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Chapter 12

Lehmer’s question

In the second edition of Richard Guy’s book “Unsolved Problems in Number
Theory” one can read in section A3 a question of D.H. Lehmer, namely: what
is ε4(p)? In this chapter we prove assuming the working hypothesis Mer = W
that ε4(p) is non-periodic.

Converse of the main theorems

In the following table we see the Lehmer symbol ε4(p) for the first 25 odd p such
that 2p − 1 is a Mersenne prime.

p ε4(p) mod 3 mod 5 mod 7 mod 9 mod 11 mod 13
3 + 0 3 3 3 3 3
5 + 2 0 5 5 5 5
7 − 1 2 0 7 7 7
13 + 1 3 6 4 2 0
17 − 2 2 3 8 6 4
19 − 1 4 5 1 8 6
31 + 1 1 3 4 9 5
61 + 1 1 5 7 6 9
89 − 2 4 5 8 1 11
107 − 2 2 2 8 8 3
127 + 1 2 1 1 6 10
521 − 2 1 3 8 4 1
607 − 1 2 5 4 2 9
1279 − 1 4 5 1 3 5
2203 + 1 3 5 7 3 6
2281 − 1 1 6 4 4 6
3217 − 1 2 4 4 5 6
4253 + 2 3 4 5 7 2
4423 − 1 3 6 4 1 3
9689 − 2 4 1 5 9 4

81



82 CHAPTER 12

p ε4(p) mod 3 mod 5 mod 7 mod 9 mod 11 mod 13
9941 + 2 1 1 5 8 9
11213 − 2 3 6 8 4 7
19937 + 2 2 1 2 5 8
21701 − 2 1 1 2 9 4
23209 + 1 4 4 7 10 4

If the working hypothesis is true then one cannot find patterns between the
column with the signs and the modulo-columns. We state this more precisely
in the following theorem.

Theorem 12.1. If ε4 is periodic, then Mer is not W .

Theorem 12.1 implies that if one proves that ε4 is periodic, then one has new
knowledge about the Frobenius symbols of Mersenne primes.

We will prove the following generalization of Theorem 12.1 in the next sec-
tion. This Theorem can been seen as the converse of Theorem 7.5.

Theorem 12.2. Let s ∈ K be a universal starting value. If εs is periodic and
4− s2 /∈ K∗2, then Mer is not W .

We get the following similar result for a related pair of potential starting values.
This result can been seen as the converse of Corollary 9.4.

Theorem 12.3. Let s, t ∈ K be a related pair of potential starting values and
suppose both s and t are universal starting values. If εs,t is periodic and (2 +√

2 + s)(2+
√

2 + t) is not a square in K(
√

2 + s,
√

2− s)∗, then Mer is not W .

We prove Theorem 12.3 in the next section.

Lehmer’s question and the working hypothesis

In this section we prove Theorem 12.1, Theorem 12.2 and Theorem 12.3.

Proof of Theorem 12.2. Let s ∈ K be a universal starting value. Theorem
3.2 implies that s is a potential starting value. Assume that 4−s2 /∈ K∗2. Then
Proposition 4.3 implies that the Galois group of the extension L′s/Ks is isomor-
phic to the dihedral group D8 of 16 elements. Let E = Ks(

√
4− s2,

√
s+ 2) ⊂

L′s. Since s is a potential starting value and 4−s2 /∈ K∗2, we have [E : Ks] = 4.
The commutator subgroup of D8 has 4 elements and [E : Ks] = 4, so E is
the maximal abelian extension of Ks in L′s. By assumption εs is periodic.
Let l ∈ Z>0 and m ∈ Z>0 be as in Definition 7.4. Define ζ = ζ2m−1 ∈ Q
to be a primitive (2m − 1)-th root of unity. Let L be the Galois closure of
L′s(ζ) over Q. Let n = [L ∩ K : Q], so that L ∩ K = Q(n

