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Chapter 10

Mersenne primes in
arithmetic progressions

We know that there exist at least 47 Mersenne primes, and it is a conjecture that
there are infinitely many. Dirichlet’s theorem says for each a, b ∈ Z>0 with a
and b relatively prime there are infinitely many primes p such that p ≡ a mod b
(see [11, Chapter 8, §7, Corollary 7.3]). Since there are no Mersenne primes that
are 1 modulo 4, Dirichlet’s theorem is not true if we replace primes by Mersenne
primes. However for the exponents of Mersenne primes one might wonder if for
each a, b ∈ Z>0 with a and b relatively prime there are infinitely many primes
p with p ≡ a mod b such that 2p − 1 is prime.

In this chapter we will speculate on Mersenne primes in arithmetic progres-
sion and reformulate these speculations in terms of Artin symbols (see Theorem
10.6 below). With this reformulation we prepare ourselves for the next chapter,
where we will speculate on Frobenius symbols of Mersenne primes and generalise
Theorem 10.6 (see Theorem 11.7 below).

Exponents in arithmetic progressions

Let E2012 be the set of currently known exponents p such that 2p−1 is a Mersenne
prime, i.e.

E2012 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281,

3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243,

110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221,

3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457,

32582657, 37156667, 42643801, 43112609}.
In the table below we see the frequency of the last digit of p ∈ E2012\{2, 5}.

i 1 3 7 9
#{p ∈ E2012 : p ≡ i mod 10} 11 11 14 9
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The following table shows the frequency of p ∈ E2012\{3} in residue classes
modulo 3.

i 1 2
#{p ∈ E2012 : p ≡ i mod 3} 23 23

The last table shows the frequency of p ∈ E2012\{3, 5} in residue classes modulo
15.

i 1 2 4 7 8 11 13 14
#{p ∈ E2012 : p ≡ i mod 15} 6 7 4 8 5 5 5 5

The distribution of the exponents over the different residue classes modulo 10,
3 and 15, make it reasonable to expect that for every a, b ∈ Z>0 with a and
b relatively prime there are infinitely many exponents p ≡ a mod b such that
2p−1 is prime. In this chapter we will reformulate this expectation in two ways
using Artin symbols.

Artin symbols of Mersenne primes

Let L be a finite abelian extension of Q.

Definition 10.1. We define MerL to be the set of all σ ∈ Gal(L/Q) such that
there are infinitely many Mersenne primes M with σ = ((M), L/Q).

Examples. From Definition 10.1 it is clear that MerL is empty if and only if
there are only finitely many Mersenne primes. We have MerQ = Gal(Q/Q) if
there are infinitely Mersenne primes. Let n ∈ Z>0 and let ζ2n be a primitive
2n-th root of unity. If there are infinitely many Mersenne primes then the set
MerQ(ζ2n ) contains precisely the automorphism induced by complex conjugation.

Next we define the set WL ⊂ Gal(L/Q), which one should think of as the
smallest subset of Gal(L/Q) that we know that contains MerL. Let nL be the
conductor of L/Q and let nL,odd ∈ Z>0 be the largest odd integer that di-
vides nL. Denote by dL the multiplicative order of (2 mod nL,odd) in the group
(Z/nL,oddZ)∗. In order to make the Artin symbols in the next definition well-
defined, we note that from Lemma 10.9 we get: if q ∈ Z>0, q ≥ ord2(nL) and
gcd(q, dL) = 1 then gcd(2q − 1, nL) = 1.

Definition 10.2. We define WL to be the set of all Artin symbols ((2q−1), L/Q)
with q ∈ Z>0, q ≥ ord2(nL) and gcd(q, dL) = 1.

Proposition 10.3. We have MerL ⊂WL.

We prove Proposition 10.3 in the last section of this chapter.

