	2.65
sacog	5.77	3.48	1.66	3.48	14.77	hemispherical	2	0	0	2	0	2.35
sacog	5.25	4.47	1.17	4.47	21.11	hemispherical	1	0	0	2	0	1.99
sacog	5.41	4.31	1.26	4.31	17.58	hemispherical	1	0	0	2	0	1.95
sacog	5.92	5.07	1.17	5.07	22.21	hemispherical	1	0	0	2	0	2.05
sacog	5.34	5	1.07	5	18.45	polygon	5	0	0	1	0	2.59
sacog	6.04	6.04	1	6.04	27.63	spherical	1	0	0	1	0	2.14
sacog	6.18	3.95	1.56	3.95	17.37	hemispherical	1	0	0	2	0	2.98
sacog	4.66	3.16	1.47	3.16	9.24	oblate	2	0	0	2	0	2.27
sacog	5 14	3 79	1.36	3 79	18.35	conovoid oblate	2	0	0	2	0	1.59
Jucog	0.11		1.00		10.00	conovoid	-			-		
panda	4.86	3.61	1.35	3.89	15.37	ovoid	0	1.96	2	1	0	2.76
panda	5.39	4.36	1.24	4.36	15.11	spherical	0	0	0	1	0	1.75
panda	6.88	5.37	1.28	5.37	31.25	ovoid	0	0	0	1	0	3.92
panda	4.6	4.6	1	4.6	16.17	ovoid	1	0	0	1	0	2.31
panda	5.32	5.02	1.06	5.02	22.8	spherical	0	0	0	1	0	2.66
panda	4.86	3.11	1.56	3.11	12.53	elongate ovoid	1	0	0	1	0	2.48
panda	6.92	5.62	1.23	5.62	37.39	ovoid	1	0	0	1	0	3.18
panda	7.68	5.05	1.52	5.05	29.8	pyriform	0	0	0	1	0	4.42
panda	7.02	5.65	1.24	5.62	29.65	prolate	0	2.69	2	1	0	3.29
panda	7.18	6.15	1.17	6.15	36.33	ovoid	0	1.6	2	1	0	3.39
panda	4.67	3.89	1.2	3.89	15.91	ovoid	0	0	0	1	0	2.61
panda	2.51	2.16	1.16	2.16	4.54	ovoid	0	0	0	1	0	1.5
panda	4.06	4.06	1	4.06	12.13	spherical	0	0	0	1	0	1.85
panda	6.49	6.49	1	6.49	33.53	spherical	0	1.01	3	1	0	2.77
panda	4.35	3.7	1.18	3.7	12.09	ovoid	0	0	0	1	0	1.3
panda	4.18	3.8	1.1	3.76	11.66	ovoid	2	0	0	1	0	1.44
panda	6.76	5.32	1.27	5.32	30.13	prolate	0	2.05	2	1	0	3.05
panda	4.52	3.69	1.22	3.69	15.1	prolate	0	1.24	2	1	0	2.06
panda	5.09	5.09	1	5.09	21.11	spherical	1	0	0	1	0	1.13
panda	3.03	2.88	1.05	2.88	8.12	ovoid	0	0	0	1	0	1.74
panda	4.94	4.23	1.17	4.23	17.6	prolate	0	0	0	1	0	1.85
panda	4.5	3.79	1.19	3.79	14.45	prolate	0	0	0	1	0	1.85
panda	7.47	6.09	1.23	6.09	39.18	prolate	0	0	0	1	0	3.55
panda	3.55	2.66	1.33	2.66	7.22	prolate	0	0	0	1	0	1.55
panda	4.1	3.69	1.11	3.69	13.07	prolate	0	0	0	1	0	1.54
panda	5.4	5.4	1	5.4	22.07	spherical	0	0	0	1	0	2.4
panda	3.17	3.17	1	3.17	8.09	spherical	0	0	0	1	0	1.33
panda	3.13	3.13	1	3.13	8.63	spherical	1	0	0	1	0	1.43
panda	5.59	4.12	1.36	4.12	19.12	prolate	0	0	0	1	0	2.76
panda	4.73	4.73	1	4.73	18.62	spherical	0	0	0	1	0	2.15
panda	4.18	3.47	1.2	3.47	12.87	prolate	1	0	0	1	0	2.29
panda	4.93	3.5	1.41	3.5	16.27	prolate	0	0	0	1	0	2.05
panda	3.18	2.67	1.19	2.67	7.8	prolate	1	0	0	1	0	1.02
panda	7.72	7.04	1.1	7.04	47.48	prolate	0	0	0	1	0	3.17
panda	4.4	3.39	1.3	3.39	15.43	prolate	0	0	0	1	0	2.09

panda	4.45	3.18	1.4	3.18	14.18	prolate	0	0	0	1	0	1.54
panda	4.85	4.69	1.03	4.69	18.14	spherical	0	0	0	1	0	1.65
panda	5.06	2.81	1.8	2.81	18.96	pyriform	0	0	0	1	0	1.14
panda	4	3.81	1.05	3.81	10.25	spherical	0	0	0	1	0	1.85
panda	5.02	3.17	1.58	3.17	26.04	prolate	0	0	0	1	0	2.79
panda	4.2	2.35	1.79	2.35	10.04	ovoid	0	0	0	1	0	1.54
panda	2.16	2.15	1	2.15	5	spherical	0	0	0	1	0	1.07
panda	2.87	1.84	1.56	1.84	5.7	prolate	0	0	0	1	0	1.23
panda	4.3	3.89	1.11	3.89	16.75	spherical	0	0	0	1	0	2.15
panda	2.97	2.77	1.07	2.77	7.5	spherical	0	0	0	1	0	1.33
panda	5.59	3.9	1.43	3.9	20.94	ovoid	0	2.34	1	1	0	2.11
panda	4.97	4.11	1.21	4.97	15.6	ovoid	0	0	0	1	0	2.3
panda	3.38	2.87	1.18	2.87	16.75	prolate	1	0	0	1	0	1.13
panda	3.07	2.66	1.15	2.66	7.19	spherical	0	0	0	1	0	1.13
panda	5.33	5.12	1.04	5.12	24	spherical	0	0	0	1	0	2.16
coula	7.6	7.6	1	7.6	36	spherical	0	0	0	1	2	4.5
coula	7.7	7.7	1	7.7	48	spherical	0	2.25	1	1	2	3.38
coula	2.5	2.5	1	2.5	8.27	spherical	0	0	0	1	0	1.54
coula	6.7	6.7	1	6.7	36	spherical	0	0	0	1	2	2.97
coula	7.36	7.36	1	7.36	48	spherical	0	0	0	1	2	3.45
coula	2.88	2.88	1	2.88	7.2	spherical	0	0	0	1	0	1.45
coula	6.15	6.15	1	6.15	27.39	spherical	0	0	0	1	2	2.79
coula	4	4	1	4	13	spherical	0	0	0	1	2	1.74
coula	4.41	4.41	1	4.41	14.55	spherical	1	0	0	1	2	2.15
coula	5.54	5.54	1	5.54	23.23	spherical	0	0	0	1	2	3.79
coula	8.53	8.53	1	8.53	57.11	spherical	0	0	0	1	2	4
coula	10.98	10.98	1	10.98	87.4	spherical	0	0	0	1	2	5.86
coula	8.76	8.76	1	8.76	61.12	spherical	0	0	0	1	2	4.31
coula	7.55	7.55	1	7.55	40.68	spherical	0	0	0	1	2	2.98
coula	5.12	5.12	1	5.12	40	spherical	0	0	0	1	2	3.29
coula	11.34	11.34	1	11.34	90.41	spherical	0	0	0	1	2	5.43
coula	4.73	4.73	1	4.73	18.5	spherical	0	0	0	1	2	2.35
coula	6.35	6.35	1	6.35	33.19	spherical	0	0	0	1	2	3.28
coula	5.09	5.09	1	5.09	30.3	spherical	0	0	0	1	2	2.56
coula	5.81	5.81	1	5.81	24	spherical	1	0	0	1	2	3.15
coula	6.76	6.76	1	6.76	32.16	spherical	1	0	0	1	2	3.28
coula	5.43	5.43	1	5.43	22.79	spherical	0	0	0	1	2	2.56
coula	4.71	4.71	1	4.71	19.28	spherical	0	0	0	1	2	2.07
coula	5.18	5.18	1	5.18	22.92	spherical	0	0	0	1	2	2.47
coula	7.58	7.58	1	7.58	42.52	spherical	0	0	0	1	2	4.13
coula	3.29	3.29	1	3.29	14.59	spherical	0	0	0	1	2	1.69
coula	6.35	6.35	1	6.35	37.24	spherical	0	0	0	1	2	2.97
coula	5.36	5.36	1	5.36	25.06	spherical	0	0	0	1	2	2.66
coula	5.23	5.23	1	5.23	18.26	spherical	1	0	0	1	2	2
coula	5.45	5.45	1	5.45	25.54	spherical	1	0	0	1	2	2.67
coula	4.13	4.13	1	4.13	15.29	spherical	0	0	0	1	2	1.54

aguila	7 00	7.00	1	7 00	16.9	amhaniaal	0	0	0	1	n	2.20
couia	7.00	7.00	1	7.00	40.0	spherical	0	0	0	1	2	5.50
coula	9.34	9.34	1	9.34	00.9	spherical	0	0	0	1	2	4.9
coula	6.64	6.64	1	6.64	30.14	spherical	1	0	0	1	2	2.56
coula	7.81	7.81	1	7.81	44.41	spherical	0	1.14	1	1	2	3.6
coula	3.44	3.44	1	3.44	9.67	spherical	0	0	0	1	0	1.44
coula	6.47	6.47	1	6.47	30.62	spherical	0	0	0	1	2	3.19
coula	6.88	6.88	1	6.88	32.11	spherical	0	1.14	1	1	2	2.76
coula	6.66	6.66	1	6.66	34.56	spherical	0	1.14	1	1	2	3.69
coula	4.15	4.15	1	4.15	13.52	spherical	0	1.62	2	1	2	1.85
coula	7.91	7.91	1	7.91	46.31	spherical	0	0	0	1	2	4.51
coula	5.92	5.92	1	5.92	24.25	spherical	1	0	0	1	2	2.46
coula	3.75	3.75	1	3.75	16.7	spherical	1	0	0	1	2	1.84
coula	9.5	8.18	1.16	8.18	64.16	spherical	1	0	0	1	2	3.69
coula	6.45	6.14	1.05	6.14	30.29	spherical	1	0	0	1	1	2.15
coula	8.88	8.51	1.04	8.51	55.31	spherical	0	0	0	1	2	3.07
coula	5.73	5.16	1.11	5.16	21.69	spherical	2	0	0	1	1	1.45
coula	3.9	3.43	1.14	3.43	9.36	oblate	2	0	0	1	0	1.65
coula	8.66	8.41	1.03	8.41	56.62	spherical	0	0	0	1	2	2.97
coula	6.63	6.51	1.02	6.51	32.19	spherical	0	0	0	1	2	2.46
napoleona	6.32	4.17	1.52	4.17	23.45	ovoid	0	0	0	1	1	2.26
napoleona	5.44	3.66	1.49	3.66	12	elongate ovoid	0	0	0	1	0	1.97
napoleona	5.84	5.64	1.04	5.64	20.17	spherical	0	0	0	1	0	2.06
napoleona	5.08	4.65	1.09	4.65	16.55	ovoid	0	0	0	1	0	1.85
napoleona	4.92	4.53	1.09	4.53	17.7	spherical	0	0	0	1	0	2.25
napoleona	4.76	4.63	1.03	4.63	15.39	spherical	2	0	0	1	0	1.81
napoleona	7.12	5.65	1.26	5.65	32.47	spherical	0	0	0	1	0	3.08
napoleona	6.36	4.71	1.35	4.71	22.32	spherical	0	0	0	1	0	2.11
napoleona	4.72	3.28	1.44	3.28	15.57	spherical	0	0	0	1	0	1.99
napoleona	3.55	2.69	1.32	2.69	7.14	spherical	1	0	0	1	0	1.54
napoleona	5.15	5.08	1.01	5.08	22.96	prolate	0	0	0	1	0	2.56
napoleona	4.75	3.41	1.39	3.41	11.63	ovoid	1	0	0	1	0	1.88
napoleona	4.22	4.17	1.01	4.17	15.78	ovoid	1	0	0	1	0	1.55
napoleona	3.53	3.16	1.12	3.16	7.8	polygon	0	0	0	1	0	2.44
napoleona	5.51	5.34	1.03	5.34	25.52	spherical	0	0	0	1	0	2.61
napoleona	4.35	3.44	1.26	3.44	13.89	ovoid	0	0	0	1	0	1.54
napoleona	4.96	3.73	1.33	3.73	18.9	triangular	1	0	0	2	0	2.25
napoleona	5.31	4.1	1.3	4.1	16.47	triangular	1	0	0	2	0	2.21
napoleona	3.79	3.5	1.08	3.5	12	prolate	0	0	0	1	0	2.39
napoleona	6.66	5.32	1.25	5.32	25.8	prolate	0	0	0	1	0	2.66
napoleona	5.71	5.26	1.09	5.26	23.09	- ovoid	1	0	0	1	0	2.25
napoleona	5.31	4.86	1.09	4.86	20.11	spherical	0	0	0	1	0	1.98
napoleona	4.78	4.71	1.01	4.71	19.64	spherical	1	0	0	1	0	2.09
napoleona	6.27	4.61	1.36	4.61	22.13	elongate ovoid	0	0	0	1	0	2.41
napoleona	6.49	6.07	1.07	6.07	31.17	spherical	0	0	0	1	0	2.76
napoleona	4.61	4.53	1.02	4.53	14.91	spherical	1	0	0	1	0	2.19
napoleona	5.07	4.63	1.1	4.63	20.34	spherical	0	0	0	- 1	0	1.96
Importonia	5.07	2.00	***	1.00	20.04	opiciticui	č	0	0		0	1.70

napoleona	4.51	3.69	1.22	3.69	13.93	spherical	0	0	0	1	0	1.64
napoleona	4.49	3.77	1.19	3.77	12.72	spherical	1	0	0	1	0	1.69
napoleona	3.99	3.89	1.03	3.89	12.09	spherical	0	0	0	1	0	1.54
napoleona	6.14	4	1.54	4	19.5	prolate	0	0	0	1	1	2.77
napoleona	5.02	4.61	1.09	4.61	19.58	prolate	0	0	0	1	0	2.66
napoleona	5.53	5.22	1.06	5.22	22.7	spherical	1	0	0	1	0	1.74
napoleona	7.2	2.9	2.48	2.9	15.98	triangular	1	0	0	2	0	2.36
napoleona	6.45	3.71	1.74	3.71	18.98	quadrangular	2	0	0	2	0	3.11
napoleona	6.96	4.29	1.62	4.29	22.36	quadrangular	2	0	0	2	0	3.52
napoleona	5.04	4.05	1.24	4.05	16.02	polygon	2	0	0	1	0	1.85
napoleona	7.71	5.43	1.42	5.43	33.27	elongate ovoid	0	0	0	1	0	4.03
napoleona	7.56	5.69	1.33	5.69	31.76	ovoid	1	0	0	1	0	4.2
napoleona	3.88	3 27	1 19	3 27	9.22	prolate	0	0	0	1	0	1.47
napoleona	2.67	2.46	1.09	2.46	6.5	spherical	0	0	0	1	0	1.13
napoloona	2.67	2.10	1.07	2.10	5.5	spherical	0	0	0	1	0	1.13
napoleona	2.00	2.50	1.04	2.50	2.90	spherical	1	0	0	1	0	0.72
napoleona	2.00	6.74	1.04	6.74	47.2	ovoid	2	0	0	1	0	2.28
napoleona	0.75	4.75	1.5	4.75	21.01	alon anto avoid	2	0	0	1	0	2.62
napoleona	7.25	4.75	1.70	4.75	22.05	eroligate ovolu	0	0	0	1	0	2.12
napoleona	7.23 E 27	0.23	1.70	4.75	10.90	ovoid	0	0	0	1	0	10.06
napoleona	0.06	4.75	1.70	4.75	10.00	ovoid	0	0	0	1	0	10.00
napoleona	9.00	7.09	1.70	7.09	40.55		0	0	0	1	0	4.65
napoleona	11.00	5.14	1.76	5.14	38.99	elongate ovoid	0	0	0	1	0	4.82
napoleona	10.00	4.5	1.76	4.5	38.99	elongate ovoid	0	0	0	1	0	5.79
gilbert	10.26	7.78	1.32	7.78	70.17	ovoid	1	0	0	1	0	3.99
gilbert	9	8.12	1.11	8.12	59.98	ovoid	1	0	0	1	0	2.47
gilbert	13.48	13.05	1.03	13.1	142.87	ovoid	1	0	0	1	0	4.51
gilbert	7.75	7.74	1	5.04	32.76	hemispherical	1	0	0	2	0	2.93
gilbert	14.555	14.33	1.02	1.33	163.84	spherical	1	0	0	1	0	5.44
gilbert	7.27	7.27	1	5.94	39.5	oblate conovoid	0	0	0	2	0	1.99
gilbert	8.4	8.08	1.04	8.08	62.07	hemispherical	1	0	0	2	0	3.79
gilbert	8.01	6.69	1.2	6.69	49.65	hemispherical	1	0	0	2	0	2.83
gilbert	12.79	10.98	1.16	10.98	119.09	ovoid	1	0	0	1	0	4.51
gilbert	7.18	7.18	1	5.02	29.29	hemispherical	1	0	0	2	0	2.63
gilbert	5.94	5.94	1	5.21	30.51	hemispherical	1	0	0	2	0	2.98
gilbert	4.56	4.56	1	2.42	8.18	hemispherical	1	0	0	2	0	1.19
gilbert	8.7	8.39	1.04	8.39	34.95	hemispherical	1	0	0	2	0	3.73
gilbert	7.34	7.34	1	5.72	65.33	hemispherical	1	0	0	2	0	2.81
gilbert	14.25	11.89	1.2	11.89	133.04	ovoid	2	0	0	1	0	6.04
gilbert	6.78	6	1.13	5.51	30.9	oblate	2	0	0	2	0	3.11
gilbert	13.72	11.68	1.17	11.68	131.85	conovoid ovoid	2	0	0	1	0	5.14
gilbert	16.01	12.44	1.29	12.4	167.1	ovoid	0	0	0	1	0	7.29
gilbert	10.25	9.22	1.11	9.22	84.46	ovoid	1	0	0	1	0	3.59
gilbert	17	14.56	1.17	14.56	166.92	ovoid	0	0	0	1	0	8.34
gilbert	15.12	13.58	1.11	13.58	154.6	ovoid	1	0	0	1	0	7.76
gilbert	7.74	7.74	1	5.42	30.66	hemispherical	1	0	0	2	0	2.63

gilbert	12.54	10.08	1.24	10.08	96.89	prolate	0	4.32	2	1	0	4.22
gilbert	8.31	8.16	1.02	8.16	51.53	oblate	2	0	0	2	0	4.1
gilbert	7.16	5.08	1.41	5.08	20.2	oblate	2	0	0	2	0	1.88
gilbert	7.62	7.62	1	6.88	34.42	oblate	2	0	0	2	0	3.79
gilbert	10.02	9.38	1.07	9.38	75.18	ovoid	1	0	0	1	0	5.03
gilbert	9.44	9.38	1.01	9.38	83.58	ovoid	1	0	0	1	0	5.39
gilbert	12.13	10.86	1.12	10.86	95.93	ovoid	1	0	0	1	0	5.53
gilbert	4.75	4.53	1.05	3	24.19	oblate	2	0	0	2	0	2.34
gilbert	9.76	8.54	1.14	8.54	67.71	ovoid	1	0	0	1	0	3.17
gilbert	5.44	5.44	1	2.06	12.16	hemispherical	1	0	0	2	0	1.65
gilbert	10.04	8.57	1.17	8.57	68.53	ovoid	1	0	0	1	0	4.1
gilbert	17.26	14.72	1.17	14.72	205.35	ovoid	2	2.63	1	1	0	7.87
gilbert	18.2	14	1.3	14	196.58	ovoid	1	5	3	1	0	9.74
gilbert	13.08	11.6	1.13	11.6	124.23	ovoid	1	0	0	1	0	6.06
gilbert	8.15	4.45	1.83	4.45	27	hemispherical	1	0	0	2	0	2.7
gilbert	5.49	5.46	1.01	5.46	25.01	spherical	0	0	0	1	0	2.05
gilbert	11.23	9.05	1.24	9.05	89	spherical	0	0	0	1	0	4.73
gilbert	7.84	7.76	1.01	7.76	46.55	oblate	1	0	0	2	0	2.61
gilbert	7.18	6.74	1.07	6.74	35.18	conovoid oblate	2	0	0	2	0	2.71
gilbert	6 64	5.95	1 12	5 95	33.45	conovoid	2	0	0	1	0	2 49
gilbort	10.67	10.34	1.12	10.34	99.27	spherical	2	0	0	1	0	5.16
gilbert	7.07	6 27	1.05	6 27	22.10	spherical	2	0	0	1	0	1.07
gilbert	7.07	5.02	1.11	0.37 E (2	32.19	spherical	2	0	0	1	0	1.97
gilbert	6.86	5.63	1.22	5.63	26.39	spherical	2	0	0	1	0	1.95
gilbert	7.66	6.78	1.13	6.78	41.03	spherical	1	0	0	1	0	1.95
gilbert	6.8	6.74	1.01	6.74	38.36	spherical	1	0	0	1	0	1.57
gilbert	9.13	8.34	1.09	8.34	68.58	hemispherical	1	0	0	2	0	3.07
gilbert	6.83	6.1	1.12	6.1	34.08	hemispherical	1	0	0	2	0	2.1
gilbert	5.29	5.09	1.04	5.09	22.94	hemispherical	1	0	0	2	0	1.54
eremo	3.99	3.99	1	3.99	12.61	spherical	0	0	0	1	0	1.64
eremo	2	2	1	2	3.39	spherical	0	0	0	1	0	0.7
eremo	1.88	1.88	1	1.88	4.2	spherical	0	0	0	1	0	0.74
eremo	4.73	4.73	1	4.73	18.9	spherical	0	0	0	1	0	2.05
eremo	4.65	3.91	1.19	3.91	14.46	prolate	0	0	0	1	0	1.35
eremo	3.89	3.89	1	3.89	11.09	spherical	0	0	0	1	0	1.17
eremo	4.63	4.63	1	4.63	16.53	spherical	0	0	0	1	1	2.05
eremo	3.1	3.1	1	3.1	9	spherical	0	0	0	1	0	1.25
eremo	4.9	4.9	1	4.9	20.14	spherical	0	0	0	1	0	2.65
eremo	2.76	2.76	1	2.76	6.57	spherical	0	0	0	1	0	1.74
eremo	3.38	3.38	1	3.38	9.97	spherical	0	0	0	1	0	1.44
eremo	2.63	2.63	1	2.63	5.17	spherical	0	0	0	1	0	1.13
eremo	4.13	4.13	1	4.13	13.66	spherical	0	0	0	1	0	2.67
eremo	2.58	2.58	1	2.58	5.1	spherical	0	0	0	1	0	1.3
eremo	4.5	4.1	1.1	4.1	14.31	prolate	0	0	0	1	0	1.74
eremo	4.05	3.96	1.02	3.96	12.67	prolate	1	0	0	1	1	2.07

eremo	3.05	3.05	1	3.05	9	spherical	0	0	0	1	0	1.65
eremo	4.06	3.83	1.06	3.83	13.63	prolate	0	0	0	1	0	1.85
eremo	3.42	3.42	1	3.42	11	spherical	0	0	0	1	0	1.14
eremo	4.32	4.32	1	4.32	15	spherical	0	0	0	1	0	1.81
eremo	4.12	4.12	1	4.12	14.91	spherical	0	0	0	1	1	1.7
eremo	3.15	3.15	1	3.15	9.46	spherical	0	0	0	1	0	1.43
eremo	3.43	3.43	1	3.43	10.89	spherical	1	0	0	1	0	1.95
eremo	3.89	3.89	1	3.89	12.97	spherical	0	0	0	1	1	1.79
eremo	3.36	3.36	1	3.36	9.65	spherical	1	0	0	1	0	1.45
eremo	2.77	2.77	1	2.77	7.88	spherical	1	0	0	1	0	1.44
eremo	4.43	4.43	1	4.43	15	spherical	0	0	0	1	0	2.06
eremo	2.78	2.78	1	2.78	7.15	spherical	0	0	0	1	0	1.55
eremo	2.58	2.58	1	2.58	5.78	spherical	0	0	0	1	0	0.93
eremo	4.11	4.11	1	4.11	12.89	spherical	1	0	0	1	1	2.05
eremo	2.4	2.4	1	2.4	4.68	spherical	0	0	0	1	0	0.83
eremo	2.89	2.89	1	2.89	7.61	spherical	1	0	0	1	0	1.14
eremo	3.07	3.07	1	3.07	7.23	spherical	0	0	0	1	0	1.44
eremo	2.39	2.39	1	2.39	4.55	spherical	0	0	0	1	0	1.13
eremo	2.47	2.47	1	2.47	5.08	spherical	0	0	0	1	0	1.02
eremo	4.58	3.86	1.19	3.86	14	prolate	0	0	0	1	0	2.46
eremo	5.14	5.14	1	5.14	21	spherical	0	0	0	1	0	2.25
eremo	2.7	2.7	1	2.7	7	spherical	0	0	0	1	0	1.54
eremo	3.89	3.89	1	3.89	12	spherical	0	0	0	1	0	1.64
eremo	3.69	3.69	1	3.69	10.55	spherical	0	0	0	1	0	1.74
eremo	3.49	3.49	1	3.49	7.6	spherical	0	0	0	1	0	1.55
eremo	3.07	2.17	1.41	2.17	5.64	hemispherical	1	0	0	2	0	1.62
eremo	2.17	2.17	1	2.17	3.43	spherical	0	0	0	1	0	1.03
eremo	7.07	6.37	1.11	6.37	17.69	spherical	0	0	0	1	0	1.95
eremo	6.86	5.63	1.22	5.63	8.51	spherical	0	0	0	1	0	1.23
eremo	7.66	6.78	1.13	6.78	6.27	spherical	0	0	0	1	0	0.92
eremo	6.8	6.74	1.01	6.74	12.3	spherical	0	0	0	1	0	2.15
eremo	9.13	8.34	1.09	8.34	12.35	spherical	0	0	0	1	0	1.84
eremo	6.83	6.1	1.12	6.1	6	spherical	0	0	0	1	0	0.92
eremo	5.29	5.09	1.04	5.09	6.28	spherical	0	0	0	1	0	1.13
calpo	2.6	2.6	1	2.6	5.33	spherical	0	0	0	1	0	1.25
calpo	2.16	1.75	1.23	1.75	3.49	ovoid	0	0	0	1	0	0.72
calpo	2.36	2.36	1	2.36	4.13	spherical	0	0	0	1	0	0.83
calpo	2.66	2.66	1	2.66	6	spherical	0	0	0	1	0	1.52
calpo	1.84	1.84	1	1.84	3.13	spherical	0	0	0	1	0	1.33
calpo	2.29	2.29	1	2.29	4.4	spherical	0	0	0	1	0	1.33
calpo	2.27	2.27	1	2.27	4	spherical	0	0	0	1	0	0.7
calpo	1.81	1.81	1	1.81	3.34	spherical	0	0	0	1	0	0.93
calpo	1.69	1.69	1	1.69	2.3	spherical	0	0	0	1	0	0.94
calpo	2.15	2.15	1	2.15	3.12	spherical	0	0	0	1	0	0.93
calpo	2.66	2.66	1	2.66	3.52	spherical	0	0	0	1	0	1.59
calpo	2.43	2.43	1	2.43	3.51	spherical	0	0	0	1	0	0.93

calpo	1.92	1.92	1	1.92	3.29	spherical	0	0	0	1	0	1.23
calpo	2.16	2.16	1	2.16	4.6	spherical	0	0	0	1	0	1.13
calpo	2.05	2.05	1	2.05	3.31	spherical	1	0	0	1	0	1.05
calpo	2.87	2.87	1	2.87	6.4	spherical	0	0	0	1	0	1.33
calpo	2.05	2.05	1	2.05	4	spherical	0	0	0	1	0	0.92
calpo	1.96	1.96	1	1.96	3.43	spherical	0	0	0	1	0	0.61
calpo	2.35	2.35	1	2.35	4.35	spherical	0	0	0	1	0	0.92
calpo	2.15	2.15	1	2.15	5.1	spherical	0	0	0	1	0	0.83
calpo	1.95	1.95	1	1.95	4.08	spherical	0	0	0	1	0	0.72
calpo	2.25	2.25	1	2.25	6.11	spherical	0	0	0	1	0	1.11
calpo	2.25	2.25	1	2.25	4.91	spherical	0	0	0	1	0	1.03
calpo	2.46	2.46	1	2.46	4.59	spherical	0	0	0	1	0	1.03
calpo	1.95	1.95	1	1.95	3.78	spherical	0	0	0	1	0	0.93
calpo	2.35	2.35	1	2.35	4.23	spherical	0	0	0	1	0	0.92
calpo	2.85	2.85	1	2.85	8.51	spherical	0	0	0	1	0	1.85
calpo	2.36	2.36	1	2.36	4.51	spherical	0	0	0	1	0	1.23
calpo	1.95	1.95	1	1.95	4.3	spherical	1	0	0	1	0	0.72
calpo	1.65	1.65	1	1.65	2.28	spherical	0	0	0	1	0	0.72
calpo	2.57	2.57	1	2.57	5.33	spherical	0	0	0	1	0	1.2
calpo	2.76	2.76	1	2.76	6.52	spherical	0	0	0	1	0	1.33
calpo	2.77	2.77	1	2.77	6.09	spherical	0	0	0	1	0	1.57
calpo	1.45	1.45	1	1.45	1.98	spherical	0	0	0	1	0	0.72
calpo	2.46	2.46	1	2.46	5.3	spherical	0	0	0	1	0	0.92
calpo	1.95	1.95	1	1.95	2.6	spherical	0	0	0	1	0	0.82
calpo	2.15	2.15	1	2.15	3.52	spherical	0	0	0	1	0	0.83
calpo	1.74	1.74	1	1.74	2.46	spherical	0	0	0	1	0	0.61
calpo	2.98	2.98	1	2.98	5.44	spherical	0	0	0	1	0	1.02
calpo	1.95	1.95	1	1.95	4.11	spherical	0	0	0	1	0	1.2
calpo	2.07	2.07	1	2.07	3.96	spherical	0	0	0	1	0	1.04
calpo	2.46	2.05	1.2	2.05	5.87	hemispherical	1	0	0	2	0	1.02
calpo	2.53	2.05	1.23	2.05	6.1	ovoid	0	0	0	1	0	1
calpo	2.96	2.38	1.24	2.38	5.72	prolate	0	0	0	1	0	1.39
calpo	2.82	2.82	1	2.82	6.15	spherical	0	0	0	1	0	1.41
calpo	2.31	2.24	1.03	2.24	5.34	hemispherical	1	0	0	1	0	1.15
calpo	2.76	1.94	1.42	1.94	4.03	hemispherical	1	0	0	1	0	1.38
calpo	2.68	2.46	1.09	2.46	3.86	hemispherical	1	0	0	1	0	1.34
calpo	2.96	2.1	1.41	2.1	4.45	ovoid	0	0	0	1	0	1.48
calpo	2.5	2.5	1	2.5	4.84	spherical	0	0	0	1	0	1.25
sarcoph	14.16	14.16	1	12.57	143.83	quadrangular	6	0	0	3	0	5.92
sarcoph	20.9	13.71	1.52	13.71	192.11	polygon	7	0	0	3	0	5.64
sarcoph	17.49	12.45	1.4	12.45	153.67	polygon	8	0	0	3	0	4.4
sarcoph	21.84	15.25	1.43	15.25	294.44	polygon	9	0	0	3	0	6.45
sarcoph	12.56	11.14	1.13	11.14	136.42	polygon	6	0	0	3	0	6.63
sarcoph	14.14	11.62	1.22	11.62	141.63	polygon	4	0	0	3	0	5.94
sarcoph	11.87	9.98	1.19	9.98	113.99	quadrangular	6	0	0	3	0	5.5
sarcoph	11.27	9.98	1.13	9.88	125.26	polygon	7	0	0	3	0	4.66

sarcoph	12.47	12.21	1.02	12.21	137.97	polygon	6	0	0	3	0	5.76
sarcoph	11.2	11.1	1.01	11.1	104	polygon	7	0	0	3	0	4.73
sarcoph	7.96	5.83	1.37	5	42.99	quadrangular	6	0	0	3	0	3
sarcoph	5.48	5.04	1.09	4.55	25	quadrangular	5	0	0	3	0	2.3
sarcoph	18.22	12.52	1.46	12.5	176	quadrangular	6	0	0	3	0	5.08
sarcoph	14 68	14 68	1	14 68	147	polygon	7	0	0	3	0	4 03
sarcoph	10.92	9.43	1 16	9.43	72	polygon	7	0	0	3	0	4 45
sarcoph	10.02	8.76	1.10	8.76	82	quadrangular	6	0	0	3	0	2.91
sarcoph	11.45	10.45	1.15	10.45	116	quadrangular	6	0	0	3	0	6.38
sarcoph	12.56	11.22	1.1	11 22	125.67	quaurangulai	7	0	0	2	0	2.60
sarcoph	16.40	0.72	1.4	0.72	133.07	polygon	6	0	0	2	0	5.09
sarcoph	10.49	9.75	1.09	9.75	140	concaveconve	0	0	0	3	0	5.45
sarcoph	12 58	12 23	1.03	12 23	120.81	x polygon	7	0	0	3	0	6
sarcoph	12.50	10.12.25	1.00	10	06.91	polygon	7	0	0	2	0	7 4 4
sarcoph	14.27	11 21	1.22	11 21	110.01	polygon	6	0	0	2	0	10.01
sarcoph	19.26	11.21	1.20	11.21	117.06	homionhorical	1	0	0	2	0	6.24
sarcoph	12.50	10.95	1.05	10.95	10.95	homiophorical	1	U E 02	4	2	0	0.24 E 16
sarcopn	12.5	10.85	1.15	10.85	10.85	nemispherical	3	5.03	4	2	0	5.16
sarcopn	17	10.04	1.69	10.4	131.55	polygon	9	0	0	3	0	6.1
sarcoph	14.87	10.67	1.39	10.67	141.83	polygon	7	0	0	3	0	5.52
sarcoph	9.88	8.25	1.2	8.25	85.73	polygon	7	0	0	3	0	4.92
sarcoph	10.04	6.69	1.5	6.69	70.08	polygon	7	0	0	3	0	4.85
sarcoph	10.82	9.14	1.18	9.14	85.49	polygon	7	0	0	3	0	4.2
sarcoph	9.91	8.44	1.17	8.44	88.71	polygon	7	0	0	3	0	4.9
sarcoph	10.86	9.58	1.13	9.58	91.81	polygon	7	0	0	3	0	4.72
sarcoph	10.2	9.13	1.12	9.13	91.65	polygon	6	0	0	3	0	5.27
sarcoph	15.69	9.65	1.63	9.65	130.79	polygon	7	0	0	3	0	6.16
						x						
sarcoph	10.7	8.03	1.33	8.03	79.75	polygon	6	0	0	3	0	4.64
sarcoph	10.86	9.73	1.12	9.76	85.53	polygon	7	0	0	3	0	5.754
sarcoph	8.78	5.57	1.58	5.57	51.99	polygon	6	0	0	3	0	4.45
sarcoph	20.15	15.79	1.28	5.57	308.59	polygon	6	0	0	3	0	9.24
sarcoph	20.81	16.35	1.27	5.57	232.32	polygon	7	0	0	3	0	6.96
sarcoph	23.75	12.01	1.98	5.57	181.22	polygon	7	0	0	3	0	6.07
sarcoph	17.1	14.59	1.17	5.57	205.63	polygon	9	0	0	3	0	13.16
sarcoph	19.99	13.95	1.43	5.57	163.25	polygon	9	0	0	3	0	5.95
sarcoph	16.41	12.4	1.32	5.57	193.32	polygon	6	0	0	3	0	9.76
sarcoph	17.72	15	1.18	5.57	275.54	polygon	7	0	0	3	0	9.31
sarcoph	18.26	16.95	1.08	7.53	61.53	polygon	6	0	0	3	0	3.58
sarcoph	11	9.09	1.21	9.09	69.42	polygon	6	0	0	3	0	3.62
sarcoph	9.63	9.45	1.02	9.45	82.19	polygon	7	0	0	3	0	4.92
sarcoph	12.47	10.5	1.19	10.5	102.83	polygon	7	0	0	3	0	4.7
sarcoph	9.01	8.87	1.02	8.87	55.17	polygon	7	0	0	3	0	4.83
sarcoph	9.41	7.81	1.2	7.81	60.64	polygon	5	0	0	3	0	4.5
sarcoph	20.15	15.79	1.28	10	258.38	polygon	9	0	0	3	0	9.77
xylia	6.27	5.27	1.19	5.27	26.26	prolate	0	0	0	1	0	1.77
xylia	2.98	2.7	1.1	2.7	6.67	prolate	0	0	0	1	0	0.93

