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Chapter 11

Mersenne primes in Galois
extensions

Let L be a finite Galois extension of Q. The Chebotarev density theorem implies
that for each conjugacy class C of the Galois group of L/Q there are infinitely
many prime numbers having Frobenius symbol equal to C (see [11, Chapter
VIII, §7, Theorem 7.4]). Chebotarev’s theorem can be seen as a generalization
of Dirichlet’s theorem about primes in arithmetic progression, which we stated
in the previous chapter. Since Dirichlet’s theorem is not true for Mersenne
primes, it follows that Chebotarev’s theorem is not true for Mersenne primes
either.

In this chapter we will speculate on Frobenius symbols of Mersenne primes.
We will show that some conjugacy classes of a Galois group cannot be the
Frobenius symbol of infinitely many Mersenne primes. The statement that
the remaining conjugacy classes are the Frobenius symbol of infinitely many
Mersenne primes will be reformulated in a more natural and a more compact
way (see Theorem 11.7(ii) and (iii) respectively). In the next chapter we will
assume the correctness of the statement in Theorem 11.7(iii) in order to partly
answer a question of Lehmer. This assumption will be our working hypothesis.

Frobenius symbols of Mersenne primes

Let L be a finite Galois extension of Q. For σ ∈ Gal(L/Q) we denote the
conjugacy class of σ by [σ].

Definition 11.1. The set MerL is the set of all σ ∈ Gal(L/Q) such that there
are infinitely many Mersenne primes M with [σ] = ((M), L/Q).

Clearly MerL is a subset of Gal(L/Q).
Next we define the set WL ⊂ Gal(L/Q), which one should think of as the

smallest subset of Gal(L/Q) that we know that contains MerL. Its definition
will be an extension of the definition of WL of the previous chapter to finite
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Galois extensions of Q. Hence in the case that L is a finite abelian extension
over Q we know from the previous chapter that WL is the image of τL. In this
chapter we will extend the definition of τL in order to define WL. The extension
of τL is inspired by the fact that the Artin map controls the Frobenius symbols
of the primes (n

√
2
p − 1) in finite abelian extensions of Q(n

√
2). The only other

restriction for Frobenius symbols of the primes (n
√

2
p− 1) we can think of comes

from the consistency property. This is reflected in our definition of WL (see
definition of TL below). Now we make this precise.

For every positive integer n and every finite abelian extension F/Q(n
√

2) we
define fF,n to be the conductor of F over Q(n

√
2). Fix such a field extension

F/Q(n
√

2). Write fF,n = (n
√

2)ordn√2(fF,n) · fF,n,odd. Let O be the ring of integers
of Q(n

√
2). Denote the multiplicative order of n

√
2 modulo fF,n,odd in the group

(O/fF,n,odd)∗ by dF,n. Let x ∈ Z>0 be such that gcd(x, dF,n) = 1. Then Lemma

10.9 implies (n
√

2
x − 1) + f = O. Hence we have a well-defined map

τdF,n : (Z/dF,nZ)∗ → Gal(F/Q(
n
√

2))

defined by u 7→ ((n
√

2
x− 1), F/Q(n

√
2)), where x ∈ Z is such that x ≡ u mod dF,n

and x ≥ ordn√2(fF,n). Note that this map is independent of the choice of x.
Let kF,n ∈ Z>0 be the smallest divisor of dF,n such that τdF,n factors via the
restriction map r : (Z/dF,nZ)∗ → (Z/kF,nZ)∗. Define τF,n : (Z/kF,nZ)∗ →
Gal(F/Q(n

√
2)) by τdF,n = τF,n ◦ r.

We recall K =
⋃∞
i=1 Q( i

√
2). Denote the maximal abelian extension of L∩K

in L by Lab and let

r : Gal(L/L ∩K)→ Gal(Lab/L ∩K)

be the restriction map. Let TL = r−1(image of τLab,n) where n = [L ∩K : Q].
Since the Frobenius of a prime number is a conjugacy class of Gal(L/Q), we
define WL as follows.

