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Chapter 9

Relating Lehmer symbols

In this chapter we show that for certain well-chosen related pairs of potential
starting values s,t € K (see Definition 8.1) the product of the corresponding
Lehmer symbols e(s,p) and €(t,p) is “periodic in the variable p”. Below we
make this precise.

Woltman’s conjecture

The following theorem, proved by S.Y. Gebre-Egziabher in 2000, was first stated
in 1996 by G. Woltman as a conjecture (see [8, Chapter 2, §4]).

Theorem 9.1. Let p € Z~o and suppose that M = 2P — 1 is prime. Then
€(4,p) - €(10,p) =1<p=>5o0r7 mod8 and p#b.

A proof of Theorem 9.1 can be found at the end of this section.

In this chapter we generalize Theorem 9.1. To state this generalization
concisely we will use the definition of periodic functions (see Definition 7.4).
Let s,t € K. In Chapter 5 we defined the map €, : P(s) — {£1} by p — €(s,p).
This map yields a map €, : P(s) N P(t) — {£1} defined by p — €(s,p) - (¢, p).
For well-chosen values of s and ¢ the map €, is periodic. If we take s = 4 and
t = 10, and apply Theorem 9.1, then we see that €+ is periodic, since we can
take [ = 5 and m = 8 (see Definition 7.4).

Next we state a first version of the main theorem of this chapter. First we
recall some notation of Chapters 4 and 8. Let s,t € K be a related pair of
potential starting values. Define L, as the splitting field of f, = z'6 — s28 4+ 1
over Q(s). Let Ky, = (LsLi)NK, let B/ = K, (V4 — s2),let Fs = E'(as+a; )
and let E = F; N F;. Note that Lemma 8.16 implies [E : E'] = 2,4 or 8.

Proposition 9.2. Let s,t be a related pair of potential starting values. Then
€s¢ 18 periodic if [E : E'] equals 4 or 8. Moreover if [E : E'] equals 8, then €,
s a constant function.
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We prove Proposition 9.2 in the last section of this chapter.

Suppose [E : E'] = 8. Then Proposition 9.2 implies that we can set | = 0
and m = 1 in Definition 7.4. Next we state a theorem on the possible values for
[ and m in Definition 7.4 in the case [E : E'] = 4.

Let s,t € K be a related pair of potential starting values. Let T be as in
Proposition 8.9. Proposition 8.9 implies [T : K,,] < 2. Let n = [K,,; : Q],
so that K, equals Q(¥/2). Denote a modulus for T/Kgy by t. Write toqq for
the odd part of t, i.e. t = toqq - (¥/2)° for some i € Z>¢ and (/2) f toqa. Let
Ok, be the ring of integers of K ;. Write w for the order of ((’/5 mod toqq) in
(OKsyt/todd)*'

Theorem 9.3. Let s,t € K be a related pair of potential starting values. Sup-
pose [E : E'l = 4 or8. Then €5, is periodic and we can set | = 2n + 1 and
m = w in Definition 7.4. Moreover we have n | 4-[Q(s,t) : QJ.

For a proof of Theorem 9.3 see the last section of this chapter.

To verify if the conditions of Theorem 9.3 hold, one has to do some compu-
tations. Moreover to find a suitable m one also has to do computations. Next
we state a corollary of Theorem 9.3 that makes these computations easier.

Let s,t be a related pair of potential starting values. Set d = [Q(s,t) : Q).
Let 04 = {x € Z/2] : x - s € Z[/2]} be the denominator ideal of s. Similarly
we define 9. Let 0 = d,; = 040, which is an ideal of Z[¥/2]. Let ¢ be the
product of all prime ideals p of Z[/2] for which ord,(4 — s?) is odd. Let v =1,
be the product of all prime ideals p # (¥/2) of Z[/2] which divide de. Define
w; ¢ = ord(¥/2 mod t) to be the multiplicative order of (/2 mod t) in (Z[/2]/t)*.

Corollary 9.4. Let s,t € K be a related pair of potential starting values. Sup-
pose (2+vV2+5)(2+V2+1) is a square in K(v2+s,v/2—s)*. Then €5y is
periodic and we can take l =8-d+1 and m = 4 - wsy in Definition 7.4. If in
addition to the assumptions above

(2+ 2+\/2+s>(2+ 2+\/2+t)
is a square in K(v/2+5,v/2—5,V2+ 2+ s)*, then es is constant.