xylia	4.27	3.69	1.16	3.69	13.63	prolate	0	0	0	1	0	1.23
xvlia	29	2.26	1.28	2 69	5 15	hemispherical	1	0	0	2	0	1 13
vylia	2.81	2 59	1.08	2.59	5 35	hemispherical	1	0	0	2	0	13
xylia	4.05	2.57	1.00	2.57	8.46	ovoid	0	0	0	1	0	1.5
xylia	2.00	2.7	1.5	2.7	8.97	prolato	1	0	0	1	0	2.27
xylia	3.30	2.07	1.1	2.07	7	protate	1	0	0	1	0	1.02
xyna	2.87	2.87	1 10	2.87	11 174	spherical	0	0	0	1	0	1.03
xylia	4.15	3.69	1.12	3.69	-	ovoid	0	0	0	1	0	1.79
xylia	2.77	2.66	1.04	2.66	5	prolate	0	0	0	1	0	0.93
xylia	5.34	3.62	1.48	3.62	14.56	ovoid	0	0	0	1	0	1.96
xylia	3.38	3.28	1.03	3.28	10.53	spherical	0	0	0	1	0	1.62
xylia	5.2	5.2	1	5.2	19	spherical	0	0	0	1	0	2.32
xylia	5.25	4.49	1.17	4.49	16.75	ovoid	0	0	0	1	0	1.64
xylia	4.78	4.78	1	4.78	20	spherical	1	0	0	1	0	1.85
xylia	3.38	3.07	1.1	3.07	8.9	prolate	0	0	0	1	0	1.64
xylia	4.76	3.71	1.28	3.71	14.12	prolate	1	0	0	1	0	1.89
xylia	4.22	4.13	1.02	4.13	15.62	ovoid	2	0	0	1	0	2.17
xylia	3.4	3.18	1.07	3.18	9.08	spherical	1	0	0	1	0	1.65
xylia	5.6	4.65	1.2	4.65	21.12	prolate	1	0	0	1	0	2.29
xylia	4.45	3.44	1.29	3.44	11.84	ovoid	1	0	0	1	0	1.42
xylia	4.18	4.18	1	4.18	13.66	spherical	0	0	0	1	0	1.44
xylia	2.99	2.64	1.13	2.64	6.71	prolate	1	0	0	1	0	1.02
xylia	3.2	3.2	1	3.2	8.57	spherical	1	0	0	1	0	1.85
xylia	3.83	2.11	1.82	2.11	10.05	hemispherical	1	0	0	2	0	1.45
xylia	4.06	3.21	1.26	3.21	10.82	hemispherical	1	0	0	2	0	2.25
xylia	5.31	4.12	1.29	4.12	15.35	prolate	1	0	0	1	0	1.59
xylia	5.77	5.04	1.14	5.04	23.53	prolate	1	0	0	1	0	2.16
xylia	4.22	3.21	1.31	3.21	10.42	ovoid	0	0	0	1	0	1.64
xylia	6	4.51	1.33	4.51	20.11	ovoid	1	0	0	1	0	2.11
xylia	5.13	2.98	1.72	2.98	15.29	hemispherical	1	0	0	2	0	1.74
xylia	5.45	4.18	1.3	4.18	17.82	prolate	1	0	0	1	0	3.18
xylia	2.62	2.62	1	2.62	5.76	spherical	0	0	0	1	0	0.82
xylia	2.2	2.2	1	2.2	4	spherical	0	0	0	1	0	1
xylia	4.93	4.43	1.11	4.43	17	spherical	1	0	0	1	0	2.11
xylia	6.21	5.51	1.13	5.51	29.98	prolate	1	0	0	1	0	2.05
xylia	4.64	3.55	1.31	3.55	11.17	ovoid	1	0	0	1	0	0.72
xvlia	5.45	4.03	1.35	4.03	16.51	ovoid	1	0	0	1	0	1.13
xvlia	3.84	3.26	1.18	3.26	11.71	prolate	1	0	0	1	0	1.55
xvlia	6.56	3.43	1.91	3.43	6.56	prolate	2	0	0	2	0	1.3
xvlia	4.6	4.34	1.06	4.34	17.95	prolate	1	0	0	1	0	1.95
xvlia	4 61	3 78	1 22	3 78	14 33	prolate	0	0	0	1	õ	1 74
xylia	3.97	3.13	1 25	3 13	10.24	ovoid	2	0	0	1	0	1 39
vylia	5.62	5.42	1.25	5.13	25.45	ovoid	- 1	0	0	1 1	0	1.84
vulia	4.5	2 22	1.05	2 22	10	ovoid	1 ()	0	0	1	0	0.04
vulia	5.02	47	1.07	47	22.2	enhorical	2	0	0	1	0	1.55
xylic	3.02 3.70	+./	1.07	4./ 2.26	22.2 Q 1E	spherical	∠ ว	0	0	1	0	1.33
xyiia	2.78	2.30	1.18	2.36	6.15	spherical	1	0	0	1	0	1.33
xylıa	2.97	2.46	1.21	2.46	6	spnerical	1	U	0	1	U	1.33

 xylia	3.09	2.87	1.08	2.87	7.75	spherical	1	0	0	1	0	1.57
xylia	3.85	3.25	1.18	3.25	11.43	spherical	1	0	0	1	0	1.25
treculia	8.91	5.07	1.76	5.07	39.15	ovoid	0	0	0	1	0	3.63
treculia	7.5	4.92	1.52	4.92	25.04	oblate	0	0	0	1	0	3.4
treculia	8.38	6.99	1.2	6.99	38.74	ovoid	1	0	0	1	0	3.42
treculia	4.81	4.31	1.12	4.31	12.82	triangular	3	0	0	2	0	1.9
treculia	6.97	5.21	1.34	5.21	29.15	ovoid	0	0	0	1	0	2.53
treculia	11.6	8.22	1.41	8.22	66.6	ovoid	0	0	0	1	0	4.1
treculia	7.83	5.74	1.36	5.74	30.67	oblate conovoid	0	0	0	1	0	3.04
treculia	4.94	4.18	1.18	4.18	14.95	oblate	0	0	0	1	0	2.47
treculia	6.91	6.11	1.13	6.11	36.2	ovoid	0	0	0	1	0	2.75
treculia	7.91	5.86	1.35	5.86	29	ovoid	0	0	0	1	0	3.21
treculia	6.52	4.92	1.33	4.92	27.78	ovoid	1	0	0	1	0	2.49
treculia	5.78	4.57	1.26	4.57	23.98	ovoid	1	0	0	1	0	1.65
treculia	8.43	5.91	1.43	5.91	34.9	ovoid	0	0	0	1	0	3.19
treculia	5.93	5.03	1.18	5.03	27.5	ovoid	1	0	0	1	0	2.97
treculia	6.16	4.97	1.24	4.97	22.8	ovoid	0	0	0	1	0	1.95
treculia	5.12	4.81	1.06	4.81	18.45	ovoid	0	0	0	1	0	2.05
treculia	7.41	5.74	1.29	5.74	35.56	ovoid	0	0	0	1	0	2.95
treculia	6.96	5.65	1.23	5.65	31.28	ovoid	0	0	0	1	0	1.87
treculia	15.73	8.65	1.82	8.65	112.17	pyriform	0	0	0	1	0	6.65
treculia	6.69	4.57	1.46	4.57	21.49	oblate conovoid	0	0	0	1	0	2.66
treculia	7.36	5	1.47	5	29.18	pyriform	0	0	0	1	0	2.9
treculia	4.99	4.36	1.14	4.36	20.12	spherical	1	0	0	1	0	1.88
treculia	6.7	6.42	1.04	6.42	33.52	ovoid	0	0	0	1	0	3.08
treculia	6.92	5.28	1.31	5.28	28.34	ovoid	0	0	0	1	0	2.66
treculia	9.03	7.33	1.23	7.33	50.23	ovoid	0	2.03	2	1	0	2.82
treculia	9.42	7.99	1.18	7.99	59.23	plano-convex	0	1.85	1	1	0	3.66
treculia	11.27	7.33	1.54	7.33	67.5	ovoid	0	0	0	1	0	4.77
treculia	6.7	6.05	1.11	6.05	31.26	ovoid	0	0	0	1	0	3.35
treculia	8.46	6.53	1.3	6.53	39.46	ovoid	0	0	0	1	0	2.25
treculia	7.67	6.64	1.16	6.64	35.62	prolate	0	0	0	1	0	2.77
treculia	6.65	5.32	1.25	5.32	28.98	ovoid	1	0	0	1	0	2.66
treculia	10.58	7.47	1.42	7.47	60.42	ovoid	0	0	0	1	0	4.55
treculia	5.68	5.31	1.07	5.31	23.85	hemispherical	1	0	0	1	0	2.07
treculia	6.43	5.09	1.26	5.09	24.92	ovoid	0	0	0	1	0	1.85
treculia	8.99	6.33	1.42	6.33	46.95	ovoid	0	0	0	1	0	4.54
treculia	7.97	5.58	1.43	5.58	33.01	prolate	0	0	0	1	0	2.44
treculia	6.11	5.74	1.06	5.74	28.51	hemispherical	0	0	0	1	1	2.93
treculia	7.15	5.47	1.31	5.47	31.15	ovoid	1	0	0	1	0	3.21
treculia	7.34	5.6	1.31	5.6	32.68	ovoid	0	0	0	1	0	3.2
treculia	8.17	4.98	1.64	4.98	33.67	plano-convex	0	0	0	1	0	3.98
treculia	3.08	2.97	1.04	2.97	7.5	spherical	0	0	0	1	0	1.23
treculia	3.29	2.97	1.11	2.97	8.41	spherical	0	0	0	1	0	1.43
 treculia	7.17	5.19	1.38	5.19	26.68	ovoid	0	7.7	5.84	1	0	2.83

treculia	12.47	10.07	1.24	10.07	89.85	ovoid	0	0	0	1	0	5.85
treculia	7.23	7.06	1.02	7.06	37.1	spherical	0	0	0	1	1	3.48
treculia	13.32	10.14	1.31	10.14	93.77	ovoid	0	0	0	1	0	6.33
treculia	5.96	4.1	1.45	4.1	20.23	hemispherical	0	0	0	1	0	2.98
treculia	5.04	4.42	1.14	4.42	18.39	hemispherical	0	0	0	1	0	2.52
treculia	9.73	6.58	1.48	6.58	47.73	ovoid	0	0	0	1	0	3.91
treculia	9.63	8.5	1.13	8.5	58.52	prolate	1	0	0	1	0	4.1

Appendix table 7: Microremain variables used for identification model.

Variable	Description	Metric
Shared varia	bles	
Length	Maximum diameter (µm), measured from spine tip to spine tip	Numeric
		(µm)
Width	Maximum diameter (µm) perpendicular to the maximum diameter	Numeric
		(µm)
LW Ratio	Length to width ratio	Numeric
		(µm)
Area	Total observable area in a 2D plane	Numeric
		(µm²)
Shape	Ovoid, elongate ovoid, pyriform, oblate conovoid, elongate conovoid, hemispherical,	16
	triangular, quadrangular, polygon, polygon concave-convex, angularpoint, angulate	descriptors
	elongate, ovoid concave-convex, prolate concave	
Starch specif	ic	
Facets	Total number of maximum observable facets	Counts
Lam	Lamellae presence and distinctness	0-3 scale
Dist	Distance of longest arm of cross observed on cross-polarised light	Numeric
Striaelen	Average length of radial striae/cracks visible on the starch	Numeric
Striaeno	Number of radial striae/cracks visible on the starch	Counts
Туре	simple, semi-compound or compound classification	3 descriptors
Phytolith spe	ecific	
Irregul	Measure of phytolith surface irregularity	0-4 scale
Spinelen	Estimated mean spine length: the mean length of spines approximately parallel with the	Numeric
	viewing plane	(µm)
Spineno	Number of spines visible in entirety in the viewing field. Spines were counted value if	Numeric
	their base was not obscured by the phytolith.	
Conjoined	Score of phytolith attachment to other phytoliths	1-2 scale

Appendix table 8: Random forest phytolith identification model. Using spheroid, globular morphotypes only. Identification rate=rate of successful identification per genus.

Number of varia	Number of variables tried at each split (mtry)15											
Tune length 3												
Tree number						500						
Out of bag estim	ate of error rate	2				25.75 %						
Confusion matrix	x											
	Aframomum	Ancistrophyllum	Elaeis	Eremospatha	Sarcophrynium	Identification						
						rate						
Aframomum	39	3	1	5	2	0.78						
Ancistrophyllum	3	32	3	12	0	0.64						
Elaeis	2	3	40	5	0	0.8						
Eremospatha	5	11	1	33	0	0.66						
---------------	---	----	---	----	----	------						
Sarcophrynium	2	0	1	0	47	0.94						

Appendix table 9: Random forest starch identification model. Identification rate=rate of successful identification per genus.

Number of varia	bles trie	ed at e	ach sp	olit (mt	ry)								14	
Tune length													3	
Tree number													500)
Out of bag estimation	ate of e	rror ra	ite										32.	77 %
Confusion matrix	¢													
	Aframomum	Calpocalyx	Cola	Coula	Eremospatha	Gilbertiodendron	Napoleona	Panda	Piper	Sacoglottis	Sarcophrynium	Treculia	Xylia	Identification rate
Aframomum	45	1	0	0	0	0	0	0	2	0	0	1	1	0.9
Calpocalyx	0	40	0	0	7	0	0	2	0	0	0	0	1	0.8
Cola	0	0	26	0	0	3	0	2	0	5	0	11	3	0.52
Coula	0	0	0	44	3	0	0	0	0	2	0	0	1	0.88
Eremospatha	0	10	0	0	31	0	0	7	0	0	0	0	2	0.62
Gilbertiodendron	0	0	4	0	0	38	1	0	0	7	0	0	0	0.76
Napoleona	0	2	0	0	1	1	18	7	0	2	0	8	11	0.36
Panda	0	3	1	0	6	0	11	11	0	0	0	6	12	0.22
Piper	2	0	0	0	0	0	0	0	47	1	0	0	0	0.94
Sacoglottis	0	0	0	0	0	6	0	0	0	43	0	0	1	0.86
Sarcophrynium	0	0	0	0	0	2	0	0	1	0	47	0	0	0.94
Treculia	0	0	7	0	0	2	4	6	0	1	0	26	4	0.52
Xylia	0	3	0	0	6	0	7	7	0	3	0	3	21	0.42

	Chimp	Tina	Agathe	Rubra	Mkubwa	Clyde	Kendo	Leo	Lefkas	Zerlina	Castor	Fanny	Goma	Hector	Brutus	Noah	Ondine	Venus	Bijou	Dorry	Oreste	13438	Loukou	Piment	Leonard	Bambou	Ophelia
Starches		4	9	7	-	4	-	5	1	-	2	54	16	2	3	5	-	16	1	4	2	15	1	-	-	-	-
Possible starches		4	4	3	-	-	-	-	-	-	5	-	7 14	0	11	1	-	2	-	1	2	-	2	-	-	-	1
Phytoliths	Spheroid echinate	14	71	9	4	18	18	100	1	11	5	98	70	2	12	3	15	58	7	11	3	69	8	-	-	-	-
	Long cell	3	3	0 1 0	1	2	1 12	9	0 3	0 17	5 -	3	14	1 -	9 4	0 2	1	4	2 1	2 9	4 2	3	3	-	-	-	-
	Cylindroid	1	-	1	-	-	2	1	-	-	2	-	-	-	1	-	1	4	2	1	-	-	4	-	-	-	-
	Grass short cell	-	3	2	-	3	2	1	-	-	1	-	1	-	7	2	-	3	-	2	-	-	1	-	-	-	-
	Hair cell	-	2	3	3	-	6	1	-	3	3	1	3	1	6	6	4	7	4	6	-	3	3	-	-	-	-
	Acicular hair cell	1	-	-	-	-	-	-	-	1	-	1	2	-	-	1	-	3	1	-	2	-	-	-	-	-	-
	Bulliform	3	3	3	-	-	10	3	1	1	-	5	3	1	4	1	2	4	2	4	1	1	1	-	-	-	-
	Parallepipedal	-	2	3	1	2	11	5	2	6	-	-	1	-	4	2	1	5	3	7	-	2	-	-	-	-	-
	Plate	1	-	1	-	-	2	1	1	1	-	-	1	-	2	-	-	1	-	2	-	-	-	-	-	-	-
	Undenti. phytolith	6	9	7	2	1	7	5	2	7	4	-	2	1	3	3	1	7	2	15	1	2	2	-	-	-	-
	Tracheid	-	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-	-	-
	Ellipsoid	-	-	-	-	-	-	-	-	1	-	1	1	-	1	-	1	1	-	-	-	1	-	-	-	-	-
Unsilicified plants cells	Monocot	-	1	1	-	-	-	-	-	3	1	-	2	1	3	-	-	-	-	-	-	-	-	-	-	-	-
	Dicot	-	3	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-	1	-	-	2	-	-	-	-	-
	Unclear	6	10	1 3	-	-	6	1	6	3	3	7	4	2	14	1 4	1	2	1 2	3	1	4	1	-	-	1	-
	Stoma	-	-	-	-	-	1	-	-	-	-	1	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-
	Dicot stoma	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	9	-	-	-	-	-	1	-	-	-	-
	Palm	-	-	-	-	-	-	-	-	-	-	2	-	-	2	-	-	-	-	1	-	-	-	-	-	-	-
	Spiral thickening	-	-	1 3	-	-	-	-	-	-	-	-	3	-	-	-	-	-	1	-	-	2	-	-	-	-	-
	Honeycomb sheet	-	-	-	-	-	2	-	-	-	-	-	2	-	3	2	-	-	1	-	-	1	-	-	-	-	-
	Stellate hair	-	-	-	-	-	1	-	-	-	-	-	-	-	2	-	-	-	-	-	-	1	-	-	-	-	-
	Hairs	-	8	1	1	3	14	8	7	1	2	1	2	2	1	6	-	-	2	-	-	3	-	-	-	-	-

Appendix table 10: All recovered microremains in each dental calculus sample. M=many.

Jigsaw	-	-	2	-	-	-	-	-	-	-	-	3	-	-	9	-	-	4	-	-	-	-	-	-	-	-
Tracheid	-	-	-	-	-	1	-	-	-	-	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-
Fungal spore	1	-	Μ	-	-	-	-	М	М	М	-	М	М	М	М	-	-	-	-	-	М	М	-	-	-	1
Diatom	-	-	-	1	-	-	1	1	-	5	1	1	1	1	-	-	1	2	-	-	1	-	-	-	-	-
Pollen	-	-	-	-	-	-	1	-	-	-	5	1	3	-	-	-	2	5	2	-	2	-	-	-	-	-
Cystolith	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	-	-	1	-	-	-	-	-
Barbule	-	-	-	-	-	-	-	-	-	-	2	-	-	-	1	-	-	-	-	-	2	-	-	-	-	-
Indeterminate rod	1	-	-	-	-	-	-	-	-	-	-	8	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Possible starch amyloplast (Aframomum?)	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oxalate																					15	-				
Falcates	-	-	-	-	-	-	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cup hair	-	-	-	-	-	9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Feather hair	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mammal hair	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Insects	-	-	-	-	-	-	-	-	1	7	2	-	-	-	-	-	-	-	1	-	1	-	-	-	-	-
Insect hairs	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-
insect scale	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-	-	-	1	-	-	-	-	-	-	-	-
Unknown	4	5	7	2	-	-	4	3	-	5	3	2	2	5	4	-	1	2	1	1	2	-	-	-	-	-
Phytoliths included in identification model	3	6	7	-	3	-	5	8	-	2	38	10	2	4	-	-	1	9	4	2	N/	N/	-	-	-	-
Starshes included in identification model	9	52	1	3	9	16	94	1	76	2	12	3 12	2	03	2	9	6	6	86	3	A N/	A N/				
Starches included in identification model	7	52	0	5	7	10	74	1	70	9	4	12 9	2 1	20	∠ 7	7	4 7	3	00	5	A	A	-	-	-	-
			4																							

	Phytolith		Starch	
Name	Genera count	% of total genera	Genera count	% of total genera
Ophelia	0	0	0	0
Leonardo	0	0	0	0
Bambou	0	0	0	0
Piment	0	0	0	0
Oreste	5	100	2	15.38
Hector	3	60	2	15.38
Noah	5	100	0	0
Lefkas	2	40	4	30.77
Tina	3	60	2	15.38
Dorry	4	80	3	23.08
Zerlina	4	80	0	0
Clyde	3	60	3	23.08
Agathe	4	80	4	30.77
Bijou	5	100	5	38.46
Leo	4	80	2	15.38
Castor	5	100	3	23.08
Fanny	4	80	10	76.92
Kendo	5	100	0	0
Venus	4	80	5	38.46
Goma	5	100	9	69.23
Rubra	5	100	5	38.46
Ondine	3	60	0	0
Mkubwa	2	40	0	0
Brutus	5	100	3	23.08

Appendix table 11: Counts of identified genera in Taï Chimpanzee calculus samples.

Appendix table 12: Measurements of phytoliths from calculus. ER=*Eremospatha*, AF=*Aframomum*, AN=*Laccosperma*, EL=*Elaeis*, SA=*Sarcophrynium*.

Chimpanzee name	Length	Width	LW Ratio	Brea	Area	Irregul	Spinelen	Spineno	Spineang		Shape	Conjoined	Plant genera	Certainty score
Leo	7.89	7.68	1.03	7.68	48.0	3	0.92	6	99	spherical		1	ER	0.53
Leo	9.74	9.43	1.03	9.43	79.6	3	0.92	10	91	spherical		1	ER	0.49
Leo	6.59	4.18	1.58	4.18	21.7	3	0.65	8	94	ovoid		1	ER	0.60
Leo	8.5	6.41	1.33	6.41	46.2	4	0.51	9	110	ovoid		1	AF	0.42
Leo	6.67	6.39	1.04	6.39	36.6	3	0.88	8	98	spherical		1	ER	0.77
Leo	3.1	2.71	1.14	2.71	7.4	2	0.4	5	88	polygon		1	ER	0.56
Leo	6.84	5.74	1.19	5.74	33.0	2	0.75	6	110	spherical		1	ER	0.77
Leo	4.72	4.72	1	4.72	19.2	4	0.91	8	82	polygon		1	ER	0.40
Leo	10.49	9.08	1.16	9.08	76.6	3	1.04	6	77	spherical		1	AN	0.56

Leo	12.01	8.71	1.38	8.71	87.6	2	0.8	7	131	prolate	1	EL	0.41
Leo	13.63	13.42	1.02	13.42	140.7	3	1.33	13	95.81	spherical	1	EL	0.77
Leo	5.51	4.58	1.2	4.58	22.8	2	0.4	5	113	spherical	1	ER	0.61
Leo	7.97	3.42	2.33	3.42	28.1	4	0.7	10	80	prolate	1	EL	0.69
Leo	9.56	7.17	1.33	7.17	45.6	4	0.87	8	90	ovoid	1	ER	0.53
Leo	6.4	4.92	1.3	4.92	28.8	2	0.55	7	106	spherical	1	ER	0.53
Leo	5.03	4.22	1.19	4.22	16.8	2	0.66	7	113	spherical	1	ER	0.94
Leo	17.86	11.05	1.62	11.05	147.0	2	0.58	14	103	ovoid	1	EL	0.65
Leo	11.28	10.86	1.04	10.86	98.2	2	0.88	15	88	spherical	1	EL	0.77
Leo	8.64	6.45	1.34	6.45	50.3	3	0.92	7	92	ovoid	1	ER	0.42
Leo	8.55	7.5	1.14	7.5	61.2	4	0.66	7	93	spherical	1	EL	0.39
Leo	5.97	5.07	1.18	5.07	23.8	4	0.9	8	126	polygon	1	ER	0.74
Leo	8.47	7.65	1.11	7.65	52.5	3	0.78	8	89	spherical	1	ER	0.44
Leo	7.93	7.39	1.07	7.39	48.9	2	0.78	11	116	spherical	1	ER	0.39
Leo	10.07	9.63	1.05	9.63	87.8	3	1.28	12	101	spherical	1	EL	0.51
Leo	7.08	5.77	1.23	5.77	34.6	3	0	0	0	polygon	1	AF	0.99
Leo	8.48	6.69	1.27	6.69	44.5	2	0.51	11	94	prolate	1	EL	0.90
Leo	8.76	5.03	1.74	5.03	33.5	3	0.7	10	83	prolate	1	EL	0.56
Leo	8.39	7.79	1.08	7.79	59.0	3	0.87	9	107	spherical	1	ER	0.46
Leo	8.8	8.55	1.03	8.55	62.6	3	0.94	8	98	spherical	1	ER	0.42
Leo	8.66	8.06	1.07	8.06	56.0	3	0.87	8	80	spherical	1	ER	0.38
Leo	11.77	8.89	1.32	8.89	73.0	3	0.97	16	125	prolate	1	EL	0.95
Leo	6.19	5.34	1.16	5.34	28.8	4	0.78	7	72.46	spherical	1	AF	0.52
Leo	9.33	9.02	1.03	9.02	64.5	3	0.87	12	82	spherical	1	EL	0.48
Leo	8.6	8.52	1.01	8.52	58.7	4	0.52	15	81	prolate	1	EL	0.83
Leo	16.1	15.56	1.03	15.56	220.0	2	1	19	87	spherical	1	EL	0.91
Leo	11.98	11.01	1.09	11.01	109.0	2	0.83	15	104	spherical	1	EL	0.94
Leo	10.76	6.92	1.55	6.92	62.0	3	0.83	13	119	ovoid	1	EL	0.97
Leo	10.31	9.78	1.05	9.78	80.2	3	0.75	10	80	spherical	1	ER	0.41
Leo	16.43	15.22	1.08	15.22	283.3	2	1.34	22	98	prolate	1	EL	0.89
Leo	6.52	5.63	1.16	5.63	28.2	3	0.6	9	88	polygon	1	ER	0.56
Leo	9.57	8.5	1.13	8.5	67.8	3	0.94	15	105	prolate	1	EL	0.98
Leo	4.81	4.61	1.04	4.61	101.5	4	0.88	9	101	spherical	1	ER	0.53
Leo	8.95	5.73	1.56	5.73	44.3	3	0.71	11	126	ovoid	1	EL	0.93
Leo	5.13	4.71	1.09	4.71	19.5	4	0.87	8	90.78	spherical	1	ER	0.86
Leo	9.79	9.26	1.06	9.26	69.3	3	0.83	14	96	spherical	1	EL	0.85
Leo	11.23	9.41	1.19	9.41	97.8	3	1.24	11	86	prolate	1	EL	0.92
Leo	19.42	18.77	1.03	18.77	305.0	2	1.44	11	111	spherical	1	EL	0.67
Leo	7.6	5.68	1.34	5.68	34.6	4	0.83	14	97	ovoid	1	EL	0.99
Leo	10.89	8.71	1.25	8.71	98.8	4	0.8	16	87	ovoid	1	EL	0.99
Leo	10.43	8.09	1.29	8.09	60.3	4	0.92	6	82	prolate	1	ER	0.38
Leo	8.93	8.24	1.08	8.24	60.9	3	0.96	7	90	spherical	1	ER	0.40
Leo	11.82	9.68	1.22	9.68	97.5	4	1.43	19	78	- quadrangular	1	EL	0.95
Leo	6.24	5.23	1.19	5.23	27.3	3	0.8	7	81	ovoid	1	ER	0.60

Leo	6.44	5.36	1.2	5.36	28.1	3	0.78	6	116	spherical	1	ER	0.74
Leo	5.04	4.34	1.16	4.34	15.2	4	0.72	6	96	polygon	1	ER	0.87
Leo	11.57	11.38	1.02	11.38	100.8	3	0.87	14	121	spherical	1	EL	0.81
Leo	7.44	5.48	1.36	5.48	29.4	3	0.65	9	110	prolate	1	ER	0.63
Leo	14.66	12.68	1.16	12.68	155.9	3	1.33	16	75	prolate	1	EL	0.76
Leo	13.27	9.34	1.42	9.34	94.7	4	0.93	16	96	ovoid	1	EL	0.86
Leo	10.67	8.36	1.28	8.36	71.0	2	1.05	11	81	prolate	1	EL	0.91
Leo	4.77	3.43	1.39	3.43	10.4	3	0.6	6	94	polygon	1	ER	0.56
Leo	5.1	3.67	1.39	3.67	14.6	3	0.6	5	112	ovoid	1	AN	0.48
Leo	6.79	5.43	1.25	5.43	27.0	3	0.75	9	108	spherical	1	ER	0.72
Leo	7.98	7.02	1.14	7.02	44.5	3	0.74	9	96	prolate	1	ER	0.71
Leo	12.85	10.82	1.19	10.82	104.6	3	1.02	12	84	ovoid	1	EL	0.96
Leo	8.05	5.07	1.59	5.07	32.9	4	1.02	12	86	ovoid	1	EL	0.95
Leo	9	7.73	1.16	7.73	54.9	3	1.07	7	98	ovoid	1	AN	0.45
Leo	4.63	3.53	1.31	3.53	14.4	4	0.7	3	91	polygon	1	ER	0.57
Leo	6.31	5.3	1.19	5.3	26.3	2	1	8	117	prolate	1	ER	0.58
Leo	9.47	9.27	1.02	9.27	65.2	2	1.02	15	115	spherical	1	EL	0.73
Leo	9.8	9.66	1.01	9.66	75.7	2	0.92	13	91	spherical	1	EL	0.51
Leo	9.66	9.54	1.01	9.54	77.6	2	1.09	12	107	spherical	1	EL	0.41
Leo	4.3	4.1	1.05	4.1	13.1	4	0.72	7	92.3	polygon	1	ER	0.87
Leo	4.29	4.27	1	4.27	15.4	4	0.65	7	103	polygon	1	ER	0.50
Leo	4.52	4.36	1.04	4.36	17.7	4	0.52	5	110	spherical	1	ER	0.46
Leo	14.83	13.66	1.09	13.66	155.7	3	1.1	19	81	ovoid	1	EL	0.79
Leo	8.58	5.74	1.49	5.74	40.1	4	0.6	12	78	prolate concave-convex	1	EL	0.95
Leo	6.76	5.78	1.17	5.78	39.1	3	0.66	8	94	spherical	1	ER	0.67
Leo	9.02	7.48	1.21	7.48	52.7	4	0.94	10	95	polygon	1	EL	0.53
Leo	5.46	4.38	1.25	4.38	21.2	2	0.5	8	110	spherical	1	ER	0.86
Leo	10.38	6.79	1.53	6.79	66.9	2	0.84	11	78	ovoid	1	EL	0.93
Leo	7.08	6.36	1.11	6.36	40.8	3	0.62	8	119	spherical	1	ER	0.60
Leo	10.21	9.64	1.06	9.64	81.9	1	1.14	10	96	spherical	1	AN	0.42
Leo	24.12	20.27	1.19	20.27	435.5	3	1.8	20	111	prolate	1	EL	0.81
Leo	4.41	3.81	1.16	3.81	14.4	3	0.51	4	110	polygon	1	AN	0.79
Leo	7.76	6.26	1.24	6.26	39.1	3	0.78	16	100	spherical	1	EL	0.58
Leo	7.28	7.17	1.02	7.17	38.1	4	0.7	7	98	polygon	1	ER	0.69
Leo	11.4	10.34	1.1	10.34	96.8	3	1.07	16	89	prolate	1	EL	0.97
Leo	10.4	9.31	1.12	9.31	84.2	4	1.01	13	121	ovoid	1	EL	0.95
Leo	6.99	4.85	1.44	4.85	35.7	4	0.8	9	85	polygon	1	ER	0.37
Leo	13.33	12.72	1.05	12.72	128.6	3	0.92	16	116	spherical	1	EL	0.89
Leo	6.9	5.64	1.22	5.64	35.3	3	0.7	8	100	spherical	1	ER	0.67
Leo	10.67	10.03	1.06	10.03	94.2	2	1	13	105	spherical	1	EL	0.61
Leo	10.89	8.81	1.24	8.81	99.7	3	0.84	10	93	spherical	1	ER	0.44
Rubra	5.03	3.99	1.26	3.99	21.2	4	0.75	9	71	polygon	1	ER	0.52
Rubra	4.32	3.9	1.11	3.9	12.2	3	0.5	5	86	spherical	1	ER	0.44
Rubra	5.14	4.23	1.22	4.23	25.7	3	0.7	6	88	polygon	1	ER	0.86