Definition 11.2. We define WL to be the set
⋃
σ σTLσ

−1 where σ runs over
all elements of Gal(L/Q).

Note that WL is the set of all σ ∈ Gal(L/Q) which have a conjugate ψ ∈
Gal(L/Q) with ψ|L∩K the identity and ψ|Lab in the image of τLab,n.

Proposition 11.3. We have MerL ⊂WL.

A proof of Proposition 11.3 can be found in the last section of this chapter. The
following proposition, which we prove in the last section of this chapter, relates
the sets MerL and the sets WL for finite Galois extensions L of Q.

Proposition 11.4. Let L be a finite Galois extension of Q. Suppose L′ is
a finite Galois extension of Q which contains L. Then the restriction map
Gal(L′/Q)→ Gal(L/Q) induces surjective maps MerL′ → MerL, TL′ → TL and
WL′ →WL.
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Example. Let L be the field Q(6
√

5, ζ6), where ζ6 is a zero of the polynomial
x2 − x+ 1 and 6

√
5 a zero of the polynomial x6 − 5. The Galois group of L/Q is

the dihedral group G = 〈σ, ψ〉 of order 12, where σ(6
√

5) = ζ6
6
√

5 and σ(ζ6) = ζ6,
and ψ(ζ6) = ζ−1

6 and ψ(6
√

5) = 6
√

5. Recall the definition of E2012 (see first section
of Chapter 10). Let E = {p ∈ E2012 : 3 ≤ p ≤ 20000}. In the table below we
state a list of the Frobenius symbols of 2p − 1 with p ∈ E .

conjugacy class #hits exponents
{id} 5 13, 89, 4253, 11213, 19937
{σ3} 2 7, 4423
{σ2, σ−2} 8 5, 17, 61, 521, 2281, 3217, 9689, 9941
{σ1, σ−1} 8 3, 19, 31, 107, 127, 607, 1279, 2203
{ψ, σ2ψ, σ4ψ} 0
{ψσ, σ3ψ} 0

The table suggests that only the powers of σ occur as Frobenius symbol of a
Mersenne prime, i.e. the table suggests that MerL ⊂ 〈σ〉. This suggestion can
be verified by the observation that for a prime number Mp = 2p − 1 we have
Mp ≡ 1 mod 6, so Mp splits in Q(ζ6).

Next we calculate WL via its definition. First we show L ∩ K = Q. The
prime ideal (2) of Q is inert in Q(ζ6)/Q, so we have Q(ζ6)∩K = Q. The Galois
group of L/Q(ζ6) is cyclic of order 6, so we have L ∩ K ⊂ Q(6

√
2). Moreover

the fields Q(ζ6,
3
√

5) and Q(ζ6,
√

5) are the only intermediate fields of L/Q(ζ6).
Note that the prime ideal (5) of Q is inert in Q(ζ6)/Q and totally ramifies in
L/Q(ζ6). Since (5) does not divide the discriminant of x3−2 or x2−2, we have
3
√

2 /∈ Q(ζ6,
3
√

5) and
√

2 /∈ Q(ζ6,
√

5). Hence we can conclude that L ∩K = Q.
The commutator subgroup of G is [G,G] = 〈σ2〉. The order of G/[G,G]

is 12/3 = 4. Therefore Lab, the maximal abelian extension of L ∩ K in L,
equals Q(ζ6,

√
5). The conductor of Lab/Q is (15). The order of (2 mod 15) in

(Z/15Z)∗ is 4, so dLab,1 = 4. The Artin symbol of the ideal (21 − 1) in Lab/Q
is trivial. The prime ideal (23− 1) is inert in Q(

√
5)/Q and splits completely in

Q(ζ6)/Q. Hence the map

τd
Lab,1

: (Z/4Z)∗ → Gal(Lab/Q)

has image Gal(Lab/Q(ζ6)) and kLab,1 = dLab,1. Therefore TL equals 〈σ〉. Since
〈σ〉 is a normal subgroup of Gal(L/Q), we have WL = 〈σ〉. Hence we have
verified Proposition 11.3 for the case L = Q(6

√
2, ζ6).