We prove Corollary 9.4 in the last section of this chapter.

Now we state two more examples of a periodic €, ;. The starting values in
these examples are universal starting values. Only the starting value in the first
corollary has a bad prime (see just below Definition 2.5), which is 11.

Corollary 9.5. Let s = 1512098 and let t = 554%. Then both s and t are universal

starting values, each with the set of bad primes equal to {11}. Furthermore for
all p € P(s) N P(t) we have

e(s,p) - e(t,p) =1 if and only if p = 3,4,6,9 or 10 mod 11.

Corollary 9.6. Let s = % and let t = %, Then both s and t are universal

starting values with no bad primes. Furthermore for oll p € P(s)NP(t) we have

e(s,p) - €(t,p) = —1.
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In the last section of this chapter we prove these two corollaries.

Proof of Woltman’s Conjecture. Let s =4 and t = 10. We recall from the
first section of Chapter 8 that s,t is a related pair of potential starting values.
Note the following idenity

2+ V2 FA)2+vV2110) = @21+ V2 +v3))? € K(V6, v—2)*".

Now Corollary 9.4 implies that €, is periodic. Clearly we have d =1, 9 = (1)
and ¢ = (3). Therefore we have v = 3. The multiplicative order wy ; of (2 mod t)
is 2. Hence by Corollary 9.4 we canset [ =8-d+1=9and m=4-ws: =8 in
Definition 7.4. After calculating €, ((p) for p = 3,5,7,13,17,19 and 31 Theorem
9.1 follows. O

Relating Lehmer symbols via Frobenius symbols

In this section we relate a product of Lehmer symbols with a Frobenius symbol.
We start with recalling (from Chapter 8) and defining the maps in the diagram
below.

€s,t

P(s) N P(t) —2P o Gal(T/K,q) — - 20 — = {£1}

N\ /
Ts,t

Gal(F/E")&™ [~

Frobs

Gal(Ly/K()8™ [~ x Gal(Ly/K)& [~

Let s,t € K be a related pair of potential starting values. By Proposition 8.2
both s and t are potential starting values. Recall the definition €, from the
first section of this chapter. Let T be as in Proposition 8.9. The maps 75, )\;’t
and rs : Gal(F/E")g" /~ — Gal(L,/K.)&" /~ are defined in the second section
of Chapter 8. The map p;, exists if and only if [E : E'] =4 or 8 (see Theorem
8.10). We define the map r in the diagram above by r : [o] — (rs([0]), :([0])).
From Definition 4.6 of Chapter 4 we recall the map A, : Gal(L,/K.)8"/~ —
{£1}. Define the map N, x A} in the diagram above by A, x A, : ([¢],[7]) —
AL([e]) - Ai([7]). The following proposition will be used to define the maps Froby,
Froby and Frobs.

Proposition 9.7. Let s,t € K, take p € P(s) N P(t) and set n = [K,, : Q).
Then ({“/ip —1) is a prime ideal of O, . of degree one over Q unramified in .
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We prove this proposition at the end of this section.

Next we define the three remaining maps in the diagram above, namely the
Frobenius maps Frob, Froby and Frobs. Let n = [K, ¢ : Q]. We define the map
Frob; by Froby : p - (/2" — 1),T/Ks.). Note that by Proposition 9.7 this
map is well-defined.

Proposition 9.8. Let s,t € K be a related pair of potential starting values and
let n = [Ky; : Q. Suppose p € P(s) N P(t). Then (/2" —1),F/K,,) is an
element of Gal(F/E')&™" [~.

We prove Proposition 9.8 at the end of this section. Define the map Frobs by
Frobs : p— ((¥ 2p—1),F/KS7t). Let ns = [K, : Q] and let n; = [K; : Q]. Define
the map Frobs by

Froby : p > (V2" = 1), L/K,), (V2" 1), L}/ Ky)).
Note that by Proposition 9.7 these two maps are well-defined.

Theorem 9.9. Let s,t € K be a related pair of potential starting values. Then
the diagram without ps, above commutes. Moreover if [E : E'] equals 4 or 8,
then the entire diagram exists and commutes.

A proof of Theorem 9.9 can be found at the end of this section. The following
corollary, which follows directly from Theorem 9.9, can be seen as an analog of
Corollary 5.7.