Rubra	11.14	9.56	1.17	9.56	87.5	4	1.3	7	120	ovoid	1	AN	0.42
Rubra	5.65	5.49	1.03	5.49	27.2	3	0.72	6	110	polygon	1	ER	0.66
Rubra	20.7	13.04	1.59	13.04	210.3	4	0.97	19	102	ovoid	1	EL	0.73
Rubra	5.04	3.44	1.47	3.44	13.8	4	0.8	7	72	spherical	1	AN	0.43
Rubra	4.4	3.83	1.15	3.83	12.1	3	0.66	4	114	polygon	1	ER	0.62
Rubra	6.59	3.85	1.71	3.85	19.3	3	0.82	6	70	ovoid	1	EL	0.40
Rubra	9.41	8.54	1.1	8.54	66.2	3	0.87	12	87	spherical	1	EL	0.56
Rubra	13.29	12.04	1.1	12.04	130.2	4	0.75	16	110	ovoid	1	EL	0.86
Rubra	6.04	4.88	1.24	4.88	27.8	4	1.04	7	82.83	polygon	1	AN	0.50
Rubra	11.37	10.36	1.1	10.36	106.3	3	0.6	12	111.16	spherical	1	EL	0.58
Rubra	4.87	4.58	1.06	4.58	17.5	3	0.83	4	100	spherical	1	ER	0.65
Rubra	5.43	5.23	1.04	5.23	23.9	4	0.7	7	110	spherical	1	ER	0.74
Rubra	5.47	4.2	1.3	4.2	15.4	5	0.58	5	99.57	polygon	1	AN	0.47
Rubra	9.63	9.14	1.05	9.14	68.4	3	0.84	7	80	ovoid	1	ER	0.45
Rubra	6.03	5.52	1.09	5.52	26.7	3	0.75	8	56	spherical	1	AF	0.84
Rubra	8.01	6.54	1.22	6.54	39.9	3	0.84	8	86	prolate	1	ER	0.75
Rubra	8.09	7.32	1.11	7.32	49.7	4	0.69	9	95	spherical	1	ER	0.56
Rubra	6.45	4.94	1.31	4.94	26.1	4	0.82	8	91	spherical	1	ER	0.92
Rubra	7.39	4.72	1.57	4.72	32.7	3	0.66	5	89	ovoid	1	ER	0.40
Rubra	6.04	4.64	1.3	4.64	22.0	4	0.85	8	76.18	prolate	1	ER	0.60
Rubra	10.08	7.87	1.28	7.87	63.6	4	0.84	15	86	ovoid	1	EL	1
Rubra	6.29	6.19	1.02	6.19	34.7	3	0.88	5	90	prolate	1	ER	0.74
Rubra	22.19	14.79	1.5	14.79	237.3	2	0.83	15	94	ovoid	1	EL	0.74
Rubra	8.12	6.37	1.27	6.37	45.6	3	0.83	10	99	prolate	1	ER	0.66
Rubra	9.13	8.81	1.04	8.81	65.9	3	0.92	14	104	spherical	1	EL	0.77
Rubra	6.45	4.71	1.37	4.71	23.0	4	0.82	7	92	ovoid	1	ER	0.93
Rubra	10.46	8.45	1.24	8.45	76.9	3	0.84	11	99	ovoid	1	EL	0.95
Rubra	10.67	8.59	1.24	8.59	65.2	4	0.65	7	98	ovoid	1	EL	0.43
Rubra	10.15	8.46	1.2	8.46	83.1	4	1	12	80	ovoid	1	EL	0.97
Rubra	10.55	10.44	1.01	10.44	89.4	4	0.84	16	79.01	spherical	1	EL	0.80
Rubra	12.13	11.81	1.03	11.81	87.4	3	1.17	10	87.43	spherical	1	EL	0.41
Rubra	17.4	12.93	1.35	12.93	180.7	4	0.66	11	107	ovoid	1	EL	0.61
Rubra	12.17	11.04	1.1	11.04	119.0	3	1	17	117	spherical	1	EL	0.95
Rubra	6.42	4.5	1.43	4.5	20.1	4	0.8	7	92	polygon	1	ER	0.71
Rubra	11.8	11.71	1.01	11.71	123.0	4	1.5	12	99	spherical	1	EL	0.55
Rubra	5.74	2.87	2	2.87	20.6	5	2	4	64.16	polygon	1	EL	0.37
Rubra	6.23	6.1	1.02	6.1	35.9	3	0.5	6	101	spherical	1	AF	0.67
Rubra	9.4	7.24	1.3	7.24	56.0	4	0.8	9	107	ovoid	1	ER	0.46
Rubra	28.67	18.76	1.53	18.76	381.8	4	2.4	15	98	ovoid	1	EL	0.71
Rubra	10.63	9.06	1.17	9.06	68.6	4	1.13	11	87	ovoid	1	EL	0.93
Rubra	6.88	5.57	1.24	5.57	31.3	3	0.7	9	110	ovoid	1	ER	0.73
Rubra	10.2	6.57	1.55	6.57	60.5	4	0.92	9	84	ovoid	1	EL	0.36
Rubra	23.9	23.45	1.02	23.45	445.4	3	1.37	15	113	spherical	1	EL	0.82
Rubra	17.74	16.73	1.06	16.73	217.1	3	1.2	17	97	spherical	1	EL	0.89

Rubra	5.59	3.62	1.54	3.62	14.0	3	0.8	5	78	polygon	1	EI	R	0.36
Rubra	16.66	12.46	1.34	12.46	160.8	3	0.72	18	103	ovoid	1	EI	Ŀ	0.75
Rubra	5.49	5.14	1.07	5.14	25.0	4	0.87	10	93	polygon	1	EI	R	0.67
Rubra	4.45	3.8	1.17	3.8	19.1	4	0.75	6	93	spherical	1	EI	R	0.92
Rubra	6.25	5.17	1.21	5.17	23.8	3	0.6	9	102	prolate	1	EI	R	0.72
Rubra	6.6	6.3	1.05	6.3	27.6	3	0.72	6	0.72	spherical	1	A	F	0.84
Rubra	17.82	16.19	1.1	16.19	229.1	2	2.3	11	90	spherical	1	EI	L	0.61
Rubra	13.42	11.74	1.14	11.74	119.4	3	1.11	3	127	prolate	1	EI	L	0.31
Rubra	14.11	9.72	1.45	9.72	134.1	4	0.7	20	93	prolate	1	EI	L	0.73
Rubra	12.12	8.93	1.36	8.93	82.4	2	0.9	14	95	prolate	1	EI	Ŀ	0.96
Rubra	12.43	9.34	1.33	9.34	104.8	4	1	14	100	prolate	1	EI	Ŀ	0.98
Rubra	9.32	6.24	1.49	6.24	49.0	3	0.87	15	103	ovoid	1	EI	L	0.99
Rubra	6.66	5.65	1.18	5.65	33.2	4	0.75	13	95	ovoid	1	EI	L	0.95
Rubra	11.06	8.74	1.27	8.74	76.1	4	1	15	105	ovoid	1	EI	L	0.98
Rubra	8.91	8.29	1.07	8.29	58.0	4	0.9	6	111	spherical	1	EI	R	0.38
Rubra	8.16	6.05	1.35	6.05	35.7	3	0.6	13	95	ovoid	1	EI	Ŀ	0.96
Rubra	6.21	4.21	1.48	4.21	24.9	4	0.65	9	110	polygon	1	EI	R	0.60
Rubra	14.52	14.44	1.01	14.44	170.7	4	1.23	15	107	ovoid	1	EI	Ŀ	0.77
Rubra	7.85	6.4	1.23	6.4	42.0	4	1	7	87	prolate	1	A	N	0.54
Rubra	5.81	5.76	1.01	5.76	27.5	3	0.5	9	115	spherical	1	A	N	0.42
Rubra	5.18	3.94	1.31	3.94	16.5	3	0.82	6	92	polygon	1	EI	R	0.86
Rubra	6.57	6.45	1.02	6.45	33.1	2	0.7	8	90	spherical	1	EI	R	0.89
Rubra	4	3.5	1.14	3.5	11.9	3	0.5	9	93	spherical	1	EI	R	0.57
Rubra	6.64	4.69	1.42	4.69	21.4	4	0.7	9	99	polygon	1	EI	R	0.62
Rubra	8	5.85	1.37	5.85	37.8	4	0.5	11	103	ovoid	1	EI	Ŀ	0.90
Rubra	12.62	11.65	1.08	11.65	107.8	3	0.84	13	122	spherical	1	EI	Ŀ	0.77
Rubra	3.99	3.62	1.1	3.62	13.9	4	0.92	4	99	polygon	1	EI	R	0.57
Rubra	10.9	10.13	1.08	10.13	91.8	3	0.8	16	86	spherical	1	EI	Ŀ	0.89
Rubra	6.61	6.33	1.04	6.33	35.5	4	0.9	8	97	spherical	1	EI	R	0.77
Rubra	3.91	3.6	1.09	3.6	12.9	4	0.72	6	98	polygon	1	EI	R	0.88
Rubra	4.78	4.35	1.1	4.35	19.9	3	0.72	8	101	spherical	1	EI	R	0.91
Rubra	10.35	8.91	1.16	8.91	81.5	3	0.87	17	88	prolate	1	EI	L	0.99
Rubra	4.29	3.69	1.16	3.69	13.9	4	0.6	10	90	prolate	1	EI	R	0.57
Rubra	8.85	5.68	1.56	5.68	33.2	4	0.61	17	80	ovoid	1	EI	L	0.97
Rubra	6.39	5.84	1.09	5.84	33.0	4	0.82	7	127	polygon	1	EI	R	0.72
Rubra	6.37	6.01	1.06	6.01	31.7	4	0.93	9	79	spherical	1	EI	R	0.44
Rubra	4.21	3.19	1.32	3.19	12.8	4	0.6	8	120	ovoid	1	EI	R	0.62
Rubra	4.61	4.46	1.03	4.46	15.8	4	0.7	4	115	polygon	1	A	N	0.50
Rubra	11.29	9.98	1.13	9.98	95.0	5	1.02	20	90	polygon	1	EI	L	0.98
Rubra	11.28	10.28	1.1	10.28	84.6	3	0.75	15	106	polygon	1	EI	L	0.96
Rubra	13.8	7.07	1.95	7.07	96.3	5	0.75	11	83	quadrangular	1	SA	Ą	0.46
Rubra	9.25	8.91	1.04	8.91	90.2	5	0.75	6	111	ovoid	1	EI	R	0.39
Rubra	8.3	7.49	1.11	7.49	58.6	3	0.65	17	99	spherical	1	EI	L	0.75
Rubra	11.23	8.04	1.4	8.04	80.0	3	0.72	9	110	prolate	1	EI	R	0.39

Rubra	3.49	2.39	1.46	2.39	6.2	3	0.6	6	100	polygon	1	ER	0.49
Rubra	5.75	4.55	1.26	4.55	21.5	4	0.65	11	74	polygon	1	EL	0.87
Rubra	12.09	9.11	1.33	9.11	91.6	2	0.65	19	100	ovoid	1	EL	0.94
Rubra	10.04	7.89	1.27	7.89	55.0	4	0.65	7	61	ovoid	1	AF	0.74
Rubra	11.51	9.43	1.22	9.43	90.7	3	0.9	9	119	prolate	1	EL	0.47
Rubra	12.37	11.13	1.11	11.13	124.4	3	1	13	98	ovoid	1	EL	0.96
Rubra	4.73	4.56	1.04	4.56	17.2	4	0.8	6	70	polygon	1	ER	0.49
Rubra	3.72	3.15	1.18	3.15	10.7	3	0.9	7	63	prolate	1	AN	0.71
Rubra	3.86	3.33	1.16	3.33	11.8	3	0.53	6	90	spherical	1	ER	0.62
Rubra	5.89	4.1	1.44	4.1	19.2	4	0.55	9	100	ovoid	1	ER	0.37
Rubra	5.65	4.73	1.19	4.73	26.0	4	0.97	7	100	polygon	1	ER	0.58
Rubra	3.55	2.79	1.27	2.79	8.2	3	0.4	4	85	ovoid	1	AN	0.50
Rubra	5.08	4.12	1.23	4.12	6.5	3	0.51	5	95	ovoid	1	AN	0.47
Noah	3.72	3.39	1.1	3.39	12.2	3	0.6	8	70	polygon	1	ER	0.42
Noah	11.17	9.66	1.16	9.66	83.6	3	0.87	11	97	ovoid	1	EL	0.94
Noah	8.3	7.06	1.18	7.06	50.4	3	0.88	3	99	polygon	1	AN	0.37
Noah	18.72	11.19	1.67	11.19	149.6	3	0.7	20	85	triangular	1	EL	0.67
Noah	7.95	7.11	1.12	7.11	41.5	3	0.8	5	107	spherical	1	ER	0.67
Noah	8.04	8.01	1	8.01	53.8	2	0.92	12	92	spherical	1	ER	0.37
Noah	6.48	5.96	1.09	5.96	28.5	5	1.03	6	0.6	polygon	1	AF	0.79
Noah	14.38	9.27	1.55	9.27	124.1	3	0	0	0	polygon	1	SA	0.92
Noah	2.85	2.8	1.02	2.8	8.6	3	0.43	3	116	polygon	1	AN	0.57
Noah	6.14	5.63	1.09	5.63	32.0	3	0.78	7	101	ovoid	1	ER	0.79
Noah	7.58	7.48	1.01	7.48	36.1	3	0.75	6	89	ovoid	1	ER	0.63
Noah	3.8	3.75	1.01	3.75	12.1	4	0.69	6	111	polygon	1	ER	0.73
Noah	3.01	2.66	1.13	2.66	5.1	3	0.4	5	107	polygon	1	AN	0.37
Noah	12.02	11.19	1.07	11.19	114.4	4	1	16	95	spherical	1	EL	0.95
Noah	9.32	8.7	1.07	8.7	66.7	4	0.9	12	96	spherical	1	EL	0.55
Noah	4.73	4.43	1.07	4.43	15.1	3	0.62	6	80	spherical	1	ER	0.50
Noah	6.32	4.32	1.46	4.32	21.2	4	1	5	74	polygon	1	AN	0.49
Noah	5.39	4.2	1.28	4.2	17.5	4	0.55	5	100	spherical	1	AN	0.55
Noah	7.64	7.52	1.02	7.52	45.0	3	0.7	13	92	spherical	1	ER	0.59
Noah	7.17	6.74	1.06	6.74	46.7	4	0.88	11	56	spherical	1	ER	0.47
Noah	7.37	7.21	1.02	7.21	45.8	4	1	10	106	spherical	1	ER	0.66
Noah	5.12	4.4	1.16	4.4	17.8	9	0.84	11	100	polygon	1	EL	0.86
Noah	7.49	6.83	1.1	6.83	47.9	3	0.78	6	89	polygon	1	ER	0.55
Noah	4.93	4.06	1.21	4.06	18.1	3	0.74	8	99	ovoid	1	ER	0.86
Noah	6.32	6.09	1.04	6.09	31.7	3	0.5	8	102	spherical	1	AF	0.64
Noah	4.74	4.37	1.08	4.37	21.3	4	0.52	4	98	polygon	1	AN	0.77
Noah	7.29	4.45	1.64	4.45	31.7	5	0.94	9	92	polygon	1	ER	0.40
hector	6.32	6.04	1.05	6.04	30.5	4	0.83	7	80	polygon	1	ER	0.60
hector	7.17	4.82	1.49	4.82	30.3	4	0.7	9	101	ovoid	1	ER	0.46
hector	6.59	4.76	1.38	4.76	25.8	4	0.8	7	115	ovoid	1	ER	0.79
hector	5.95	3.79	1.57	3.79	18.5	3	0.72	5	97	prolate	1	ER	0.65

hector	11.66	10.63	1.1	10.63	110.0	4	0.97	6	95	spherical	1	EL	0.44
hector	19.32	15.84	1.22	15.84	281.6	1	2.4	15	77.5	prolate	1	EL	0.78
hector	8.24	8.12	1.01	8.12	53.4	2	0.7	12	90	spherical	1	EL	0.41
hector	5.92	5.91	1	5.91	27.9	3	0.72	9	98	spherical	1	ER	0.49
hector	7.65	4.95	1.55	4.95	32.6	4	0.72	4	70	prolate	1	AN	0.42
hector	6.03	3.98	1.52	3.98	27.3	4	0.94	4	77	polygon	1	AN	0.47
hector	4.02	3.5	1.15	3.5	11.4	4	0.83	4	80	polygon	1	ER	0.52
hector	20.32	14.28	1.42	14.28	228.7	3	0.9	30	78	prolate	1	EL	0.81
hector	7.97	7.03	1.13	7.03	43.6	3	1	7	87	ovoid	1	AN	0.52
hector	5.14	4.15	1.24	4.15	16.6	4	0.52	4	100	ovoid	1	AN	0.85
hector	12.98	10.1	1.29	10.1	119.1	4	1.3	8	80.41	ovoid	1	EL	0.47
hector	16.7	13.62	1.23	13.62	198.1	3	1.14	17	71	ovoid	1	EL	0.74
hector	12.6	11.75	1.07	11.75	114.4	3	1	4	120	spherical	1	AN	0.31
hector	12	9.68	1.24	9.68	107.0	4	1	5	100	spherical	1	EL	0.37
hector	19.7	16.43	1.2	16.43	254.7	3	1.44	9	102	ovoid	1	EL	0.47
hector	8.15	7.37	1.11	7.37	53.5	4	1.13	4	84	polygon	1	AN	0.55
hector	12.76	10.63	1.2	10.63	102.6	4	0.87	9	100	spherical	1	EL	0.53
castor	4.52	3.91	1.16	3.91	14.3	3	0.5	5	104	polygon	1	AN	0.51
castor	13.34	11.74	1.14	11.74	112.8	3	0.9	15	116	spherical	1	EL	0.86
castor	6.02	5.47	1.1	5.47	30.0	2	0.65	8	108	spherical	1	ER	0.86
castor	5.63	5.12	1.1	5.12	24.6	2	0.55	7	101	spherical	1	ER	0.80
castor	6.56	5.05	1.3	5.05	31.2	4	0.83	8	59.11	polygon	1	AF	0.86
castor	5.2	4.5	1.16	4.5	20.4	3	0.42	7	108	ovoid	1	ER	0.50
castor	7.31	5.54	1.32	5.54	30.4	4	0.75	11	84.33	polygon	1	EL	0.96
castor	3.77	2.69	1.4	2.69	8.6	3	0.51	3	85	ovoid	1	AN	0.48
castor	6.04	4.3	1.4	4.3	20.7	3	0.4	5	116	prolate	1	AF	0.41
castor	5.95	5.54	1.07	5.54	24.8	2	0.4	7	123	spherical	1	AF	0.39
castor	9.94	6.86	1.45	6.86	48.0	4	0.55	11	90	ovoid	1	EL	0.94
castor	4.53	4.13	1.1	4.13	15.2	4	0.61	6	68	polygon	1	AN	0.39
castor	5.47	5.45	1	5.45	23.0	3	0.46	8	100	spherical	1	AN	0.46
castor	10.56	9.02	1.17	9.02	88.1	4	1.25	6	88.06	spherical	1	AN	0.60
castor	8.29	5.73	1.45	5.73	45.9	5	0.82	5	103	polygon	1	AN	0.35
castor	9.1	6.45	1.41	6.45	47.2	3	1	7	109	polygon	1	ER	0.38
castor	7	6.67	1.05	6.67	32.4	3	0.72	14	68	spherical	1	EL	0.50
castor	6.45	5.6	1.15	5.6	30.0	3	1	8	92.67	spherical	1	ER	0.51
castor	4.54	3.53	1.29	3.53	14.2	3	0.72	3	94	polygon	1	ER	0.58
castor	7.53	5.8	1.3	5.8	28.1	5	0.88	4	77	polygon	1	AN	0.39
castor	2.46	2.35	1.05	2.35	4.7	2	0.42	4	82	polygon	1	ER	0.41
castor	3.58	3.39	1.06	3.39	8.3	4	0.83	2	41	spherical	1	AN	0.79
castor	4.22	3.74	1.13	3.74	14.4	3	0.72	6	71	spherical	1	ER	0.40
castor	5.59	5.45	1.03	5.45	25.6	4	0.6	5	91.25	spherical	1	ER	0.54
castor	13.71	11.85	1.16	11.85	126.0	4	1.25	4	99	spherical	1	SA	0.45
castor	4.74	4.32	1.1	4.32	18.1	2	0.74	8	94.06	spherical	1	ER	0.97
castor	8.76	6.82	1.28	6.82	51.7	3	0.61	17	117.95	ovoid	1	EL	0.96