Example. The field L used in this example comes from an article of H.W.
Lenstra and P. Stevenhagen (see [9]). In the article they prove an observation
of F. Lemmermeyer: if a Mersenne prime is written as x2 +7y2 with x, y ∈ Z≥0,
then x is divisible by 8.

Define ω = −1 + 2
√

2 and ω = −1 − 2
√

2 in Q(
√

2). Let L be the field
Q(
√
ω,
√
ω). Then the field L is Galois over Q, its Galois group G is isomorphic

to the dihedral group of order 8 and the intersection L ∩ K equals Q(
√

2).
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Therefore Lab, the maximal abelian extension of L ∩ K in L, equals L, so
Lab = L. Let σ ∈ G be defined by σ :

√
ω 7→ −

√
ω and σ :

√
ω 7→

√
ω, and

ψ ∈ G be defined by ψ :
√
ω 7→

√
ω and ψ :

√
ω 7→ −

√
ω. In the table below we

state a list of the Frobenius symbols (2p − 1, L/Q) with p ∈ E2012\{3}.
Let E = Q(

√
2,
√
ωω) = Q(

√
2,
√
−7). Let φ be the non-trivial element of

Gal(L/E). Note that φ = σψ. The element φ does not appear in the table
below. Indeed, let K1 = Q(

√
ω), let K2 = Q(

√
ω) and consider the following

field diagram.
conjugacy class #hits exponents p
{id} 23 p ≡ 1 mod 3
{σ, ψ} 23 p ≡ 2 mod 3
others 0

L

E

〈φ〉

??
?

����
K1 K2

???

Q(
√

2)

���

Let f be the conductor of L/Q(
√

2). By Theorem 6.3 we have ord√2(f) ≤ 7.

The prime ideals (ω) and (ω) of Q(
√

2) are the only ramified primes in L/Q(
√

2)
that are tamely ramified. Hence fL,2 divides (8

√
2)(7). Therefore dL,2 divides

6. This implies that the order of (Z/dL,2Z)∗ is 1 or 2. Hence the order of TL
is 1 or 2. One can show that the Artin symbol of ((8

√
2 − 1), L/Q(

√
2)) is

trivial. This implies id ∈ TL. Moreover, one can also show the Artin symbol
((32
√

2−1), E/Q(
√

2)) is non-trivial. Hence we have φ /∈ TL. Therefore we have
TL = {id, σ} or TL = {id, ψ}. Since σ and ψ are conjugate and Gal(L/Q(

√
2))

is a normal subgroup of G, we conclude WL = {id, σ, ψ}. Now Proposition 11.3
has been verified for the case L = Q(

√
ω,
√
ω).

Theorem 11.5. The following two statements are equivalent

(i) For every finite Galois extension L of Q and for every element σ of TL ⊂
Gal(L/Q(n

√
2)) with n = [L ∩ K : Q] there are infinitely many primes m

of L and p ∈ Z>0 with gcd(p, n) = 1 such that σ = (m, L/Q(n
√

2)) and

m ∩Q(n
√

2) = (n
√

2
p − 1).

(ii) For each finite Galois extension L of Q we have MerL = WL.

We prove Theorem 11.5 in the last section of this chapter.

A profinite reformulation

In this section we will reformulate Theorem 11.5(ii) in terms of projective limits.
By Proposition 11.4 we can define Mer and W to be the projective limit of all
MerL and WL respectively, where L runs over all finite Galois extensions of Q.
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The Galois group GQ of the algebraic closure Q over Q can be seen as the
projective limit of all Galois groups Gal(L/Q) where L ⊂ Q runs over all finite
Galois extensions of Q. This group GQ is a topological group. The following
proposition shows the relation with the previous chapter.

Proposition 11.6. Let the horizontal arrows be inclusion maps and let the
vertical arrows be restriction maps in the diagram below.

