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Chapter 9

Relating Lehmer symbols

In this chapter we show that for certain well-chosen related pairs of potential
starting values s, t ∈ K (see Definition 8.1) the product of the corresponding
Lehmer symbols ε(s, p) and ε(t, p) is “periodic in the variable p”. Below we
make this precise.

Woltman’s conjecture

The following theorem, proved by S.Y. Gebre-Egziabher in 2000, was first stated
in 1996 by G. Woltman as a conjecture (see [8, Chapter 2, §4]).

Theorem 9.1. Let p ∈ Z>2 and suppose that M = 2p − 1 is prime. Then

ε(4, p) · ε(10, p) = 1⇔ p ≡ 5 or 7 mod 8 and p 6= 5.

A proof of Theorem 9.1 can be found at the end of this section.
In this chapter we generalize Theorem 9.1. To state this generalization

concisely we will use the definition of periodic functions (see Definition 7.4).
Let s, t ∈ K. In Chapter 5 we defined the map εs : P (s)→ {±1} by p 7→ ε(s, p).
This map yields a map εs,t : P (s)∩P (t)→ {±1} defined by p 7→ ε(s, p) · ε(t, p).
For well-chosen values of s and t the map εs,t is periodic. If we take s = 4 and
t = 10, and apply Theorem 9.1, then we see that εs,t is periodic, since we can
take l = 5 and m = 8 (see Definition 7.4).

Next we state a first version of the main theorem of this chapter. First we
recall some notation of Chapters 4 and 8. Let s, t ∈ K be a related pair of
potential starting values. Define Ls as the splitting field of fs = x16 − sx8 + 1
over Q(s). Let Ks,t = (LsLt)∩K, let E′ = Ks,t(

√
4− s2), let Fs = E′(αs+α−1

s )
and let E = Fs ∩ Ft. Note that Lemma 8.16 implies [E : E′] = 2, 4 or 8.

Proposition 9.2. Let s, t be a related pair of potential starting values. Then
εs,t is periodic if [E : E′] equals 4 or 8. Moreover if [E : E′] equals 8, then εs,t
is a constant function.
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54 CHAPTER 9

We prove Proposition 9.2 in the last section of this chapter.
Suppose [E : E′] = 8. Then Proposition 9.2 implies that we can set l = 0

and m = 1 in Definition 7.4. Next we state a theorem on the possible values for
l and m in Definition 7.4 in the case [E : E′] = 4.

Let s, t ∈ K be a related pair of potential starting values. Let T be as in
Proposition 8.9. Proposition 8.9 implies [T : Ks,t] ≤ 2. Let n = [Ks,t : Q],
so that Ks,t equals Q(n

√
2). Denote a modulus for T/Ks,t by t. Write todd for

the odd part of t, i.e. t = todd · (n
√

2)i for some i ∈ Z≥0 and (n
√

2) - todd. Let
OKs,t be the ring of integers of Ks,t. Write ω for the order of (n

√
2 mod todd) in

(OKs,t/todd)∗.

Theorem 9.3. Let s, t ∈ K be a related pair of potential starting values. Sup-
pose [E : E′] = 4 or 8. Then εs,t is periodic and we can set l = 2n + 1 and
m = ω in Definition 7.4. Moreover we have n | 4 · [Q(s, t) : Q].

For a proof of Theorem 9.3 see the last section of this chapter.
To verify if the conditions of Theorem 9.3 hold, one has to do some compu-

tations. Moreover to find a suitable m one also has to do computations. Next
we state a corollary of Theorem 9.3 that makes these computations easier.

Let s, t be a related pair of potential starting values. Set d = [Q(s, t) : Q].
Let ds = {x ∈ Z[d

√
2] : x · s ∈ Z[d

√
2]} be the denominator ideal of s. Similarly

we define dt. Let d = ds,t = dsdt, which is an ideal of Z[ d
√

2]. Let e be the
product of all prime ideals p of Z[d

√
2] for which ordp(4− s2) is odd. Let r = rs,t

be the product of all prime ideals p 6= (d
√

2) of Z[d
√

2] which divide de. Define
ws,t = ord(d

√
2 mod r) to be the multiplicative order of (d

√
2 mod r) in (Z[ d

√
2]/r)∗.