443 542 145 543 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 <th>castor</th> <th>7.54</th> <th>5.44</th> <th>1.39</th> <th>5.44</th> <th>34.5</th> <th>3</th> <th>0.69</th> <th>6</th> <th>100</th> <th>prolate</th> <th>1</th> <th>ER</th> <th>0.50</th>	castor	7.54	5.44	1.39	5.44	34.5	3	0.69	6	100	prolate	1	ER	0.50
char char line line <thline< th=""> line line <thl< td=""><td>castor</td><td>4.53</td><td>3.12</td><td>1.45</td><td>3.12</td><td>13.9</td><td>3</td><td>0.65</td><td>5</td><td>78</td><td>polygon</td><td>2</td><td>AN</td><td>0.47</td></thl<></thline<>	castor	4.53	3.12	1.45	3.12	13.9	3	0.65	5	78	polygon	2	AN	0.47
cash f.li f.li <th< td=""><td>castor</td><td>6.25</td><td>5.96</td><td>1.05</td><td>5.96</td><td>26.5</td><td>3</td><td>0.72</td><td>9</td><td>102.89</td><td>triangular</td><td>2</td><td>ER</td><td>0.85</td></th<>	castor	6.25	5.96	1.05	5.96	26.5	3	0.72	9	102.89	triangular	2	ER	0.85
caskor6.856.154.721.04.722.02.07.07.08.657.09.09.09.01.18.79.70caskor10.484.701.404.702.02.07.07.07.009.007.001.0<	castor	6.18	5.34	1.16	5.34	25.9	3	0.46	8	97.41	prolate	1	AF	0.51
casher6.154.721.34.722.302.30.721.46.53oppletion1.1K.P0.73casher6.644.601.434.632.6230.69.79.84problet1.18.71.97casher5.225.51.045.63.14.02.27.00.00.0spherical1.1K.P0.00casher5.224.721.04.721.993.0.01.03.09.0ovidt1.1K.P0.00casher4.403.771.003.721.24.00.757.08.05polygon1.1K.P0.00casher4.601.201.207.103.71.03.01.01.00 <td>castor</td> <td>6.86</td> <td>6.25</td> <td>1.1</td> <td>6.25</td> <td>36.7</td> <td>3</td> <td>0.88</td> <td>6</td> <td>75</td> <td>ovoid</td> <td>1</td> <td>ER</td> <td>0.46</td>	castor	6.86	6.25	1.1	6.25	36.7	3	0.88	6	75	ovoid	1	ER	0.46
caskor10.686.861.286.816.2130.831.78.84probaordat1E.0.93caskor5.225.51.045.21.05.21.01	castor	6.15	4.72	1.3	4.72	23.0	2	0.72	1	65.35	spherical	1	AF	0.73
casler6.644.631.434.632.6230.699090090111III </td <td>castor</td> <td>10.68</td> <td>8.65</td> <td>1.23</td> <td>8.65</td> <td>65.1</td> <td>3</td> <td>0.83</td> <td>17</td> <td>88.44</td> <td>prolate</td> <td>1</td> <td>EL</td> <td>0.99</td>	castor	10.68	8.65	1.23	8.65	65.1	3	0.83	17	88.44	prolate	1	EL	0.99
casher5.51.65.65.65.65.75.75.75.79.7 <th< td=""><td>castor</td><td>6.64</td><td>4.63</td><td>1.43</td><td>4.63</td><td>26.2</td><td>3</td><td>0.6</td><td>9</td><td>90</td><td>ovoid</td><td>1</td><td>ER</td><td>0.45</td></th<>	castor	6.64	4.63	1.43	4.63	26.2	3	0.6	9	90	ovoid	1	ER	0.45
casker7.185.481.421.421.927.30.9000	castor	5.22	5	1.04	5	18.8	2	0.75	5	126	spherical	1	ER	0.69
casher524.721.114.721.923.0.0.0.splerical1.11.4N.0.01casher4.225.121.025.122.1440.7578.5polycon1.1E.0.75casher7.136.091.285.122.1440.7578.5polycon1.1E.0.75casher7.141.091.207.121.211.2	castor	7.18	5.68	1.26	5.68	34.1	4	0.92	7	92	ovoid	1	ER	0.63
casker4.493.771.193.71.293.0.838.9.898spherical1E.R0.71casker5.225.125.125.126.097.750.838.1.29polygon1E.R0.66casker4.063.740.793.744.0.527.98.8polygon1.1E.R0.66casker6.975.791.25.793.714.0.527.98.85polygon1.1K.P0.71casker5.794.711.284.790.617.96.68spherical0.11K.P0.72casker6.795.741.104.741.017.97.97.56.81polygon1.1K.P0.72casker1.121.121.121.151.30.757.51.85polygon1.1K.P0.72casker1.131.121.101.151.21.151.21.251.250.730.701.1K.P0.71casker1.141.121.121.121.121.121.121.121.121.121.121.141.141.11.14 <t< td=""><td>castor</td><td>5.2</td><td>4.72</td><td>1.1</td><td>4.72</td><td>19.9</td><td>3</td><td>0</td><td>0</td><td>0</td><td>spherical</td><td>1</td><td>AF</td><td>0.90</td></t<>	castor	5.2	4.72	1.1	4.72	19.9	3	0	0	0	spherical	1	AF	0.90
casler5225121.025122.1440.75785polygon1ER0.75casler7.616.097.7260.836.91.29polygon1.1ER0.63casler6.795.791.25.793.740.5278.8spherical11AF0.77casler6.795.794.715.794.712.716.8spherical1.1AF0.77casler1.781.724.714.714.70.720.725.8spherical1.1AF0.77casler1.781.721.681.761.780.720.750.730.741.8A0.77casler1.781.701.261.761.281.731.35.750.7011.1AN0.71casler1.391.061.261.681.371.31.550.730.7011.8A0.75casler1.463.991.101.091.281.371.31.550.750.7011.8A0.75casler1.463.991.101.991.991.91.91.91.91.91.91.91.91.91.9casler1.461.151.791.792.91.791.81.91.91.91.91.91.91.91.91.91.9 <td>castor</td> <td>4.49</td> <td>3.77</td> <td>1.19</td> <td>3.77</td> <td>12.9</td> <td>3</td> <td>0.83</td> <td>8</td> <td>89.85</td> <td>spherical</td> <td>1</td> <td>ER</td> <td>0.91</td>	castor	4.49	3.77	1.19	3.77	12.9	3	0.83	8	89.85	spherical	1	ER	0.91
casler7.816.091.286.097.7750.838129polygon1E.R0.53casler4.063.741.284.10.527.78.8spherical11AF0.77caslor5.794.711.234.713.130.618.86.6spherical1A0.77caslor4.724.241.114.241.594.0.710.780.88polygon1AA0.77caslor4.734.241.104.241.594.0.711.280.720.730.730.740.71A0.72caslor1.734.744.744.740.750.730.730.700.711.80.72caslor1.334.061.074.791.751.780.730.700.711.80.71caslor1.463.991.173.991.391.21.281.290.750.700.701.81.80.75caslor1.463.991.173.991.392.21.591.411.05spherical1.11.81.80.75caslor1.461.591.791.392.80.717.8spherical1.11.81.80.75caslor1.491.191.191.91.91.21.80.721.8spherical1.1 <td>castor</td> <td>5.22</td> <td>5.12</td> <td>1.02</td> <td>5.12</td> <td>21.4</td> <td>4</td> <td>0.75</td> <td>7</td> <td>85</td> <td>polygon</td> <td>1</td> <td>ER</td> <td>0.75</td>	castor	5.22	5.12	1.02	5.12	21.4	4	0.75	7	85	polygon	1	ER	0.75
caster4.063.741.011.741.234.71.233.741.233.74.70.5278.88spherical1.11.41.470.77caster5.794.711.234.712.313.70.618.86.65spherical1.11.41.71.07caster4.724.241.114.241594.075.58.18polygon1.11.41.41.0caster1.131.271.081.2710.53.0.875.1.85ovoid1.14.80.33castor1.391.021.021.011.280.721.335.57ovoid1.11.48.40.33castor3.134.901.173.901.391.231.301.35.57ovoid1.11.48.40.33castor3.141.191.191.391.392.20.141.107.99.90ovoid1.18.40.33castor3.141.191.191.391.392.20.141.107.99.01ovoid1.18.40.10castor5.471.701.391.390.401.6298.48spherical1.18.40.10castor5.471.201.524.371.704.0298.48spherical1.18.40.10castor5.4	castor	7.81	6.09	1.28	6.09	27.7	5	0.83	8	129	polygon	1	ER	0.66
caster6.975.791.11.311	castor	4.06	3.74	1.09	3.74	12.8	4	0.58	5	89	polygon	1	ER	0.53
caster5.794.711.234.712.3130.61865spherical11A0.72caster4.838.561.048.566.1630.7296.2ovid11A0caster1.281.271.081.271.051.30.8751.28ovid11A0caster1.331.061.261.061.281.21.0530.751.28ovid1.11.80.73caster1.463.991.171.091.2<	castor	6.97	5.79	1.2	5.79	33.7	4	0.52	7	88	spherical	1	AF	0.67
castor8.938.561.048.566.1630.7296.2ovid1N.40.49castor12.181.1271.081.1271.0530.87512.85ovid118.40.39castor13.331.061.261.061.2833.71.35.5.7ovid118.40.39castor5.314.961.074.962.141.079.19spterical118.40.57castor1.463.991.173.991.290.221.5441.079.19spterical18.40.63castor1.4.041.571.221.571.282.20.440.1protet18.40.63castor1.4.071.4.91.191.982.20.42.07.5ovid118.40.63castor1.4.471.4.91.191.982.20.47.08.45polyon18.40.63castor5.074.371.254.371.704.80.655.48.45polyon18.40.64castor5.074.421.44.54.50.56.55.46.61.48.40.641.48.4castor1.5.94.51.53.25.65.46.57.66.6	castor	5.79	4.71	1.23	4.71	23.1	3	0.61	8	65	spherical	1	AF	0.77
caster4.724.241.114.241.594.40.9758.1polygon11.4N.0.43caster13.331.061.261.0612.83.0.37135.33void1.11.80.33caster5.314.961.074.962.114.11.0179.191spherical1.11.4N.0.11caster4.663.991.173.991.392.20.524.41.1prolate1.11.4N.0.11caster1.401.1571.221.571.232.20.191.4105spherical1.11.4N.0.11caster1.3941.1691.191.691.980.6978.8spherical1.1E.0.16caster7.297.011.047.013.893.00.6978.8spherical1.1E.0.16caster5.074.371.224.271.704.00.129.48.15polygon1.1E.0.16caster5.074.531.423.411.793.00.655.78.8spherical1.1E.0.16caster5.033.541.423.541.793.01.57.30.200.111.4K.0.15caster5.534.821.533.01.61.67.0	castor	8.93	8.56	1.04	8.56	61.6	3	0.72	9	62	ovoid	1	AF	0.49
caster12.1811.2710.811.27101.530.875128.5void11EL0.38caster13.3910.661.0610.66128.631.371353.37void111K0caster5.314.961.074.9624.141.01791.91spherical1.11.1K0.57caster14.061.971.221.57123.821.921.4105spherical1.1K0.78caster13.941.691.191.69128.620.942075ovid1.1K0.78caster13.941.691.191.169128.620.94708.85spherical1.1K0.78caster5.374.371.221.371.7040.6298.45polygon1.1K0.87caster5.374.371.254.371.7040.6298.45polygon1.1K0.81caster5.374.371.254.371.7040.6298.45polygon1.1K0.81caster5.333.541.423.541.7930.7548.21prolate1.1K0.81caster5.534.821.945.30.655.46.67.0void <t< td=""><td>castor</td><td>4.72</td><td>4.24</td><td>1.11</td><td>4.24</td><td>15.9</td><td>4</td><td>0.97</td><td>5</td><td>81</td><td>polygon</td><td>1</td><td>AN</td><td>0.46</td></t<>	castor	4.72	4.24	1.11	4.24	15.9	4	0.97	5	81	polygon	1	AN	0.46
castor13.931.1.061.2.61.2.61.2.61.2. <td>castor</td> <td>12.18</td> <td>11.27</td> <td>1.08</td> <td>11.27</td> <td>101.5</td> <td>3</td> <td>0.87</td> <td>5</td> <td>128.5</td> <td>ovoid</td> <td>1</td> <td>EL</td> <td>0.38</td>	castor	12.18	11.27	1.08	11.27	101.5	3	0.87	5	128.5	ovoid	1	EL	0.38
castor5.314.961.074.962.4141.0179.191spherical11R0.571castor4.463.991.173.991.3712.321.91.4105spherical1.11.41.61.7castor13.941.1691.191.1691.9820.942075ovoid1.1EL0.76castor7.297.011.047.013.893.00.6978.8spherical1ER0.62castor5.074.371.254.371.704.00.6298.48polygon1ER0.76castor5.074.521.124.521.822.00.616.8spherical1K0.81castor5.033.541.423.541.722.00.616.8Spherical1K0.81castor5.033.541.423.541.722.00.616.82.00.001K0.81castor0.534.821.333.081.022.06.66.66polate1K0.81castor7.534.821.098.73.00.797.5spherical1K0.7castor7.645.191.155.193.173.83.880.61polygon1K0.1 </td <td>castor</td> <td>13.93</td> <td>11.06</td> <td>1.26</td> <td>11.06</td> <td>128.6</td> <td>3</td> <td>1.37</td> <td>13</td> <td>55.37</td> <td>ovoid</td> <td>1</td> <td>SA</td> <td>0.39</td>	castor	13.93	11.06	1.26	11.06	128.6	3	1.37	13	55.37	ovoid	1	SA	0.39
castor4.663.991.173.991.391.20.524.41.1prolate1N0.11castor14.0011.571.221.5712.3821.941.05spherical1.11.1EL0.78castor13.9411.691.191.101.982.20.942075ovoid1.1EL0.76castor5.474.371.254.371.7040.62984.58polygon1ER0.61castor5.074.521.124.521.822.20.61685spherical1KN0.71castor5.033.541.423.541.7930.7548.21prolate1KN0.71castor5.033.541.423.541.7930.7548.21prolate1KN0.71castor10.596.861.443.081.0830.7548.21prolate1KN0.71castor1.533.541.423.541.7930.7548.21prolate1KN0.71castor5.534.821.931.60.716.4670ovoid1KN0.71castor7.534.821.993.60.7479.75spherical1KN0.71castor7.53	castor	5.31	4.96	1.07	4.96	24.1	4	1.01	7	91.91	spherical	1	ER	0.57
castor14.061.1571.221.1571.2321.19141.05spherical1E0.78castor1.3941.691.041.0619.820.442075ovoid1E0.67castor7.297.011.047.013.8930.6978.88spherical1E0.62castor5.074.521.124.521.820.6168.5spherical1E0.81castor5.034.521.124.521.820.6168.5spherical1E0.81castor5.034.521.124.521.820.6168.5spherical1E0.81castor5.034.521.423.541.7930.754.87.04void1E0.81castor4.13.081.333.081.020.6166.66prolate1K0.81castor5.334.821.155.193.430.755.19prolate1K0.81castor7.546.191.176.013.833.771.04prolate1K0.81castor7.534.821.095.515.96.5271.04prolate1K0.81castor7.845.191.155.193.4 </td <td>castor</td> <td>4.66</td> <td>3.99</td> <td>1.17</td> <td>3.99</td> <td>13.9</td> <td>2</td> <td>0.52</td> <td>4</td> <td>1</td> <td>prolate</td> <td>1</td> <td>AN</td> <td>0.81</td>	castor	4.66	3.99	1.17	3.99	13.9	2	0.52	4	1	prolate	1	AN	0.81
castor13.9411.6911.9011.9011.9012.820.942075ovoid1E0.76castor7.297.011.047.0138.930.6978.88polygon1E0.60castor5.474.371.254.3717.040.6298.458polygon1E0.61castor5.074.521.124.5218.220.6168.5spherical1K0.81castor5.033.541.423.5417.930.7548.21prolate1K0.81castor10.596.861.546.8651.320.8187.24ovoid1K0.81castor4.113.081.333.0810.830.72670ovoid1K0.42castor5.534.821.054.8219.420.61664.66prolate1K0.42castor7.554.821.098.726.5230.777spherical1K0.42castor7.534.821.055.43.00.7779ovoid1K0.45castor7.635.011.176.113.47.40.5171.04ovoid1K0.51cast	castor	14.06	11.57	1.22	11.57	123.8	2	1.19	14	105	spherical	1	EL	0.78
castor7.297.011.047.013.8930.6978.8spherical1ER0.62castor5.474.371.254.3717.040.62984.58polygon11ER0.62castor5.074.521.124.5218.220.61685spherical11ER0.81castor5.033.541.423.5417.930.7548.21prolate1K0.81castor10.596.861.546.8651.320.8387.34ovid1ER0.83castor4.13.081.333.0810.830.72670ovid1K0.42castor5.534.821.154.8219.320.6166.66prolate1K0.42castor5.544.821.098.720.6166.46prolate1K0.42castor5.544.821.098.720.6156.46prolate11K0.42castor7.056.011.176.013.8330.797Spherical1K0.51castor7.335.231.025.232.569.51spherical1K0.51castor7.435.31.025.40	castor	13.94	11.69	1.19	11.69	119.8	2	0.94	20	75	ovoid	1	EL	0.76
castor5.474.371.254.3717.040.62984.58polygon1ER0.62castor5.074.521.124.5218.220.61685spherical11KN0.61castor5.033.541.423.5417.930.75482.1prolate1KN0.61castor10.596.861.546.8651.320.83872.34ovoid1ER0.33castor4.113.081.333.0810.830.72670ovoid1ER0.42castor5.534.821.154.8219.320.6164.66prolate1K0.42castor9.548.721.098.7265.230.74975spherical1K0.42castor7.056.011.176.013.8330.7975spherical1K0.47castor7.845.191.515.193.4730.8896ovoid1K0.47castor5.335.231.025.232.4540.5171.04ovoid1K0.47castor6.335.231.025.232.4540.52695.19spherical1K0.55castor </td <td>castor</td> <td>7.29</td> <td>7.01</td> <td>1.04</td> <td>7.01</td> <td>38.9</td> <td>3</td> <td>0.69</td> <td>7</td> <td>88</td> <td>spherical</td> <td>1</td> <td>ER</td> <td>0.66</td>	castor	7.29	7.01	1.04	7.01	38.9	3	0.69	7	88	spherical	1	ER	0.66
castor5.074.521.124.521.8220.61685spherical1ER0.83castor5.033.541.423.5417.930.75482.1prolate11ER0.83castor10.596.861.546.8651.320.83872.4ovoid1ER0.43castor4.13.081.333.0810.830.72670ovoid1ER0.42castor5.534.821.154.8219.320.61664.66prolate1KF0.42castor5.534.821.098.7265.230.941191prolate1KF0.92castor7.056.011.176.0138.338.749.63prolate1KF0.92castor7.845.191.515.1934.730.8896ovoid1K0.47castor7.335.231.025.2324.540.517104ovoid1K0.47castor7.345.231.025.2324.540.517104spherical1K0.47castor7.335.231.025.2324.540.517787polygon1K0.55 <tr< td=""><td>castor</td><td>5.47</td><td>4.37</td><td>1.25</td><td>4.37</td><td>17.0</td><td>4</td><td>0.62</td><td>9</td><td>84.58</td><td>polygon</td><td>1</td><td>ER</td><td>0.62</td></tr<>	castor	5.47	4.37	1.25	4.37	17.0	4	0.62	9	84.58	polygon	1	ER	0.62
castor5.033.541.423.5417.930.75482.1prolate1AN0.61castor10.596.861.546.8651.320.83872.34ovoid11ER0.38castor4.13.081.333.0810.830.72670ovoid1IER0.42castor5.534.821.154.8219.320.61664.66prolate1K0.42castor9.548.721.098.7265.230.74975spherical1K0.42castor7.554.821.154.8219.320.61191prolate1K0.42castor7.556.011.176.013.8330.75975spherical1K0.51castor7.845.191.515.193.4730.8896ovoid1K0.47castor7.845.191.025.232.4540.517104ovoid1K0.47castor7.845.191.025.232.4540.517104spherical1K0.57castor9.038.811.028.816.7730.8316104spherical1K0.57 <td>castor</td> <td>5.07</td> <td>4.52</td> <td>1.12</td> <td>4.52</td> <td>18.2</td> <td>2</td> <td>0.61</td> <td>6</td> <td>85</td> <td>spherical</td> <td>1</td> <td>ER</td> <td>0.83</td>	castor	5.07	4.52	1.12	4.52	18.2	2	0.61	6	85	spherical	1	ER	0.83
castor10.596.861.546.8651.320.83872.34ovoid1ER0.38castor4.13.081.333.0810.830.72670ovoid14ER0.40castor5.534.821.154.8219.320.61664.66prolate11EL0.92castor9.548.721.098.7265.230.941191prolate1IEL0.92castor7.056.011.176.0138.330.7975spherical1IK0.92castor7.845.191.515.1934.730.8896ovoid1K0.47castor7.845.191.515.1934.730.8896ovoid1K0.47castor5.335.231.025.2324.540.517104ovoid1K0.47castor9.038.811.028.816.730.83169.14spherical1K0.47castor9.938.811.028.816.730.831.61.04spherical1K0.87castor3.93.51.113.512.330.778.7polygon1K0.8	castor	5.03	3.54	1.42	3.54	17.9	3	0.75	4	82.1	prolate	1	AN	0.61
castor4.13.081.333.0810.830.72670ovoid1ER0.40castor5.534.821.154.8219.320.61664.66prolate101AF0.21castor9.548.721.098.7265.230.941191prolate1K0.92castor7.056.011.176.0138.330.77975spherical1K0.50castor7.845.191.515.1934.730.8896ovoid1K0.47castor5.335.231.025.2324.540.517104ovoid1K0.47castor4.23.91.083.91.3940.52695.19spherical1K0.57castor9.038.811.025.2324.540.517104spherical1K0.57castor9.038.811.025.2324.540.52695.19spherical1K0.57castor9.038.811.028.8167.730.82790polygon1K0.57castor5.864.241.384.2419.450.8279polygon1K0.66castor<	castor	10.59	6.86	1.54	6.86	51.3	2	0.83	8	72.34	ovoid	1	ER	0.38
castor5.534.821.154.8219.320.61664.66prolate1IKF0.42castor9.548.721.098.726.0138.330.7975spherical1KF0.92castor7.056.011.176.0138.330.7975spherical1KF0.50castor7.845.191.515.1934.730.8896ovoid1KF0.47castor5.335.231.025.2324.540.517104ovoid1KF0.47castor4.23.91.083.91.394.40.517104ovoid1KF0.47castor9.038.811.025.2324.540.517104ovoid1KF0.47castor9.038.811.028.816.7730.8316104spherical1K0.55castor9.038.811.031.233.00.72790polygon1K0.55castor5.864.241.384.241.9450.82790polygon1K0.55castor5.434.511.024.515.50.595spherical1K0.55castor5.43 <td< td=""><td>castor</td><td>4.1</td><td>3.08</td><td>1.33</td><td>3.08</td><td>10.8</td><td>3</td><td>0.72</td><td>6</td><td>70</td><td>ovoid</td><td>1</td><td>ER</td><td>0.40</td></td<>	castor	4.1	3.08	1.33	3.08	10.8	3	0.72	6	70	ovoid	1	ER	0.40
castor9.548.721.098.7265.230.941191prolate1EL0.92castor7.056.011.176.0138.330.7975spherical1AF0.50castor7.845.191.515.1934.730.8896ovoid1ER0.45castor5.335.231.025.2324.540.517104ovoid1ER0.47castor4.23.91.083.913.940.52695.19spherical1EL0.79castor9.038.811.028.8167.730.8316104spherical1EL0.79castor9.038.811.028.8167.730.8316104spherical1EL0.79castor3.93.51.113.512.330.7787polygon1EL0.81castor5.864.241.384.2419.450.82790polygon1ER0.75castor6.236.061.036.0633.830.72692ovoid1E0.75castor5.434.511.024.515.535.595spherical1E0.81castor5.434.51 <td>castor</td> <td>5.53</td> <td>4.82</td> <td>1.15</td> <td>4.82</td> <td>19.3</td> <td>2</td> <td>0.61</td> <td>6</td> <td>64.66</td> <td>prolate</td> <td>1</td> <td>AF</td> <td>0.42</td>	castor	5.53	4.82	1.15	4.82	19.3	2	0.61	6	64.66	prolate	1	AF	0.42
castor7.056.011.176.0138.330.7975spherical1AF0.50castor7.845.191.515.1934.730.8896ovoid1ER0.47castor5.335.231.025.2324.540.517104ovoid11ER0.47castor4.23.91.083.91.394.40.517104spherical1ER0.59castor4.23.91.028.8167.730.8316104spherical1ER0.59castor9.038.811.028.8167.730.8316104spherical1ER0.59castor3.93.51.113.512.330.7787polygon1ER0.59castor5.864.241.384.2419.450.82790polygon1ER0.57castor6.236.061.036.0633.830.72692ovoid1ER0.57castor5.434.511.24.5119.030.69595spherical1E0.54castor5.434.511.129.8730.781319.07polate1E0.53castor5.43	castor	9.54	8.72	1.09	8.72	65.2	3	0.94	11	91	prolate	1	EL	0.92
castor7.845.191.515.1934.730.8896ovoid1ER0.45castor5.335.231.025.2324.540.517104ovoid1ER0.47castor4.23.91.083.91.394.40.52695.19spherical1ER0.59castor9.038.811.028.8167.730.8316104spherical1ER0.57castor3.93.51.113.512.330.778.7polygon1ER0.83castor5.864.241.384.2419.450.82790polygon1ER0.83castor6.236.061.036.063.3830.72692ovoid1ER0.75castor6.234.511.024.5119.030.69595spherical1ER0.83castor6.236.061.036.063.8830.72692ovoid1ER0.84chipun1.529.871.6119.030.69595spherical1E0.84bipun1.529.871.619.8730.781319.07prolate1E0.94castor1.529.87	castor	7.05	6.01	1.17	6.01	38.3	3	0.7	9	75	spherical	1	AF	0.50
castor5.335.231.025.2324.540.517104ovoid1ER0.47castor4.23.91.083.913.940.52695.19spherical1ER0.59castor9.038.811.028.8167.730.8316104spherical1ER0.75castor3.93.51.113.512.330.7787polygon1ER0.87castor5.864.241.384.2419.450.82790polygon1ER0.87castor6.236.061.036.0633.830.72692ovoid1ER0.75castor5.434.511.24.513.00.69595spherical1ER0.83castor6.236.061.036.0633.80.72692ovoid1ER0.75castor5.434.511.24.5119.030.69595spherical1ER0.83bijou11.529.871.179.8798.730.781311.07prolate1E0.93bijou11.919.091.319.0980.940.78130.40prolate1E0.45	castor	7.84	5.19	1.51	5.19	34.7	3	0.8	8	96	ovoid	1	ER	0.45
castor4.23.91.083.913.940.52695.19spherical11ER0.59castor9.038.811.028.8167.730.8316104spherical1EL0.75castor3.93.51.113.512.330.7787polygon1ER0.87castor5.864.241.384.2419.450.82790polygon1ER0.83castor6.236.061.036.0633.830.72692ovoid1ER0.83castor5.434.511.24.5119.030.69595spherical1ER0.84bijou11.529.871.179.8798.730.781319.07prolate1E0.93bijou11.919.091.319.0980.940.78130quadrangular1E0.43	castor	5.33	5.23	1.02	5.23	24.5	4	0.51	7	104	ovoid	1	ER	0.47
castor9.038.811.028.8167.730.8316104spherical11EL0.75castor3.93.51.113.512.330.7787polygon1ER0.87castor5.864.241.384.2419.450.82790polygon1ER0.83castor6.236.061.036.0633.830.72692ovoid1ER0.75castor5.434.511.24.5119.030.69595spherical1ER0.83bijou11.529.871.179.8798.730.7813119.07prolate1EL0.93bijou11.919.091.319.0980.940.78130quadrangular1EL0.43	castor	4.2	3.9	1.08	3.9	13.9	4	0.52	6	95.19	spherical	1	ER	0.59
castor 3.9 3.5 1.11 3.5 12.3 3 0.7 7 87 polygon 1 ER 0.87 castor 5.86 4.24 1.38 4.24 19.4 5 0.82 7 90 polygon 1 ER 0.83 castor 6.23 6.06 1.03 6.06 33.8 3 0.72 6 92 ovoid 1 ER 0.83 castor 5.43 4.51 1.02 4.51 19.0 3 0.69 5 95 spherical 1 ER 0.83 bijou 11.52 9.87 1.17 9.87 98.7 3 0.69 5 95 spherical 1 ER 0.83 bijou 11.52 9.87 1.17 9.87 98.7 3 0.78 19.07 prolate 1 E 0.93 bijou 11.91 9.09 1.31 9.09 80.9 4 0.7 8 130 quadrangular 1 E 0.43 0.43	castor	9.03	8.81	1.02	8.81	67.7	3	0.83	16	104	spherical	1	EL	0.75
castor 5.86 4.24 1.38 4.24 19.4 5 0.82 7 90 polygon 1 ER 0.83 castor 6.23 6.06 1.03 6.06 33.8 3 0.72 6 92 ovoid 1 ER 0.75 castor 5.33 4.51 1.02 4.51 19.0 3 0.69 5 95 spherical 1 ER 0.75 bijou 11.52 9.87 1.17 9.87 98.7 3 0.78 13 119.07 prolate 1 ER 0.93 bijou 11.52 9.87 1.17 9.87 98.7 3 0.78 13 119.07 prolate 1 EL 0.93 bijou 11.91 9.09 1.31 9.09 80.9 4 0.7 8 130 quadrangular 1 EL 0.43	castor	3.9	3.5	1.11	3.5	12.3	3	0.7	7	87	polygon	1	ER	0.87
castor 6.23 6.06 1.03 6.06 33.8 3 0.72 6 92 ovoid 1 ER 0.75 castor 5.43 4.51 1.2 4.51 19.0 3 0.69 5 95 spherical 1 ER 0.86 bijou 11.52 9.87 1.17 9.87 98.7 3 0.78 13 119.07 prolate 1 EL 0.93 bijou 11.91 9.09 1.31 9.09 80.9 4 0.7 8 130 quadrangular 1 EL 0.43	castor	5.86	4.24	1.38	4.24	19.4	5	0.82	7	90	polygon	1	ER	0.83
castor 5.43 4.51 1.2 4.51 19.0 3 0.69 5 95 spherical 1 ER 0.86 bijou 11.52 9.87 1.17 9.87 98.7 3 0.78 13 119.07 prolate 1 EL 0.93 bijou 11.91 9.09 1.31 9.09 80.9 4 0.7 8 130 quadrangular 1 EL 0.43	castor	6.23	6.06	1.03	6.06	33.8	3	0.72	6	92	ovoid	1	ER	0.75
bijou 11.52 9.87 1.17 9.87 98.7 3 0.78 13 119.07 prolate 1 EL 0.93 bijou 11.91 9.09 1.31 9.09 80.9 4 0.7 8 130 quadrangular 1 EL 0.48	castor	5.43	4.51	1.2	4.51	19.0	3	0.69	5	95	spherical	1	ER	0.86
bijou 11.91 9.09 1.31 9.09 80.9 4 0.7 8 130 quadrangular 1 EL 0.48	bijou	11.52	9.87	1.17	9.87	98.7	3	0.78	13	119.07	prolate	1	EL	0.93
	bijou	11.91	9.09	1.31	9.09	80.9	4	0.7	8	130	quadrangular	1	EL	0.48

bijou	6.82	6.29	1.08	6.29	34.0	2	0.65	8	96.97	spherical	1	ER	0.87
bijou	8.27	8.23	1	8.23	138.3	5	0.52	7	138.28	polygon	1	AF	0.39
bijou	15.35	9.54	1.61	9.54	125.5	3	0.8	6	125.54	prolate	1	EL	0.40
bijou	9.83	9.73	1.01	9.73	80.8	2	0.65	8	125.06	spherical	1	ER	0.37
bijou	13.78	10.79	1.28	10.79	107.8	3	1.14	15	93.49	spherical	1	EL	0.75
bijou	5.14	4.35	1.18	4.35	19.0	4	0.6	6	123	polygon	1	ER	0.66
bijou	6.02	4.69	1.28	4.69	21.8	3	0.5	4	111.1	polygon	1	AN	0.56
bijou	18.14	13.74	1.32	13.74	225.6	4	1.65	26	97.83	prolate	1	EL	0.79
bijou	10.62	7.8	1.36	7.8	60.0	4	0.93	9	135	polygon	1	EL	0.46
bijou	6.33	5.14	1.23	5.14	36.5	3	0.83	10	104	polygon	1	ER	0.82
bijou	8.81	7.78	1.13	7.78	49.9	3	0.7	9	112.01	spherical	1	ER	0.45
bijou	5.02	4.66	1.08	4.66	21.8	4	0.82	6	98.98	spherical	1	ER	0.90
bijou	6.87	6.66	1.03	6.66	36.7	4	1.03	9	92.28	polygon	1	ER	0.73
bijou	10.58	8.9	1.19	8.9	75.1	3	0.83	12	135.35	spherical	1	EL	0.54
bijou	7.97	6.74	1.18	6.74	43.7	2	0.52	7	107.33	spherical	1	ER	0.43
bijou	19.89	15.17	1.31	15.17	245.6	2	1.33	28	116.95	ovoid	1	EL	0.81
bijou	7.96	5.61	1.42	5.61	41.5	5	1.38	6	94.45	polygon	1	AN	0.50
bijou	8.33	7.18	1.16	7.18	43.9	4	0.9	5	109.88	polygon	1	ER	0.48
bijou	9.55	7.4	1.29	7.4	55.4	4	0.66	6	119.19	ovoid	1	ER	0.39
bijou	6.86	6.07	1.13	6.07	39.1	3	0.6	8	114.04	polygon	1	ER	0.52
bijou	5.91	5.37	1.1	5.37	26.5	5	0.66	7	105.53	spherical	1	ER	0.77
bijou	12.59	11.48	1.1	11.48	108.4	3	1.2	7	107.62	spherical	1	EL	0.42
bijou	9.42	8.42	1.12	8.42	81.4	5	1.47	17	88.21	prolate	1	EL	0.93
bijou	10.09	9.14	1.1	9.14	67.8	3	1.13	11	67.75	prolate	1	EL	0.79
bijou	10.05	9.96	1.01	9.96	85.4	3	0.69	10	84.61	spherical	1	ER	0.39
bijou	10.83	8.3	1.3	8.3	72.4	3	0.6	14	115.75	ovoid	1	EL	0.96
bijou	11.22	10.87	1.03	10.87	100.8	2	0.84	14	123.01	prolate	2	EL	0.84
bijou	19.87	13.21	1.5	13.21	209.9	5	0.97	5	131.4	ovoid	2	SA	0.40
bijou	12.3	9.82	1.25	9.82	96.5	4	0.93	11	108.2	polygon	1	EL	0.91
bijou	11.48	10.24	1.12	10.24	97.3	3	1.01	15	119	ovoid	1	EL	0.96
bijou	7.82	7.2	1.09	7.2	112.3	3	0.55	10	112	spherical	1	ER	0.33
bijou	8.7	7.58	1.15	7.58	49.5	3	0.41	2	134	spherical	1	AF	0.35
bijou	10.92	8.22	1.33	8.22	72.6	4	1.1	8	92.45	prolate	1	AN	0.38
bijou	12.89	11.02	1.17	11.02	119.7	4	1.17	11	122	spherical	1	EL	0.68
bijou	16.28	10.44	1.56	10.44	137.3	3	1.35	6	96.39	ovoid	1	EL	0.38
bijou	10.85	8.37	1.3	8.37	71.2	4	0.92	4	103.66	polygon	1	AN	0.37
bijou	9.11	8.91	1.02	8.91	64.4	2	1.1	12	96.04	spherical	1	EL	0.40
bijou	14.53	14.45	1.01	14.45	172.5	3	1.25	17	114.06	spherical	1	EL	0.86
bijou	9.85	7.73	1.27	7.73	68.6	3	1.23	13	95.02	prolate	1	EL	0.98
bijou	7.69	7.2	1.07	7.2	47.0	4	0.83	14	118.89	polygon	1	EL	0.89
bijou	11.44	9.36	1.22	9.36	81.0	4	0.87	10	114	prolate	1	EL	0.52
bijou	22.53	21.32	1.06	21.32	364.3	2	1.45	15	106.07	ovoid	1	EL	0.84
bijou	7.37	6.46	1.14	6.46	133.6	2	0.43	3	133.55	spherical	1	AN	0.43
bijou	10.69	10.03	1.07	10.03	90.9	3	0.5	16	119.15	spherical	1	EL	0.83