Mer

����

// W

����

// GQ

����
Merab

// Wab
// Gab

Q

Then this diagram commutes. Moreover the vertical arrows are surjective and
both Mer and W are closed subsets of GQ.

We prove Proposition 11.6 in the next section. The set W is the smallest upper
bound for Mer that we are aware of. The working hypothesis is the assumption
that the equality Mer = W holds. In the next chapter we will see that the
working hypothesis implies the converse to Theorem 7.5.

Theorem 11.7. The following three statements are equivalent

(i) For every finite Galois extension L of Q and for every element σ of TL ⊂
Gal(L/Q(n

√
2)) with n = [L ∩ K : Q] there are infinitely many primes m

of L and p ∈ Z>0 with gcd(p, n) = 1 such that σ = (m, L/Q(n
√

2)) and

m ∩Q(n
√

2) = (n
√

2
p − 1).

(ii) For each finite Galois extension L of Q we have MerL = WL.

(iii) We have Mer = W .

A proof of Theorem 11.7 can be found in the next section.
Next we describe W as the image of a generalisation of the map τab of the

previous chapter. Denote by Kab the maximal abelian extension of K. Let Gab
K

be the Galois group of Kab/K. Recall the maps τF,n of the previous section.

Proposition 11.8. The maps τF,n induce an injective continuous map τ from

Ẑ∗ to Gab
K . Furthermore we have τab = r ◦ τ , where r is the restriction map

from Gab
K to Gab

Q .

We prove this proposition in the last section. Let GK be the Galois group of
Q/K, let r : GK → Gab

K be the restriction map and define T = r−1(image of τ).

Proposition 11.9. The set W equals
⋃
σ σTσ

−1 where σ runs over all elements
of GQ.

We prove Proposition 11.9 in the next section.
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Justifying the reformulations

In this section we prove the lemmas, propositions and theorems of this chapter.

Proof of Proposition 11.3. Recall the notation above Definition 11.2. We re-
call n = [L ∩ K : Q]. Suppose σ ∈ MerL. Then there exists a prime p ∈
Z>0 such that Mp = 2p − 1 is prime, gcd(kLab,n · n, p) equals 1, we have
p > ordn√2(fLab,n) and ((Mp), L/Q) = [σ]. Now by the assumptions on p the

element ((n
√

2
p − 1), Lab/Q(n

√
2)) is in the image of τLab,n. By definition of TL

there exists φ ∈ TL such that φ|Lab = ((n
√

2
p − 1), Lab/Q(n

√
2)). Since the ideal

(n
√

2
p−1) of Q(n

√
2) is a prime of degree 1 over Mp, we have [σ] = [φ] as conjugacy

classes of Gal(L/Q). Now the definition of WL implies σ ∈WL.

Lemma 11.10. Let n,m ∈ Z>0 be such that n | m. Let E/Q(m
√

2) and F/Q(n
√

2)
be finite abelian extensions such that F is a subfield of E. Then kF,n divides
kE,m and the diagram

Ẑ∗

id

��

// (Z/kE,mZ)∗

��

τE,m // Gal(E/Q(m
√

2))

res

��
Ẑ∗ // (Z/kF,nZ)∗

τF,n // Gal(F/Q(n
√

2))

commutes.

Proof. Set t = m · dF,n · dE,m and g = max(ordn√2(fF,n), ordn√2(fE,m)). By
definition we have kF,n|dF,n. Let A = {x ∈ Z : gcd(x, t) = 1 and x ≥ g}. Let
r : A→ (Z/kF,nZ)∗ be the restriction map. Note that τF,n◦r is periodic modulo
kF,n (see just above Lemma 10.10).