Corollary 9.10. Let s,t € K be a related pair of potential starting values.
Then the diagram

€s,t

P(s) N P(t) — =~ {41, -1}

Aot
Frobs :

Gal(F/E")8n ~
commutes.

To prove that e, is periodic if [K. : K] equals 1, we used the fact that the
Frobenius map in Corollary 5.7 becomes the Artin map if the Galois group
Gal(L/K) is abelian. We cannot apply this method to e;; with Corollary
9.10, since the Galois group Gal(F'/K ;) is not abelian. However we can use
the following corollary, which follows directly from Theorem 9.9, to prove that
€s,¢ is periodic if [E : E'] equals 4 or 8.

Corollary 9.11. Let s,t € K be a related pair of potential starting values.
Suppose [E : E'| equals 4 or 8. Then the diagram

P(s)NP(t) — = {+1, -1}

Ms,t
Frob;

Gal(T/Ks,)
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commutes.

Proof of Proposition 9.7. Let p € P(s) N P(t). Then Proposition 5.10(ii)
implies p 1 [K, : Q] and p { [K; : Q]. By Proposition 8.3 we have [K;; : Q(s,t)] |
4. Since p is odd, the inclusions Q(s,t) C K;K; C K, imply p{ [Ks; : Q] =n.
Since 2 | n, the absolute norm of {/2” — 1 equals —(2° —1). By definition of P(s)
the integer 2”7 — 1 is a prime number, so the ideal m, = ({‘/ip — 1) is a prime
ideal of degree 1 over Q.

By Proposition 5.10(ii) the prime ideal m, N K, of K, is unramified in L,.
This implies that m,, is unramified in LK, (see [7, Chapter II, §4]). Similarly
we derive that m, is unramified in L, K, ;. We recall K,, = (LsL:) N K, so
K, C LyL;. Hence m,, is unramified in ' C LyL; (see [7, Chapter II, §4]). O

Proof of Proposition 9.8. Let p € P(s) N P(t) and let m, = (/2" — 1). By
Proposition 9.7 the ideal m;, is a prime ideal of degree 1 over Q. Let mj, =
m, N K. The consistency property implies (my, Fs/K)|Ls = (m},, Ls/Ks).
We recall the notation K. = K,(v4 — s?). Further we recall from Proposition
5.10(iv) that every element of the conjugacy class (m;, Ls/'K) generates the
group Gal(L,/K!). By Proposition 8.4 the restriction map Gal(Fy/K,.) —
Gal(L)/K) is an isomorphism. Since K is a subfield of B/ = K, (V4 — s?),
the restriction map Gal(Fy/E’) — Gal(L,/K!) is an isomorphism. Hence every
element of the conjugacy class (m,, Fs/K, ;) generates the group Gal(F,/E’).
Similarly for ¢ we get: every element of the conjugacy class (my, Fi /K, ;) gen-
erates the group Gal(F;/E’). Hence by Proposition 8.6 we have (m,, F/K,,) €
Gal(F/E")g" [~. O

Proof of Theorem 9.9. Suppose s,t € K is a related pair of potential start-
ing values. Then the maps Froby, Frobs, us ., )\’S’t and rs; are defined. By
Proposition 8.2 both s and ¢ are potential starting values. Hence also the maps
Frobs, r and A} x A} are defined. The identity A} , = (A x \}) or follows directly
from the definition of A ; (see Definition 8.7). The identities Frobs = r o Froby
and Frob; = 7, o Frob, follow from the consistency property (see Proposition
5.4). The identity €5+ = (A, X A}) o Frobs follows from Corollary 5.7 and the
definitions of the maps €, and X x A}. From the identities that we just proved
we get

€5, = (Mg xAp)oFrobg = (X, x A{)o(roFroby) = (X, xA})or)oFroby = X ;oFrobs.
Hence €, equals )‘/s,t o Froby. This proves the first part of Theorem 9.9. Now
assume [F : E'] = 4 or 8. From Theorem 8.10 we get A{, = jiss 0 75 From
the identities that we proved so far we get

€50 = gy © Froby = (s 075¢) 0 Froby = g 0 (s, 0 Froby) = pu 4 o Froby.

Hence €, equals i, o Frob;. O
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Proofs

In this section we prove Proposition 9.2, Theorem 9.3, Corollary 9.4, Corollary
9.5 and Corollary 9.6.