bip6.867.371.177.375.1530.929.99.99.009.001.11.11.409.44bip1.141.131.131.131.313.1340.72107.57oroid1.11.40.44bip1.931.721.121.722.944.120.41.01.01product1.11.40.01bip1.331.531.572.928.120.41.01.011.010.011.010.01bip1.341.161.121.131.521.30.20.141.01polyon1.11.10.01bip1.331.511.511.521.512.10.11.51.510.010.000.011.10.01bip1.331.511.511.511.511.511.51.511.511.510.01 <t< th=""><th>bijou</th><th>11.42</th><th>9.63</th><th>1.19</th><th>9.63</th><th>90.3</th><th>4</th><th>0.8</th><th>6</th><th>106</th><th>spherical</th><th>1</th><th>EL</th><th>0.46</th></t<>	bijou	11.42	9.63	1.19	9.63	90.3	4	0.8	6	106	spherical	1	EL	0.46
bip9.89.741.019.747.4030.89.749.7649.7649.7649.7641.11.780.41bipo1.1.21.2.41.2.11.2.42.5.42.10.31.51.5.19.7670.7611.1 <t< td=""><td>bijou</td><td>8.65</td><td>7.37</td><td>1.17</td><td>7.37</td><td>51.5</td><td>3</td><td>0.92</td><td>9</td><td>92</td><td>spherical</td><td>1</td><td>ER</td><td>0.44</td></t<>	bijou	8.65	7.37	1.17	7.37	51.5	3	0.92	9	92	spherical	1	ER	0.44
bip11.4511.3110.3110.319.3340.72107.876ovid11111111.412.17.4112.4	bijou	9.83	9.74	1.01	9.74	74.0	3	0.8	8	95.94	spherical	1	ER	0.44
bip19.217.417.	bijou	11.45	11.13	1.03	11.13	93.3	4	0.72	10	78.76	ovoid	1	EL	0.47
bip11.49.291.219.299.4120.4138.89ovid118.10.10bip6.325.331.075.332.0740.7891.01polygon180.1bip13.41.161.161.161.161.2751.231.21.14polygon181.0bip7.586.271.116.224.332.20.14810ovid180bip1.131.331.011.331.5151.51.6810ovid180bip1.131.211.311.521.531.571.51.58100ovid180bip1.131.211.526.21.131.51.511.51.51	bijou	19.32	17.24	1.12	17.24	256.9	2	0.93	15	116.31	prolate	1	EL	0.80
bip6.525.931.075.932.9740.789.1.0polygon1.1E.R0.74bipu13.411.611.613.61.21.331.21.341.210.41Polygon1.1E.U0.51bipu7.656.821.16.824.3320.4182.0polygon1.1E.U0.51bipu10.311.231.427.2751.22.1.18.81.01ovoid1.1A.N0.41bipu11.371.331.041.531.531.51.51.51.51.55 <td< td=""><td>bijou</td><td>11.42</td><td>9.29</td><td>1.23</td><td>9.29</td><td>84.1</td><td>2</td><td>0.4</td><td>13</td><td>88</td><td>ovoid</td><td>1</td><td>EL</td><td>0.90</td></td<>	bijou	11.42	9.29	1.23	9.29	84.1	2	0.4	13	88	ovoid	1	EL	0.90
bipol13411.611.613.615.715.13.31210.41polygon1E.0.81bipol14.814.814.214.214.312.3120.41882polato11E.0.81bipol13.17.2714.27.2751.221.18100void11R.0.81bipol13.313.31.017.277.27.21.17.51.01.0void18.0.01bipol13.31.021.127.278.01.00.90.0118.0.010.011.18.00.01bipol11.71.021.028.020.051.09.09.01.18.00.01bipol10.79.791.019.798.011.20.020.09.09.01.18.00.0bipol10.219.791.019.797.56.01.09.09.01.18.00.0bipol10.129.791.019.799.791.019.799.791.01.08.01.	bijou	6.32	5.93	1.07	5.93	29.7	4	0.78	9	110	polygon	1	ER	0.74
bip14.81.421.221.421.523.40.41.80.42polygon1E.0.43bip10.37.271.427.275.1221.18.8110ovoid1.14.80.4bip1.131.531.427.275.1221.18.8100ovoid1.14.80.8bip1.131.211.141.218.920.551.78.8oplgon1.11.10.11bip1.079.751.119.171.30.710.730.621.19.750.730.621.10.730.621.10.730.621.10.730.620.750.80.90.9oplgon1.10.170.730.621.10.170.730.621.10.170.730.620.750.80.90.9oplgon1.10.170.75bip1.029.180.120.120.120.120.120.120.110.100.9oplgon1.10.170.17Coma0.726.411.080.722.10.11.00.0oplgon1.11.10.170.11Coma1.156.581.111.080.112.11.10.100.9oplgon1.11.10.1Coma1.151.150.150.11.11.10.1 <td< td=""><td>bijou</td><td>13.4</td><td>11.6</td><td>1.16</td><td>11.6</td><td>136.7</td><td>5</td><td>1.33</td><td>12</td><td>104.18</td><td>polygon</td><td>1</td><td>EL</td><td>0.80</td></td<>	bijou	13.4	11.6	1.16	11.6	136.7	5	1.33	12	104.18	polygon	1	EL	0.80
bip7.566.821.116.827.332.20.41.88.2prolate1.11.41.41.4bip1.317.271.427.275.1221.18.8100oroid1.14.141.331.411.331.341.331.5151.31.51.51 <t< td=""><td>bijou</td><td>14.18</td><td>11.63</td><td>1.22</td><td>11.63</td><td>152.9</td><td>3</td><td>0.9</td><td>8</td><td>116</td><td>polygon</td><td>1</td><td>EL</td><td>0.51</td></t<>	bijou	14.18	11.63	1.22	11.63	152.9	3	0.9	8	116	polygon	1	EL	0.51
bipon10.317.271.427.2751.221.18101ovoid11.N.1N.1bipon11.3110.211.1110.2189.420.55178.83opprovem111.11.21bipon10.799.751.119.758.3030.9761.00polygon1.11.11.11bipon1.029.751.119.758.301.20.751.009.750.011.001.11 <td>bijou</td> <td>7.56</td> <td>6.82</td> <td>1.11</td> <td>6.82</td> <td>43.3</td> <td>2</td> <td>0.4</td> <td>18</td> <td>82</td> <td>prolate</td> <td>1</td> <td>EL</td> <td>0.89</td>	bijou	7.56	6.82	1.11	6.82	43.3	2	0.4	18	82	prolate	1	EL	0.89
bip14.1313.531.041.5315.1.51.1310.81polygon11.1.01.0bip1.071.011.011.018.9420.95178.83spherical11.1.1.0bip1.079.751.119.758.303.0.976.1.00polygon1.18.11.01bip1.029.791.099.797.842.0.883.16.66oroid1.18.70.7bip1.029.781.019.787.842.00.00.0spherical1.18.70.7bip1.029.781.019.757.70.70.00.0spherical1.18.70.7Coma7.726.741.081.729.751.01.09.07spherical1.18.70.7Coma1.176.758.777.527.11.01.0spherical1.18.70.7Coma1.178.757.527.51.01.09.07oroid1.18.70.7Coma1.198.71.216.759.71.01.01.01.01.01.01.0Coma1.198.71.529.71.01.01.01.01.01.01.01.0Coma1.198.71.09.11.01.0	bijou	10.31	7.27	1.42	7.27	51.2	2	1.1	8	110	ovoid	1	AN	0.48
bipin1.1371.0211.111.0218.9420.951.718.33spherical11E.0.12bijou1.0799.571.119.758.031.30.9761.01polygon1.11.80.53bijou1.0729.791.099.797.8420.8836.6ovid1.11.4F.0.57bijou1.0219.181.119.187.3620.751.09.0spherical1.11.4F.0.57Ciona7.826.441.296.443.22.20.511.00.0spherical1.11.4F.0.57Ciona1.1876.681.786.685.470.000spherical1.1K.0.74Ciona1.1576.781.316.685.772.31.21.31.03ovoid1.1K.0.74Ciona1.1578.771.287.723.11.31.03ovoid1.1K.0.74Ciona6.655.861.135.857.723.11.31.03ovoid1.1K.0.74Ciona6.655.861.135.857.723.11.49.0ovoid1.1K.0.74Ciona6.655.861.135.857.723.11.49.0ovoid1.1K.0.74 <td>bijou</td> <td>14.13</td> <td>13.53</td> <td>1.04</td> <td>13.53</td> <td>155.1</td> <td>5</td> <td>1.3</td> <td>15</td> <td>108.1</td> <td>polygon</td> <td>1</td> <td>EL</td> <td>0.80</td>	bijou	14.13	13.53	1.04	13.53	155.1	5	1.3	15	108.1	polygon	1	EL	0.80
bipon 10.79 9.75 1.11 9.75 8.80 3 9.4 9 9 polyon 1 R.1 0.11 bijon 10.72 9.79 1.09 9.79 7.84 2 0.88 3 66 ovoid 1 A A 0.57 bijon 10.21 9.18 1.11 9.18 7.36 2 0.75 1.0 9.09 spherical 1 A A 0.01 Coma 7.82 6.04 1.29 6.04 3.29 2 0.51 1.0 0.00 spherical 1 A A 0.01 Coma 1.187 6.68 1.03 6.64 1.01 1.0 1.0 1.0 1.0 spherical 1.1 A A Coma 1.19 8.57 1.35 8.57 7.52 3 1.2 1.31 0.30 ovoid 1.1 A A Coma 6.53 1.41	bijou	11.37	10.21	1.11	10.21	89.4	2	0.95	17	83	spherical	1	EL	0.92
bijou7.936.621.126.624.193.0.976.1.10polygon1.I.R.0.53bijou10.219.791.099.797.842.0.883.6.6ovoid1.1I.86.64Coma7.826.041.296.043.792.0.00.0spherical1.1I.8R.Coma6.776.241.086.243.322.0.00.0spherical1.1I.8R.Coma1.1.876.687.786.685.470.00.00.0spherical1.1I.8R.Coma1.1.596.687.723.01.21.421.99.1spherical1.1I.8R.Coma1.598.571.358.577.523.01.21.31.00spherical1.1I.8R.Coma6.655.661.135.863.035.70.00quadragular1.1I.8R.Coma6.536.135.861.135.863.031.21.011.01spherical1.1I.8R.Coma6.544.541.035.861.135.863.031.21.011.0R.quadragular1.1I.8R.Coma5.435.451.135.863.031.541.011.0polygon1.1K.R.<	bijou	10.79	9.75	1.11	9.75	83.0	3	0.94	9	94	polygon	1	EL	0.51
bijou10.729.791.099.7820.88366void11AF0.57bijou10.219.481.119.187.3620.751090spherical111KF0.99Coma7.826.041.296.043.792000spherical11KF0.99Coma1.1876.041.086.243.2220.5110100spherical11KF0.97Coma1.1876.681.1118.053.031.21.221.319.03ovid1KF0.97Coma1.198.571.358.577.5231.221.31ovid1.1KF0.97Coma6.655.861.135.863.035000quadrangular1KF0.97Coma6.455.451.126.954.934.41.041.09.09ovid1.4KF0.97Coma6.434.151.225.871.18.753.01.47.06.17spherical1.4KF0.97Coma1.354.151.121.141.41	bijou	7.93	6.62	1.2	6.62	41.9	3	0.97	6	110	polygon	1	ER	0.53
bigu10219.181.119.187.3620.751090spherial189.46Goma7.826.041.296.043.2920.51100spherial185Goma6.776.241.086.243.222.51.010spherial1855Goma11.876.681.111.053.0121.221.21.03spherial1185Goma11.598.571.358.577.5231.21.31.03spherial18618Goma6.655.861.135.863.085000quadragular1889Goma6.446.951.126.954.934.91.014.995.03ovoid188918Goma6.434.451.224.934.01.0195.03ovoid188188Goma5.431.521.529.931.431.011.591.621.621.621.641.6	bijou	10.72	9.79	1.09	9.79	78.4	2	0.88	3	66	ovoid	1	AF	0.57
Goma7.826.041.296.043.2920.0099911AA1A0Goma6.776.281.786.685.47000099 </td <td>bijou</td> <td>10.21</td> <td>9.18</td> <td>1.11</td> <td>9.18</td> <td>73.6</td> <td>2</td> <td>0.75</td> <td>10</td> <td>90</td> <td>spherical</td> <td>1</td> <td>ER</td> <td>0.46</td>	bijou	10.21	9.18	1.11	9.18	73.6	2	0.75	10	90	spherical	1	ER	0.46
Goma6.776.241.086.243.3220.5110100spherical1E0.57Goma11.576.681.1118.053.03.21.42199.1spherical11EL0.58Goma11.598.571.338.5775.231.2130.03ovoid1EL0.55Goma6.655.861.135.863.085000quadrangular1EL0.57Goma6.455.861.216.954.9341.011495.03ovoid1EL0.57Goma6.434.511.24.511.904000polygon1KN0.51Goma5.434.511.223.8331.432.01.11spherical1KN0.51Goma1.354.511.223.831.432.01.11spherical1KN0.51Goma1.351.121.123.831.511.432.01.11spherical1KN0.51Goma1.631.461.221.421.431.441.41.4spherical1K0.51Goma1.7631.461.21.462.0221.51.451.441.41.41.41.41.41.41.41.41.41	Goma	7.82	6.04	1.29	6.04	37.9	2	0	0	0	spherical	1	AF	0.99
Goma11.876.681.786.6854.70000spherical15.85.84Goma1.1598.571.358.577.5231.213103ovoid1EL0.55Goma6.655.861.135.8630.85000quadrangular1K0.56Goma6.446.951.216.954.934.11.01495.0ovoid1K0.57Goma5.434.511.26.954.934.01.0149.00polygon1K0.57Goma5.434.511.26.951.216.951.451.41.011.0polygon1K0.57Goma5.434.511.24.511.904.11.01.0polygon1K0.57Goma1.038.71.198.76.623.11.41.61.01polygon1K0.4Goma1.031.461.24.621.21.41.61.01polygon1K0.4Goma1.031.461.21.41.41.41.41.41.41.41.41.4Goma1.731.351.241.51.41.61.11.41.41.41.41.41.41.41.41.41.41.41	Goma	6.77	6.24	1.08	6.24	33.2	2	0.51	10	100	spherical	1	ER	0.59
Goma20.0418.051.1118.05303.121.421991spherical1E1.850.85Goma1.1598.571.338.5775.231.213103ovoid1E0.95Goma6.655.861.135.8630.85000quadrangular1E0.95Goma8.446.951.216.951.904.91.011.495.03ovoid1E0.11Goma5.334.511.224.511.904.90.000polygon1E0.12Goma23.4521.321.1321.3298.331.4320111spherical1E0.40Goma10.358.71.196.6231.44766.17spherical1E0.40Goma17.313.531.2813.5321.5031.441610.43spherical1E0.41Goma15.0113.011.5021.511.441.641.141.451.450.411.450.41Goma6.737.921.117.927.5531.171.045.91spherical1.11.470.45Goma15.0113.011.5832.21.572.145spherical1.11.470.450.45Goma <t< td=""><td>Goma</td><td>11.87</td><td>6.68</td><td>1.78</td><td>6.68</td><td>54.7</td><td>0</td><td>0</td><td>0</td><td>0</td><td>spherical</td><td>1</td><td>SA</td><td>0.74</td></t<>	Goma	11.87	6.68	1.78	6.68	54.7	0	0	0	0	spherical	1	SA	0.74
Goma11.598.571.358.577.5231.21.31.03ovoid1EL0.95Goma6.655.861.135.8630.85000quadrangular11AF0.93Goma8.446.951.216.9549.341.011495.03ovoid11KI0.11Goma5.434.511.24.5119.04000polygon1KI0.12Goma23.4521.321.121.32398.331.43201.11spherical1.1KI0.01Goma10.358.771.198.7766.231.147.147.145.145.140.141.11.140.14Goma17.314.661.2214.62.0221.4212.45spherical1.11.11.140.14Goma17.313.531.2813.5321.501.41.6410.19spherical1.11.11.11.1Goma15.0113.011.1513.01143.61.11.61.241.141.11	Goma	20.04	18.05	1.11	18.05	303.1	2	1.42	19	91	spherical	1	EL	0.85
Goma6.655.861.135.863.08500quadrangular1AF0.84Goma8.446.951.216.9549.341.011495.03ovoid11KI11Goma5.434.511.224.511.004000polygon11AN0.51Goma23.4521.321.1121.3239.3331.4320111spherical1EL0.04Goma10.358.71.198.76.6221.622216.45spherical1EL0.44Goma17.6314.661.214.6620.221.6212.4i.01.9i.01.41.1i.140.4Goma17.313.531.2813.0521.5031.441.610.93i.01.41.1i.140.4Goma15.0114.6520.22.51.6212.4i.01.93i.01.4i.01.	Goma	11.59	8.57	1.35	8.57	75.2	3	1.2	13	103	ovoid	1	EL	0.95
Goma8.446.951.216.9549.341.011495.03ovoid1E.1Goma5.434.511.24.5119.04000polygon118.00.51Goma23.4521.321.121.3239.331.4320111spherical11EL0.42Goma10.358.71.198.766.231.74766.7spherical11EL0.40Goma17.6314.661.214.6620.221.6212.212.45spherical1EL0.41Goma17.313.531.2813.53215.031.441610.93prolate1EL0.41Goma15.0113.011.1513.01143.611.441610.19spherical1EL0.41Goma6.7514.5915.925.531.171057.5spherical11EL0.41Goma6.784.821.374.8225.040.7724.95prolate1EL0.41Goma6.784.821.374.8225.040.7724.95prolate1EL0.41Goma6.785.871.15.8736.020.76.83.94spherical1	Goma	6.65	5.86	1.13	5.86	30.8	5	0	0	0	quadrangular	1	AF	0.98
Goma5434.511.24.5119.040000polygon1N0.51Goma23.4521.321.121.32398.331.4320111spherical11EL0.82Goma10.358.71.198.766.231.74766.17spherical11EL0.40Goma17.6314.661.2212.0221.6212.012.05spherical1.11EL0.84Goma15.0113.031.2813.53215.031.441610.193prolate11EL0.84Goma15.0113.011.1513.0114.3611.041812.04prolate11EL0.84Goma65.877.921.117.9257.531.171057.51spherical1.1K0.740.74Goma65.84.821.374.8225.040.7724.95prolate1K0.750.75Goma6.584.821.374.8225.040.7724.95prolate1K0.750.75Goma6.745.591.145.8736.020.7636.02spherical1L0.750.750.750.7636.02spherical11	Goma	8.44	6.95	1.21	6.95	49.3	4	1.01	14	95.03	ovoid	1	EL	1
Goma23.4521.321.121.32398.331.4320111spherical1EL0.42Goma10.358.71.198.76.6231.7476.617spherical11EL0.40Goma17.6314.661.214.6620.2212.2124.85spherical11EL0.41Goma17.313.031.2813.03215.031.4416101.93prolate11EL0.41Goma15.0113.011.4513.11.4611.416101.93prolate11EL0.41Goma6.587.921.17.9257.531.171057.51spherical11AF0.47Goma6.584.821.374.8225.040.7724.95prolate1AF0.47Goma6.584.821.374.8225.040.7724.95prolate1AF0.47Goma6.785.871.15.8736.020.7636.02spherical1A40.47Goma16.7915.991.4576.020.7636.02spherical1A60.41Goma16.791.291.9120.718.0436.02spherical <td>Goma</td> <td>5.43</td> <td>4.51</td> <td>1.2</td> <td>4.51</td> <td>19.0</td> <td>4</td> <td>0</td> <td>0</td> <td>0</td> <td>polygon</td> <td>1</td> <td>AN</td> <td>0.51</td>	Goma	5.43	4.51	1.2	4.51	19.0	4	0	0	0	polygon	1	AN	0.51
Goma10.358.71.198.766.231.74766.17spherical11EL0.40Goma17.6314.661.214.66220221.62124.85spherical11EL0.81Goma17.313.531.2813.53215.031.4416101.93prolate1EL0.81Goma15.0113.011.1513.01143.611.048123.41spherical1IEL0.49Goma8.77.921.17.9257.531.171057.51spherical1IK0.47Goma6.584.821.374.8225.040.7724.95prolate1K0.7Goma6.584.821.175.8538.230038.2quadrangular1K0.7Goma6.745.871.145.8736.020.7636.02spherical1K0.840.84Goma17.9312.921.33167.21.271180.45ovoid1K0.470.44Goma16.0513.331.213.33167.241.1894ovoid1L0.47Goma10.739.491.139.4976.350.7551.19.7spherical1	Goma	23.45	21.32	1.1	21.32	398.3	3	1.43	20	111	spherical	1	EL	0.82
Goma17.6314.661.214.66220.221.6222124.85spherical11EL0.84Goma17.313.531.2813.53215.031.4416101.93prolate1EL0.81Goma15.0113.011.1513.01143.611.048123.41spherical1EL0.49Goma8.77.921.17.9257.531.171057.51spherical1K0.77Goma6.584.821.374.8225.040.7724.95prolate1K0.77Goma6.584.821.374.8225.040.7724.95prolate1K0.77Goma6.584.821.374.8225.040.7724.95prolate1K0.77Goma6.785.871.15.8738.225.040.7724.95prolate1K0.76Goma19.4515.591.2515.924.3741.331624.369spherical1K0.81Goma19.4515.91.2515.924.711854.036.02spherical1K0.45Goma17.9312.921.33167.221.7180.54ovoid1K	Goma	10.35	8.7	1.19	8.7	66.2	3	1.74	7	66.17	spherical	1	EL	0.40
Goma17.313.531.2813.53215.031.4416101.93prolate1EL0.81Goma15.0113.0113.01143.611.048123.41spherical1EL0.49Goma8.77.921.17.9257.531.171057.51spherical1AF0.44Goma6.584.821.374.8225.040.7724.95prolate1AF0.76Goma6.385.81.15.838.230038.2quadrangular1AF0.98Goma6.385.81.15.838.230038.2quadrangular1AF0.98Goma6.385.81.15.87243.741.316243.69spherical1AF0.94Goma6.725.871.145.8736.020.7636.02spherical1AF0.94Goma17.9312.9213.3167.241.1894ovoid1EL0.47Goma16.0513.331213.33167.241.1894ovoid1EL0.47Goma10.739.491.139.4976.350.7551.197polygon1AF0.54Goma10.75	Goma	17.63	14.66	1.2	14.66	220.2	2	1.62	22	124.85	spherical	1	EL	0.84
Goma15.0113.011.1513.01143.611.048123.41spherical11EL0.49Goma8.77.921.17.9257.531.171057.51spherical1AF0.44Goma6.584.821.374.8225.040.7724.95prolate1AF0.77Goma6.385.81.15.838.230038.2quadrangular1AF0.98Goma19.4515.591.55243.741.3316243.69spherical1AF0.81Goma6.725.871.145.8736.020.7636.02spherical1AF0.94Goma17.9312.9213.93167.21.21.21.21.21.21.21.21.21.21.4 <td>Goma</td> <td>17.3</td> <td>13.53</td> <td>1.28</td> <td>13.53</td> <td>215.0</td> <td>3</td> <td>1.44</td> <td>16</td> <td>101.93</td> <td>prolate</td> <td>1</td> <td>EL</td> <td>0.81</td>	Goma	17.3	13.53	1.28	13.53	215.0	3	1.44	16	101.93	prolate	1	EL	0.81
Goma8.77.921.17.9257.531.171057.51spherical1AF0.44Goma6.584.821.374.8225.040.7724.95prolate1AF0.77Goma6.385.81.15.838.230038.2quadrangular1AF0.98Goma19.4515.591.5515.59243.741.3316243.69spherical1AF0.98Goma6.725.871.145.8736.020.7636.02spherical1AF0.94Goma17.9312.9213.93167.220.7636.02spherical146.470.94Goma16.0513.3312.92191.221.271180.54ovoid1EL0.47Goma16.0513.331.2213.33167.241.1894ovoid1EL0.47Goma10.739.491.139.4976.350.75811.97spherical11ER0.54Goma11.778.811.348.8188.950.75511.97polygon1A5.470.54Goma11.778.811.348.818.8950.75511.97polygon1A6.5	Goma	15.01	13.01	1.15	13.01	143.6	1	1.04	8	123.41	spherical	1	EL	0.49
Goma6.584.821.374.8225.040.7724.95prolate1AF0.77Goma6.385.81.15.838.230038.2quadrangular1AF0.98Goma19.4515.591.2515.59243.741.3316243.69spherical146.81Goma6.725.871.145.8736.020.7636.02spherical1AF0.94Goma17.9312.921.3936.020.7636.02spherical1AF0.47Goma16.0513.331.2219.1221.271180.54ovoid1EL0.47Goma16.0513.331.213.33167.241.1894ovoid1EL0.47Goma10.739.491.139.4976.350.75811.97spherical1ER0.54Goma11.778.811.348.8188.950.7511.97polygon1AF0.54Goma11.702.2361.2212.3615.131.310.25prolate11EL0.57	Goma	8.7	7.92	1.1	7.92	57.5	3	1.17	10	57.51	spherical	1	AF	0.44
Goma6.385.81.15.838.230038.2quadrangular1AF0.98Goma19.4515.591.59243.741.3316243.69spherical1EL0.81Goma6.725.871.145.8736.020.7636.02spherical1AF0.94Goma17.9312.921.3912.92191.221.271180.54ovoid1EL0.67Goma16.0513.331.213.33167.241.1894ovoid1EL0.47Goma10.739.491.139.4976.350.75811.97spherical1ER0.54Goma11.778.811.348.8188.950.7511.97polygon1AF0.54Goma15.0212.3612.212.36155.131.310.25prolate1EL0.75	Goma	6.58	4.82	1.37	4.82	25.0	4	0.7	7	24.95	prolate	1	AF	0.77
Goma19.4515.591.2515.59243.741.3316243.69spherical11EL0.81Goma6.725.871.145.8736.020.7636.02spherical1AF0.94Goma17.9312.921.3912.92191.221.271180.54ovoid1EL0.67Goma16.0513.331.213.33167.241.1894ovoid1EL0.47Goma10.739.491.139.4976.350.75811.27spherical1ER0.34Goma11.778.811.348.8188.950.7511.97polygon1AF0.54Goma15.0212.3612.212.36155.131.310.25prolate1EL0.75	Goma	6.38	5.8	1.1	5.8	38.2	3	0	0	38.2	quadrangular	1	AF	0.98
Goma6.725.871.145.8736.020.7636.02spherical1AF0.94Goma17.9312.921.3912.92191.221.271180.54ovoid1EL0.67Goma16.0513.331.213.33167.241.1894ovoid1EL0.47Goma10.739.491.139.4976.350.758117.27spherical1ER0.38Goma11.778.811.348.8188.950.7511.97polygon1AF0.54Goma15.0212.3612.212.3615.131.3102polyact1EL0.75	Goma	19.45	15.59	1.25	15.59	243.7	4	1.33	16	243.69	spherical	1	EL	0.81
Goma 17.93 12.92 1.39 12.92 191.2 2 1.27 11 80.54 ovoid 1 EL 0.67 Goma 16.05 13.33 1.2 13.33 167.2 4 1.1 8 94 ovoid 1 EL 0.67 Goma 10.73 9.49 1.13 9.49 76.3 5 0.75 8 117.27 spherical 1 EL 0.47 Goma 10.73 9.49 1.33 9.49 76.3 5 0.75 8 117.27 spherical 1 EL 0.47 Goma 11.77 8.81 1.34 8.89 5 0.75 5 11.97 polygon 1 AF 0.54 Goma 15.02 12.36 12.23 12.55 3 1.3 100.25 prolate 1 EL 0.67	Goma	6.72	5.87	1.14	5.87	36.0	2	0.7	6	36.02	spherical	1	AF	0.94
Goma 16.05 13.33 1.2 13.33 167.2 4 1.1 8 94 ovoid 1 EL 0.47 Goma 10.73 9.49 1.13 9.49 76.3 5 0.75 8 117.27 spherical 1 EL 0.38 Goma 11.77 8.81 1.34 8.81 88.9 5 0.75 5 11.97 polygon 1 AF 0.54 Goma 15.02 12.36 12.36 15.51 3 1.3 100.25 prolate 1 EL 0.47	Goma	17.93	12.92	1.39	12.92	191.2	2	1.27	11	80.54	ovoid	1	EL	0.67
Goma 10.73 9.49 1.13 9.49 76.3 5 0.75 8 117.27 spherical 1 ER 0.38 Goma 11.77 8.81 1.34 8.81 88.9 5 0.7 5 11.97 polygon 1 AF 0.54 Goma 15.02 12.36 12.23 155.1 3 1.3 100.25 prolate 1 EL 0.75	Goma	16.05	13.33	1.2	13.33	167.2	4	1.1	8	94	ovoid	1	EL	0.47
Goma 11.77 8.81 1.34 8.81 88.9 5 0.7 5 11.97 polygon 1 AF 0.54 Goma 15.02 12.36 1.22 12.36 155.1 3 1.3 13 100.25 prolate 1 L 0.75	Goma	10.73	9.49	1.13	9.49	76.3	5	0.75	8	117.27	spherical	1	ER	0.38
Goma 15.02 12.36 1.22 12.36 155.1 3 1.3 13 100.25 prolate 1 EL 0.75	Goma	11.77	8.81	1.34	8.81	88.9	5	0.7	5	11.97	polygon	1	AF	0.54
	Goma	15.02	12.36	1.22	12.36	155.1	3	1.3	13	100.25	prolate	1	EL	0.75
Goma 20.3 18.26 1.11 18.26 303.7 3 1.69 24 89.34 spherical 1 EL 0.81	Goma	20.3	18.26	1.11	18.26	303.7	3	1.69	24	89.34	spherical	1	EL	0.81
Goma 15 11.29 1.33 11.29 133.1 2 1.14 11 91.53 prolate 1 EL 0.68	Goma	15	11.29	1.33	11.29	133.1	2	1.14	11	91.53	prolate	1	EL	0.68
Goma 17.58 16.61 1.06 16.61 118.6 4 1.23 11 118.55 spherical 1 EL 0.64	Goma	17.58	16.61	1.06	16.61	118.6	4	1.23	11	118.55	spherical	1	EL	0.64
Goma 11.38 8.86 1.28 8.86 88.9 3 1.11 5 105 spherical 1 AN 0.42	Goma	11.38	8.86	1.28	8.86	88.9	3	1.11	5	105	spherical	1	AN	0.42

Goma	9.9	8.76	1.13	8.76	68.6	4	0.88	18	110	ovoid	1	EL	0.98
Goma	10.08	8.46	1.19	8.46	56.6	4	1.02	15	118.21	prolate	2	EL	0.98
Goma	10.26	6.6	1.55	6.6	66.8	4	1.02	15	103	spherical	2	EL	0.72
Goma	19.89	16.12	1.23	16.12	270.4	4	1.96	18	92.42	polygon	1	EL	0.80
Goma	10.4	8.47	1.23	8.47	77.0	2	0.93	19	84.4	ovoid	1	EL	0.99
Goma	19.39	14.23	1.36	14.23	220.1	4	1.33	24	112.26	ovoid	1	EL	0.78
Goma	19.03	18.8	1.01	18.8	167.1	3	1.74	13	267.06	spherical	1	EL	0.78
Goma	22.73	20.08	1.13	20.08	360.2	3	1.33	11	118.62	spherical	1	EL	0.59
Goma	15.72	14.09	1.12	14.09	177.5	4	1.43	8	177.49	spherical	1	EL	0.47
Goma	17.72	15.08	1.18	15.08	198.7	4	0.94	13	110.35	spherical	1	EL	0.73
Goma	7.47	6.86	1.09	6.86	43.5	4	0.6	15	113.87	spherical	1	EL	0.53
Goma	13.92	13.01	1.07	13.01	159.4	3	1.33	11	120.31	spherical	1	EL	0.62
Goma	14.35	13.62	1.05	14.35	164.4	4	1.33	12	109	spherical	1	EL	0.65
Goma	9.23	8.5	1.09	8.5	65.7	2	0.6	9	106	spherical	1	ER	0.44
Goma	7.3	6.04	1.21	6.04	34.5	5	0.55	7	102	ovoid	1	AF	0.58
Goma	8.33	6.87	1.21	6.87	50.3	4	0.74	13	106.54	spherical	1	EL	0.48
Goma	10.11	7.91	1.28	7.91	69.5	3	0.52	4	114.23	ovoid	1	AN	0.39
Goma	9.85	8.27	1.19	8.27	65.9	4	1.01	9	105.36	polygon	1	EL	0.43
Goma	21.3	16.08	1.32	16.08	263.6	5	1.07	22	110.99	polygon	1	EL	0.79
Goma	9.41	7.37	1.28	7.37	60.6	5	0	0	0	polygon	1	AF	0.99
Goma	16.73	13.74	1.22	13.74	186.0	3	0.75	4	99	ovoid	1	SA	0.40
Goma	18.85	13.74	1.37	13.74	190.9	5	1.07	17	99	ovoid	1	EL	0.78
Goma	18.98	9.32	2.04	9.32	144.8	5	0	0	0	angular point	1	SA	1
Goma	14.96	14.44	1.04	14.44	172.8	1	1.13	18	91	spherical	1	EL	0.88
Goma	16.21	13.09	1.24	13.09	165.4	4	1.25	16	101	ovoid	1	EL	0.77
Goma	11.53	9.88	1.17	9.88	82.8	3	0.88	5	113	spherical	1	EL	0.38
Goma	10.38	9.82	1.06	9.82	82.5	5	0.92	7	106	polygon	1	EL	0.43
Goma	10.71	10.59	1.01	10.59	100.2	3	0.97	8	99.67	spherical	1	ER	0.43
Goma	12.15	10.2	1.19	10.2	93.2	3	1.03	4	104.17	ovoid	1	EL	0.32
Goma	9.06	8.11	1.12	8.11	58.8	3	0.88	10	103.67	ovoid	1	ER	0.44
Goma	11.26	8.65	1.3	8.65	79.3	4	1.31	10	103.89	spherical	1	AN	0.45
Goma	13.34	13.19	1.01	13.19	144.8	2	1.11	8	92.68	spherical	1	EL	0.47
Goma	8.13	7.68	1.06	7.68	49.8	3	0	0	0	polygon	1	AF	0.90
Goma	18.91	16.33	1.16	16.33	265.9	2	0.9	17	99	ovoid	1	EL	0.82
Goma	9.55	8.57	1.11	8.57	71.1	4	1.38	3	75	ovoid	1	AN	0.59
Goma	8.87	6.77	1.31	6.77	47.4	5	0	0	0	ovoid	1	AF	1
Goma	8.66	7.28	1.19	7.28	54.3	4	0.6	5	100	spherical	1	EL	0.31
Goma	7.24	6.23	1.16	6.23	35.4	3	0.5	4	87.1	spherical	1	AF	0.51
Goma	10.4	7.27	1.43	7.27	64.5	3	1	5	104	prolate	1	AN	0.42
Zerlina	7.95	7.14	1.11	7.14	38.2	3	0.75	8	111	spherical	1	ER	0.74
Zerlina	12.24	12.04	1.02	12.04	124.2	3	0.84	6	98	spherical	1	EL	0.48
Zerlina	8.98	8.26	1.09	8.26	69.8	4	1.02	9	89	polygon	1	EL	0.43
Zerlina	6.31	5.74	1.1	5.74	27.7	4	1.23	8	90	spherical	1	AN	0.65
Zerlina	3.99	3.58	1.11	3.58	12.1	4	0.8	5	92	spherical	1	ER	0.88

Zerlina	6.69	5.07	1.32	5.07	34.8	3	0.97	9	78	ovoid	1	AN	0.59
Zerlina	20.79	16.53	1.26	16.53	267.0	4	1.23	15	118.71	prolate	1	EL	0.76
Zerlina	4.11	3.69	1.11	3.69	12.0	3	0.6	7	83	spherical	1	ER	0.50
Zerlina	22.42	21.32	1.05	21.32	386.9	3	1.75	17	93	spherical	1	EL	0.89
Zerlina	16.93	15.06	1.12	15.06	243.0	3	0.83	18	101	spherical	1	EL	0.81
Zerlina	12.88	9.43	1.37	9.43	100.0	3	0.97	8	116	prolate	1	EL	0.44
Zerlina	12.72	11.34	1.12	11.34	98.5	3	0.94	12	98	prolate	1	EL	0.95
Zerlina	8.64	6.55	1.32	6.55	37.9	4	1.23	6	86	polygon	1	AN	0.63
Zerlina	14.65	13.51	1.08	13.51	175.5	4	1.17	14	82	spherical	1	EL	0.81
Zerlina	7.23	6.99	1.03	6.99	42.1	4	1.11	7	88	spherical	1	AN	0.53
Zerlina	15.67	15.08	1.04	15.08	196.2	4	0.97	14	114	spherical	1	EL	0.82
Zerlina	17.38	14.84	1.17	14.84	200.9	3	1.25	19	106	spherical	1	EL	0.82
Zerlina	3.88	3.42	1.13	3.42	12.0	3	0.72	3	91	polygon	1	ER	0.72
Zerlina	10.79	8.97	1.2	8.97	78.9	3	1.11	14	116	prolate	1	EL	0.98
Zerlina	12.26	11.27	1.09	11.27	118.3	2	0.84	16	109	spherical	1	EL	0.95
Zerlina	9.43	8.1	1.16	8.1	61.7	4	0.97	11	103	ovoid	1	EL	0.93
Zerlina	8.12	5.83	1.39	5.83	37.3	3	0.51	7	120	prolate	1	AF	0.45
Zerlina	6.56	5.84	1.12	5.84	32.9	3	0.55	10	99	spherical	1	AF	0.39
Zerlina	15.96	12.03	1.33	12.03	167.6	3	1.37	17	97	ovoid	1	EL	0.77
Zerlina	17.85	17.92	1	17.92	257.0	3	1.5	17	84	ovoid	1	EL	0.83
Zerlina	6.9	5.71	1.21	5.71	32.3	3	0.83	6	98	spherical	1	ER	0.63
Zerlina	10.88	10.17	1.07	10.17	85.0	4	0.92	8	88	polygon	1	EL	0.49
Zerlina	9.69	6.64	1.46	6.64	112.4	4	1.31	10	112	ovoid	1	AN	0.54
Zerlina	11.53	9.26	1.25	9.26	91.0	4	0.8	8	121	ovoid	1	EL	0.48
Zerlina	6.38	4.43	1.44	4.43	26.0	4	0.62	9	100	polygon	1	ER	0.53
Zerlina	9.82	7	1.4	7	58.0	4	1.11	7	79	polygon	1	AN	0.53
Zerlina	5.49	4.32	1.27	4.32	20.3	4	0.78	5	93	polygon	1	ER	0.82
Zerlina	9.52	8.4	1.13	8.4	54.7	4	0.7	11	89	ovoid	1	EL	0.96
Zerlina	4.3	4.32	1	4.32	13.8	4	0.52	6	115	polygon	1	AN	0.59
Zerlina	12.24	11.42	1.07	11.42	110.6	2	1.17	11	89	prolate	1	EL	0.90
Zerlina	9.52	5.95	1.6	5.95	45.9	4	0.72	9	99.74	ovoid	1	EL	0.43
Zerlina	7.9	6.03	1.31	6.03	40.5	4	0.8	5	93.7	ovoid	1	ER	0.64
Zerlina	4.93	3.98	1.24	3.98	15.6	3	0.5	4	90	polygon	1	AN	0.86
Zerlina	17.35	12.7	1.37	12.7	167.6	3	1.17	18	93	prolate	1	EL	0.80
Zerlina	9.81	7.9	1.24	7.9	57.1	3	1.07	17	95	ovoid	1	EL	1
Zerlina	10.51	9.36	1.12	9.36	65.6	3	1.23	7	107	spherical	1	AN	0.45
Zerlina	15.19	13.32	1.14	13.32	159.0	3	1.28	14	104	spherical	1	EL	0.76
Zerlina	9.83	7.39	1.33	7.39	56.2	4	1.44	2	86	spherical	1	AN	0.67
Zerlina	6.71	5.91	1.14	5.91	32.5	4	0.83	11	88	polygon	1	EL	0.91
Zerlina	4.92	4.69	1.05	4.69	20.0	3	0.83	6	81	spherical	1	ER	0.53
Zerlina	11.8	10.66	1.11	10.66	101.4	3	0.97	12	102	spherical	1	EL	0.68
Zerlina	6.36	4.1	1.55	4.1	24.9	3	0.61	5	107	ovoid	1	ER	0.52
Zerlina	9.21	8.92	1.03	8.92	71.6	2	0.92	13	95.76	spherical	1	EL	0.52
Zerlina	9.71	8.03	1.21	8.03	75.8	3	1.17	11	81	prolate	1	EL	0.91

Zerlina	7.42	5.5	1.35	5.5	34.5	3	0.75	10	75	prolate	1	ER	0.42
Zerlina	12.39	11.18	1.11	11.18	112.9	2	0.83	19	110	spherical	1	EL	0.94
Zerlina	11.95	7.82	1.53	7.82	76.6	3	1.09	14	108	ovoid	1	EL	0.94
Zerlina	8.39	8.33	1.01	8.33	60.9	4	1.1	6	115	polygon	1	EL	0.47
Zerlina	13.4	12.85	1.04	12.85	139.6	3	1.13	17	103	prolate concave-convex	1	EL	0.89
Zerlina	13.58	12.68	1.07	12.68	130.8	3	1.11	15	105	spherical	1	EL	0.82
Zerlina	15.75	15.57	1.01	15.57	178.5	3	1.02	20	115	ovoid	1	EL	0.82
Zerlina	16.36	12.5	1.31	12.5	163.0	3	1.7	13	86	ovoid	1	EL	0.73
Zerlina	8.81	7.71	1.14	7.71	63.3	4	0.97	8	87	polygon	1	EL	0.43
Zerlina	10.72	10.61	1.01	10.61	93.8	3	1.09	18	94	spherical	1	EL	0.76
Zerlina	11.15	10.58	1.05	10.58	104.7	3	1.14	16	96	spherical	1	EL	0.85
Zerlina	7.03	6.38	1.1	6.38	36.1	4	0.88	7	87	prolate	1	ER	0.72
Zerlina	11.13	9.49	1.17	9.49	86.9	4	0.88	17	90.79	ovoid	1	EL	0.98
Zerlina	7.17	6.86	1.05	6.86	44.2	4	0.84	9	111	spherical	1	ER	0.72
Zerlina	9.52	8.6	1.11	8.6	69.8	3	0.94	10	76	spherical	1	ER	0.37
Zerlina	16.37	11.61	1.41	11.61	146.2	3	1.23	19	101	ovoid	1	EL	0.77
Zerlina	15.09	12.89	1.17	12.89	145.6	4	1.3	11	106	ovoid	1	EL	0.63
Zerlina	9.34	7.45	1.25	7.45	55.1	5	1.33	7	97	polygon	1	EL	0.42
Zerlina	11.98	9.72	1.23	9.72	108.2	4	1.01	9	119	ovoid	1	EL	0.46
Zerlina	11.37	9.22	1.23	9.22	90.2	3	1.23	13	107	spherical	1	EL	0.69
Zerlina	21.3	18.12	1.18	18.12	311.0	2	1.17	18	101	ovoid	1	EL	0.82
Zerlina	7.9	5.51	1.43	5.51	37.3	2	0.75	12	89	ovoid	1	EL	0.95
Zerlina	12.02	7.25	1.66	7.25	61.7	3	0.83	7	106	ovoid	1	EL	0.47
Zerlina	17.2	15.46	1.11	15.46	219.0	3	1.36	18	106	spherical	1	EL	0.82
Zerlina	17.47	13.35	1.31	13.35	165.4	3	1.37	17	92	ovoid	1	EL	0.79
Zerlina	5.73	5.43	1.06	5.43	26.0	3	0.6	4	75	prolate concave-convex	1	AN	0.43
Zerlina	3.79	3.58	1.06	3.58	11.0	3	0.42	3	108	polygon	1	AN	0.69
Dorry	6.41	4.61	1.39	4.61	21.0	2	0.69	13	74	prolate	1	EL	0.95
Dorry	7.77	5.72	1.36	5.72	40.2	3	0.9	13	77	prolate	1	EL	0.96
Dorry	7.69	7.07	1.09	7.07	43.8	4	0.55	15	97	spherical	1	EL	0.54
Dorry	7.17	6.76	1.06	6.76	36.7	3	1.09	11	89	spherical	1	ER	0.51
Dorry	6.04	5.77	1.05	5.77	25.7	3	0.65	8	93	spherical	1	ER	0.77
Dorry	7.03	5.29	1.33	5.29	31.6	4	0.72	7	94	ovoid	1	ER	0.71
Dorry	10.49	9.32	1.13	9.32	67.0	3	0.83	12	108	spherical	1	EL	0.55
Dorry	5.98	5.74	1.04	5.74	33.6	3	0.65	15	82	prolate	1	EL	0.74
Dorry	5.66	5	1.13	5	26.5	2	0.83	8	92	spherical	1	ER	0.95
Dorry	6.99	5.55	1.26	5.55	31.0	3	0.83	8	105	spherical	1	ER	0.70
Dorry	9.88	8.26	1.2	8.26	69.4	4	1.1	13	97	ovoid	1	EL	0.98
Dorry	8.73	8.13	1.07	8.13	56.6	4	0.88	12	105	spherical	1	EL	0.54
Dorry	6.17	4.95	1.25	4.95	22.4	3	0.74	7	90	prolate	1	ER	0.98
Dorry	10.09	8.34	1.21	8.34	68.0	4	0.78	16	90	spherical	1	EL	0.87
Dorry	9.67	7.47	1.29	7.47	62.1	4	1.35	14	76	spherical	1	EL	0.80
Dorry	9.96	9.27	1.07	9.27	71.0	3	0.8	10	111	spherical	1	ER	0.46

Dorry	8.91	6.15	1.45	6.15	43.6	4	0.88	9	89	ovoid	1	ER	0.39
Dorry	7.52	5.14	1.46	5.14	31.7	5	0.52	6	107	prolate	1	AF	0.45
Dorry	5.41	4.73	1.14	4.73	21.9	2	0.87	8	85	spherical	1	ER	0.78
Dorry	7.78	5.8	1.34	5.8	45.5	5	1.13	9	76	ovoid	1	AN	0.84
Dorry	10.78	7.32	1.47	7.32	55.0	3	0.62	15	98	ovoid	1	EL	0.98
Dorry	10.03	9.63	1.04	9.63	75.0	3	0.9	13	79	spherical	1	EL	0.60
Dorry	5.62	3.71	1.51	3.71	21.9	3	0.6	7	100	prolate	1	ER	0.51
Dorry	5.53	5.43	1.02	5.43	22.3	3	0.83	9	62	spherical	1	AF	0.54
Dorry	12	10.81	1.11	10.81	124.9	3	0.94	15	91	spherical	1	EL	0.94
Dorry	5.33	4.4	1.21	4.4	20.3	4	0.74	7	89	prolate	1	ER	0.93
Dorry	10.86	8.18	1.33	8.18	65.9	4	1.14	9	96	ovoid	1	AN	0.40
Dorry	4.87	4.36	1.12	4.36	21.5	3	0.83	6	83	spherical	1	ER	0.57
Dorry	4.92	3.92	1.26	3.92	16.6	4	0.51	7	95	ovoid	1	ER	0.49
Dorry	9.5	8.36	1.14	8.36	55.7	4	0.61	9	118	ovoid	1	EL	0.46
Dorry	6.29	3.52	1.79	3.52	22.3	5	1.19	9	89	prolate	1	AN	0.55
Dorry	5.77	4.54	1.27	4.54	24.1	3	0.74	6	82	spherical	1	ER	0.53
Dorry	24.69	21.2	1.16	21.2	353.3	1	2.7	19	79	spherical	1	EL	0.82
Dorry	10.65	9.65	1.1	9.65	86.3	3	0.82	11	106	spherical	1	EL	0.51
Dorry	10.31	8.01	1.29	8.01	61.6	3	0.87	16	86	ovoid	1	EL	1
Dorry	6.14	5.45	1.13	5.45	26.2	4	0.92	9	94	spherical	1	ER	0.84
Dorry	5.43	5.22	1.04	5.22	34.4	3	0.84	10	91	spherical	1	ER	0.79
Dorry	6.45	5.63	1.15	5.63	31.8	3	0.66	10	95	spherical	1	ER	0.76
Dorry	9.85	6.85	1.44	6.85	46.0	5	1.1	8	94	triangular	1	AN	0.56
Dorry	10.85	10.44	1.04	10.44	87.9	3	0.93	9	100	spherical	1	ER	0.45
Dorry	7.78	6.27	1.24	6.27	38.8	3	0.8	7	89	spherical	1	ER	0.70
Dorry	11.64	10.42	1.12	10.42	105.9	4	1.14	13	113	spherical	1	EL	0.77
Dorry	10.36	8.8	1.18	8.8	74.0	3	0.78	12	111	prolate	1	EL	0.95
Dorry	4.83	4.37	1.11	4.37	16.3	3	0.65	5	100	spherical	1	ER	0.80
Dorry	8.3	5.63	1.47	5.63	34.8	4	0.82	8	88	ovoid	1	ER	0.36
Dorry	7.83	6.25	1.25	6.25	39.2	4	0.72	10	93	ovoid	1	ER	0.71
Dorry	3.53	2.42	1.46	2.42	7.8	3	0.52	5	93	prolate	1	ER	0.37
Dorry	4.61	4.61	1	4.61	13.5	5	0.51	8	75	spherical	1	AN	0.43
Dorry	3.67	3.02	1.22	3.02	12.2	4	0.55	6	111	spherical	1	ER	0.54
Dorry	5.94	4.49	1.32	4.49	25.9	3	0.75	11	102	spherical	1	ER	0.59
Dorry	10.15	7.19	1.41	7.19	65.1	3	0.74	13	89	prolate	1	EL	0.99
Dorry	7.07	5.73	1.23	5.73	28.1	2	0.75	14	90	prolate	1	EL	0.98
Dorry	6.86	5.86	1.17	5.86	31.2	5	0.94	12	87	ovoid	1	EL	0.92
Dorry	7.69	6.17	1.25	6.17	42.8	3	0.78	12	102	prolate	1	EL	0.92
Dorry	5.46	4.29	1.27	4.29	20.3	4	0.61	7	106	ovoid	1	ER	0.71
Dorry	5.42	4.92	1.1	4.92	22.5	3	0.82	3	105	spherical	1	ER	0.68
Dorry	15.05	14.44	1.04	14.44	175.6	2	0.78	12	105	spherical	1	EL	0.66
Dorry	6.74	5.99	1.13	5.99	29.4	3	0.88	7	90	spherical	1	ER	0.70
Dorry	4.41	3.71	1.19	3.71	14.1	3	0.51	8	85	spherical	1	ER	0.55
Dorry	7.16	6.04	1.19	6.04	50.1	3	0.66	10	107	spherical	1	ER	0.64