Examples. We have WQ = Gal(Q/Q). For n ∈ Z>0 let ζn be a primitive
n-th root of unity. Then for k ∈ Z>0 the set WQ(ζ

2k
) contains only the auto-

morphism induced by complex conjugation.
Suppose n = 210−1. Define L = Q(ζn+ζ−1

n ). Then one easily sees nL = (n),
dL = 10 and WL = {σ1, σ7, σ127, σ511}, where σi : ζn + ζ−1

n 7→ ζin + ζ−in . The
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table below is similar to the first table of this chapter, but from an Artin symbol
point of view.

i 1 3 7 9
#{p ∈ E2012 : (2p − 1, L/Q) = σ2i−1} 11 11 14 9

There are ϕ(210 − 1) = 600 different Artin symbols of non-ramified primes
in L/Q, but only four different Artin symbols come from Mersenne primes.

The following theorem, which we prove in the last section of this chapter, sug-
gests that one may reasonably conjecture MerL = WL.

Theorem 10.4. The following two statements are equivalent:

(i) For every a, b ∈ Z>0 relatively prime there are infinitely many integers
p ≡ a mod b such that 2p − 1 is a Mersenne prime.

(ii) For each finite abelian extension L of Q we have MerL = WL.

Profinite groups

In this section we define the notion of a profinite group (and set and ring) and
we will give some examples which will be applied in the next section.

A topological group G is a set together with a group structure and a topo-
logical structure such that the multiplication map G × G → G, defined by
(g1, g2) 7→ g1g2, and inverse map G→ G, defined by g 7→ g−1, are continuous. A
topological ring R is a set together with a ring structure and a topological struc-
ture such that the multiplication map R × R → R, defined by (r1, r2) 7→ r1r2,
and addition map R × R → R, defined by (r1, r2) 7→ r1 + r2, are continuous.
Every finite group (or set or ring) is a topological group (or set or ring) if we
give the finite group (or set or ring) the discrete topology.

Next we need the notion of a directed partially ordered set. This is a set I
with a partial order ≥ such that for every i, j ∈ I there is an element k ∈ I such
that k ≥ i and k ≥ j.

Now we can define a projective system. Let I be a partially ordered set. A
projective system of groups (or sets or rings) is a collection of groups (or sets or
rings) Gi for i ∈ I with a group (or set or ring) homomorphism f ji : Gj → Gi
for all i, j ∈ I with j ≥ i such that f ji ◦ fkj = fki for k ≥ j ≥ i and f ii is the
identity on Gi.

A projective system has a projective limit, namely

G = lim←−
i

Gi = {(αi)i∈I ∈
∏
i∈I

Gi : for all i, j ∈ I with j ≥ i we have f ji (αj) = αi}.

We put a topology on G: we give Gi the discrete topology,
∏
i∈I Gi the product

topology and lim←−iGi the subspace topology. We call G a profinite group (or set

or ring) if G is a topological group (or set or ring) which is isomorphic (as a
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topological group (or set or ring)) to a projective limit of finite groups (or sets
or rings). For each i ∈ I we have a projection map G → Gi such that for all
j ≥ i the diagram