Let x ∈ Z>0 ∩ A be such that all the prime ideals of Q(n
√

2) that divide

(n
√

2
x − 1) are unramified in E. Since x is relatively prime to m, the norm of

m
√

2
x − 1 over Q(m

√
2)/Q(n

√
2) equals n

√
2
x − 1. The norm map and the Artin

map are compatible for ideals which are not divisible by ramified primes (see
[7, Chapter X, §1, A4]). Hence we have

((
m
√

2
x
− 1), E/Q(

m
√

2))|F = ((
n
√

2
x
− 1), F/Q(

n
√

2)). (11.1)

Hence the map τF,n ◦ r is periodic modulo kE,m.
By Lemma 10.10 the map τF,n ◦ r is periodic modulo gcd(kF,n, kE,m). The

definition of kF,n implies kF,n = gcd(kF,n, kE,m). Hence kF,n divides kE,m.
Therefore the left square of the diagram in Lemma 11.10 commutes. By equation
11.1 the right square of the diagram in Lemma 11.10 commutes.

Proof of Proposition 11.4. Let σ ∈ MerL. Then there exist infinitely many
Mersenne primes M with [σ] = (M,L/Q). Since there are only finitely many
conjugacy classes φ of Gal(L′/Q) with φ|L = σ, the consistency property (see
Proposition 5.4) implies that there exists φ ∈ Gal(L′/Q) with φ|L = σ such that
there are infinitely many Mersenne primes M with [φ] = (M,L′/Q).
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Let E be the maximal abelian extension of L′∩K = Q(m
√

2) in L′ and let F be
the maximal abelian extension of L∩K = Q(n

√
2) in L. Since L ⊂ L′, the integer

n divides m. Lemma 11.10 implies that the restriction map Gal(E/Q(m
√

2)) →
Gal(F/Q(n

√
2)) maps the image of τE,m surjectively to the image of τF,n. Hence

the map TL′ → TL is surjective. Therefore the map WL′ →WL is surjective.

Proof of Proposition 11.6. Let L and L′ be finite Galois extensions of Q
such that L ⊂ L′. Proposition 11.4 implies that the surjective restriction
map Gal(L′/Q) → Gal(L/Q) induces surjective maps MerL′ → MerL and
WL′ → WL. By using [19, Chapter 1, §1, Proposition 1.1.6] we deduce that
the vertical arrows in the diagram of Proposition 11.6 are surjective. Proposi-
tion 11.3 implies MerL ⊂ WL. By definition of WL we have WL ⊂ Gal(L/Q).
Hence all horizontal arrows in the diagram of Proposition 11.6 are injective.
Therefore the diagram in Proposition 11.6 commutes. Since Mer, W and GQ
are projective limits, they are Hausdorff and compact (see [19, Chapter 1, §1,
Proposition 1.1.5(d)]). Every compact subset of a Hausdorff space is closed (see
[13, Chapter 3, §3, Theorem 5.3]). Hence Mer and W are closed subsets of
GQ.

Proof of Proposition 11.8. By Lemma 11.10 the maps τF,n induce a map τ

from Ẑ∗ to Gab
K . Fix n = 1 in Lemma 11.10. The projective limit of the maps

τF,1, where F runs over all finite abelian extensions of Q, is τab. The projective
limit of all restriction maps Gal(E/Q(m

√
2)) → Gal(F/Q), where the integer m

and the fields E and F are such that E/Q(m
√

2) and F/Q are finite abelian with
F ⊂ E, yields the restriction map r : Gab

K → Gab
Q . Hence Lemma 11.10 implies

τab = r ◦ τ .
Let rL be the restriction map Gab

K → Gal(L/L ∩K). Let n = [L ∩K : Q].

The map rL ◦ τ factors via the continuous maps Ẑ∗ → (Z/kL,nZ)∗ and τL.
Therefore rL ◦ τ is continuous. Hence we can conclude that τ is continuous (see
[19, Chapter 1, §1, Proposition 1.1.6(d)]).

By Theorem 10.8 the map τab is injective. Since τab = r ◦ τ , the map τ is
injective.