Dorry	7.07	6.56	1.08	6.56	42.3	2	0.93	11	81	spherical	1	ER	0.55
Dorry	5.33	4.81	1.11	4.81	19.0	3	0.84	9	93.33	spherical	1	ER	0.85
Dorry	7.66	5.68	1.35	5.68	36.6	3	1.05	11	83	spherical	1	ER	0.45
Dorry	7.28	5.53	1.32	5.53	30.4	3	0.97	14	103	prolate	1	EL	0.97
Dorry	5.94	5.33	1.11	5.33	29.7	3	0.87	11	108	spherical	1	ER	0.59
Dorry	7.17	4.98	1.44	4.98	33.9	2	0.72	11	87	prolate	1	EL	0.94
Dorry	9.17	8.91	1.03	8.91	67.1	2	0.87	13	120	spherical	1	EL	0.52
Dorry	10.46	10.03	1.04	10.03	77.9	4	0.97	19	99	spherical	1	EL	0.78
Dorry	6.79	5.4	1.26	5.4	27.1	3	0.65	13	91	ovoid	1	EL	0.96
Dorry	18.76	14.9	1.26	14.9	236.0	1	1.88	32	60	ovoid	1	EL	0.50
Dorry	19.78	17.67	1.12	17.67	271.0	3	1.48	11	99	spherical	1	EL	0.59
Dorry	5.63	5.33	1.06	5.33	22.6	3	0.61	7	97	spherical	1	ER	0.71
Dorry	6.81	5.58	1.22	5.58	28.3	3	0.51	9	106	prolate	1	AF	0.44
Dorry	7.37	5.73	1.29	5.73	34.9	4	0.88	16	97	spherical	1	EL	0.59
Dorry	11.81	10.41	1.13	10.41	100.0	5	1.13	7	90	spherical	1	EL	0.42
Dorry	5.26	4.1	1.28	4.1	20.0	3	0.75	6	91	polygon	1	ER	0.88
Dorry	6.37	5.07	1.26	5.07	27.8	5	0.72	12	95	polygon	1	EL	0.93
Dorry	5.09	4.67	1.09	4.67	19.6	3	0.62	7	80	ovoid	1	ER	0.55
Dorry	5.61	5.29	1.06	5.29	21.7	3	0.61	5	98	polygon	1	ER	0.68
Dorry	8.5	8	1.06	8	54.1	2	1.01	11	83	spherical	1	EL	0.48
Dorry	7.48	7.18	1.04	7.18	35.6	3	0.93	7	95	spherical	1	ER	0.66
Dorry	8.16	6.47	1.26	6.47	38.8	2	1.25	9	100	spherical	1	AN	0.61
Dorry	6.12	4.6	1.33	4.6	25.8	3	1	9	70	prolate	1	AN	0.62
Dorry	3.7	2.97	1.25	2.97	7.0	3	0.61	4	91	spherical	1	ER	0.65
Dorry	8.55	8.13	1.05	8.13	59.4	3	0.8	13	92	ovoid	1	EL	0.92
Dorry	5.37	3.3	1.63	3.3	13.1	5	0.72	7	90	polygon	1	ER	0.61
Venus	5.07	4.49	1.13	4.49	17.2	3	0.55	6	99	spherical	1	ER	0.57
Venus	7.42	2.73	2.72	2.73	19.0	5	0	0	0	angular point	1	EL	0.43
Venus	5.23	4.3	1.22	4.3	19.2	3	0.61	9	70	spherical	1	ER	0.33
Venus	4.56	3.33	1.37	3.33	11.7	3	0.75	7	70	spherical	1	ER	0.36
Venus	6.16	4.25	1.45	4.25	22.4	3	0.8	7	88	spherical	1	ER	0.61
Venus	5.07	3.79	1.34	3.79	16.4	3	0.6	7	84	prolate	1	ER	0.55
Venus	5.77	4.22	1.37	4.22	19.5	4	0.83	6	101	spherical	1	ER	0.84
Venus	8.32	7.31	1.14	7.31	50.9	3	0.75	10	100	spherical	1	ER	0.43
Venus	6.54	4.74	1.38	4.74	26.5	5	0.88	6	94	prolate	1	ER	0.77
Venus	6.83	4.5	1.52	4.5	34.1	4	0.63	8	85	prolate	1	ER	0.32
Venus	4.3	3.28	1.31	3.28	12.9	4	0.51	5	100	polygon	1	AN	0.49
Venus	5.54	4.81	1.15	4.81	18.3	3	0.78	8	85	spherical	1	ER	0.74
Venus	7.07	5.63	1.26	5.63	34.5	3	1	7	88	spherical	1	AN	0.64
Venus	3.72	3.66	1.02	3.66	10.5	4	0.72	5	85	polygon	1	ER	0.73
Venus	6.59	4.99	1.32	4.99	25.0	3	0.72	8	88	polygon	1	ER	0.85
Venus	7.08	5.12	1.38	5.12	28.4	4	0.62	5	98	polygon	1	ER	0.47
Venus	7.16	5.45	1.31	5.45	36.1	3	0.69	10	78	prolate	1	ER	0.42
Venus	2.82	2.53	1.11	2.82	5.9	4	0.75	4	101	polygon	1	ER	0.68

Venus	5.45	4.95	1.1	5.45	27.1	4	0.8	9	89	ovoid	1	ER	0.81
Venus	5.33	3.49	1.53	3.49	14.2	5	0.75	7	95	ovoid	1	ER	0.61
Venus	12.7	7.89	1.61	7.89	72.0	2	0.8	12	107	ovoid	1	EL	0.87
Venus	6.14	4.64	1.32	4.64	30.6	5	1.24	5	78.06	polygon	1	AN	0.65
Venus	9.24	7.7	1.2	7.7	55.6	4	0.87	8	55.6	spherical	1	AF	0.85
Venus	9.27	8.47	1.09	8.47	67.0	5	1.64	4	68	polygon	1	EL	0.43
Venus	5.36	4.13	1.3	4.13	18.4	3	0.7	7	87	spherical	1	ER	0.80
Venus	4.71	3.69	1.28	3.69	12.0	4	0.6	5	79	polygon	1	ER	0.45
Venus	7.58	5.53	1.37	5.53	31.5	3	0.4	8	110	ovoid	1	AF	0.59
Venus	8.31	3.18	2.61	3.18	8.3	4	0.75	4	75	polygon	1	EL	0.56
Venus	4.6	4	1.15	4	16.1	2	0.6	7	100	prolate	1	ER	0.87
Venus	7.62	5.73	1.33	5.73	34.3	3	0.69	6	80	ovoid	1	ER	0.38
Venus	10.35	7.95	1.30	7.95	63.9	4	0.87	9	99	spherical	1	ER	0.44
Venus	4.8	4.56	1.05	4.56	17.9	4	0.62	5	77	polygon	1	ER	0.48
Venus	5.9	3.41	1.73	3.41	16.5	5	0.62	8	82	polygon	1	EL	0.46
Venus	5.14	4.22	1.22	4.22	15.7	3	0.72	7	97	ovoid	1	ER	0.83
Venus	6.53	4.92	1.33	4.92	25.1	3	0.62	7	82.14	prolate	1	ER	0.53
Venus	12.32	10.32	1.19	10.32	97.7	3	1	9	91	ovoid	1	EL	0.46
Venus	4.51	4.1	1.1	4.1	16.6	4	0.58	5	95	polygon	1	ER	0.51
Venus	5.92	4.72	1.26	4.72	24.2	4	0.65	9	102	polygon	1	ER	0.84
Venus	7.8	5.74	1.36	5.74	31.7	5	1.44	4	61	polygon	1	AN	0.41
Venus	7.69	6.36	1.21	6.36	35.3	3	0.78	8	98	spherical	1	ER	0.75
Venus	5.8	5.08	1.141	5.08	25.3	3	0.66	8	92	spherical	1	ER	0.89
Venus	4.1	3.99	1.03	3.99	13.8	3	0.6	7	88	polygon	1	ER	0.70
Venus	4.51	4.4	1.03	4.4	13.5	3	0.61	7	91	polygon	1	ER	0.75
Venus	6.86	5.84	1.17	5.84	32.1	3	0.72	9	96	polygon	1	ER	0.75
Venus	3.1	2.78	1.12	2.78	9.0	4	0.74	5	80	polygon	1	ER	0.60
Venus	4.34	3.72	1.17	3.72	14.2	4	0.84	7	89	polygon	1	ER	0.90
Venus	6.15	5.84	1.05	5.84	30.8	5	0.97	7	88	polygon	1	ER	0.50
fanny	5.24	4.12	1.27	4.12	15.3	3	0.82	11	95	spherical	1	ER	0.58
fanny	7.11	6.6	1.08	6.6	39.2	3	0.7	9	119	spherical	1	ER	0.72
fanny	9.56	8	1.2	8	66.3	3	1.15	10	65	spherical	1	EL	0.32
fanny	8.61	6.65	1.29	6.65	41.9	4	0.85	15	98	spherical	1	EL	0.67
fanny	10.08	8.94	1.13	8.94	73.2	3	1	15	92	spherical	1	EL	0.86
fanny	6.97	6.45	1.08	6.45	38.7	3	0.72	8	80	spherical	1	ER	0.48
fanny	10.46	7.24	1.44	7.24	67.5	3	0.85	14	80	ovoid	1	EL	1
fanny	9.83	6.65	1.48	6.65	55.1	4	0.61	7	112	ovoid	1	EL	0.31
fanny	5.8	5.36	1.08	5.36	25.0	4	0.69	6	97	polygon	1	ER	0.80
fanny	5.8	4.95	1.17	4.95	27.0	4	1.17	4	113	polygon	1	AN	0.52
fanny	7.33	4.69	1.56	4.69	107.0	5	0.6	9	107	polygon	1	EL	0.38
fanny	8.5	6.55	1.3	6.55	41.2	4	1.33	1	55.58	polygon	1	AF	0.54
fanny	12.59	11.88	1.06	11.88	117.5	3	1.23	12	104.46	spherical	1	EL	0.66
fanny	12.51	8.94	1.4	8.94	97.0	4	0.92	19	88.6	spherical	1	EL	0.93
fanny	4.18	3.92	1.07	3.92	15.3	4	0.7	5	85	polygon	1	ER	0.70

fanny	7.07	5.54	1.28	5.54	30.2	4	1.1	6	105	ovoid	1	AN	0.56
fanny	10.96	9.91	1.11	9.91	85.3	4	1.35	5	91.89	spherical	1	AN	0.47
fanny	9.77	8.43	1.16	8.43	61.6	3	0.74	8	94.15	spherical	1	ER	0.42
fanny	12.8	11.27	1.14	11.27	117.1	4	1.09	10	106	spherical	1	EL	0.48
fanny	8.5	7.25	1.17	7.25	59.9	4	0.94	15	73	spherical	1	EL	0.79
fanny	10.85	9.12	1.19	9.12	80.3	3	0.69	8	84	spherical	1	ER	0.33
fanny	11.7	9.09	1.29	9.09	90.3	4	0.94	9	96	polygon	1	EL	0.61
fanny	5.41	4.17	1.3	4.17	16.7	4	1.13	5	102	polygon	1	AN	0.44
fanny	8.49	6.85	1.24	6.85	49.0	3	0.88	8	88.08	polygon	1	EL	0.44
fanny	8.52	8.5	1	8.5	68.6	2	0.83	17	94.22	spherical	1	EL	0.75
fanny	8.98	8.9	1.01	8.9	63.3	2	0.92	8	72.47	spherical	1	ER	0.56
fanny	9.1	8.92	1.02	8.92	61.7	3	0.84	13	119	spherical	1	EL	0.51
fanny	12.92	10.41	1.24	10.41	98.1	3	1.02	21	103.14	ovoid	1	EL	0.99
fanny	8.32	7.2	1.16	7.2	49.2	3	0.83	5	97.88	polygon	2	ER	0.43
fanny	9.34	8.91	1.05	8.91	59.5	4	1.02	8	100	spherical	2	ER	0.40
fanny	13.92	13.83	1.01	13.83	137.4	4	1.14	19	112.56	ovoid	1	EL	0.80
fanny	13.93	13.11	1.06	13.11	144.2	2	1.19	17	56	spherical	1	EL	0.50
fanny	7.75	6.87	1.13	6.87	39.3	3	0.75	16	91.79	spherical	1	EL	0.55
fanny	10.9	8.08	1.35	8.08	67.4	3	0.88	8	101	spherical	1	ER	0.40
fanny	9.69	8.32	1.16	8.32	58.8	3	0.82	9	92	prolate	1	ER	0.50
fanny	14.74	13.03	1.13	13.03	85.6	4	0.92	6	85	spherical	1	EL	0.43
fanny	8.96	8.22	1.09	8.22	67.9	4	0.52	8	137	polygon	1	AF	0.39
fanny	17.98	15.2	1.18	15.2	234.6	3	1	14	97.16	spherical	1	EL	0.77
fanny	10.07	9.01	1.12	9.01	72.9	3	0.72	5	88.97	spherical	1	ER	0.41
fanny	13.4	9.02	1.49	9.02	96.4	4	0.66	8	116	ovoid	1	EL	0.41
fanny	9.69	8.74	1.11	8.74	72.8	3	0.78	13	111	spherical	1	EL	0.63
fanny	10.72	10.53	1.02	10.53	98.2	3	1.16	11	99	spherical	1	EL	0.43
fanny	5.4	4.72	1.14	4.72	19.6	3	0.6	6	83	spherical	1	ER	0.46
fanny	13.12	12.84	1.02	12.84	142.0	3	1.16	11	89.24	spherical	1	EL	0.58
fanny	4.95	4.27	1.16	4.27	17.3	3	0.7	4	17.3	spherical	1	AN	0.71
fanny	5.32	4.6	1.16	4.6	72.3	3	0.5	6	101	polygon	1	ER	0.39
fanny	6.38	3.33	1.92	3.33	17.9	3	0.42	7	102	ovoid	1	EL	0.35
fanny	10.4	9.45	1.1	9.45	73.0	4	0.72	13	92	ovoid	1	EL	0.96
fanny	10.89	9.04	1.2	9.04	77.2	3	0.6	11	81	ovoid	1	EL	0.92
fanny	4.67	3.76	1.24	3.76	11.8	3	0.47	8	96	spherical	1	ER	0.54
fanny	9.93	9.01	1.1	9.01	71.6	3	0.78	14	94	ovoid	1	EL	0.99
fanny	12.1	10.49	1.15	10.49	103.3	4	0.88	17	90.25	prolate	1	EL	0.99
fanny	9.04	8.85	1.02	8.85	59.4	2	0.84	8	97	spherical	1	ER	0.53
fanny	6.15	4.53	1.36	4.53	19.3	3	0.66	3	82	polygon	1	ER	0.39
fanny	10.21	9.21	1.11	9.21	76.4	2	0.74	18	110	spherical	1	EL	0.84
fanny	5.98	5.08	1.18	5.08	27.9	4	1	2	74	polygon	1	AN	0.44
fanny	11.06	10.44	1.06	10.44	90.5	3	0.82	10	117	spherical	1	ER	0.46
fanny	11.17	8.4	1.33	8.4	75.8	3	0.8	17	66	ovoid	1	EL	0.64
fanny	15.56	14.57	1.07	14.57	170.4	2	1.25	15	81.61	spherical	1	EL	0.85

fanny	7.62	6.31	1.21	6.31	40.4	3	0.72	12	89.9	prolate	1	EL	0.92
fanny	6.8	6.22	1.09	6.22	34.3	4	0.88	10	95.29	spherical	1	ER	0.82
fanny	8.77	7.89	1.11	7.89	55.2	3	0.87	9	99	spherical	1	ER	0.46
fanny	3.6	3.38	1.07	3.38	9.2	3	0.84	6	100	polygon	1	ER	0.86
fanny	5.22	4.92	1.06	4.92	19.5	3	0.7	5	93	spherical	1	ER	0.83
fanny	2.93	2.33	1.26	2.33	5.3	3	0.55	3	92	polygon	1	AN	0.45
fanny	4.31	3.89	1.11	3.89	12.0	3	0.55	3	99	spherical	1	AN	0.68
fanny	15	12.55	1.2	12.55	128.2	3	1.01	19	87	ovoid	1	EL	0.78
fanny	8.47	6.86	1.23	6.86	40.7	3	0.72	8	118	prolate	1	ER	0.58
fanny	6.88	4.59	1.5	4.59	33.4	4	0.97	6	105.71	polygon	1	ER	0.47
fanny	15.07	10.98	1.37	10.98	129.3	3	0.94	12	104.33	ovoid	1	EL	0.65
fanny	7.01	5.77	1.21	5.77	31.3	4	0.78	4	93	polygon	1	ER	0.48
fanny	15.18	14.77	1.03	14.77	186.3	3	1.14	7	97	spherical	1	EL	0.55
fanny	6.46	5.43	1.19	5.43	30.0	3	0.88	6	100	spherical	1	ER	0.68
fanny	9.06	8.09	1.12	8.09	61.4	3	0.88	8	82.57	spherical	1	ER	0.36
fanny	8.71	8.4	1.04	8.4	52.1	4	0.94	7	52.14	polygon	1	AF	0.61
fanny	6.25	4.52	1.38	4.52	22.7	3	0.8	9	94	ovoid	1	ER	0.86
fanny	10.71	6.96	1.54	6.96	66.6	3	1.1	12	95	prolate	1	EL	0.97
fanny	8.19	7.79	1.05	7.79	48.8	4	0.8	6	96	polygon	1	ER	0.50
fanny	8.48	8.41	1.01	8.41	57.6	3	0.93	7	86.42	spherical	1	ER	0.39
fanny	11.04	10.44	1.06	10.44	92.9	3	0.84	6	92.86	spherical	1	ER	0.44
fanny	18.84	16.9	1.11	16.9	261.6	4	1.05	7	124	spherical	1	EL	0.47
fanny	13.57	12.85	1.06	12.85	121.1	3	1	10	93.74	spherical	1	EL	0.56
fanny	13.26	12.89	1.03	12.89	149.9	3	1.6	12	92	polygon	1	EL	0.75
fanny	17.8	14.9	1.19	14.9	223.3	3	1.33	14	95	ovoid	1	EL	0.76
fanny	14.64	14.54	1.01	14.54	160.8	3	0.8	16	77	spherical	1	EL	0.83
fanny	6.1	6.05	1.01	6.05	31.4	4	0.65	6	114	spherical	1	ER	0.56
fanny	9.56	8.63	1.11	8.63	72.9	4	0.78	10	85.67	polygon	1	EL	0.50
fanny	8.5	8.09	1.05	8.09	52.3	4	1.1	7	101	polygon	1	EL	0.43
fanny	12.77	12.25	1.04	12.25	136.1	3	0.93	20	100	spherical	1	EL	0.86
fanny	12.69	12.09	1.05	12.09	120.8	3	0.94	12	98	spherical	1	EL	0.65
fanny	9.85	9.52	1.03	9.52	78.8	3	0.85	12	91	spherical	1	EL	0.46
fanny	10.32	9.45	1.09	9.45	67.7	5	0.75	11	112	polygon	1	EL	0.92
fanny	13.47	11.01	1.22	11.01	115.1	3	0.83	13	100	ovoid	1	EL	0.85
fanny	16.29	14.48	1.13	14.48	191.3	3	1	11	95	ovoid	1	EL	0.67
fanny	11.11	9.11	1.22	9.11	86.5	3	0.8	11	90	ovoid	1	EL	0.94
fanny	6.86	4.24	1.62	4.24	25.8	4	0.9	6	81	ovoid	1	AN	0.36
fanny	12.91	11.99	1.08	11.99	133.4	3	1.1	9	109	spherical	1	EL	0.44
fanny	5.4	4.2	1.29	4.2	16.2	4	0.72	5	76.85	spherical	1	ER	0.39
fanny	7.38	4.92	1.5	4.92	31.2	4	1	5	79	polygon	1	AN	0.45
fanny	4.06	3.98	1.02	3.98	15.0	4	0.72	5	65	spherical	1	AN	0.59
fanny	7.61	6.91	1.1	6.91	42.4	4	0.93	7	75	polygon	1	ER	0.52
fanny	6.45	5.25	1.23	5.25	31.2	4	0.92	9	108	ovoid	1	ER	0.72
fanny	10.3	9.39	1.1	9.39	79.1	3	0.92	12	93	ovoid	1	EL	0.95

fanny	5.02	4.41	1.14	4.41	17.7	3	1.05	4	71	spherical	1	AN	0.83
fanny	13.64	10.14	1.35	10.14	99.9	2	0.93	12	89	spherical	1	EL	0.59
fanny	9.36	8.61	1.09	8.61	63.7	3	0.51	9	120	ovoid	1	AF	0.38
fanny	5.61	4.54	1.24	4.54	16.2	4	0.8	6	102	polygon	1	ER	0.89
fanny	17.26	12.84	1.34	12.84	178.8	5	1.43	14	102	polygon	1	EL	0.74
fanny	17.55	13.1	1.34	13.1	190.7	3	1.3	12	100	prolate	1	EL	0.68
fanny	8.89	7.48	1.19	7.48	49.1	2	0.7	9	108	prolate	1	ER	0.54
fanny	3.38	3.28	1.03	3.28	11.7	3	0.46	6	75	polygon	1	ER	0.40
fanny	9.68	8.18	1.18	8.18	61.7	3	0.88	8	77	spherical	1	ER	0.34
fanny	13.95	12.1	1.15	12.1	126.8	3	0.87	17	95	ovoid	1	EL	0.77
fanny	11.27	10.36	1.09	10.36	93.0	2	0.87	9	112	spherical	1	ER	0.53
fanny	8.25	8.1	1.02	8.1	52.1	3	0.51	14	109	spherical	1	EL	0.71
fanny	5.04	4.3	1.17	4.3	15.7	3	0.62	4	113	spherical	1	ER	0.56
fanny	9.41	8.16	1.15	8.16	79.4	3	0.94	15	115	ovoid	1	EL	0.98
fanny	9.12	8.4	1.09	8.4	63.8	3	0.7	11	120	spherical	1	EL	0.53
fanny	9.22	7.47	1.23	7.47	59.0	4	1	8	92	spherical	1	AN	0.36
fanny	6.93	4.78	1.45	4.78	27.6	4	0.66	7	96	prolate	1	ER	0.51
fanny	9.22	7.88	1.17	7.88	57.8	4	0.58	9	103	ovoid	1	EL	0.41
fanny	15.86	15.72	1.01	15.72	215.0	4	1.17	24	90	ovoid	1	EL	0.82
fanny	8.55	6.95	1.23	6.95	52.7	4	0.8	10	83	prolate	1	ER	0.45
fanny	12.31	8.13	1.51	8.13	76.6	4	0.9	11	94	ovoid	1	EL	0.92
Brutus	5.92	5.78	1.02	5.78	33.0	3	0.66	6	91	polygon	1	ER	0.69
Brutus	5.08	4.81	1.06	4.81	19.2	3	0.69	9	90	spherical	1	ER	0.81
Brutus	6.46	5.36	1.21	5.36	31.1	4	0.75	10	85	polygon	1	ER	0.57
Brutus	6.86	5.23	1.31	5.23	26.0	4	0.72	5	118	ovoid	1	ER	0.68
Brutus	13.01	11.28	1.15	11.28	130.1	3	1.17	15	93	prolate	1	EL	0.99
Brutus	6.47	4.71	1.37	4.71	25.5	3	1.13	9	107	spherical	1	AN	0.58
Brutus	3.58	3.28	1.09	3.28	11.0	4	0.51	5	103	polygon	1	ER	0.48
Brutus	11.9	11.67	1.02	11.67	11.5	3	1.17	16	85	spherical	1	EL	0.81
Brutus	14.02	10.79	1.3	10.79	123.0	4	1.03	12	123	prolate	1	EL	0.65
Brutus	7.17	6.55	1.09	6.55	36.3	4	0.74	8	105	polygon	1	ER	0.79
Brutus	5.95	4.52	1.32	4.52	21.1	4	0.93	5	100	polygon	1	ER	0.74
Brutus	10.67	9.88	1.08	9.88	96.1	3	0.94	14	94	prolate	1	EL	0.98
Brutus	6.69	6.15	1.09	6.15	32.7	2	0.84	13	70	spherical	1	ER	0.51
Brutus	5.97	5.13	1.16	5.13	22.2	3	0.78	12	70	spherical	1	ER	0.54
Brutus	18.45	16.46	1.12	16.46	240.0	4	1.16	15	92	ovoid	1	EL	0.75
Brutus	11.22	9.11	1.23	9.11	81.2	4	0.75	15	111	prolate	1	EL	0.97
Brutus	24.76	17.74	1.4	17.74	341.7	3	1.7	19	102	ovoid	1	EL	0.78
Brutus	13.63	13.38	1.02	13.38	153.4	3	0.93	16	105	spherical	1	EL	0.84
Brutus	17.54	11.72	1.5	11.72	180.6	5	1.1	11	111	ovoid	1	EL	0.62
Brutus	13.98	11.82	1.18	11.82	140.7	3	0.94	10	90	spherical	1	EL	0.50
Brutus	18.93	13.04	1.45	13.04	205.1	3	1	19	86	prolate	1	EL	0.80
Brutus	7.18	6.16	1.17	6.16	40.0	3	0.8	10	89	spherical	1	ER	0.80
Brutus	9.45	6.78	1.39	6.78	48.8	4	0.8	11	88	prolate	1	EL	0.96

Brutus	18.62	14.62	1.27	14.62	208.0	3	1.05	14	105	ovoid	1	EL	0.75
Brutus	13.64	13.12	1.04	13.12	133.4	2	1.03	13	92	spherical	1	EL	0.82
Brutus	4.75	4.06	1.17	4.06	16.5	4	0.6	6	95	polygon	1	ER	0.71
Brutus	10.54	9.48	1.11	9.48	85.6	3	0.97	7	101	spherical	1	AN	0.35
Brutus	6.13	4.94	1.24	4.94	28.3	3	0.65	10	88	polygon	1	ER	0.67
Brutus	13.43	11.47	1.17	11.47	120.4	3	0.92	13	110	spherical	1	EL	0.75
Brutus	18.23	15.67	1.16	15.67	230.7	4	1.4	14	105	spherical	1	EL	0.76
Brutus	6.32	4.66	1.36	4.66	21.3	3	0.65	7	100	ovoid	1	ER	0.85
Brutus	13.26	9.86	1.34	9.86	113.3	4	1.14	10	113	prolate	1	EL	0.50
Brutus	12.95	9.75	1.33	9.75	86.2	3	1.17	10	91	spherical	1	EL	0.42
Brutus	7.85	7.81	1.01	7.81	42.3	5	0.66	8	113	ovoid	1	ER	0.55
Brutus	9.5	7.12	1.33	7.12	51.0	4	0.72	8	100	prolate	1	ER	0.45
Brutus	21	18	1.17	18	309.0	3	1.23	18	120	spherical	1	EL	0.82
Brutus	5.79	5.36	1.08	5.36	23.7	4	0.78	7	90	polygon	1	ER	0.84
Brutus	19.59	11.59	1.69	11.59	119.8	3	0.84	19	90	spherical	1	EL	0.70
Brutus	19	18.03	1.05	18.03	283.0	3	1.09	13	94	spherical	1	EL	0.81
Brutus	13.5	8.52	1.58	8.52	90.6	3	0.94	9	77.25	ovoid	1	EL	0.42
Brutus	5.94	5.43	1.09	5.43	23.3	3	0.72	6	86	polygon	1	ER	0.84
Brutus	6.35	3.38	1.88	3.38	16.8	4	0.72	7	89	quadrangular	1	ER	0.45
Brutus	5.57	5.37	1.04	5.37	26.6	3	0.78	7	86	polygon	1	ER	0.77
Brutus	11.9	10.66	1.12	10.66	105.0	4	0.9	13	100	ovoid	1	EL	0.97
Brutus	5.96	5.41	1.1	5.41	28.8	3	0.66	12	102	spherical	1	ER	0.60
Brutus	17.82	13.64	1.31	13.64	193.3	3	1.2	16	93	ovoid	1	EL	0.79
Brutus	9.43	7.62	1.24	7.62	56.0	3	0.77	11	97	prolate	1	EL	0.95
Brutus	7.75	5.69	1.36	5.69	33.2	4	0.92	9	99	polygon	1	ER	0.55
Brutus	5.04	4.45	1.13	4.45	18.9	4	0.6	7	78	polygon	1	ER	0.53
Brutus	9.45	7.25	1.3	7.25	47.0	3	0.78	12	88	ovoid	1	EL	0.98
Brutus	10.44	6.43	1.62	6.43	45.8	5	0.78	6	100	ovoid	1	ER	0.35
Brutus	6.7	4.8	1.4	4.8	25.2	3	0.65	8	101	prolate	1	ER	0.62
Brutus	12.08	7.07	1.71	7.07	68.8	3	1.2	7	57	prolate concave-convex	1	SA	0.39
Brutus	8.45	6.91	1.22	6.91	43.1	4	0.5	10	93.6	triangular	1	AF	0.36
Brutus	13.57	9.16	1.48	9.16	101.6	4	1.03	9	111	elongate	1	EL	0.43
Brutus	25.24	11.43	2.21	11.43	139.4	3	1.37	8	119	prolate	1	SA	0.46
Brutus	6.16	4.05	1.52	4.05	20.7	3	1	7	73.26	prolate	1	AN	0.58
Brutus	6.5	5.32	1.22	5.32	28.0	3	0.69	8	94	spherical	1	ER	0.84
Brutus	5.87	5.69	1.03	5.69	27.2	3	0.65	5	96	spherical	1	ER	0.66
Brutus	4.56	3.19	1.43	3.19	14.1	4	0.61	6	78	polygon	1	AN	0.42
Brutus	6.78	5.45	1.24	5.45	29.9	5	1.03	5	82	polygon	1	AN	0.45
Brutus	5.39	3.67	1.47	3.67	17.2	4	0.94	6	89	polygon	1	ER	0.48
Brutus	6.19	5.18	1.19	5.18	27.7	4	0.8	7	78	polygon	1	ER	0.62
Brutus	7.06	5.85	1.21	5.85	35.6	3	0.8	12	93	prolate	1	EL	0.93
Brutus	5.43	4.31	1.26	4.31	18.1	4	0.85	9	94	prolate	1	ER	0.86
Brutus	9.11	7.83	1.16	7.83	57.1	2	0.93	13	94	spherical	1	EL	0.58
Brutus	10.28	9.56	1.08	9.56	74.7	4	1.13	17	113	ovoid	1	EL	0.97