Corollary 9.4. Let s, t ∈ K be a related pair of potential starting values. Sup-
pose (2 +

√
2 + s)(2 +

√
2 + t) is a square in K(

√
2 + s,

√
2− s)∗. Then εs,t is

periodic and we can take l = 8 · d + 1 and m = 4 · ws,t in Definition 7.4. If in
addition to the assumptions above(

2 +

√
2 +
√

2 + s
)(

2 +

√
2 +
√

2 + t
)

is a square in K(
√

2 + s,
√

2− s,
√

2 +
√

2 + s)∗, then εs,t is constant.

We prove Corollary 9.4 in the last section of this chapter.
Now we state two more examples of a periodic εs,t. The starting values in

these examples are universal starting values. Only the starting value in the first
corollary has a bad prime (see just below Definition 2.5), which is 11.

Corollary 9.5. Let s = 1108
529 and let t = 5476

529 . Then both s and t are universal
starting values, each with the set of bad primes equal to {11}. Furthermore for
all p ∈ P (s) ∩ P (t) we have

ε(s, p) · ε(t, p) = 1 if and only if p ≡ 3, 4, 6, 9 or 10 mod 11.

Corollary 9.6. Let s = 1492
121 and let t = 1924

121 . Then both s and t are universal
starting values with no bad primes. Furthermore for all p ∈ P (s)∩P (t) we have

ε(s, p) · ε(t, p) = −1.
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In the last section of this chapter we prove these two corollaries.

Proof of Woltman’s Conjecture. Let s = 4 and t = 10. We recall from the
first section of Chapter 8 that s, t is a related pair of potential starting values.
Note the following idenity

(2 +
√

2 + 4)(2 +
√

2 + 10) = (
4
√

2(1 +
√

2 +
√

3))2 ∈ K(
√

6,
√
−2)∗

2
.

Now Corollary 9.4 implies that εs,t is periodic. Clearly we have d = 1, d = (1)
and e = (3). Therefore we have r = 3. The multiplicative order ws,t of (2 mod r)
is 2. Hence by Corollary 9.4 we can set l = 8 · d+ 1 = 9 and m = 4 ·ws,t = 8 in
Definition 7.4. After calculating εs,t(p) for p = 3, 5, 7, 13, 17, 19 and 31 Theorem
9.1 follows.

Relating Lehmer symbols via Frobenius symbols

In this section we relate a product of Lehmer symbols with a Frobenius symbol.
We start with recalling (from Chapter 8) and defining the maps in the diagram
below.

P (s) ∩ P (t)

εs,t

$$

Frob2

''OOOOOOOOOOOOOOO
Frob1 //

Frob3

��?
??

??
??

??
??

??
??

??
??

??
??

Gal(T/Ks,t)
µs,t //______ {±1}

Gal(F/E′)gen/∼

λ′s,t

77oooooooo

r

��

77ooooooooooooooo

rs,t

OO

Gal(L′s/K
′
s)

gen/∼×Gal(L′t/K
′
t)

gen/∼

λ′s×λ
′
t

??�����������������������

Let s, t ∈ K be a related pair of potential starting values. By Proposition 8.2
both s and t are potential starting values. Recall the definition εs,t from the
first section of this chapter. Let T be as in Proposition 8.9. The maps rs,t, λ

′
s,t

and rs : Gal(F/E′)gen/∼ → Gal(L′s/K
′
s)

gen/∼ are defined in the second section
of Chapter 8. The map µs,t exists if and only if [E : E′] = 4 or 8 (see Theorem
8.10). We define the map r in the diagram above by r : [σ] 7→ (rs([σ]), rt([σ])).
From Definition 4.6 of Chapter 4 we recall the map λ′s : Gal(L′s/K

′
s)

gen/∼ →
{±1}. Define the map λ′s × λ′t in the diagram above by λ′s × λ′t : ([σ], [τ ]) 7→
λ′s([σ]) ·λ′t([τ ]). The following proposition will be used to define the maps Frob1,
Frob2 and Frob3.

Proposition 9.7. Let s, t ∈ K, take p ∈ P (s) ∩ P (t) and set n = [Ks,t : Q].

Then (n
√

2
p− 1) is a prime ideal of OKs,T of degree one over Q unramified in F .
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We prove this proposition at the end of this section.
Next we define the three remaining maps in the diagram above, namely the

Frobenius maps Frob1, Frob2 and Frob3. Let n = [Ks,t : Q]. We define the map

Frob1 by Frob1 : p 7→ ((n
√

2
p − 1), T/Ks,t). Note that by Proposition 9.7 this

map is well-defined.