√
2). By definition

Ks = L′s ∩ K. Therefore L′s ∩ Q(n
√

2) equals Ks. Hence the restriction map
Gal(L′sQ(n

√
2)/Q(n

√
2)) → Gal(L′s/Ks) is an isomorphism. Therefore EQ(n

√
2) is

the maximal abelian extension of Q(n
√

2) in L′sQ(n
√

2).
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We denote the maximal abelian extension of L ∩ K in L by Lab. Since
EQ(n
√

2) is the maximal abelian extension of Q(n
√

2) in L′sQ(n
√

2), the field EQ(n
√

2)
is a subfield of Lab and Lab∩L′sQ(n

√
2) equals EQ(n

√
2). Clearly Q(ζ) is a subfield

of Lab. In the following diagram we see an overview of the fields, four Galois
groups and three group elements used in this proof.

L
oooooo L

σ1 6=σ2,σ
−1
2

L′sQ(n
√

2))
C4ooooo

Lab

ooooo Lab

σ1=σ2L′s
C4

EQ(n
√

2)
V4

oooooo
Q(n
√

2, ζ)
oooo

E
V4

Q(n
√

2)

ooooo
Q(ζ)

ooooooooooooooo
Q(ζ)

Ks

Ks ∩Q(ζ)

Q Q

Next we recall the definition of TL. Denote the conductor of Lab over Q(n
√

2)
by f. Write f = (n

√
2)ordn√2(f) · fodd. Denote the multiplicative order of n

√
2 modulo

fodd in the group (OQ(n
√

2)/fodd)∗ by k. The map τ : (Z/kZ)∗ → Gal(Lab/Q(n
√

2))

is defined by u 7→ ((n
√

2
x−1), Lab/Q(n

√
2)), where x ∈ Z is such that x ≡ u mod k

and x ≥ ordn√2(f). Let r : Gal(L/Q(n
√

2)) → Gal(Lab/Q(n
√

2)) be the restriction

map. We recall TL = r−1(image of τ).
Suppose for a contradiction the working hypothesis Mer = W . Since the re-

striction map Gal(L′sQ(n
√

2)/Q(n
√

2)) → Gal(L′s/Ks) is an isomorphism, Propo-
sition 4.3 and Proposition 5.10(iv) imply that for any σ ∈ TL the element
σ|L′sQ(n

√
2) generates the cyclic group Gal(L′sQ(n

√
2)/Q(n

√
2,
√

4− s2)) of order 8 .

Since Lab∩L′sQ(n
√

2) equals EQ(n
√

2), there exist σ1, σ2 ∈ TL such that σ1|Lab =
σ2|Lab and σ1|L′sQ(n

√
2) 6= (σ2|L′sQ(n

√
2))
±1. Since σ1|L′sQ(n

√
2) 6= (σ2|L′sQ(n

√
2))
±1 and

the restriction map Gal(L′sQ(n
√

2)/Q(n
√

2)) → Gal(L′s/Ks) is an isomorphism,
we have σ1|L′s 6= (σ2|L′s)

±1. Hence Definition 4.6 and Definition 4.5 imply
λ′s([σ1|L′s ]) 6= λ′s([σ2|L′s ]).

Let σ1, σ2 ∈ TL be as above. Then Theorem 11.7(i), applied to the extension
L/Q(n