G

~~~~
~~

~~
~

  @
@@

@@
@@

@

Gj // Gi

commutes.
Next we describe two examples of projective limits that we use below. Let

N be the set of positive integers, which we partially order by divisibility. The
collection of rings Z/nZ (with n ∈ N) and the maps Z/nZ→ Z/mZ defined by
(a mod n) 7→ (a mod m) for n,m ∈ N with m | n, is a projective system. We

denote the projective limit lim←−n∈N(Z/nZ) by Ẑ. Let Z2 be the projective limit

of the rings (Z/2iZ), where i runs over the positive integers. Let Zodd be the
projective limit of the rings (Z/noddZ), where nodd runs over the odd positive
integers. Write n ∈ Z>0 as 2i · nodd, where i ∈ Z≥0 and nodd is an odd positive
integer. By the Chinese remainder theorem the map Z/nZ→ Z/2iZ×Z/noddZ
defined by (a mod n) 7→ (a mod 2i, a mod nodd) is a ring isomorphism. This

isomorphism induces an isomorphism between the profinite rings Ẑ and Z2 ×
Zodd. We denote the group of units of Ẑ by Ẑ∗. Note that Ẑ∗ is a profinite
group.

We have an action of Ẑ∗ on the set G as follows. For i ∈ I and x ∈ Ẑ∗ let
ei(x) ∈ Z be such that for n = n(i), the order of Gi, we have xn = (ei(x) mod n).

For g ∈ G and x ∈ Ẑ∗ let gx = (g
ei(x)
i ). This action Ẑ∗ ×G→ G is continuous

(see [19, Chapter 1, §5, Proposition 1.5.3]).
Let I be the set of finite abelian extensions of Q inside a chosen algebraic

closure Q of Q. The collection of groups Gal(L/Q) (with L ∈ I) and the
restriction maps Gal(L′/Q)→ Gal(L/Q) for L ⊂ L′ is a projective system. We
denote the projective limit lim←−L∈I Gal(L/Q) by Gab

Q .

The group Gal(Q(ζn)/Q) is canonically isomorphic to (Z/nZ)∗. Now from
the Kronecker-Weber Theorem it follows that Gab

Q = lim←−n∈Z>0
Gal(Q(ζn)/Q) ∼=

Ẑ∗.

A profinite reformulation

In this section we will reformulate Theorem 10.4(ii) in terms of projective limits.

Proposition 10.5. Let L,L′ be finite abelian extensions of Q. Suppose L ⊂
L′. Then the restriction map Gal(L′/Q) → Gal(L/Q) induces surjective maps
MerL′ → MerL and WL′ →WL.

Proposition 10.5 will be proved in the next section. Now we can define Merab

and Wab to be the projective limit of all MerL and WL respectively, where
L ⊂ Q runs over all finite abelian extensions of Q. The inclusions MerL ⊂
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WL ⊂ Gal(L/Q) yield the inclusions Merab ⊂ Wab ⊂ Gab
Q . Now we can extend

Theorem 10.4.

Theorem 10.6. The following three statements are equivalent:

(i) For every a, b ∈ Z>0 relatively prime there are infinitely many integers
p ≡ a mod b such that 2p − 1 is a Mersenne prime.

(ii) For each finite abelian extension L of Q we have MerL = WL.

(iii) We have Merab = Wab.

A proof of Theorem 10.6 can be found in the next section.

Next we describe Wab by means of class field theory. Let the notation be as
above. That is, L is an abelian extension of Q with conductor nL, and dL is the
multiplicative order of (2 mod nL,odd) in the group (Z/nL,oddZ)∗. Let x ∈ Z>0

such that gcd(x, dL) = 1. Then Lemma 10.9 implies gcd(2x−1, nL) = 1. Hence
we have a well-defined map

τdL : (Z/dLZ)∗ → Gal(L/Q)

defined by

u mod dL 7→ ((2x − 1), L/Q),

where x ∈ Z>0 is such that x ≡ u mod dL and x ≥ ord2(nL). Let mL ∈ Z>0

be the smallest divisor of dL such that τdL factors via the natural map r :
(Z/dLZ)∗ → (Z/mLZ)∗. Define τL : (Z/mLZ)∗ → Gal(L/Q) by τdL = τL ◦ r.
Note that the image of τL is WL.

Proposition 10.7. The maps τL induce a map τab from Ẑ∗ to Gab
Q . Moreover

τab is continuous.

We prove Proposition 10.7 in the next section.