We recall some notation from the first section of Chapter 9. Let s,t € K be
a related pair of potential starting values. Let T be as in Proposition 8.9. Let
n = [Ks; : Q. Denote a modulus for T/Ks; by t. Write t = toqa - (¥/2)" for
some i € Z>¢ and (/2) 1 toaq. Let Ok, , be the ring of integers of K, ;. Write
w for the order of (/2 mod t,qq) in (Ok, ,/todd)"

Proof of Theorem 9.3. Let f be the conductor of T/K,,. Write f as the
product ({”/?)3 - foada where j € Z>¢ and foqq is not divisible by the prime ({L/E)
By Theorem 6.3 we have (3/2)7 | 2-2-%/2. Hence m = ({/2)2"*+! . f,qq is a
modulus for T/ K, ;.

Suppose p,q € P(s) N P(t) satisfy p = ¢ mod w and p,q > 2n + 1. Let
my = {”/ip — 1 and let my; = (’/iq — 1. By definition w is the order of /2 in
(Ok, ,/todd)", so p = g mod w implies m;, = mg mod toqq. Note that fodq
divides toqq, so p = ¢ mod w implies m, = my mod foqq. The assumption
p,q > 2n+ 1 implies m,, = m, mod (¥/2)?"*1. Hence we have m, = m, mod m.
Let 2 = my;,-m;'. The ideal m is a modulus for T/ K, so ordy(z — 1) > ord,(f)
for all prime ideals p | f. The field K, has two real embeddings, namely o
defined by 0({75) =13/2 and 7 defined by T({L/i) = —{/2. Since both p and ¢ are
odd, we see that o(x) > 0 and 7(x) > 0, i.e. the element z is totally positive in
T/K, ;. Now conditions (i) and (ii) of Theorem 6.1 are satisfied, therefore we
conclude that the ideal () is in the kernel of the Artin map. Hence ((x),T/Ks )
is the trivial element of Gal(T/K,;), so ((my),T/Ksy) equals ((mg),T/Ks ).
Therefore the definition of Frob; implies Frob;(p) = Frob;(gq). Note that the
assumptions of Theorem 9.3 are the same as the assumptions of Corollary 9.11.
By Corollary 9.11 it follows that €5 ¢(p) equals €5+(q). By Proposition 8.3 we
have n < 4-[Q(s,t) : Q]. O

Proof of Proposition 9.2. The first part of Proposition 9.2 follows directly
from Theorem 9.3. Since [E : E'] = 8, Proposition 8.8 implies that \{ , is not
surjective. Hence from Corollary 9.10 the map €, ; is constant. O

Let s,t € K be a related pair of potential starting values. Recall E/ =

Koo(VI=5%) and B’ = B'(VZF5). Define ¢ = (24 VI +5)(2+vVZT0),
" = B"(v/2 4 V2T 35) and

e= (2+ 2+ﬁ)(2+\/2+m).

Lemma 9.12. Assume ¢ is a square in (E"K)*. Then ¢" is a square in E"”.
Moreover if €' and e are squares in (E"K)* and (E" K)* respectively, then e
. . *
is a square in B,
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Proof. By assumption ¢’ is a square in (E” K)*. Proposition 4.11 implies that
e/ is a square in (LsL;)*. Hence €” is a square in (E"K)* N (LsLy)* = E"".
By assumption e is a square in (E"/K)*. Proposition 4.11 implies that e is a
square in (LsL¢)*. Hence e is a square in (B K)* N (LsL)* = E"'". O

Lemma 9.13. The element e” is a square in E"* if and only if [E : E'] equals
4 or 8. Moreover if €’ and e are squares in E"" and E™" respectively, then
[E : E'] equals 8.

Proof. Lemma 8.16 implies [E : E'] = 2,4 or 8. Suppose €” is a square in E"".
Then Proposition 4.11 implies [E : E'] = 4 or 8. If e is also a square in E"'",
then Proposition 4.11 yields [E : E’] = 8. Suppose €” is not a square in E"".
Then Proposition 4.11 and Kummer theory imply [E : E'] = 2. O

Recall the definition of foqq (see proof of Theorem 9.3) and t (see just above
Corollary 9.4).

Proposition 9.14. Let s,t be a pair of potential starting values. Then fodd
divides t.