√
2), implies that there exist p, q ∈ Z>l with gcd(pq, n) = 1 such that

σ1 = (Mp, L/Q(n
√

2)) and σ2 = (Mq, L/Q(n
√

2)), and both ideals Mp ∩Q(n
√

2) =

(n
√

2
p − 1) and Mq ∩ Q(n

√
2) = (n

√
2
q − 1) are prime ideals of OQ(n

√
2). Since

σ1|Lab = σ2|Lab , we have (Mp, L/Q(n
√

2))|Q(n
√

2,ζ) = (Mq, L/Q(n
√

2))|Q(n
√

2,ζ). The

extension Q(n
√

2, ζ)/Q(n
√

2) is abelian, so ((n
√

2
p−1),Q(n

√
2, ζ)/Q(n

√
2)) = ((n

√
2
q−

1),Q(n
√

2, ζ)/Q(n
√

2)). Since the prime ideals (n
√

2
p − 1) and (n

√
2
q − 1) are of

degree 1 over Q, we have ((2p − 1),Q(ζ)/Q) = ((2q − 1),Q(ζ)/Q). This implies
2p− 1 ≡ 2q − 1 mod (2m− 1), so p ≡ q mod m. By construction p, q > l and by
assumption εs is periodic, so εs(p) = εs(q). The consistency property implies
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[σ1|L′s ] = (Mp∩L′s, L′s/Ks) and [σ2|L′s ] = (Mq∩L′s, L′s/Ks). Recall the definition
of Frob′ above Corollary 5.7. Now we see that Frob′(p) = (Mp∩L′s, L′s/Ks) and
Frob′(q) = (Mq∩L′s, L′s/Ks). Therefore we have (λ′s◦Frob′)(p) 6= (λ′s◦Frob′)(q).
Now Corollary 5.7 implies εs(p) 6= εs(q). This is a contradiction. Hence Mer 6=
W .

Proof of Theorem 12.1. Note that 4− 42 = −12 is not a square in K∗. Now
Theorem 12.2 implies Theorem 12.1.

The ideas of the proof of Theorem 12.2 can also be applied to pairs of universal
starting values. To illustrate this we give the following proof. The following
proof is similar to the proof of Theorem 12.2.

Proof of Theorem 12.3. Let s, t ∈ K be a related pair of potential starting
values. We will recall from Chapter 8 the definition of the fields Ks,t, E

′, E′′,
E and F . Recall fs = x16 − sx8 + 1, the element α = αs ∈ Q a zero of
fs and Ls the splitting field of fs over Q(s). Recall Ks,t = (LsLt) ∩ K and
Fs = Ks,t(

√
4− s2, αs + α−1

s ). Finally we recall F = FsFt, the field E =
Fs ∩ Ft, the field E′ = Ks,t(

√
4− s2) and E′′ = E′(

√
s+ 2). By assumption

e′′ = (2 +
√

2 + s)(2 +
√

2 + t) is not a square in E′′
∗
, so Lemma 9.13 implies

[E : E′] 6= 4 or 8. Therefore Lemma 8.16 implies [E : E′] = 2. Denote the
maximal abelian extension of Ks,t in F by D. Let T be as in Proposition 8.9.
Then D equals TE′′.

By assumption εs,t is periodic. Let l ∈ Z>0 and m ∈ Z>0 be as in Definition
7.4. Define ζ = ζ2m−1 ∈ Q to be a primitive (2m − 1)-th root of unity. Let L
be the Galois closure of F (ζ) over Q. Let n = [L ∩ K : Q], so that L ∩ K =
Q(n
√

2). By definition Ks,t = F ∩K. Therefore F ∩ Q(n
√

2) equals Ks,t. Hence
the restriction map Gal(FQ(n

√
2)/Q(n

√
2)) → Gal(F/Ks,t) is an isomorphism.

Therefore DQ(n
√

2) is the maximal abelian extension of Q(n
√

2) in FQ(n
√

2).
We denote the maximal abelian extension of L ∩ K in L by Lab. Since

DQ(n
√

2) is the maximal abelian extension of Q(n
√

2) in FQ(n
√

2), the fieldDQ(n
√

2)
is a subfield of Lab and Lab∩FQ(n

√
2) equals DQ(n

√
2). Clearly Q(ζ) is a subfield

of Lab. In the following diagram we see an overview of the fields used in this
proof.