Proof of Proposition 11.9. Note that T can also be defined as the projective
limit of all TL where L runs over all finite Galois extension of Q. Recall that GQ
equals the projective limit of all Gal(L/Q) where L runs over all finite Galois
extensions of Q. By definition we have

WL =
⋃
σ

σTLσ
−1 (11.2)

where σ runs over all elements of Gal(L/Q).
Next we show W =

⋃
σ σTσ

−1. Clearly we have
⋃
σ σTσ

−1 ⊂ W . Since
both the limits use the same projection maps,

⋃
σ σTσ

−1 lies dense in W . The
map G×T → G defined by (σ, x) 7→ σxσ−1 is continuous. Therefore

⋃
σ σTσ

−1

is compact, so it is also closed. Hence we can conclude W =
⋃
σ σTσ

−1.
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Lemma 11.11. Let n,m ∈ Z>0 such that n | m, and let p ∈ Z>0 such that
p - n and M = 2p − 1 is a prime number. Let m ⊂ OQ(m

√
2) be a prime of degree

1 above M . Suppose that every m-th root of unity in (Z/MZ)∗ is a m
n -th root

of unity. Then m ∩Q(n
√

2) = (n
√

2
p − 1).

Proof. Let ϕ : OQ(n
√

2) → Z/(2p − 1)Z be the ring homomorphism with kernel

m. Then we have ϕ(m
√

2
p
)m = 2p = 1. By assumption we get ϕ(m

√
2
p
)m/n = 1,

so ϕ(n
√

2
p
) = 1. Hence (n

√
2
p−1) ⊂ m. By assumption p - n so the absolute norm

of (n
√

2
p − 1) equals 2p − 1. Also the absolute norm of m equals 2p − 1. Now we

can conclude that m ∩ OQ(n
√

2) = (n
√

2
p − 1).

Lemma 11.12. For every open non-empty subset U ⊂ Ẑ∗ and every prime
number q there exist an open non-empty subset V ⊂ U and an integer t ∈ Z>0

such that for every x ∈ V we have τab(x)(ζqt) 6= ζqt .

Proof. Let q = 2. Choose V = U and t = 2. We have τab : Ẑ∗ → Z∗2 × Z∗odd

(the codomain may be identified with Gal(Qab/Q)) by x 7→ (−1, 2x − 1), so
τab(x)(ζ22) = ζ−1

4 6= ζ4.
Let q > 2. The set U is non-empty, so there exist m ∈ Z>0 and a ∈

(Z/mZ)∗ such that {x ∈ Ẑ∗ : x ≡ a mod m} ⊂ U . Choose b ∈ Z>0 such that
b ≡ a mod m, gcd(b, q(q − 1)) = 1 and b > q. Now we choose t ∈ Z>0 such that
qt > 2b − 1. Let w be the multiplicative order of (2 mod qt). Then we have
b < w. The order of the group (Z/qtZ)∗ is (q− 1)qt−1, so w divides (q− 1)qt−1.

Let m′ = lcm(m,w). Define V by V = {x ∈ Ẑ∗ : x ≡ b mod m′}. Note that V is
non-empty since gcd(b,m ·w) = 1. The integer m divides m′ and b ≡ a mod m,

so V ⊂ {x ∈ Ẑ∗ : x ≡ a mod m} ⊂ U . Let x ∈ V . From q < b < w we get
b 6≡ 1 mod w. This yields x 6≡ 1 mod w. So we have 2x 6≡ 2 mod qt. Therefore
ζ2x

qt 6= ζ2
qt and dividing both sides by ζqt we obtain ζ2x−1

qt 6= ζqt . The last

inequality can be rewritten as τab(x)(ζqt) 6= ζqt .

Lemma 11.13. For every open non-empty subset U ⊂ Ẑ∗ and every positive
integer n there exist an open non-empty subset X ⊂ U with the property that
for every prime divisor q of n there exists tq ∈ Z>0 such that for every x ∈ X
we have τab(x)(ζqtq ) 6= ζqtq .

Proof. By applying Lemma 11.12 successively for each prime divisor q of n one
obtains the desired set X.

Proof of Theorem 11.7. (ii) ⇒ (iii). Follows directly from the definition of
Mer and W .