Brutus	10.78	9.75	1.11	9.75	90.0	3	0.92	11	97	spherical	1	EL	0.53
Brutus	10.86	9.85	1.1	9.85	84.5	4	0.84	14	108	ovoid	1	EL	0.97
Brutus	15.01	14.76	1.02	14.76	185.8	3	0.97	15	107	spherical	1	EL	0.81
Brutus	8.3	6.09	1.36	6.09	90.8	4	1.01	9	90	polygon	1	EL	0.39
Brutus	14.17	14.01	1.01	14.01	150.5	4	1.01	13	85.85	spherical	1	EL	0.76
Brutus	16.81	14.98	1.12	14.98	194.0	3	0.88	14	101.75	spherical	1	EL	0.77
Brutus	16.35	15.4	1.06	15.4	202.0	2	1.4	13	110	spherical	1	EL	0.85
Brutus	8.15	7.3	1.12	7.3	43.0	3	0.66	10	99	spherical	1	ER	0.65
Brutus	5.82	5.69	1.02	5.69	31.4	3	0.64	7	97	polygon	1	ER	0.53
Brutus	14.8	14.2	1.04	14.2	165.7	3	1.19	10	115.7	spherical	1	EL	0.54
Brutus	6.33	5.71	1.11	5.71	25.7	3	0.6	9	110	spherical	1	ER	0.57
Brutus	5.68	4.95	1.15	4.95	26.5	4	0.74	6	92.7	polygon	1	ER	0.90
Brutus	6.95	5.95	1.17	5.95	34.6	3	0.66	10	100	polygon	1	ER	0.79
Brutus	8.66	8.32	1.04	8.32	56.0	3	0.83	10	102	polygon	1	ER	0.48
Brutus	17.72	13.52	1.31	13.52	159.0	3	1.02	15	120	ovoid	1	EL	0.74
Brutus	8.37	6.22	1.35	6.22	34.2	4	0.55	8	120	ovoid	1	AF	0.38
Brutus	10.27	6.71	1.53	6.71	60.1	4	0.94	9	97	prolate concave-convex	1	EL	0.42
Brutus	11.95	8.36	1.43	8.36	82.0	3	1.14	12	85	ovoid	1	EL	0.92
Brutus	11.43	10.58	1.08	10.58	103.7	3	1.03	15	87	spherical	1	EL	0.95
Brutus	10.14	9.01	1.13	9.01	75.0	5	1.02	9	96.6	polygon	1	EL	0.44
Brutus	9.02	7.79	1.16	7.79	58.5	3	0.83	11	100	spherical	1	EL	0.50
Brutus	14.24	11.86	1.2	11.86	123.8	3	0.92	17	81	prolate	1	EL	0.80
Brutus	11.39	10.21	1.12	10.21	91.5	3	0.82	19	86	ovoid	1	EL	0.97
Brutus	14.57	14.01	1.04	14.01	169.3	3	1.14	15	116	spherical	1	EL	0.83
Brutus	12.44	9.75	1.28	9.75	99.7	3	1.13	10	97	ovoid	1	EL	0.49
Brutus	5.86	4.52	1.3	4.52	26.3	4	0.6	6	109.4	polygon	1	ER	0.59
hector	6.32	6.04	1.05	6.04	30.5	4	0.83	7	80	polygon	1	ER	0.60
hector	7.17	4.82	1.49	4.82	30.3	4	0.7	9	101	ovoid	1	ER	0.46
hector	6.59	4.76	1.38	4.76	25.8	4	0.8	7	115	ovoid	1	ER	0.79
hector	5.95	3.79	1.57	3.79	18.5	3	0.72	5	97	prolate	1	ER	0.65
hector	11.66	10.63	1.1	10.63	110.0	4	0.97	6	95	spherical	1	EL	0.44
hector	19.32	15.84	1.22	15.84	281.6	1	2.4	15	77.5	prolate	1	EL	0.78
hector	8.24	8.12	1.01	8.12	53.4	2	0.7	12	90	spherical	1	EL	0.41
hector	5.92	5.91	1	5.91	27.9	3	0.72	9	98	spherical	1	ER	0.49
hector	7.65	4.95	1.55	4.95	32.6	4	0.72	4	70	prolate	1	AN	0.42
hector	6.03	3.98	1.52	3.98	27.3	4	0.94	4	77	polygon	1	AN	0.47
hector	4.02	3.5	1.15	3.5	11.4	4	0.83	4	80	polygon	1	ER	0.52
hector	20.32	14.28	1.42	14.28	228.7	3	0.9	30	78	prolate	1	EL	0.81
hector	7.97	7.03	1.13	7.03	43.6	3	1	7	87	ovoid	1	AN	0.52
hector	5.14	4.15	1.24	4.15	16.6	4	0.52	4	100	ovoid	1	AN	0.85
hector	12.98	10.1	1.29	10.1	119.1	4	1.3	8	80.41	ovoid	1	EL	0.47
hector	16.7	13.62	1.23	13.62	198.1	3	1.14	17	71	ovoid	1	EL	0.74
hector	12.6	11.75	1.07	11.75	114.4	3	1	4	120	spherical	1	AN	0.31
hector	12	9.68	1.24	9.68	107.0	4	1	5	100	spherical	1	EL	0.37

hector	19.7	16.43	1.2	16.43	254.7	3	1.44	9	102	ovoid	1	EL	0.47
hector	8.15	7.37	1.11	7.37	53.5	4	1.13	4	84	polygon	1	AN	0.55
hector	12.76	10.63	1.2	10.63	102.6	4	0.87	9	100	spherical	1	EL	0.53
kendo	6.31	4.69	1.35	4.69	23.0	5	0.72	5	88	polygon	1	ER	0.82
kendo	6.45	5.43	1.19	5.43	29.5	3	0.94	7	82.55	spherical	1	AF	0.36
kendo	7.72	5.05	1.53	5.05	42.5	2	1.17	11	96.81	prolate	1	EL	0.90
kendo	15.35	13.95	1.1	13.95	191.8	4	1.49	5	84.4	polygon	1	SA	0.45
kendo	4.37	4.04	1.08	4.04	16.4	5	0.5	5	88	polygon	1	AN	0.48
kendo	7.59	6.16	1.23	6.16	34.0	3	0.72	13	83.68	spherical	1	ER	0.55
kendo	3.88	3.2	1.21	3.2	9.4	3	0.81	6	92.55	polygon	1	ER	0.91
kendo	16.78	14.13	1.19	14.13	175.7	3	1.03	12	107	ovoid	1	EL	0.68
kendo	4.2	4.04	1.04	4.04	23.6	4	0.98	6	0.81	polygon	1	AN	0.50
kendo	11.01	10.42	1.06	10.42	98.0	3	0.9	14	94	spherical	1	EL	0.85
kendo	6.67	6.31	1.06	6.31	39.4	4	0.74	9	94	polygon	1	ER	0.81
kendo	5.7	5.02	1.14	5.02	26.0	3	0.9	7	98	spherical	1	ER	0.73
kendo	14.84	13.38	1.11	13.38	161.6	3	1.03	8	111	spherical	1	EL	0.48
kendo	7.1	6.77	1.05	6.77	41.4	4	1.17	8	97	polygon	1	ER	0.39
kendo	5.18	4.68	1.11	4.68	23.7	3	0.98	4	102	polygon	1	AN	0.51
kendo	7.85	7.1	1.11	7.1	42.4	3	0.81	8	91	polygon	1	ER	0.72
Ondine	4.85	4.5	1.08	4.5	16.4	2	0.55	7	110	spherical	1	ER	0.85
Ondine	4.43	3.19	1.39	3.19	12.0	4	0.46	7	90	polygon	1	ER	0.41
Ondine	8.23	7.7	1.07	7.7	55.2	3	0.66	10	90	spherical	1	ER	0.49
Ondine	7.17	6.56	1.09	6.56	39.1	3	1.05	15	70	spherical	1	EL	0.56
Ondine	5.18	4.24	1.22	4.24	18.2	2	0.62	5	102	prolate	1	ER	0.83
Ondine	8.92	7.23	1.23	7.23	52.7	2	0.8	14	85	ovoid	1	EL	0.99
Ondine	6.96	3.69	1.89	3.69	22.2	3	0.72	7	99	polygon	1	EL	0.47
Ondine	6.34	4.67	1.36	4.67	29.5	3	0.66	6	120	prolate concave-convex	1	ER	0.75
Ondine	4.57	3.1	1.47	3.1	12.0	5	0.72	7	106	polygon	1	ER	0.60
Lefkas	5.53	4.27	1.3	4.27	21.7	4	0.78	6	118	spherical	1	ER	0.78
Lefkas	4.71	4.3	1.1	4.3	15.5	3	0.51	9	87	polygon	1	ER	0.56
Lefkas	7.56	6.06	1.25	6.06	38.2	4	0.81	11	105	spherical	1	ER	0.55
Lefkas	6.19	4.64	1.33	4.64	26.9	4	0.75	9	94	polygon	1	ER	0.91
Lefkas	6.41	5.34	1.2	5.34	24.1	4	0.58	9	75	ovoid	1	AF	0.38
Lefkas	4.64	2.79	1.66	2.79	9.8	5	0.72	6	93	polygon	1	ER	0.58
Lefkas	6.46	5.85	1.1	5.85	24.8	3	0.62	6	99	spherical	1	ER	0.68
Lefkas	6.5	5.18	1.25	5.18	25.0	3	0.66	14	96	spherical	1	EL	0.58
Lefkas	5.76	4.95	1.16	4.95	24.9	4	0.88	8	71	polygon	1	ER	0.44
Lefkas	5.84	4.81	1.21	4.81	22.3	3	0.94	8	100	spherical	1	ER	0.80
Lefkas	14.44	14.14	1.02	14.14	173.3	2	0.97	11	116	spherical	1	EL	0.64
Agathe	9.99	8.36	1.19	8.36	67.6	3	0.66	11	101	ovoid	1	EL	0.95
Agathe	6.79	5.14	1.32	5.14	29.0	3	0.51	7	93	prolate	1	AF	0.54
Agathe	7.3	6.09	1.2	6.09	34.6	5	0.92	5	92	polygon	1	ER	0.66
Agathe	5.43	5.07	1.07	5.07	23.3	4	0.58	10	93	polygon	1	ER	0.52
Agathe	7.2	5.67	1.27	5.67	27.7	4	0.92	7	95	ovoid	1	ER	0.61
-													

Agathe	14.45	9.62	1.5	9.62	108.9	3	1.09	9	109	ovoid		1	EL	0.42
Agathe	8.33	7.35	1.13	7.35	44.6	4	0.8	10	96	polygon		1	ER	0.50
Agathe	12.27	11.67	1.05	11.67	127.7	4	1.09	24	88	ovoid		1	EL	0.96
Agathe	4.6	3.94	1.17	3.94	16.0	3	0.72	8	85	spherical		1	ER	0.73
Agathe	7.36	5.13	1.43	5.13	32.2	4	0.83	8	104	prolate	:	1	ER	0.53
Agathe	13.39	11.78	1.14	11.78	129.8	2	0.92	9	125	prolate		1	EL	0.51
Agathe	5.84	5.02	1.16	5.02	29.9	3	0.58	8	110	polygon		1	ER	0.49
Agathe	3.94	3.86	1.02	3.86	14.5	4	0.58	9	79	polygon		1	ER	0.49
Agathe	4.66	4.64	1	4.64	16.8	3	0.8	9	92	spherical		1	ER	0.56
Agathe	7.58	6.46	1.17	6.46	43.2	3	0.65	6	110	spherical	:	1	ER	0.58
Agathe	18.04	16.72	1.08	16.72	241.0	2	1.23	16	88	ovoid		1	EL	0.86
Agathe	9.85	6.25	1.58	6.25	45.7	4	0.94	9	98	prolate		1	EL	0.37
Agathe	5.16	5.02	1.03	5.02	23.6	3	0.51	8	91	polygon		1	ER	0.52
Agathe	8.71	6.36	1.37	6.36	49.0	3	0.72	9	117	ovoid		1	ER	0.48
Agathe	9.88	8.61	1.15	8.61	76.8	3	1.09	13	81.75	spherical		1	EL	0.68
Agathe	3.79	3.69	1.03	3.69	12.9	4	0.72	5	114	polygon		1	ER	0.75
Agathe	6.37	4.32	1.47	4.32	22.2	4	0.65	10	93	ovoid		1	ER	0.44
Agathe	4.64	3.13	1.48	3.13	14.4	4	0.46	5	106	polygon		1	AN	0.45
Agathe	4.03	3.87	1.04	3.87	14.5	4	0.78	6	95	polygon		1	ER	0.84
Agathe	10.78	9.49	1.14	9.49	78.7	2	0.72	9	105	spherical	:	1	ER	0.50
Agathe	4.82	3.49	1.38	3.49	16.2	4	0.8	5	87	polygon	:	1	ER	0.66
Agathe	12.37	7.33	1.69	7.33	76.5	2	1.85	11	76	prolate	:	1	EL	0.73
Agathe	4.24	3.62	1.17	3.62	11.9	4	0.62	6	73	polygon	:	1	ER	0.56
Agathe	2.81	2.48	1.13	2.48	4.9	3	0.5	4	86	polygon	:	1	AN	0.39
Agathe	4.61	3.28	1.41	3.28	13.1	3	0.62	7	92	polygon		1	ER	0.58
Agathe	6.49	5.87	1.11	5.87	29.8	2	0.92	8	92.35	spherical	:	1	ER	0.86
Agathe	5.24	5.23	1	5.23	20.8	4	0.69	8	100	polygon	:	1	ER	0.49
Agathe	3.71	3.67	1.01	3.67	10.4	3	0.8	4	82	spherical		1	ER	0.58
Agathe	14.06	8.63	1.63	8.63	99.9	2	1.03	11	70	ovoid		1	EL	0.51
Agathe	13.98	11.8	1.18	11.8	121.5	4	1.3	10	100	prolate		1	EL	0.47
Agathe	3.08	2.67	1.15	2.67	6.6	3	0.55	9	82	spherical		1	ER	0.43
Agathe	6.76	5.23	1.29	5.23	30.6	3	0.84	6	108	prolate		1	ER	0.79
Agathe	9.87	5.92	1.67	5.92	49.1	4	0.69	10	100	ovoid		1	EL	0.51
Agathe	9.91	8.01	1.24	8.01	61.0	3	0.62	8	86	ovoid		1	EL	0.40
Agathe	5.74	4.12	1.39	4.12	21.4	4	0.87	7	93.61	polygon		1	ER	0.67
Agathe	8.35	5.53	1.51	5.53	39.5	4	0.83	8	107	ovoid		1	ER	0.39
Agathe	6.54	5	1.31	5	75.5	3	0.84	7	75.5	spherical		1	AF	0.43
Agathe	10.96	7.11	1.54	7.11	55.1	3	0.92	9	66.1	prolate	:	1	AF	0.42
Agathe	9.85	7.58	1.3	7.58	61.3	3	0.94	7	91.53	spherical	:	1	ER	0.38
Agathe	5.59	5.1	1.1	5.1	24.2	4	0.72	9	86	spherical	:	1	ER	0.76
Agathe	5.24	4.31	1.22	4.31	17.9	3	0.6	7	87	spherical	-	1	ER	0.67
Agathe	4.61	4.3	1.07	4.3	17.6	4	0.72	5	103.17	polygon	-	1	ER	0.77
Agathe	8.92	8.5	1.05	8.5	55.3	2	0.84	9	97.72	spherical	-	1	ER	0.55
Agathe	10.01	5.95	1.68	5.95	48.2	5	1.02	8	90.1	ovoid	:	1	AN	0.41

Agathe	11.26	10.14	1.11	10.14	98.3	3	1.47	14	71.23	spherical	1	EL	0.88
Agathe	5.23	3.38	1.55	3.38	14.8	4	0.83	7	99.55	polygon	1	ER	0.62
Agathe	11.04	7	1.58	7	68.6	4	0.74	10	94.7	ovoid	1	EL	0.49
Clyde	8.54	7.26	1.18	7.26	47.3	3	0.74	11	87.78	prolate	1	EL	0.93
Clyde	7.1	5	1.42	5	31.1	2	0.51	12	113.61	prolate	1	EL	0.91
Clyde	3.65	3.23	1.13	3.23	9.4	3	0.51	5	91	polygon	1	ER	0.47
Clyde	4.77	4.17	1.14	4.17	16.9	3	0.55	8	93	polygon	1	ER	0.59
Clyde	4.85	3.4	1.43	3.4	14.8	3	0.74	6	93	polygon	1	ER	0.64
Clyde	7.79	6.96	1.12	6.96	47.5	4	0.69	10	88	ovoid	1	ER	0.52
Clyde	5.43	3.5	1.55	3.5	16.2	3	0.72	6	74	prolate	1	AN	0.35
Clyde	3.94	2.47	1.6	2.47	8.1	4	0.51	6	77	polygon	1	EL	0.38
Clyde	3.99	3.16	1.26	3.16	7.8	4	0.51	4	79	polygon	1	AN	0.58
Tina	8.42	5.14	1.64	5.14	43.1	4	0.82	11	96.75	ovoid	1	EL	0.93
Tina	3.69	2.46	1.5	2.46	7.6	3	0.6	6	91	polygon	1	ER	0.49
Tina	6.64	5.67	1.17	5.67	31.6	4	0.72	13	85.65	spherical	1	ER	0.55
Tina	8.7	7.79	1.12	7.79	45.2	4	0.72	8	45.22	polygon	1	AF	0.92
Tina	9.11	7.68	1.19	7.68	54.6	5	1.31	6	68.12	polygon	1	EL	0.46
Tina	8.85	4.92	1.8	4.92	37.9	4	0.87	5	98.19	prolate	1	EL	0.37
Tina	5.94	3.38	1.76	3.38	18.7	4	0.69	4	108.59	polygon	1	ER	0.35
Tina	4.05	2.66	1.52	2.66	11.2	4	0.61	8	100	prolate	1	ER	0.55
Tina	7.58	7.28	1.04	7.28	44.5	3	0.94	11	89.22	spherical	1	ER	0.61
Mkubwa	3.49	3.18	1.1	3.18	8.7	3	0.5	6	100	spherical	1	ER	0.57
Mkubwa	7.84	6.24	1.26	6.24	46.6	3	1.02	9	91.05	spherical	1	AN	0.45
Mkubwa	2.88	2.34	1.23	2.34	6.1	3	0.58	5	102	spherical	1	ER	0.53
Oreste	8.7	7.17	1.21	7.17	57.1	3	0.72	9	94.11	quadrangular	1	ER	0.47
Oreste	11.58	9.44	1.23	9.44	89.0	3	1.04	14	97.62	ovoid	1	EL	0.96
Oreste	5.97	5.34	1.12	5.34	24.9	4	0.61	8	101	polygon	1	ER	0.75
Oreste	4.04	3.01	1.34	3.01	16.0	4	0.82	6	75.75	polygon	1	ER	0.55
Oreste	7.2	6.57	1.1	6.57	35.4	2	0.6	6	105	spherical	1	ER	0.62
Oreste	9.4	9.32	1.01	9.32	73.7	2	0.85	7	97.79	spherical	1	ER	0.48
Oreste	14.64	12.05	1.21	12.05	133.2	2	0.83	13	114.75	prolate	1	EL	0.75
Oreste	13.37	10.73	1.25	10.73	115.5	3	0.9	12	128	prolate	1	EL	0.81
Oreste	8.11	6.5	1.25	6.5	42.4	4	0.6	7	95	prolate	1	ER	0.50
Oreste	12.89	11.2	1.15	11.2	118.4	3	0.52	13	87	prolate	1	EL	0.92
Oreste	12.42	7.79	1.59	7.79	74.2	4	0.94	12	102	ovoid	1	EL	0.91
Oreste	7.85	6.66	1.18	6.66	40.0	2	0.62	10	123	prolate	1	ER	0.67
Oreste	14.42	12.09	1.19	12.09	139.2	2	0.72	17	122	prolate	1	EL	0.79
Oreste	6.97	6.82	1.02	6.82	39.7	4	0.8	6	87	spherical	1	ER	0.70
Oreste	12.98	12.46	1.04	12.46	138.3	5	1.16	20	90	polygon	1	EL	0.89
Oreste	5.17	3.95	1.31	3.95	21.4	3	0	0	0	polygon	1	AF	0.71
Oreste	9.21	7.01	1.31	7.01	50.5	4	0.75	9	99	polygon	1	EL	0.48
Oreste	6.26	5.86	1.07	5.86	26.7	1	0.4	6	117	spherical	1	AF	0.46
Oreste	6.56	6.24	1.05	6.24	30.5	3	0.72	8	117	polygon	1	ER	0.70
Oreste	7.07	6.99	1.01	6.99	40.1	2	0.46	11	124	spherical	1	ER	0.63

Oreste	13.75	11.53	1.19	11.53	133.8	4	0.94	20	92.32	spherical	1	EL	0.79
Oreste	18.6	14.65	1.27	14.65	219.9	3	0.74	23	115	prolate	1	EL	0.78
Oreste	11.39	9.26	1.23	9.26	86.8	4	2.1	4	70	polygon	1	EL	0.51
Oreste	9.32	8.19	1.14	8.19	64.2	5	1.33	8	91	polygon	1	EL	0.43
Oreste	11.63	9.53	1.22	9.53	81.6	4	0.9	11	116	ovoid	1	EL	0.91
Oreste	9.91	7.01	1.41	7.01	64.1	4	0.91	10	89.35	quadrangular	1	EL	0.42
Oreste	5.06	4.03	1.26	4.03	16.1	4	0.62	7	81	polygon	1	ER	0.60
Oreste	18.34	14.28	1.28	14.28	165.9	5	0.72	8	97	polygon	1	EL	0.49
Oreste	9.32	7.38	1.26	7.38	60.0	4	0.72	15	89	polygon	2	EL	0.99
Oreste	10.52	9.54	1.1	9.54	81.6	3	0.92	13	91.63	prolate	2	EL	0.96
Oreste	10.51	9.49	1.11	9.49	87.4	3	1.1	9	112.25	ovoid	1	AN	0.35
Oreste	12.72	7.12	1.79	7.12	52.6	3	0	0	0	angular point	1	SA	0.98
Oreste	13.62	11.74	1.16	11.74	131.7	3	1.1	6	58	polygon	1	SA	0.65
Oreste	6.35	5.43	1.17	5.43	29.2	5	0.7	8	95	polygon	1	ER	0.81
Oreste	14.65	11.98	1.22	11.98	155.4	3	2.36	6	91	polygon	1	EL	0.48

Starch microremains from calculus. ER=Eremospatha, AF=Aframomum, AN=Laccosperma, GI=Gilbertiodendron, CO=Cola, NA=Napoleona, TR=Treculia, CU=Coula, XY=Xylia, PI=Piper, PA=Panda, SG=Sacoglottis, CL=Calpocalyx.

Chimpanzee name	Length	Width	LW Ratio	Brea	Area	Shape	Facets	Eacoto	Striaelen	Striaeno	Туре	Lam	Dist	Genus with highest certainty score	Certainty score
castor	13.21	12.67	1.0	12.7	131.22	spherical	0		0	0	1	1	6.16	GI	0.31
castor	16.89	14.11	1.2	14.1	191.72	ovoid	0		0	0	1	2	10.78	CO	0.45
bijou	6.02	4.98	1.2	5.0	24.77	spherical	0		0	0	1	0	3.01	NA	0.30
bijou	12.38	10.67	1.2	10.7	113.42	spherical	0		0	0	1	0	7.3	GI	0.32
bijou	11.67	11.16	1.0	11.2	103.46	spherical	0		2.2	2	1	0	5.12	GI	0.28
bijou	11.14	7.47	1.5	7.5	69.21	ovoid	0		0	0	1	0	6.45	TR	0.51
bijou	8.64	6.53	1.3	6.5	59.32	ovoid	0		0	0	1	1	3.98	TR	0.66
bijou	5.63	4.92	1.1	4.9	23.65	spherical	1		0	0	1	1	2.78	CU	0.28
bijou	5.12	5.12	1.0	5.0	20.55	spherical	1		0	0	1	1	1.96	ER	0.33
bijou	9.76	9.11	1.1	9.1	81.09	spherical	1		1.27	2	1	0	4.88	GI	0.39
bijou	10.26	10.26	1.0	10.2	82.18	spherical	0		0	0	1	0	5.13	CU	0.35
fanny	10.03	8.08	1.2	8.1	56.48	ovoid	0		0	0	1	0	5.32	TR	0.50
fanny	5.01	4.9	1.0	4.9	19.72	polygon	7		0	0	3	0	1.95	PI	0.53
fanny	3.71	3.5	1.1	3.5	10.52	hemispherical	1		0	0	1	0	1.24	XY	0.31
fanny	5.25	5.25	1.0	5.0	26.12	spherical	0		0	0	1	0	1.85	ER	0.31
fanny	4.83	4.32	1.1	4.3	16.57	spherical	1		0	0	1	0	1.74	NA	0.24
fanny	11.38	11.18	1.0	11.2	108.01	oblate conovoid	2		1.59	1	2	0	5.69	GI	0.41
fanny	3.62	3.33	1.1	3.3	10.84	hemispherical	1		0	0	1	0	1.54	XY	0.32
fanny	12.18	11.48	1.1	11.5	115.41	spherical	0		0	0	1	0	5.47	GI	0.34
fanny	20.04	16.43	1.2	16.4	242.33	polygon	6		0	0	1	1	8.47	SA	0.63
fanny	8.82	8.69	1.0	8.7	56.17	oblate conovoid	3		0	0	2	0	2.77	GI	0.45
fanny	5.99	5.51	1.1	5.5	26.15	spherical	0		0	0	1	1	2.15	NA	0.25

fanny	15.52	11.89	1.3	11.9	132.17	ovoid	0	3.2	2	1	0	6.06	СО	0.40
fanny	9.35	8.4	1.1	8.4	62.36	oblate conovoid	3	0	0	1	0	4.675	GI	0.43
fanny	6.06	5.73	1.1	5.7	33.11	hemispherical	1	0	0	1	0	2.36	GI	0.27
fanny	7.7	7.08	1.1	7.1	43.67	spherical	0	0	0	1	0	2.1	ER	0.21
fanny	2.43	2.14	1.1	2.1	5.09	oblate conovoid	1	0	0	1	0	1.04	CL	0.33
fanny	10.14	9.14	1.1	9.1	81.11	spherical	0	4.5	3	1	0	4.71	GI	0.27
fanny	4.94	4.51	1.1	4.5	18.28	spherical	0	0	0	1	0	1.44	ER	0.26
fanny	8.43	6.48	1.3	6.5	37.77	prolate	0	0	0	1	0	3.8	TR	0.32
fanny	4.86	4.22	1.2	4.2	18.97	polygon	7	0	0	3	0	2.63	PI	0.55
fanny	6.02	4.78	1.3	4.8	20.54	polygon	7	0	0	3	0	3.01	PI	0.46
fanny	4.86	3.5	1.4	3.5	16.57	polygon	7	0	0	3	0	2	PI	0.72
fanny	4.36	3.25	1.3	3.3	18.98	polygon	7	0	0	3	0	1.75	PI	0.70
fanny	6.22	5.18	1.2	5.2	31.03	polygon	5	0	0	3	0	2.19	PI	0.40
fanny	6.36	3.48	1.8	3.5	27.6	polygon	8	0	0	3	0	2.87	PI	0.51
fanny	5.04	3.75	1.3	3.8	35.22	polygon	7	0	0	3	0	2.52	PI	0.54
fanny	7.6	6.78	1.1	6.8	36.75	polygon	8	0	0	3	0	3.58	SA	0.57
fanny	4.61	4.61	1.0	4.6	18.18	spherical	0	0	0	1	1	1.23	ER	0.47
fanny	9.3	9.3	1.0	8.4	64.03	spherical	0	0	0	1	0	4.31	CU	0.41
fanny	4.86	4.4	1.1	4.4	17.47	polygon	7	0	0	3	0	2.43	PI	0.60
fanny	5.22	4.61	1.1	4.6	19.72	polygon	5	0	0	3	0	2.31	PI	0.52
fanny	4.74	4.64	1.0	4.6	14.72	polygon	8	0	0	3	0	2.14	PI	0.58
fanny	4.32	4.14	1.0	4.1	18.99	polygon	6	0	0	3	0	1.85	PI	0.58
fanny	3.53	3.18	1.1	3.2	15.66	polygon	3	0	0	3	0	2.15	PI	0.53
fanny	6.51	4.12	1.6	4.1	18.44	polygon concaveconvex	5	0	0	3	0	3.255	PI	0.39
fanny	5.2	3.69	1.4	3.7	17.72	polygon	7	0	0	3	0	2.6	PI	0.67
fanny	3.67	3.13	1.2	3.1	10.76	polygon	7	0	0	3	0	1.835	PI	0.74
fanny	4.67	4.46	1.0	4.5	20.97	polygon	7	0	0	3	0	2.335	PI	0.53
Leo	14.23	12.29	1.2	12.3	130.05	spherical	2	0	0	1	1	7.43	GI	0.46
Leo	15.02	14.2	1.1	14.2	178	spherical	0	2.03	1	1	0	7.99	GI	0.29
Leo	22.91	18.17	1.3	18.2	346	prolate	0	9.44	2	1	3	7.95	СО	0.73
Leo	19.42	13.85	1.4	13.9	218	ovoid	0	0	0	1	0	9.5	GI	0.39
Leo	6.73	6.12	1.1	6.1	38.18	spherical	0	0	0	1	0	2.56	NA	0.23
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42

castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	5.5	5.08	1.1	5.1	24.45	polygon	8	0	0	3	0	2.19	PI	0.42
castor	6.41	4.36	1.5	4.4	24.45	polygon concave	8	0	0	3	0	2.19	PI	0.36
castor	13.83	11 75	12	11.8	113 82	convex triangular	0	0	0	1	1	6	CO	0.45
Goma	24.38	19.47	1.2	19.5	342	ovoid	0	0	0	1	2	17 96	0	0.57
Goma	5 32	4 92	1.0	4.9	25.84	spherical	0	0	0	1	0	2 61	NA	0.34
Goma	4.38	3.67	1.2	37	14 85	spherical	0	0	0	1	0	1.95	ER	0.29
Goma	29.37	20.49	1.2	20.5	432	ovoid	0	0	0	1	2	20	CO	0.58
Goma	12 42	11.61	11	11.6	107	spherical	0	3	2	1	-	4 82	GI	0.27
Goma	16.72	15.6	1.1	15.6	212	quadrangular	1	2	4 86	1	2	6 56	CO	0.50
Goma	9.35	8 83	11	8.8	60.53	spherical	0	-	0	1	-	4 675	CU	0.30
Goma	14.5	13 95	1.0	14.0	154	spherical	0	0	0	1	1	6 79	GI	0.33
Goma	14.63	13 13	11	13.1	129.55	spherical	0	0	0	1	1	6.97	GI	0.31
Goma	20.31	18.43	11	18.4	304 94	polygon	6	3.36	9	1	0	7 76	SA	0.53
Goma	24.12	19.79	1.2	19.8	368 42	ovoid	0	4	1	1	2	12	0	0.75
Goma	7.38	5.08	1.5	5.1	32.32	ovoid	1	0	0	1	0	3.65	TR	0.72
Goma	29.31	20.18	1.5	20.2	463	ovoid	1	0	0	1	1	20.86	GI	0.45
Goma	17.47	16.82	1.0	16.8	215	ovoid	1	0	0	1	0	8.5	GI	0.72
Goma	11.99	11.99	1.0	12.0	106	spherical	1	3.2	1	1	0	4.84	GI	0.30
Goma	11.57	9.93	1.2	9.9	90.26	spherical	0	0	0	1	0	2.95	GI	0.25
Goma	14.06	11.38	1.2	11.4	129.31	ovoid	0	0	0	1	3	9.76	СО	0.52
Goma	30.68	21.71	1.4	21.7	493.67	ovoid	0	0	0	1	2	10	СО	0.59
Goma	11.33	11.33	1.0	11.0	103.43	spherical	0	0	0	1	0	5.5	CU	0.34
Goma	16.15	15.79	1.0	15.8	201.29	spherical	0	0	0	1	1	8	GI	0.33
Goma	30.27	25.27	1.2	25.3	568.1	triangular	0	0	0	1	2	19	СО	0.65
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38

Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38

Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	5.32	5.12	1.0	5.1	20.16	polygon	8	0	0	3	0	3.81	PI	0.38
Goma	20.17	20.17	1.0	20.0	312.77	spherical	0	0	0	1	1	6.3	CU	0.32
Goma	23.46	11.8	2.0	11.8	213.82	elongate ovoid	0	0	0	1	2	9.54	СО	0.52
Goma	10.44	10.44	1.0	10.2	80.19	spherical	0	0	0	1	1	9.76	CU	0.38
Goma	9.04	8.36	1.1	8.4	60.76	spherical	0	0	0	1	1	4.5	CU	0.32
Goma	11.05	10.06	1.1	10.1	84.6	spherical	0	0	0	1	1	5	GI	0.30
Goma	6.74	4.71	1.4	4.7	23.52	prolate	0	0	0	1	1	1.95	XY	0.23
Goma	14.35	12.35	1.2	12.4	180	polygon	6	0	0	1	1	5.87	SA	0.62
Goma	21.41	15.77	1.4	15.8	261	ovoid	0	0	0	1	1	14.55	GI	0.37
Goma	9.42	7.68	1.2	7.7	63.58	hemispherical	1	0	0	2	1	4.89	GI	0.51
Goma	8.63	6.06	1.4	6.1	40.83	hemispherical	1	0	0	2	0	4.5	GI	0.46
Goma	15.43	12.53	1.2	12.5	166.28	polygon	4	0	0	1	0	6.75	SA	0.47
Goma	7.99	7.17	1.1	7.2	46.48	ovoid	0	0	0	1	0	4.2	TR	0.62
Goma	12.46	12.46	1.0	11.7	111.51	spherical	0	0	0	1	2	6.81	CU	0.62
Goma	25	18	1.4	18.0	372	ovoid	0	0	0	1	0	13	СО	0.34
Rubra	9.84	12.34	0.8	12.3	95.74	hemispherical	3	0	0	2	0	5.08	GI	0.47
Rubra	5.29	4.37	1.2	4.4	16.86	spherical	0	0	0	1	0	1.79	ER	0.27
Rubra	7.39	5.59	1.3	5.6	30.21	ovoid	0	0	0	1	0	1.87	TR	0.71
Rubra	9.95	9.95	1.0	9.7	72.27	spherical	0	0	0	1	0	4.17	CU	0.36
Rubra	6.9	5.55	1.2	5.6	28.27	prolate	0	0	0	1	0	2.89	TR	0.31
Rubra	7.97	6.41	1.2	6.4	43.34	elongate	2	0	0	1	0	4.61	TR	0.26
						conovoid	_							
Rubra	16.52	12.95	1.3	13.0	182.78	polygon	7	0	0	1	0	7.23	SA	0.64
Dorry	8.81	7.6	1.2	7.6	51.33	ovoid	0	0	0	1	0	3.34	TR	0.58
Dorry	8.61	6.05	1.4	6.1	38.2	prolate	0	0	0	1	0	3.6	TR	0.34
Dorry	5.84	5.22	1.1	5.2	26.04	spherical	0	0	0	1	0	2.07	NA	0.32
Dorry	6.96	6.48	1.1	6.5	35.5	spherical	0	0	0	1	1	3.48	CU	0.28
Venus	9.43	7.9	1.2	7.9	65.51	spherical	1	0	0	1	0	4.3	GI	0.33
Venus	9.93	9.01	1.1	9.0	73.23	spherical	0	0	0	1	0	6.59	GI	0.32
Venus	17.91	14.01	1.3	14.0	185.85	ovoid	0	0	0	1	1	11.17	GI	0.46
Venus	8.4	7.79	1.1	7.8	53.82	spherical	0	0	0	1	0	3.38	CU	0.25
Venus	4.53	4.12	1.1	4.1	15.04	hemispherical	1	0	0	1	0	1.91	XY	0.23
Venus	15.97	11.92	1.3	11.9	134.03	pyriform	0	0	0	1	1	8.2	CO	0.44
Venus	7.48	6.16	1.2	6.2	33.17	prolate	1	0.5	2	1	1	3.18	PA	0.33
Venus	6.04	4.22	1.4	4.2	23.28	prolate	0	0	0	1	0	2.11	PA	0.31
Venus	12.17	10.44	1.2	10.4	93.68	prolate	0	0	0	1	0	5.64	CO	0.48
Venus	15.61	12.87	1.2	12.9	150.5	prolate	0	0.7	2	1	0	8.2	CO	0.44
Venus	26.95	20.72	1.3	20.7	435	ovoid	0	0	0	1	2	20	CO	0.58
Venus	9.56	8.69	1.1	8.7	65.62	hemispherical	0	0	0	2	0	5.49	GI	0.47
Venus	10.79	10.72	1.0	10.7	93.61	hemispherical	0	0	0	2	0	6.04	GI	0.42
Venus	14.25	12.7	1.1	12.7	143.15	spherical	0	0	0	1	1	8	GI	0.32
Venus	8.43	7.16	1.2	7.2	44.74	spherical	0	0	0	1	1	4.15	CU	0.27
Venus	4.89	3.26	1.5	3.3	12.52	prolate	0	0	0	1	0	1.77	PA	0.42

Brutus	6.41	5.65	1.1	5.7	34.96	hemispherical	2	0	0	2	0	3.32	GI	0.40
Brutus	6.02	5.06	1.2	5.1	24.28	hemispherical	2	0	0	2	0	2.87	SG	0.38
Brutus	4.73	4.35	1.1	4.4	17.12	ovoid	0	0	0	1	0	2.35	TR	0.28
Brutus	21.56	16.95	1.3	17.0	181	ovoid	0	0	0	1	0	15.88	GI	0.43
hector	8.19	8.19	1.0	8.0	50.66	spherical	0	1.02	1	1	0	3.38	CU	0.47
hector	5.95	5.39	1.1	5.4	25.88	oblate conovoid	2	0	0	2	0	2.61	SG	0.57
Lefkas	6.48	5.63	1.2	5.6	27.02	spherical	0	0	0	1	0	3.24	NA	0.28
Lefkas	4.35	4.13	1.1	4.5	18.23	spherical	1	0	0	1	0	2.175	NA	0.27
Lefkas	19.67	18.32	1.1	18.3	276.13	ovoid	1	0	0	1	3	11.29	CO	0.41
Lefkas	3.61	3.61	1.0	3.6	9.81	spherical	0	0	0	1	0	1.805	ER	0.62
Lefkas	4.53	3.35	1.4	3.4	11.13	spherical	0	0	0	1	1	1.65	ER	0.34
Lefkas	5.18	5.18	1.0	4.4	18.33	spherical	0	0	0	1	0	1.65	ER	0.41
Lefkas	3.98	3.98	1.0	3.9	14.39	spherical	0	0	0	1	0	1.99	ER	0.57
Lefkas	7.48	4.4	1.7	4.4	29.47	ovoid	0	0	0	1	0	3.74	TR	0.70
Agathe	12.37	7.81	1.6	7.8	77.7	ovoid	0	0	0	1	0	6.185	TR	0.39
Agathe	7.82	6.97	1.1	7.0	42.71	spherical	2	0	0	1	0	3.88	GI	0.30
Agathe	7.85	6.65	1.2	6.7	39.78	spherical	1	0	0	1	1	2.31	CU	0.26
Agathe	5.8	5.25	1.1	5.3	24.04	spherical	1	0	0	1	1	2.9	CU	0.31
Agathe	8.23	6.03	1.4	6.0	37.76	prolate	0	0	0	1	0	3.62	TR	0.34
Agathe	4.58	4.22	1.1	4.2	15.2	spherical	0	0	0	1	0	2.29	NA	0.31
Clyde	12.65	10.84	1.2	10.8	106	spherical	2	0	0	1	0	4.75	GI	0.49
Clyde	6.01	4.5	1.3	4.5	21.7	spherical	0	0	0	1	2	3.005	CU	0.50
Clyde	13.31	12.49	1.1	12.5	133	polygon	8	1.7	2	3	0	4.93	SA	0.78
Tina	5.34	4.72	1.1	4.7	20.45	oblate conovoid	2	0	0	2	0	2.39	SG	0.65
Tina	4.92	3.98	1.2	4.0	15.51	hemispherical	1	0	0	1	0	1.85	SG	0.25
Tina	8.92	8.64	1.0	8.6	68.1	spherical	0	0	0	1	0	4.32	GI	0.27
Oreste	6.5	4.81	1.4	4.8	27.18	ovoid	1	0	0	1	0	2.44	TR	0.65
Oreste	6.16	5	1.2	5.0	25.54	oblate conovoid	2	0	0	2	0	2.47	SG	0.57
Vanessa	8.65	7.85	1.1	7.9	48.29	spherical	0	0	0	1	0	3.94	CU	0.25
Vanessa	9.37	8.2	1.1	8.2	62.79	prolate	0	0	0	1	0	3.65	СО	0.35

Appendix table 13: Coefficients of the statistical models.