L
oooooo

FQ(n
√

2))

oooooo
Lab

oooo
o

F DQ(n
√

2)

oooo
Q(n
√

2, ζ)
oooo

D = TE′′ Q(n
√

2)

oooo
Q(ζ)

ooooooooooooooo

Ks,t

Ks,t ∩Q(ζ)

Q
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Next we recall the definition of TL. Denote the conductor of Lab over Q(n
√

2) by
f. Write f = (n

√
2)ordn√2(f) · fodd. Denote the multiplicative order of n

√
2 modulo

fodd in the group (OQ(n
√

2)/fodd)∗ by k. The map τ : (Z/kZ)∗ → Gal(Lab/Q(n
√

2))

is defined by u 7→ ((n
√

2
x−1), Lab/Q(n

√
2)), where x ∈ Z is such that x ≡ u mod k

and x ≥ ordn√2(f). Let r : Gal(L/Q(n
√

2)) → Gal(Lab/Q(n
√

2)) be the restriction

map. We recall TL = r−1(image of τ).
Suppose for a contradiction the working hypothesis Mer = W . Since the re-

striction map Gal(FQ(n
√

2)/Q(n
√

2))→ Gal(F/Ks,t) is an isomorphism, Proposi-
tion 9.8 and the consistency property imply that for any σ ∈ TL the conjugacy
class [σ|F ] is an element of Gal(F/E′)gen/∼. Since [E : E′] = 2, Theorem
8.10 implies that the map λ′s,t : Gal(F/E′)gen/∼ → {±1} does not factor via

the restriction map Gal(F/E′)gen/∼ → Gal(T/Ks,t). Hence Lab ∩ FQ(n
√

2) =
DQ(n
√

2) = (TE′′)Q(n
√

2) implies that there exist σ1, σ2 ∈ TL such that σ1|Lab =
σ2|Lab and λ′s,t([σ1|F ]) 6= λ′s,t([σ2|F ]).

Let σ1, σ2 ∈ TL be as above. Then by Theorem 11.7(i) (applied to the
extension L/Q(n

√
2)) there exist p, q ∈ Z>l with gcd(pq, n) = 1 such that σ1 =

(Mp, L/Q(n
√

2)) and σ2 = (Mq, L/Q(n
√

2)), and Mp ∩ Q(n
√

2) = (n
√

2
p − 1) and

Mq ∩Q(n
√

2) = (n
√

2
q−1) both prime ideals of Q(n

√
2). Since σ1|Lab = σ2|Lab , the

Frobenius symbol (Mp, L/Q(n
√

2))|Q(n
√

2,ζ) equals (Mq, L/Q(n
√

2))|Q(n
√

2,ζ). The

extension Q(n
√

2, ζ)/Q(n
√

2) is abelian, so ((n
√

2
p−1),Q(n

√
2, ζ)/Q(n

√
2)) = ((n

√
2
q−

1),Q(n
√

2, ζ)/Q(n
√

2)). Since the prime ideals (n
√

2
p−1) and (n

√
2
q−1) are of degree

1 over Q, we have ((2p−1),Q(ζ)/Q) = ((2q−1),Q(ζ)/Q). This implies 2p−1 ≡
2q − 1 mod (2m − 1), so p ≡ q mod m. By construction we have λ′s,t([σ1|F ]) 6=
λ′s,t([σ2|F ]). The consistency property implies [σ1|F ] = (Mp ∩ F, F/Ks,t) and
[σ2|F ] = (Mq ∩ F, F/Ks,t). Recall the definition of Frob2 above Corollary 9.10.
Now we see that Frob2(p) = (Mp∩F, F/Ks,t) and Frob2(q) = (Mq∩F, F/Ks,t).
Therefore we have (λ′s,t ◦ Frob2)(p) 6= (λ′s,t ◦ Frob2)(q). Now Corollary 9.10
implies εs,t(p) 6= εs,t(q). This is a contradiction. Hence Mer 6= W .