Proposition 9.8. Let s, t ∈ K be a related pair of potential starting values and
let n = [Ks,t : Q]. Suppose p ∈ P (s) ∩ P (t). Then ((n

√
2
p − 1), F/Ks,t) is an

element of Gal(F/E′)gen/∼.

We prove Proposition 9.8 at the end of this section. Define the map Frob2 by
Frob2 : p 7→ ((n

√
2
p−1), F/Ks,t). Let ns = [Ks : Q] and let nt = [Kt : Q]. Define

the map Frob3 by

Frob3 : p 7→ (((
ns
√

2
p
− 1), L′s/Ks), ((

nt
√

2
p
− 1), L′t/Kt)).

Note that by Proposition 9.7 these two maps are well-defined.

Theorem 9.9. Let s, t ∈ K be a related pair of potential starting values. Then
the diagram without µs,t above commutes. Moreover if [E : E′] equals 4 or 8,
then the entire diagram exists and commutes.

A proof of Theorem 9.9 can be found at the end of this section. The following
corollary, which follows directly from Theorem 9.9, can be seen as an analog of
Corollary 5.7.

Corollary 9.10. Let s, t ∈ K be a related pair of potential starting values.
Then the diagram

P (s) ∩ P (t)
εs,t //

Frob2 ))RRRRRRRRRRRRRR
{+1,−1}

Gal(F/E′)gen/∼

λ′s,t

OO

commutes.

To prove that εs is periodic if [K ′s : Ks] equals 1, we used the fact that the
Frobenius map in Corollary 5.7 becomes the Artin map if the Galois group
Gal(L′s/Ks) is abelian. We cannot apply this method to εs,t with Corollary
9.10, since the Galois group Gal(F/Ks,t) is not abelian. However we can use
the following corollary, which follows directly from Theorem 9.9, to prove that
εs,t is periodic if [E : E′] equals 4 or 8.

Corollary 9.11. Let s, t ∈ K be a related pair of potential starting values.
Suppose [E : E′] equals 4 or 8. Then the diagram

P (s) ∩ P (t)
εs,t //

Frob1 ''PPPPPPPPPPPP
{+1,−1}

Gal(T/Ks,t)

µs,t

OO
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commutes.

Proof of Proposition 9.7. Let p ∈ P (s) ∩ P (t). Then Proposition 5.10(ii)
implies p - [Ks : Q] and p - [Kt : Q]. By Proposition 8.3 we have [Ks,t : Q(s, t)] |
4. Since p is odd, the inclusions Q(s, t) ⊂ KsKt ⊂ Ks,t imply p - [Ks,t : Q] = n.

Since 2 | n, the absolute norm of n
√

2
p−1 equals −(2p−1). By definition of P (s)

the integer 2p − 1 is a prime number, so the ideal mp = (n
√

2
p − 1) is a prime

ideal of degree 1 over Q.

By Proposition 5.10(ii) the prime ideal mp ∩Ks of Ks is unramified in Ls.
This implies that mp is unramified in LsKs,t (see [7, Chapter II, §4]). Similarly
we derive that mp is unramified in LtKs,t. We recall Ks,t = (LsLt) ∩ K, so
Ks,t ⊂ LsLt. Hence mp is unramified in F ⊂ LsLt (see [7, Chapter II, §4]).

Proof of Proposition 9.8. Let p ∈ P (s) ∩ P (t) and let mp = (n
√

2
p − 1). By

Proposition 9.7 the ideal mp is a prime ideal of degree 1 over Q. Let m′p =
mp ∩ Ks. The consistency property implies (mp, Fs/Ks,t)|Ls = (m′p, Ls/Ks).

We recall the notation K ′s = Ks(
√

4− s2). Further we recall from Proposition
5.10(iv) that every element of the conjugacy class (m′p, Ls/

′Ks) generates the
group Gal(L′s/K

′
s). By Proposition 8.4 the restriction map Gal(Fs/Ks,t) →

Gal(L′s/Ks) is an isomorphism. Since K ′s is a subfield of E′ = Ks,t(
√

4− s2),
the restriction map Gal(Fs/E

′)→ Gal(L′s/K
′
s) is an isomorphism. Hence every

element of the conjugacy class (mp, Fs/Ks,t) generates the group Gal(Fs/E
′).