Now we describe the image of τab more explicitly. We recall that we can
identify Ẑ∗ with Z∗2 × Z∗odd and Gab

Q with Ẑ∗. For g ∈ Z∗odd and x ∈ Ẑ∗ recall
the definition of gx (see previous section).

Theorem 10.8. We have τab(Ẑ∗) = Wab. By identifying Gab
Q with Z∗2 × Z∗odd,

the set Wab can be described as

{−1} × {2x − 1 : x ∈ Ẑ∗} ⊂ Z∗2 × Z∗odd.

Furthermore the map τab is injective.

We prove Theorem 10.8 in the next section.
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Justifying the reformulations

In this section we prove Proposition 10.3, Theorem 10.4, Proposition 10.5, The-
orem 10.6, Proposition 10.7, and Theorem 10.8.

Proof of Proposition 10.3. Suppose σ ∈ MerL. Recall that nL is the con-
ductor of L/Q. Recall the definition of nL,odd and dL (see just below Definition
10.1). By assumption there are infinitely many Mersenne primes Mp = 2p − 1
with σ = ((Mp), L/Q), so we can choose one Mp such that p ≥ ord2(nL),
gcd(p, dL) = 1. The definition of WL implies ((Mp), L/Q) = σ ∈ WL. There-
fore MerL is a subset of WL.

Proof of Proposition 10.5. Let σ ∈ MerL. Then there exist infinitely many
Mersenne primes M with σ = ((M), L/Q). Since there are only finitely many
τ ∈ Gal(L′/Q) with τ |L = σ, the consistency property (see Proposition 5.4)
implies that there exists τ ∈ Gal(L′/Q) with τ |L = σ such that there are
infinitely many Mersenne primesM with τ = ((M), L′/Q). Hence the restriction
map MerL′ → MerL is surjective.

Since L ⊂ L′, the Kronecker-Weber Theorem implies nL | nL′ . Therefore we
have nL,odd | nL′,odd, so dL | dL′ . Now the consistency property implies that
the map WL′ →WL is well defined and surjective.

Proof of Theorem 10.6. (ii)⇒(iii). Direct from the definition of Merab and
Wab as projective limits.

(iii)⇒(ii). For each finite abelian extension L and L′ of Q we have a sur-
jective restriction map fL : Gab

Q → Gal(L/Q). Proposition 10.5 implies that
the restriction maps WL → WL′ and MerL → MerL′ are also surjective. By
assumption Wab = Merab, so

WL = fL(Wab) = fL(Merab) = MerL.

The first and the third equality follow from [19, Chapter 1, §1, Proposition
1.1.6].

(ii)⇒(i). Fix b ∈ Z>0. Let L be the cyclotomic extension obtained by
adjoining a root of unity if order 2b − 1 to Q. Then L has conductor (2b −
1). The multiplicative order of (2 mod 2b − 1) is b. By assumption MerL =
WL, so for each a ∈ Z>0 with gcd(a, b) = 1 the element ((2a − 1), L/Q) is
contained in MerL. By definition of MerL this means: there are infinitely many
Mersenne primes Mq = 2q − 1 with ((Mq), L/Q) = ((2a − 1), L/Q). Note that
((Mq), L/Q) = ((2a−1), L/Q) implies Mq ≡ 2a−1 mod 2b−1. The congruence
Mq ≡ 2a − 1 mod 2b − 1 implies q ≡ a mod b. Hence for each a ∈ Z>0 with
gcd(a, b) = 1 there are infinitely many exponents q ∈ Z>0 with q ≡ a mod b
such that 2q − 1 is prime.

(i)⇒(ii). Let L be a finite abelian extension of Q. Let n ∈ Z>0 be the
conductor of L/Q. By Kronecker-Weber the cyclotomic field L′ = Q(ζn) con-
tains L. We recall the definition of dL′ . Write n as 2i · nodd where i ∈ Z≥0

and nodd ∈ Z>0 odd. Then dL′ is the order of (2 mod nodd) in the group
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(Z/noddZ)∗. By assumption (see (i)): for each a ∈ Z>0 with gcd(a, dL′) = 1
there are infinitely many exponents p ∈ Z>0 with p ≡ a mod dL′ such that
2p − 1 is prime. Hence for each a ∈ Z>0 with gcd(a, dL′) = 1 there exists
p ∈ Z>0 with p ≡ a mod dL′ and p ≥ ord2(n) such that ((2p − 1), L′/Q) is an