Model	Term	Estimate	Std. Err.	Z value	Р	
Tests of effect of age and sex on microremain numbers						
Phytolith Negative binomial	Intercept	3.969	0.160	24.790	1.1398e-135	
	Age	0.002	0.0005	3.833	1.2616e-04	
	Sex	-0.027	0.157	-0.170	8.6469e-01	
Starch Negative binomial	Intercept	3.009	0.426	7.052	1.7575e-12	
	Age	0.003	0.001	2.661	7.7805e-03	
	Sex	-2.569	0.437	-5.873	4.2665e-09	
Unsilicified remains	Intercept	2.210	0.202	10.904	1.0978e-27	
Negative binomial	Age	0.001	0.0006	3.093	1.9775e-03	
	Sex	-0.048	0.199	-0.245	8.0594e-01	
Tests of effect of consumption frequency on microremain numbers						

Phytolith Poisson model	Intercept	-0.231	0.876	-0.263	0.791
	z.min	1.707	0.680	2.509	0.012
	z.age	3.612	2.075	1.740	0.081
	sex	-0.801	0.934	-0.858	0.390
Starch logistic regression model	Intercept	-14.218	0.870	-6.325	6.4911e-60
	z.min	0.591	0.505	1.169	2.4224e-01
	z.age	0.489	0.442	1.105	2.6885e-01
	sex	-1.266	0.996	-1.271	2.0372e-01

Appendix table 14: Variable importance in phytolith and starch classification random forest.

Phytolith model		Starch model	
Variable	Importance	Variable	Importance
Length	100	Area	100
Spine number	75.301	Length	75.8434
Spine ang	74.109	Width	67.5876
LW Ratio	43.996	Dist	61.1718
Spine length	42.854	Facets	60.4963
Area	29.581	LW Ratio	56.2298
Width	22.056	Туре	55.9587
Irregul	10.236	Lam	35.8372
Spherical	6.667	Spherical	31.833
Angularpoint	6.575	Prolate	8.2554
Polygon	4.590	Ovoid	7.157
Ovoid	1.663	Polygon	5.8693
Prolate	1.620	Hemispherical	4.9279
Triangular	1.447	Oblate conovoid	4.6926
Elongate	0.440	Striaelen	2.4395
Quadrangular	0.228	Elongate ovoid	2.4011
Facets	0.184	Striae no	2.1051
Conjoined	0.106	Triangular	1.8956
Prolate concave-convex	0.043	Quadrangular	0.9141
Polygon concave	0.042	Pyriform	0.4986

7.3 Chapter five appendix

7.3.1 Comparative data for model

We prepared data from past dental calculus studies for a comparative analysis (Salazar-García et al., 2013; Henry et al., 2014). This dataset included starch and phytolith counts from nine other Middle Palaeolithic sites. As other microremains are not included in previous published studies, we only included starch and phytoliths in our model. Although our samples were weighed in mg, weights for all eight sites are not available. Similarly, in the datasets presented in this paper we treated starches of the same type that occurred as lumps as one starch as accurately counting each starch in a lump is not possible. We collected the most to date estimated date range for each site and used the median value.

<u>Goyet</u>: this archaeological site comprises several caves near Gesves, in the Namur Province of Belgium. The cave system has seen several campaigns of excavation in the 19th and 20th century. Early explorers found hominin remains (Goyet VIII) in 1868 in the largest of the caves. Dupont found the studied mandible in the second of five fauna-rich levels (Dupont, 1872; Toussaint, 2006). Originally, the fossil was thought to be modern human due to its stratigraphic proximity to Aurignacian artefacts, but this has been re-evaluated and it now is accepted to be a Neanderthal (Rougier et al., 2012, 2014). In addition, in the Aurignacian phase there is an upper Magdalenian level dated to 13 ka (Toussaint, 2006). Mixing is present in all levels and its date was long ambiguous but this has recently been re-evaluated as dating to 44-45.5 ka cal BP (Rougier et al., 2014). This date places the hominin in a transitional period. Regional vegetation reconstructions suggest the surrounding environment was generally tundra-steppe.

La Chapelle-aux-Saints: this Middle Palaeolithic site is located in the Corrèze region of southern France. Researchers have excavated La Chapelle-aux-Saints since 1905, and this has recovered evidence of Mousterian sediments and a complete Neanderthal in 1908. The chronological history of this site has been studied with electron spin resonance (ESR), suggesting dates of 56 ka or 47 ka depending on the radiation uptake model used (Grün and Stringer, 1991). The ESR may suggest the remains belongs to the warm parts of MIS 3, but this contradicts correlation with the Combe-Grenal sequence which would put the remains at the end of MIS 4 and beginning of MIS 3. The associated fauna profile is predominately reindeer (*Rangifer tarandus*), with some bovines (*Bos/Bison* sp.), horse (*Equus* sp.), ibex, wolf (*Canis lupus*), fox (*Canis vulpes*), *Rhinoceros*, cave hyena (*Crocuta spelaeaus*), boar (*Sus scrofa*) and marmot (*Arctomys* sp.) (Boule, 1911; Bouyssonie et al., 1913). The fauna is clearly a cold phase profile indicating a date during the late MIS 4 (Mellars, 1986). In addition, fauna shows the surrounding environment was a cold open biome.

La Ferrassie: this site is located in the Vézère Valley, in the Dordogne region of France. La Ferrassie is a large deep cave with an adjoining long rock-shelter and small rock-shelter. The site has a plethora of levels of different periods in various sections of the cave. Mousterian levels below the long rock-shelter produced remains of six Neanderthals in excavations during 1909 and 1921. The bison, auroch and red deer that dominate the Mousterian fauna imply a moderate temperate environment. These fauna suggest tree cover and a closed, forested environment (Capitan and Peyrony, 1912a; b; c; Guérin et al., 2015). Mousterian deposits at La Ferrassie has been recently dated with OSL and radiocarbon dating, suggesting that the Neanderthal remains La Ferrassie 1 is most likely 39 ±5 ka and 2 skeletons 43 ±3 ka (Guérin et al., 2015).

La Quina: La Quina is a series of rock shelters in the Charente region of Central France. Remains used in this study were found in 1911 in one of two subsections of Station Amont, a deposit extending below the upper rock shelter base. This deposit was studied over the course of several excavations. Excavations revealed Mousterian remains, faunal debris and the remains of many Neanderthals (Henri-Martin, 1961). The upper deposits of the sequence at Station Amont are considered to date to 48-43 ka. This, combined with cold phase fauna, indicates a date for the fossil of MIS 4, probably 71-57 ka (Debénath and Jelinek, 1998). Fauna found was mostly bovines, horse and reindeer, with few other species represented (Debénath and Jelinek, 1998). These faunas also suggest a cold and dry environment that was devoid of trees.

<u>Malarnaud</u>: this site is a cave in the Ariège region of Southern France. There has been scientific interest in the cave since 1883. Deposits dated to Mousterian, Aurignacian and Magdalenian have been found onsite. Investigators found a juvenile Neanderthal mandible during 1888 in the lower of two layers in a side chamber of this cave complex. However, it is possible that the mandible was moved by carnivores in this chamber as it is removed from much the archaeological material. Unfortunately, the site has not been radiometrically dated. Faunal profiles indicate the mandible dates to Riss-Würm interglacial, 130-117 ka or the beginning of the Würm, 100-50 ka. Fauna in the layer of the mandibles include cave lion (*Panthera leo*), cave hyena, fox, and wolf, mammoth and rhinoceros (Rhinocerotidae) (Boule, 1889; Filhol, 1889). This fauna is suggestive of tree cover in the early glacial warm or transitional phase, and thus we classify the environment as of mixed openness.

<u>Spy</u>: this archaeological site is located in Jemeppe-sur-Sambre, Namur in Belgium. The site was excavated from 1879 onwards, and the Neanderthal remains were found in a bone rich layer. Later excavations have clarified the stratigraphy of the cave. Faunal profiles from excavation of this layer have suggested an intensely cold climate (Otte, 1979). Some studies found misclassified Neanderthal remains in faunal bags (Crevecoeur et al., 2010). These teeth were directly radiocarbon dated to about 36 ka (Semal et al., 2009). De Puydt and Lohest recovered fauna from this
level, including horse and hyena, with some mammoth, wholly rhinoceros, reindeer, red deer, aurochs, cave bear, cave lion, wolf, wolverine (*Gulo gulo*) and badger (*Meles meles*). However, palaeoenvironment reconstructions may be questioned due to the poor stratigraphic integrity of this layer (de Puydt and Lohest, 1887). The direct data of the hominin remains firmly places the occupation in a cold phase when dry tree landscapes dominated much of Europe. We consider the environment as open for our model.

<u>Kůlna Cave</u>: this Middle Palaeolithic site is located in the Moravian Karst, in the eastern part of the Czech Republic in Central Europe. The cave saw first investigations in 1880 when stone tools and bones of extinct animals were noticed (Sroubek et al., 2001). Karel Valoch conducted the first modern archaeological investigation in 1961 and 1976. He identified 14 sedimentary complexes covering the last interglacial to the Holocene. Neanderthal remains were found in strata 7a and 7c of but specimens in this study come from stratum 7a only. Radiocarbon dating has suggested a data of >45 ka BP ¹⁴C, and electron spin resonance on layer 7a shows it dates to 50 ± 5 ka BP (Rink et al., 1996). The character of the fauna from this layer matches this age (Rink et al., 1996). Layer 7a contained reindeer, with mammoth and a few elk, the presence of reindeer clearly indicate cold conditions of central Europe in the MIS 3 (Valoch, 1970).

<u>Shanidar Cave</u>: This site is located in the Zagros Mountains in Northwest Iraq. Solecki and colleagues excavated the cave between 1952 and 1957. Excavators described four archaeological strata (A, B, C and D). The Shanidar III fossils were found in Mousterian level D (Solecki, 1960). A radiocarbon date near the Shanidar I fossil indicates that Shanidar III is >46 ka BP, possibly as old as 50 ka BP (Solecki, 1960). Goat (*Capra* sp.) and sheep (*Ovis* sp.) dominate fauna found on site. This reflects the local mountainous topography (Perkins, 1964; Evins, 1982). Pollen analysis indicated the presence of date palms (*Phoenix dactylifera*), walnuts (*Juglans* sp.), chestnuts (*Castanea* sp.), oaks (*Quercus* spp.) and herbs (Solecki, 1961; Leroi-Gourhan, 1968, 1969, 1975). These plant taxa indicate a mild moist environment with at least some level of tree cover. For our model, we classified this habitat as closed.

7.3.2 Reference collection

Microremain identification was based on a reference collection of modern plant samples, including >2,000 global species. Our reference collection has extensive

coverage of edible western Eurasian species. From these species, we identified over 54 species that produced starches, and thus that might be represented in our samples (Appendix table 21). More information is available for phytoliths produced by different taxa so; we instead identified phytoliths using available literature including PhyCore database (Albert et al., 2016). We did not make a reference collection for unsilicified plant microremains, as its unclear if these microremains are diagnostic, nor do we currently have a sufficient reference collection for identifying this types of microremains (Power et al., 2015b).

7.3.3 Classification of microremain taxa

We identified microremains to plant taxon, usually at the family or tribe level. When this was not possible, we assigned microremains to a type based on shared diagnostic morphology that indicates that the morphology likely represents a single plant taxon. We then used the summed number of types to derive a metric of breadth of plant use.

7.3.4 Microremain results

See following tables.

														Starch	es							Phytol	iths								
Identifier	Specimen	Species	Tooth	Wt	e 1	e 2	e 3	e 4	e 5	e 6	e 7	e 8	e 9	e 10	e 11	e 12	e 13	e 14	e 15	iially disrupted	Dmg	g-cell	Idel	2	nown phyto hair	bular sinuate?	liform	allelepipedal	g-cell multi-cell	chiform	lticellular /hedrons
					Typ	Typ	Typ	Тур	Тур	Typ	Typ	Typ	Тур	Typ	Typ	Typ	Typ	Typ	Typ	part	Pos,	Lon	Ron	Hai	hunk	Glol	Bull	Paré	Lon	Brac	luìM poly
Vja-12-13	12.1/229	Neanderthal	URM2	0.39	3	3	5	1	3		1			8	3		3	1			4	3					1	2			
Vja-12-14	12.2/286	Neanderthal	LRI2	0.05			1				1	1									2	1						1			
Vja-12-16	12.4/290	Neanderthal	URI1	0.05																								2			
Vja-12-17	12.5/287	Neanderthal	URC	0.05		1		1																				1			
Vja-12-18	12.6/288	Neanderthal	LLC	0.02			1														1	1					1				
Vja-12-19	12.7/201	Neanderthal	LLI2	0.89		4	4	1			2		1					1			8	3	3	5	2			3			
Vja-12-20	11.39/206	Neanderthal	LRC	0.45						1				1								3						2			
Vja-12-21b	11.39/206	Neanderthal	LRM1	0.41		1		1			1			1								4						1	1		
Vja-12-21a	11.39/206	Neanderthal	LRM1	0.50	1	1			1				1																		
Vja-12-24	11.45/231	Neanderthal	LLM3	0.67							1											1	1	4		4	1	3		1	
Vja-12-26	11.46/259	Neanderthal	ULM2	0.87				3										2			1	1					5	3			
Vja-12-51	11.40+11.40a - Vi76/226+265	Neanderthal	LLM1	0.19										1	1					1	1		1	1			2	1			
Vja-12-54	11.40+11.40a - Vi76/226+265	Neanderthal	LLM1	0.05			1																				1				
Vja-12-55	11.40+11.40a - Vi76/226+265	Neanderthal	LLM1	0.09																											
Vindija faun	a calculus samples																														
Vja-12-28	1639/car Vi-87	Panthera	С	0.63																											
Vja-12-29	555/car 78	Canis		0.79																1											
Vja-12-30	735/car Vi-83	Canis		0.53			7							3								1						1			
Vja-12-31	335/car Vi-78	Canis	P1	0.10							1			1															1		
Vja-12-34	637/car Vi-76	Canis		0.40																											
Vja-12-35	714/car Vi-1976	Canis		0.58																								1			
Vja-12-37	2/car Vi-76	Ursus spelaeus	M2	1.04																											
Vja-12-38	nova 3/car Vi-76	U.spelaeus	M2	0.46																		1	1								8
Vja-12-45	nova 1/car Vi-76	U.spelaeus	M2	1.248																		2									
Vja-12-46		U.spelaeus	M2	0.88	1	4									1						1	3				1		3			
Vja-12-47		U.spelaeus	M2	0.18																	1	2	1				2	5			
Vja-12-48		U.spelaeus	M2	0.30																							1	3			
Vja-12-53	599 Vi-78	Canis		0.43																											

Appendix table 15: Total recovered microremains from Vindija Cave Neanderthal and control samples.

Controls									
Vja-12-43	adhesive used to hold teeth, sampled on Vi-11.39	0.796	1			1	2		
Vja-12-44	adhesive used to hold teeth, sampled on Vi-11.40	0.54	1	7	11	4	30		

	Phyte	oliths (co	ontinued	d)	Calci	um oxal	ates	Spore	es						Polle	ns			Spicul	Hai	Unsil	licified p	olant									
Identifier																			e	r	micro	oremain	s									
Vja-12-13	Ellipsoid rugulate	Epidermis	Plate	Indet. phytolith	c Prism	L Styloid	Irreg oxalate	Very small round dark	Ellipsoidal, single-walled snore	o Unknown spore	Clear fusiform	Cluster	Tube of spheres	Unidentified	Pollen indet.	Pollen (Betulaceae)	Algae?	Vellow pollen/spore?	Unknown spicule	Hair	L Monocot unsilicified	Unknown unsilicified	Vascular bundle	Grass unsilicified	Indet. animal cells	spherulite	Nematode??	Cellouse type fibre	Fibre	ਯੂ Total starch & phytoliths	्र Total starch & phytoliths types	. ¹⁰ Menhinick's index
Vja-12-14						1	3					1																		5	5	1 2.
Vja-12-16														1						1								1		2	1	2 0.
Vja-12-17					2					2										1									2	3	3	7 1.
Vja-12-18					3									1			1					2								3	3	7 1.
Vja-12-19	2		1		1					2				2		1			1							1	1			32	13	7 2.
Vja-12-20																														7	4	3 1.
Vja-12-21b					1	2	3	1				1																		10	7	5 2.
Vja-12-21a																														4	4	2 2
Vja-12-24			1							1				1								1						1	3	17	9	2.
Vja-12-26			1			3		1	1	2	1		1	1						1			1	3						15	6	1.
Vja-12-51														3				1				2						3	2	7	6	5 2.
Vja-12-54																												2		2	2	3 1.
Vja-12-55				1																								2			1	4
Vindija faur	na calcul	lus sam	ples																													
Vja-12-28																			1									2				
Vja-12-29																												1			1	
Vja-12-30														4						4									1	12	4	1. 2
Vja-12-31																														3	3	- 1. 7

Vja-12-34	1			1	1								
Vja-12-35	1										1	1	1
Vja-12-37				1									
Vja-12-38	1 1			2			1	1	1	2	12	5	1.
Vja-12-45	1		2						1	1	3	2	4 1. 2
Vja-12-46	1 1	1							3		14	7	1.
Vja-12-47	1	1							4	3	11	5	9 1.
Vja-12-48		1			1	1			5		4	2	5 1
Vja-12-53	2								3	3			
Controls													
Vja-12-43											2	2	
Vja-12-44											23	4	
Starch key													
Type 1	Moderate size, spherical-subspherical, with thick lamellae, some show yellow colouration, diar	neter is 10-22 μm.											
Type 2	Large circular-subcircular in 2D, spherical-lenticular-subspherical 3D, diameter is 20->µm.												
Type 3	Small round, constrained facets may be present, diameter is <10 μ m.												
Type 4	Sub-polyhedral, 2 or more facets but more of surface is not covered by facets, facets often are le	ss sharply defined, no lam	nellae.										
Type 5	Slightly eccentric starch.												
Type 6	Faceted, generic type.												
Type 7	Ovoid starch, with or without surface features, some have damaged central cavity but this is no	t a classification trait.											
Type 8	Triangular-elliptical, may have central fissure, other surface features can include lamellae.												
Type 9	Very eccentric and partially disrupted starch.												
Type 10	Lenticular or subelliptical in 3D, equatorial groove may be visible, some show signs of gelatinis	ation, distinguished from	type 8 by p	oorly de	efined longitu	ıde crack.							
Type 11	Small oval or slight ovoid, subspherical (5-10 μm), 1-2 facets may be apparent, little surface fea	ures but a central aperture	e may be pr	esent.									
Type 12	Large ovoid, routinely eccentric, often with lamellae, diameter is >40 $\mu m.$												
Type 13	Large spherical/subspherical												
Type 14	Polyhedral, distinct facets surface on ${\geq}50$ %, no lamellae present.												
Type 15	Very small polyhedral, highly facets surface on \geq 50 %, no lamellae present.												

									Starch	es									Phy	toliths							Spor	es			Oth	er micr	oremai	ns						
Identifier Neande	Specimen start	Toott	Wt	Type 1	Type 2.	Type 3	Type 4	Type 5	Type 6	Type 7	Type 8	Type 9	Type 11	Other	Dmg/indet.	Long Cell Rondel	Bulliform Parallelepipedal	Trichome	Parallelepipedal	Spheroid granulate	Cylindroid psilate	hair	Mesophyll	Multicellular indet.	Prism & sub calcium oxalate	Cystolith	cf Pteridium spore	Nigrospora	fusiform (boletoid)	Indet. spore	Triporate pollen	Pollen with airsacs	Indeterm. pollen	Diatom	Faunal Hair	Grass cells	Stellate hair	Vascular budle	Indet. plant cell	Menhinick's
GTN1	2	RLM3	0.65													1						1		1				2							1					2.1
GTN2	3	RI M1	0.87			1		1	1			7			6 5	4	1	2	1			1	1	2	1								2	1		2	1		1	2.5
GTN3	3	LLI2	0.65			2		1	1	1	2	,			4 5	3	2	2	1	2	2	2	1	2	2	1	1	1	1	4	2		1	4	1	2	1	1	8	2.6
GTN4	3	RLI2/M1	0.26	1	1	2	1									1									2		1													4.0
GTN5	3	LLM1/PM	0.29				1	1								1			1						2															3.7
Guattar	i Control s	amples																																						
2a	2	Wash	n/a												7															4										
2b	2	Wash	n/a												1 1																									
2c	2	Wash	n/a										1	1	1																							1		
2d	2	Wash	n/a											1																7		1	1							
2e	2	Adhesive	1.30	2				1 0					1	1																										0.3
2g	2	Bone dust	0.34					4																																
3a	3	Filler	####	4																																				0.1
3b	3	Adhesive	n/a											2																2		1								
Starch k	æy	residue																																						
Type 1:	Polyhedra	l with centric ex	tinction ci	ross ova	ıl with	no fiss	ures, cro	oss arm:	s are cl	ear and	l straig	;ht, dia	meter i	is 17 μ	m.																									
Type 2:	Unknown	shape, partially	disrupted	l (semi	gelatin	uised) e	ccentric	starch,	diame	ter is 90) µm.																													
Type 3	Spherical	starch, typically	with cros	s arms	that ar	e clear	and stra	ight or	near st	raight.	No di	scernib	le surfa	ace fea	tures. D	iameter	is 6-9 µ	ım.																						
Type 4:	Sub-polyh	edral, cross arm	s are faint	and str	aight.																																			
Type 5:	lenticular,	cross arms clear	r and strai	ght. Fai	nt lam	ellae pi	resent. D	Diamete	er is 17	μm. (P	ossible	Tritice	eae).																											
Type 6:	large sub	polyhedral. 15 µ	m or abov	re.																																				

Appendix table 16: Total recovered microremains from Grotta Guattari Neanderthal and control samples. Specimen column uses Circeo numbering.

Type 7: Very small polyhedral, no lamellae or fissures (Possible Avena or bogbean).

Type 8: slightly eccentric.

Type 9: Highly eccentric.

Type 10: Very small starch with centric cross.

Type 11: with think lamellae, diameter is 10-20 $\mu m.$

Appendix table 17: Total recovered microremains from (Grotta Fossellone Neanderthal remains and co	ontrol samples.
--	--	-----------------

							Stare	ches			Phyte	oliths	Unsil	icified pl	lant mici	oremain	IS					
Identifier Fossellone N	Specimen Jeanderthal samp	Tooth	Wt	Sampling date	Type 2	Type 5	Type 6	Type 7	Type 10	Other	Rondel	Indet. monocot	Grass cell	Stellate hair	Xylem	Vascular bundle	Indet. plant cells	Total numbers/mg	Total starch & phytoliths	Total starch & phytolith types	Menhinick's	Menhinick's/mg
EON1	Eassallana 2	LLM1	0.07	16th May 12					2						1			50.70	2	1	0.59	2.2
FOINT	Fossenone 5	LLWH	0.07	10th Mar 15					3						1			39.70	3	1	0.56	2.2
FON2	Fossellone 3	LLM2	0.1	16th Mar 13	4		1	1	1	1	1	1					1		9	6	2.00	2.6
Fossellone C	Control samples																					
FON3	Fossellone 3	Wash		16th Mar 13		17*																
Starch key																						
Type 1: Poly	hedral with cent	ic extinctio	n cross o	val with no fissures,	cross a	rms are c	lear and	straight	. Diame	ter is 17	μm.											
Type 2: Unk	nown shape, pos	sible semi g	elatinise	d eccentric starch, di	ameter	is 90 µm																
Type 3: Sph	erical starch, typi	cally with o	ross arm	s that are clear and s	traight	or near s	straight.	No disc	ernible s	urface f	eatures.	Diamete	er is 6-9 µ	ım.								
Type 4: Sub-	polyhedral, cross	arms are fa	aint and s	straight.																		
Type 5: lenti	cular, cross arms	clear and s	traight. F	aint lamellae presen	t. Diam	eter is 17	' μm, (Po	ossible T	riticeae)													
Type 6: large	e sub polyhedral.	15 µm or a	bove.																			
Type 7: Very	small polyhedra	l, no lamell	ae or fiss	ures (Possible Avena	sp. or	bogbean)).															
Type 8: sligh	tly eccentric.																					
Type 9: High	nly eccentric.																					
Type 10: Ver	ry small starch wi	th centric c	ross.																			

						Starc	hes			Phyt	oliths	\$				Other	microre	emains	5						
Identif ier	Specim en	Species	Tooth	Wt.						п									ırch	oliths	oliths		oliths/mg	oliths	mg
					àampling date	lype 1	lype 2	Other	Omg/indet	olyhedral multice	Silate	Shortcell	Bulliform	arallelepiped	ndet. phytolith	ndet. particle	Possible fibre	² ossible algae	Degraded glove sta	fotal starch & phy	Fotal starch & phyl ypes	Menhinick's index	fotal starch & phy	fotal starch & phy ypes/mg	Menhinick's index/
SP45	SP45	Neanderthal	LRP3	0.08	25.July.15		- C		щ			0)		н		н			щ		_ []]	~	0	0	0
SP54	SP54	Neanderthal	LRC	0.10	20.July.15										1					1	1	1	9.8	9.8	3.1
SP83	SP83	Neanderthal	LRdm2	0.09	25.July.15																			0	0
SP78	SP78	Neanderthal	LLP4	n/a	30.June.11						1									1	1	1			
SP79	SP79	Neanderthal	ULI1	n/a	30.June.11																				
SP84	SP84	Neanderthal	LLM1	n/a	1.July.11									1	1	6			1	2	2	1.4			
SP84	SP84	Sediment on SP84	LLM1	n/a	1.July.11																				
SP1	SP1	Teeth consolidant	LRM3	n/a	22.Mar.12	44														44	1	0.2			
		Packing cotton		n/a	1.July.11											1	3	1	2	0	0				
SPF1S	SPF1S	Lagomorph		n/a	27.Mar.12			1				2		1		1				4	3	1.5			
SPF1D	SPF1D	Lagomorph		0.33	19.Jul.13											1				0	0				0
SPF2S	SPF2S	Carnivore	Р	n/a	26.Mar.12															0	0				
SPF3	SPF3	Carnivore	М	n/a																0	0				
SPF4	SPF4	Carnivore	М	n/a	25.Mar.12												1		1	0	0				
SPF5D	SPF5D	Carnivore	М	n/a	8.Apr.12										1	1				1	1	1			
SPF5S	SPF5S	Carnivore	М	n/a	5th Apr 12				1											1	1	1			
SPF7	SPF7	Horse	LRM3	n/a	8th Apr 12						1	1							1	2	2	1.4			
Starch ke	у																								
Type 1	Polyhedra	l, moderate size, aggreg	ating type, di	ameter is 8-	-25 μm.																				
Type 2	Lenticular																								

Appendix table 18: Total recovered microremains from Sima de las Palomas del Cabezo Gordo Neanderthal and control samples.

						Starc	hes			Phyte	oliths		Calci	ım oxa	lates							
Identifier	Specimen	Туре	Tooth	Wt	Sampling date	Type 1	Type 2	Dmg/indet.	Possible starch	Rondel	Tabular	Indet.	block & sub	5 face	Irregular	Spicules	Total starch & phytoliths	Total starch & phytoliths types	Menhinick's index	Total starch & phytoliths/mg	Total starch & phytoliths wres/mø	Menhinick's index/mg
KAL 3	KAL 3	Neanderthal	UlM3	2.87	12.Feb.13				3	1			1	1			4	2	1	1.40	0.70	0.59
KAL 5	KAL 5	Neanderthal	URP2	0.05	29.Jan.13						1				14		1	1	1	20	20	4.47
KAL 8	KAL 8	Neanderthal	URM2	n/a	26.Jan.13	1	1									1	2	2	1.41			
Starch key																						
Type 1		Lamellae, faint	cross on c	ross pol	arization.																	
Type 2		Faceted.																				

Appendix table 19: Total recovered microremains from Kalamakia Cave Neanderthal remains samples.

Appendix fig. 3: Total numbers of starch and phytoliths in each Neanderthals site with reference groups (Twe forager-horticulturalists from Namibia and Taï Forest Chimpanzees) from Leonard et al., 2015 and Power et al., 2015.

M. 1.1	Terrer	Fallerate	CLI E	7 1	D
Model	Term	Estimate	Std. Err.	Z value	P
Tests of effect of openness, MET a	nd age on microremain dive	ersity			
Random effect Poisson model	Intercept	0.918	0.756	1.205	0.228
	Openness mixed	1.189	1.259	0.945	0.345
	Openness open	1.241	0.500	2.481	0.013
	MET	-0.464	0.708	-0.656	0.512
	Age of fossil specimen	-0.432	0.278	-1.553	0.121
Random effect Poisson model	Intercept	1.039	0.496	2.094	0.036
with alternative chronology	Openness mixed	0.429	1.223	0.351	0.726
	Openness open	1.200	0.636	1.886	0.059
	MET	-0.017	0.445	-0.037	0.970
	Alternative age of fossil specimen	-0.198	0.241	-0.824	0.410

Appendix table 20: Coefficients of statistical models.

Appendix table 21: Western Eurasian economic plants that we identified as starch-rich plants. These plants are candidate plant food staples.

Family	Species	Common name
Anacardiaceae	Pistacia sp.	pistachio
Amaryllidaceae	Allium ursinum	ramson
Apiaceae	Pastinaca sativa	wild parsnip
Apiaceae	Conopodium majus	pignut
Alismataceae	Sagittaria sagittifolia	arrowhead
Alismataceae	Alisma plantago-aquatica	water plantain
Araceae	Arum maculatum	arum
Butomaceae	Butomus umbellatus	flowering rush
Brassicaceae	Crambe maritima	seakale
Dioscoreaceae	Dioscorea communis	black bryony
Fabaceae	Pisum sativa	common pea
Fabaceae	Vicia sativa	common vetch
Fabaceae	V. sepium	bush vetch
Fabaceae	V. cracca	tufted vetch
Fabaceae	Lathyrus sylvestris	everlasting pea
Fabaceae	Lathyrus latifolius	bitter pea
Fabaceae	Lathyrus sativus	grass pea
Fabaceae	Lathyrus ochrus	cyprus pea
Fabaceae	Lathyrus cicera	red pea
Fabaceae	Lathyrus aphaca	yellow pea
Fabaceae	Vicia ervilia	bitter vetch
Fabaceae	Vicia hirsuta	hairy tare
Fabaceae	Vicia narbonensis	purple broad vetch
Cyperaceae	Cyperus longus	sweet flag
Cyperaceae	Cyperus esculentus	tigernut

Cyperaceae	Schoenoplectum spp.	common clubrush
Corylaceae	Corylus cf. avellana	hazel
Liliaceae	Lilium martagon	turk's cap lily
Liliaceae	Erythronium	dog's tooth violet
Rosaceae	Potentilla anserina	silverweed
Rosaceae	Sanguisorba officinalis	great burnet
Papaveraceae	Corydalis cava	corydalis
Polygonaceae	Bistorta officinalis	european bistort
Equisetaceae	Equisetum palustre	marsh horsetail
Menyanthaceae	Menyanthes trifoliata	bogbean
Typhaceae	Typha latifolia	reedmace
Poaceae	Avena elatior	false oat-grass
Poaceae	Avena sativa	common oats
Poaceae	Brachypodium pinnatum	false brome
Poaceae	Festuca sp.	fescue
Poaceae	Deschampsia cespitosa	hair grass
Poaceae	Echinochloa crus -galli	barnyard grass
Poaceae	Dactylis glomerata	cocksfoot grass
Poaceae	Elymus repens	couchgrass
Poaceae	Hordeum murinum	wall barley
Poaceae	Hordeum bulbosum	bulbous barley
Fagaceae	Castanea sativa	sweet chestnut
Fagaceae	Quercus ilex subsp. rotundifolia	holm oak
Fagaceae	Quercus coccifera	kemes oak
Fagaceae	Quercus faginea	portugese oak
Smilacaceae	Smilax aspera	rough bindweed
Dennstaedtiaceae	Pteridium sp.	bracken
Ranunculaceae	Ficaria verna	lesser celandine
Nymphaea	Nuphar lutea	yellow waterlily
Nymphaea	Nymphaea alba	white waterlily
Trapaceae	Trapa natans	water caltrop