Similarly for t we get: every element of the conjugacy class (mp, Ft/Ks,t) gen-
erates the group Gal(Ft/E

′). Hence by Proposition 8.6 we have (mp, F/Ks,t) ∈
Gal(F/E′)gen/∼.

Proof of Theorem 9.9. Suppose s, t ∈ K is a related pair of potential start-
ing values. Then the maps Frob1, Frob2, µs,t, λ

′
s,t and rs,t are defined. By

Proposition 8.2 both s and t are potential starting values. Hence also the maps
Frob3, r and λ′s×λ′t are defined. The identity λ′s,t = (λ′s×λ′t)◦r follows directly
from the definition of λ′s,t (see Definition 8.7). The identities Frob3 = r ◦ Frob2

and Frob1 = rs,t ◦ Frob2 follow from the consistency property (see Proposition
5.4). The identity εs,t = (λ′s × λ′t) ◦ Frob3 follows from Corollary 5.7 and the
definitions of the maps εs,t and λ′s×λ′t. From the identities that we just proved
we get

εs,t = (λ′s×λ′t)◦Frob3 = (λ′s×λ′t)◦(r◦Frob2) = ((λ′s×λ′t)◦r)◦Frob2 = λ′s,t◦Frob2.

Hence εs,t equals λ′s,t ◦ Frob2. This proves the first part of Theorem 9.9. Now
assume [E : E′] = 4 or 8. From Theorem 8.10 we get λ′s,t = µs,t ◦ rs,t. From
the identities that we proved so far we get

εs,t = λ′s,t ◦ Frob2 = (µs,t ◦ rs,t) ◦ Frob2 = µs,t ◦ (rs,t ◦ Frob2) = µs,t ◦ Frob1.

Hence εs,t equals µs,t ◦ Frob1.



58 CHAPTER 9

Proofs

In this section we prove Proposition 9.2, Theorem 9.3, Corollary 9.4, Corollary
9.5 and Corollary 9.6.

We recall some notation from the first section of Chapter 9. Let s, t ∈ K be
a related pair of potential starting values. Let T be as in Proposition 8.9. Let
n = [Ks,t : Q]. Denote a modulus for T/Ks,t by t. Write t = todd · (n

√
2)i for

some i ∈ Z≥0 and (n
√

2) - todd. Let OKs,t be the ring of integers of Ks,t. Write

ω for the order of (n
√

2 mod todd) in (OKs,t/todd)∗.

Proof of Theorem 9.3. Let f be the conductor of T/Ks,t. Write f as the
product (n

√
2)j · fodd where j ∈ Z≥0 and fodd is not divisible by the prime (n

√
2).

By Theorem 6.3 we have (n
√

2)j | 2 · 2 · n
√

2. Hence m = (n
√

2)2n+1 · fodd is a
modulus for T/Ks,t.

Suppose p, q ∈ P (s) ∩ P (t) satisfy p ≡ q mod ω and p, q ≥ 2n + 1. Let

mp = n
√

2
p − 1 and let mq = n

√
2
q − 1. By definition ω is the order of n

√
2 in

(OKs,t/todd)∗, so p ≡ q mod ω implies mp ≡ mq mod todd. Note that fodd

divides todd, so p ≡ q mod ω implies mp ≡ mq mod fodd. The assumption
p, q ≥ 2n+1 implies mp ≡ mq mod (n

√
2)2n+1. Hence we have mp ≡ mq mod m.

Let x = mp ·m−1
q . The ideal m is a modulus for T/Ks, so ordp(x− 1) ≥ ordp(f)

for all prime ideals p | f. The field Ks,t has two real embeddings, namely σ
defined by σ(n

√
2) = n

√
2 and τ defined by τ(n

√
2) = −n

√
2. Since both p and q are

odd, we see that σ(x) > 0 and τ(x) > 0, i.e. the element x is totally positive in
T/Ks,t. Now conditions (i) and (ii) of Theorem 6.1 are satisfied, therefore we
conclude that the ideal (x) is in the kernel of the Artin map. Hence ((x), T/Ks,t)
is the trivial element of Gal(T/Ks,t), so ((mp), T/Ks,t) equals ((mq), T/Ks,t).
Therefore the definition of Frob1 implies Frob1(p) = Frob1(q). Note that the
assumptions of Theorem 9.3 are the same as the assumptions of Corollary 9.11.
By Corollary 9.11 it follows that εs,t(p) equals εs,t(q). By Proposition 8.3 we
have n ≤ 4 · [Q(s, t) : Q].