element of MerL′ , so MerL′ = WL′ . Using the surjective maps WL′ → WL and
MerL′ → MerL (see Proposition 10.5) we conclude that MerL = WL.

Proof of Theorem 10.4. This follows directly from Theorem 10.6.

Lemma 10.9. Let n, d, x ∈ Z>0 and let f be an ideal of the ring of integers O of

Q(n
√

2). If we have n
√

2
d ≡ 1 mod f and gcd(d, x) = 1, then we have (n

√
2
x−1)+f =

O.

Proof. Let d = (n
√

2
x−1)+f be an ideal of O. Then we have n

√
2
d ≡ 1 mod d and

n
√

2
x ≡ 1 mod d. Since gcd(d, x) = 1, there exist a, b ∈ Z such that ad+ bx = 1.

Therefore we get 1 ≡ (n
√

2
d
)a · (n
√

2
x
)b ≡ n

√
2
ad+bx ≡ n

√
2 mod d. Hence n

√
2−1 ∈ d.

Note that n
√

2− 1 is a root of f = (y + 1)n − 2. Since f has constant term −1,
we see that n

√
2− 1 is a unit of O. Hence we have d = O.

Let A ⊂ Z and let n ∈ Z>0. Note that we have the natural map A → Z/nZ.
Let X be a set. We call a map f : A → X periodic modulo n if there exists a
map f̄ : Z/nZ→ X such that the diagram

A

""D
DD

DD
DD

D
f // X

Z/nZ
f̄

<<yyyyyyyy

commutes.

Lemma 10.10. Let g, n,m ∈ Z>0. Let A = {x ∈ Z : gcd(x, nm) = 1 and x ≥
g}. Suppose f : A→ X is periodic modulo n and modulo m. Then f is periodic
modulo gcd(n,m).

Proof. Let c = gcd(n,m). Let x, y ∈ A such that x ≡ y mod c. Since x ≡
y mod c, there exists z ∈ Z such that z ≡ x mod n and z ≡ y mod m. Indeed,
solve the congruence modulo every highest prime power dividing lcm(n,m) and
apply the Chinese remainder Theorem. Clearly we have gcd(z, nm) = 1. Let
h ∈ Z>0 be such that z′ = z + nm · h ≥ g. Then z′ is an element of A and we
have z′ ≡ x mod n and z′ ≡ y mod m. Therefore we get f(x) = f(z′) = f(y).
Hence f is periodic modulo c.

Lemma 10.11. Let L and L′ be finite abelian extensions of Q such that L ⊂ L′.
Then mL divides mL′ and the diagram

Ẑ∗

id

��

// (Z/mL′Z)∗

��

τL′ // Gal(L′/Q)

res

��
Ẑ∗ // (Z/mLZ)∗

τL // Gal(L/Q)
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commutes.

Proof. Set n = mL · mL′ and g = ord2(nL). Let A = {x ∈ Z : gcd(x, n) =
1 and x ≥ g}. Let r : A → (Z/mLZ)∗ and r′ : A → (Z/m′LZ)∗ be the natural
maps. Note that τL ◦ r is periodic modulo mL. By the consistency property we
have τL ◦ r = res ◦ τL′ ◦ r′, so τL ◦ r is periodic modulo m′L. Hence by Lemma
10.10 the map τL◦r is periodic modulo gcd(mL,mL′). The definition of mL (see
just above Proposition 10.7) implies mL = gcd(mL,mL′). Hence mL divides
m′L. Therefore we have a natural the map (Z/m′LZ)∗ → (Z/mLZ)∗. Hence

by definition of Ẑ∗ the left square of the diagram in Lemma 10.11 commutes
(see the diagram in the section on profinite groups). The consistency property
implies that the right square of the diagram in Lemma 10.11 commutes.

Proof of Proposition 10.7. Lemma 10.11 implies that the maps τL induce a
map Ẑ∗ to Gab

Q . Let rL be the restriction map Gab
Q → Gal(L/Q). The map

rL ◦ τab factors via the continuous maps Ẑ∗ → (Z/mLZ)∗ and τL. Therefore
rL ◦ τab is continuous. Hence we can conclude that τab is continuous (see [19,
Chapter 1, §1, Proposition 1.1.6(d)]).

Proof of Theorem 10.8. The condition x ≥ ord2(nL) in the definition of the
maps τL implies that the projection of Wab (seen as a subset of Z∗2 × Z∗odd)
on the first coordinate equals {−1}. Now the definition of gx implies Wab =

{−1} × {2x − 1 : x ∈ Ẑ∗}.
Let (am)m, (bm)m ∈ Ẑ∗. Suppose (am)m 6= (bm)m. Then there is an integer

m ∈ N such that am 6= bm. Let L = Q(ζ2m−1), so mL = m. Then ((2am −
1), L/Q) 6= ((2bm − 1), L/Q), which yields τab(a) 6= τab(b). Hence the map τab

is injective.