(iii) ⇒ (ii). By assumption Mer equals W . From [19, Chapter 1, §1, Propo-
sition 1.1.6] we get that both Mer→ MerL and W →WL are surjective. Hence
we have MerL = WL.

(i) ⇒ (ii). Let φ ∈WL. By definition of WL there exists an element σ ∈ TL
such that φ is conjugate to σ. By (i) one has σ ∈ MerL. Hence φ is an element
of MerL.
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(ii) ⇒ (i). Let L, σ and n be as in (i). Let τ be as in Proposition 11.8.
Define U by

U = {x ∈ Ẑ∗ : σ|L∩Kab = τ(x)|L∩Kab}.

The map τ is a continuous map, so U is open in Ẑ∗. Next we show that U is
non-empty. By (i) there exists p ∈ Z such that 2p − 1 is prime and the element

σ|L∩Kab = ((n
√

2
p−1), L∩Kab/Q(n

√
2)). Therefore σ is an element of the image of

τL∩Kab,n. Hence there exists x ∈ Ẑ∗ such that τ(x)|L∩Kab = σ|L∩Kab . Therefore
U is non-empty.

Let X be as in Lemma 11.13 applied to U and n. Choose x ∈ X. Since
x ∈ X ⊂ U , we have σ|L∩Kab = τ(x)|L∩Kab . Clearly σ ∈ TL is the identity on
L ∩K. Hence we can extend σ to σ̃ ∈ T ⊂ Gal(Q/K) such that σ̃|Kab = τ(x).
For an overview see the diagram below.

Q
��

� ??
?

L′

���
� ??

? Kab

��
� ??

?

L
??

? L′ ∩Kab

��
� ??

? K

���
�

τ(x)

σ̃∈T

L ∩Kab

???
L′ ∩K
���

Q(n
√

2)σ∈TL

Q

Set m = n ·
∏
q|n q

tq−1 where the product runs over all prime divisors q of n. Let

L′ be the normal closure of L(m
√

2)/Q. Define σ̂ ∈ Gal(L′/L′ ∩K) by σ̂ = σ̃|L′ .
By construction σ̂ is an element of TL′ ⊂ WL′ . By (ii) we have σ̂ ∈ MerL′ . By
definition of MerL′ there are infinitely many primes p with Mp = 2p − 1 prime
such that for some prime m′p in L′ above Mp the element Frobm′p

(L′/Q) equals
σ̂. Let mp = m′p ∩ L.

Next we show that mp∩Q(n
√

2) = (n
√

2
p−1) for infinitely many p’s not dividing

n with 2p − 1 a prime number. In order to do so, we want to apply Lemma
11.11. Therefore we will show that the hypotheses of Lemma 11.11 are true in
our setting. By definition of m we have n | m. Define m by m = m′p ∩ Q(m

√
2).

By definition σ̃ is the identity on K, so m is a prime of degree 1 over Mp. By
definition of σ̂ and the property of elements in X we have σ̂(ζqtq ) 6= ζqtq . Hence
m′p ∩ Q(ζqtq ) is not a prime of degree one. Therefore there does not exist a

primitive qtq -th root of unity in (Z/MpZ)∗, so xq
t ≡ 1 mod Mp with t ∈ Z≥tq

implies xq
tq−1 ≡ 1 mod Mp. We conclude that if x is a m-th root of unity in

(Z/MpZ)∗, then x is a
∏
q|n q

tq−1-th root of unity in (Z/MpZ)∗. By definition∏
q|n q

tq−1 equals m/n. Now all hypotheses of Lemma 11.11 are satisfied. By

Lemma 11.11 we have m′p∩Q(n
√

2) = (n
√

2
p−1). Since m′p∩L = mp, we conclude
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that mp ∩Q(n
√

2) = (n
√

2
p− 1) for infinitely may p’s with 2p− 1 a prime number.

Hence we have derived (i) of Theorem 11.7.

Proof of Theorem 11.5. Follows directly from Theorem 11.7.