Proof of Proposition 9.2. The first part of Proposition 9.2 follows directly
from Theorem 9.3. Since [E : E′] = 8, Proposition 8.8 implies that λ′s,t is not
surjective. Hence from Corollary 9.10 the map εs,t is constant.

Let s, t ∈ K be a related pair of potential starting values. Recall E′ =
Ks,t(

√
4− s2) and E′′ = E′(

√
2 + s). Define e′′ = (2 +

√
2 + s)(2 +

√
2 + t),

E′′′ = E′′(
√

2 +
√

2 + s) and

e =
(

2 +

√
2 +
√

2 + s
)(

2 +

√
2 +
√

2 + t
)
.

Lemma 9.12. Assume e′′ is a square in (E′′K)∗. Then e′′ is a square in E′′
∗
.

Moreover if e′′ and e are squares in (E′′K)∗ and (E′′′K)∗ respectively, then e
is a square in E′′′

∗
.
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Proof. By assumption e′′ is a square in (E′′K)∗. Proposition 4.11 implies that
e′′ is a square in (LsLt)

∗. Hence e′′ is a square in (E′′K)∗ ∩ (LsLt)
∗ = E′′

∗
.

By assumption e is a square in (E′′′K)∗. Proposition 4.11 implies that e is a
square in (LsLt)

∗. Hence e is a square in (E′′′K)∗ ∩ (LsLt)
∗ = E′′′

∗
.

Lemma 9.13. The element e′′ is a square in E′′
∗

if and only if [E : E′] equals
4 or 8. Moreover if e′′ and e are squares in E′′

∗
and E′′′

∗
respectively, then

[E : E′] equals 8.

Proof. Lemma 8.16 implies [E : E′] = 2, 4 or 8. Suppose e′′ is a square in E′′
∗
.

Then Proposition 4.11 implies [E : E′] = 4 or 8. If e is also a square in E′′′
∗
,

then Proposition 4.11 yields [E : E′] = 8. Suppose e′′ is not a square in E′′
∗
.

Then Proposition 4.11 and Kummer theory imply [E : E′] = 2.

Recall the definition of fodd (see proof of Theorem 9.3) and r (see just above
Corollary 9.4).

Proposition 9.14. Let s, t be a pair of potential starting values. Then fodd

divides r.

Proof. Recall the definition of ds, dt and e. Proposition 5.9 implies that if a
prime ideal p 6= (n

√
2) of the ring of integers of Ks,t ramifies in Ks,tLs, then p

divides dse (see [7, Chapter II, §5]). We get a similar result for Ks,tLt/Ks,t.
Hence if a prime ideal p 6= (n

√
2) of the ring of integers of Ks,t ramifies in LsLt,

then p divides dsdte = ds,te. From the definition of F we get F ⊂ LsLt. By
Proposition 8.6 we have [F : Ks,t] | 64. Hence only the prime (n

√
2) is wildly

ramified in F/Ks,t. Therefore Theorem 6.8 implies fodd | r.

Proof of Corollary 9.4. Let s, t ∈ K be a related pair of potential starting
values. Assume that (2+

√
2 + s)(2+

√
2 + t) is a square in K(

√
2 + s,

√
2− s)∗.

Then Lemma 9.12 and Lemma 9.13 imply [E : E′] = 4 or 8. Hence Theorem
9.3 implies that εs,t is periodic. From Theorem 9.3 it follows that l = 2n+ 1 ≤
2 ·4 · [Q(s, t) : Q] + 1 = 8 ·d+ 1. By Proposition 9.14 the ideal fodd divides r. By
Proposition 8.3 we have n/d = 1, 2 or 4. Therefore the multiplicative order of
(n
√

2 mod fodd) divides four times the multiplicative order of (d
√

2 mod r). Hence
by Theorem 9.3 we can set m = 4 · ws,t. Suppose the extra assumption of
Corollary 9.4 holds. Then Lemma 9.12 and Lemma 9.13 imply [E : E′] = 8.
Hence by Proposition 9.2 the function εs,t is constant.