Proof. Recall the definition of 94, 0; and e¢. Proposition 5.9 implies that if a
prime ideal p # (/2) of the ring of integers of K, ; ramifies in K, L, then p
divides dse (see [7, Chapter II, §5]). We get a similar result for K, ,L;/Ks ;.
Hence if a prime ideal p # (/2) of the ring of integers of K+ ramifies in LgLy,
then p divides 0,0:¢ = 0,.¢e. From the definition of F' we get F' C L,L;. By
Proposition 8.6 we have [F : K,,] | 64. Hence only the prime (¥/2) is wildly
ramified in F//K, ;. Therefore Theorem 6.8 implies foqq | t. O

Proof of Corollary 9.4. Let s,t € K be a related pair of potential starting
values. Assume that (24++/2 + 5)(2++/2 + 1) is a square in K(v/2 + 5,12 — 5)*.
Then Lemma 9.12 and Lemma 9.13 imply [E : E'] = 4 or 8. Hence Theorem
9.3 implies that €, ; is periodic. From Theorem 9.3 it follows that | =2n +1 <
2-4-[Q(s,t) : Q] +1 = 8-d+1. By Proposition 9.14 the ideal foqq divides t. By
Proposition 8.3 we have n/d = 1,2 or 4. Therefore the multiplicative order of
(/2 mod f,qq) divides four times the multiplicative order of (¥/2 mod t). Hence
by Theorem 9.3 we can set m = 4 - w,,;. Suppose the extra assumption of
Corollary 9.4 holds. Then Lemma 9.12 and Lemma 9.13 imply [E : E’] = 8.
Hence by Proposition 9.2 the function €, ; is constant. O

Proof of Corollary 9.6. Taking the variable of Example 2.7 equal to —%\/5

and —%\/? yields s = % and t = % respectively. Let ag be a zero of

fs = 216 — 528 + 1. We recall Ly = Q((g, a) is the splitting field of f, =

26 — 528 + 1 over Q By equations 4.2 and 4.3 of the proof of Proposition 4.8
we can write af = Ye—=fvet2 J” sT2  From the two equalities below Example 2.7 it
follows that s — 2,t — 2 € Q(\[)*2 and s +2,t+2 € 3- Q(f)*Q. Hence we
have Q((s, o) = Q((s, af). Note that in the ﬁeld Q(Cs, ) we have

ot al = - (25\f 17[)(29f+19f)—7+4\f (\[(14”[))
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Hence by Kummer theory the fields Ly and L; are the same. By Theorem 5.6
it follows that €, is constant.

Next we show €;5.(p) = €(s,p) - €(t,p) = —1. Note that we have s3_o =
s1 =12 =1 = _3=2640/21m0d 7, s0 €,(3) equals 1. Note that we have
o=t =22 = 2L =3=—26%D/2mod 7, s0 €(3) equals —1. Hence €, 4(3)
equals —1. Since €, is constant, we have €, ,(p) = €(s,p) - €(t,p) = —1. O

Let s = %%8 and t = 55427;. The next table will be used in the proof of Corollary
9.5.

p | es(p) | e(p) | €s.e(p) | pmod 11
3 + | + 3
5 + | = - 5
7 — + — 7
13 — | ¥ — 2
17 - — + 6
19 — | ¥ - 8
31 - — + 9
61 - — + 6
89 + | - - 1
107 | + | — - 8
127 | — — + 6
521 | + | + + 1
607 | — + — 2
1279 | + | + + 3
2203 | — — + 3
2281 | — - + 1
3217 | — + — 5
4253 | — | + — 7
4423 | — + — 1
9689 | — — + 9
9941 | + | — — 8
11213 | — — + 4
19937 | — | + — 5
21701 | + | + + 9
23209 | — - + 10

Proof of Corollary 9.5. Taking the variable of Example 2.7 equal to %\@
and —%\/ﬁ yields s = 1512098 and t = 55421)6 respectively. From the first equality
below Example 2.7 it follows that both s — 2 and ¢ — 2 are squares in Q(v/2)*.
From the second equality below Example 2.7 it follows that both —s — 2 and
—t—2 can be written as —3 times a square of Q(v/2)*. Hence K (/2 + 5,v/2 — s)
equals K (v/3,1/—1). Moreover neither 4 — s? nor 4 — t? is a square in K*, and
(4—5%)(4—1%) and (s+2)(t+2) are squares in K* and K (v/4 — s2)* respectively.
Definition 8.1 implies that s,t is a related pair of potential starting values.