Proof of Corollary 9.6. Taking the variable of Example 2.7 equal to − 2
3

√
2

and − 1
6

√
2 yields s = 1492

121 and t = 1924
121 respectively. Let αs be a zero of

fs = x16 − sx8 + 1. We recall Ls = Q(ζ8, αs) is the splitting field of fs =
x16 − sx8 + 1 over Q. By equations 4.2 and 4.3 of the proof of Proposition 4.8

we can write α4
s =

√
s−2+

√
s+2

2 . From the two equalities below Example 2.7 it

follows that s − 2, t − 2 ∈ Q(
√

2)∗
2

and s + 2, t + 2 ∈ 3 · Q(
√

2)∗
2
. Hence we

have Q(ζ8, α
4
s) = Q(ζ8, α

4
t ). Note that in the field Q(ζ8, α

4
s) we have

α4
s · α4

t =
1

4

(25

11

√
2 +

17

11

√
6
)(29

11

√
2 +

19

11

√
6
)

= 7 + 4
√

3 =
( 1√

2
(1 +

√
3)
)4

.
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Hence by Kummer theory the fields Ls and Lt are the same. By Theorem 5.6
it follows that εs,t is constant.

Next we show εs,t(p) = ε(s, p) · ε(t, p) = −1. Note that we have s3−2 =
s1 = 1492

121 ≡
1
2 ≡ −3 ≡ 2(3+1)/2 mod 7, so εs(3) equals 1. Note that we have

t3−2 = t1 = 1924
121 ≡

−1
2 ≡ 3 ≡ −2(3+1)/2 mod 7, so εt(3) equals −1. Hence εs,t(3)

equals −1. Since εs,t is constant, we have εs,t(p) = ε(s, p) · ε(t, p) = −1.

Let s = 1108
529 and t = 5476

529 . The next table will be used in the proof of Corollary
9.5.

p εs(p) εt(p) εs,t(p) p mod 11
3 + + + 3
5 + − − 5
7 − + − 7
13 − + − 2
17 − − + 6
19 − + − 8
31 − − + 9
61 − − + 6
89 + − − 1
107 + − − 8
127 − − + 6
521 + + + 4
607 − + − 2
1279 + + + 3
2203 − − + 3
2281 − − + 4
3217 − + − 5
4253 − + − 7
4423 − + − 1
9689 − − + 9
9941 + − − 8
11213 − − + 4
19937 − + − 5
21701 + + + 9
23209 − − + 10

Proof of Corollary 9.5. Taking the variable of Example 2.7 equal to 2
7

√
2

and − 1
8

√
2 yields s = 1108

529 and t = 5476
529 respectively. From the first equality

below Example 2.7 it follows that both s− 2 and t− 2 are squares in Q(
√

2)∗.
From the second equality below Example 2.7 it follows that both −s − 2 and
−t−2 can be written as −3 times a square of Q(

√
2)∗. Hence K(

√
2 + s,

√
2− s)

equals K(
√

3,
√
−1). Moreover neither 4− s2 nor 4− t2 is a square in K∗, and

(4−s2)(4−t2) and (s+2)(t+2) are squares in K∗ and K(
√

4− s2)∗ respectively.
Definition 8.1 implies that s, t is a related pair of potential starting values.
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Note the relation (2+
√

2 + s) ·(2+
√

2 + t) = 1
232 (46+19

√
6) ·(46+33

√
6) =

1
232

(
(2 +

√
6)(2
√

2 +
√

3)2
)
·
(

(2 +
√

6)(5
√

2 −
√

3)2
)
∈ K(

√
3,
√
−1)∗

2
. By

Corollary 9.4 it follows that εs,t is periodic.
Next we calculate possible l and m as in Definition 7.4. In this and the

next three paragraphs we show that Ks,t = Q(
√

2). Recall that Ls = Q(ζ8, αs),
Ks = Ls ∩K and K ′′s = Ks(

√
s− 2,

√
−s− 2). We want to apply Proposition

3.7 to the extensions Ks ⊂ K ′′s ⊂ Ls. First we show that the assumptions of
Proposition 3.7 hold. By Proposition 8.2 we get s is a potential starting value.
Proposition 4.4 implies K ′′s = Q(

√
2,
√
−3) and Ks = Q(

√
2). From Proposition

4.2 we get Gal(Ls/K
′′
s ) is cyclic of order 8. Clearly K ′′s /Ks is Galois and i ∈ Ls.

Now Proposition 3.7 implies Ls ∩ K = K ′′s ∩ K = Q(
√

2). Hence we have
4
√

2 /∈ Ls. Similarly we get 4
√

2 /∈ Lt.
We recall K ′s = Ks(

√
4− s2) and L′s = K ′s(αs+α−1

s ). Since s−2 ∈ K∗s
2, we

have K ′s = K ′′s . Proposition 4.2 implies Ls = L′s. Similarly we have Lt = L′t.
Hence Ks,t equals (L′sL

′
t) ∩K, so we have F = L′sL

′
t.

Suppose for a contradiction L′s = L′t. Then the fields Fs = L′sKs,t and
Ft = L′tKs,t are equal. Now Proposition 9.2 implies that εs,t is constant. This
contradicts the table above, so we conclude that L′s 6= L′t.

Proposition 4.11 and the relation (2+
√

2 + s)·(2+
√

2 + t) ∈ K ′s(
√

2 + s)∗
2

=

K ′t(
√

2 + t)∗
2

imply [F : L′s∩L′t] = 1 or 4. From L′s 6= L′t we get [F : L′s∩L′t] = 4.
Suppose for a contradiction that 4

√
2 ∈ F . Then the three intermediate fields

of the extension F/(L′s ∩ L′t) are L′s, L
′
t and (L′s ∩ L′t)(

4
√

2). Therefore we have
L′s(

4
√

2) = F = L′t(
4
√

2). The assumption 4
√

2 ∈ F implies 4
√

2 ∈ Ks,t = F ∩K. By
definition of Fs and Ft we have 4

√
2 ∈ Ks,t ⊂ Fs and 4

√
2 ∈ Ks,t ⊂ Ft. Therefore

we have Fs = L′s(
4
√

2) and Ft = L′t(
4
√

2), so Fs = F = Ft. Now Proposition 9.2
implies that εs,t is constant. This contradicts the table above, so we conclude
that 4
√

2 /∈ F . Hence we have Ks,t = F ∩K = Q(
√

2).
By Theorem 9.3 we can set l = 2 · [Ks,t : Q] + 1 = 5. In the next three

paragraphs we will calculate a possible m.
Recall the notation just above Corollary 9.4. Clearly we have d = (529)2 =

(23)4 and 5292 · (4 − s2) = 4 · 5292 − 11082 = −(22 · 3 · 52 · 192). Therefore e
equals (3), so that r equals (3) · (23).

Note that Lemma 9.13 implies [E : E′] = 4 or 8. The table above shows
that εs,t is surjective. Hence by Proposition 9.2 the degree [E : E′] equals 4. By
Proposition 8.9 and Proposition 8.18 there are 4 different extensions T such that
[T : Ks,t] = 2, the intersection T ∩ E′′ = Ks,t and T ⊂ F . We can choose two,
T1 and T2, such that T1T2 contains the field E′ = Ks,t(

√
4− s2) = Ks,t(

√
−3).

T1T2

T1
??

?

���
T2 E′

???

Ks,t
(3) ramifies

���

Note that (3) is inert in the extension Ks,t/Q. Since 3 does not divide
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[LsLt : Q], Proposition 5.8(vi) implies that V(3),1 is the trivial group. Hence
by Proposition 5.8(v) the group V(3),0 is cyclic. Note that the prime ideal (3)
ramifies in E′/Ks,t. Since V(3),0 is cyclic, the prime ideal (3) cannot ramify in
both extensions Ti/Ks,t with i ∈ {1, 2}. Hence we can choose a field Ti such
that (3) does not divide the conductor of Ti/Ks,t. By Proposition 9.14 we have
fodd | r. Since r equals 3 · 23, we can conclude that fodd divides 23. Therefore

t = (23) is a modulus for Ti/Ks,t. Note that
√

2
22 ≡ 1 mod 23, so the order ω of

(
√

2 mod 23) is 22. Now Theorem 9.3 (and the definition of m) implies m | 22.
Since p is odd, we see that we can set m = 11.

The table above shows the signs for s and t. This proves Corollary 9.5.