RELATING LEHMER SYMBOLS 61

Note the relation (2+4+v/2+ )+ (2+v/2 + t) = 553 (46+19v6)- (46 +33/6) =
(@ +VO)VE+v32) - (2 + VB)(VE - V3)?) € K(V3,v=1)"". By
Corollary 9.4 it follows that €, is periodic.

Next we calculate possible [ and m as in Definition 7.4. In this and the
next three paragraphs we show that K ; = Q(v/2). Recall that L, = Q((g, as),
Ks; =LsNK and K = K,(v/s — 2,v/—s —2). We want to apply Proposition
3.7 to the extensions K, C K C L,. First we show that the assumptions of
Proposition 3.7 hold. By Proposition 8.2 we get s is a potential starting value.
Proposition 4.4 implies K” = Q(v/2,v/—3) and K, = Q(+/2). From Proposition
4.2 we get Gal(Ls/K) is cyclic of order 8. Clearly K /K, is Galois and i € L.
Now Proposition 3.7 implies Ly N K = K” N K = Q(v/2). Hence we have
V2 ¢ L. Similarly we get V2 ¢ L.

We recall K/, = K,(v4 — s2) and L, = K/ (o, +a;'). Since s —2 € K2, we
have K| = K!'. Proposition 4.2 implies Ly = L. Similarly we have L; = Lj.
Hence K, equals (L, L;) N K, so we have F = L. L.

Suppose for a contradiction L, = L;. Then the fields Fy = L, K,, and
F, = LyK,, are equal. Now Proposition 9.2 implies that € is constant. This
contradicts the table above, so we conclude that L., # Lj.

Proposition 4.11 and the relation (2++/2 + s)-(2+v2 +t) € K.(v/2 + 3)*2 =
K{(vV2+ t)*2 imply [F': LNL;] = 1 or 4. From L/, # L, we get [F : L NL}] = 4.
Suppose for a contradiction that v/2 € F. Then the three intermediate fields
of the extension F/(L. N L}) are L', L} and (L), N L},)/2). Therefore we have
L.(/2) = F = L,(/2). The assumptionv/2 € F impliesv/2 € K,; = FN K. By
definition of Fy and F, we havev/2 € K, C Fy andv/2 € K+ C F;. Therefore
we have Fy, = L(/2) and F; = L,(/2), so Fy = F = F;. Now Proposition 9.2
implies that €, is constant. This contradicts the table above, so we conclude
that v/2 ¢ F. Hence we have K,; = FN K = Q(v/2).

By Theorem 9.3 we can set [ = 2- [K,; : Q]+ 1 = 5. In the next three
paragraphs we will calculate a possible m.

Recall the notation just above Corollary 9.4. Clearly we have d = (529)% =
(23)% and 5292 - (4 — s2) = 4 - 5292 — 11082 = —(22 - 3- 52 - 192). Therefore ¢
equals (3), so that t equals (3) - (23).

Note that Lemma 9.13 implies [E : E'] = 4 or 8. The table above shows
that €, is surjective. Hence by Proposition 9.2 the degree [E : E’] equals 4. By
Proposition 8.9 and Proposition 8.18 there are 4 different extensions 7" such that
[T : K] =2, the intersection TN E” = Ky, and T C F. We can choose two,
Ty and Ty, such that 73T, contains the field B’ = K, (V4 — s2) = K +(v/=3).

T\Ty
N

n 1T, F
NS
K,

(3) ramifies
,t

Note that (3) is inert in the extension K,./Q. Since 3 does not divide
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[LsLy : Q], Proposition 5.8(vi) implies that V(s is the trivial group. Hence
by Proposition 5.8(v) the group V(3¢ is cyclic. Note that the prime ideal (3)
ramifies in E'/K, ;. Since V(g ¢ is cyclic, the prime ideal (3) cannot ramify in
both extensions T;/K,, with i € {1,2}. Hence we can choose a field T; such
that (3) does not divide the conductor of T; /K, ;. By Proposition 9.14 we have
foda | t. Since v equals 3 - 23, we can conclude that foqq divides 23. Therefore

t = (23) is a modulus for T; /K ;. Note that \/522 = 1 mod 23, so the order w of
(v/2 mod 23) is 22. Now Theorem 9.3 (and the definition of m) implies m | 22.
Since p is odd, we see that we can set m = 11.

The table above shows the signs for s and ¢. This proves Corollary 9.5. [





