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Chapter 8

Composing auxiliary fields

In this chapter we construct for certain pairs of potential starting values a Galois
extension by composing two auxiliary fields of Chapter 4. We also relate certain
elements of this Galois extension to a sign (see Theorem 8.10 below).

Potential starting values and Galois groups

In this section we define pairs of potential starting values for which we construct
a Galois extension. Recall from Definition 3.1 the definition of a potential
starting value.

Definition 8.1. We call s, t ∈ K a related pair of potential starting values if s
is a potential starting value, neither 4 − s2 nor 4 − t2 is a square in K∗, and
(4−s2)(4−t2) and (s+2)(t+2) are squares in K∗ and K(

√
4− s2)∗ respectively.

For example if we take s = 4 and t = 10, then s and t form a related pair of
potential starting values. Indeed (4− 42) · (4− 102) = −12 · −96 = (24

√
2)2 and

(4 + 2)(10 + 2) = 2 · 62.

Proposition 8.2. If s, t ∈ K is a related pair of potential starting values, then
both s and t are potential starting values.

We prove this proposition in the last section of this chapter.

Let s ∈ K be a potential starting value. We recall some notation of Chapter
4. Let fs = x16−sx8+1, let α = αs ∈ Q be a zero of fs and let Ls be the splitting
field of fs over Q(s). Let Ks = Ls ∩K and let L′s = Ks(

√
4− s2, αs + α−1

s ).

Let t ∈ K be a potential starting value. Define Ks,t by Ks,t = (LsLt) ∩K.
The next proposition, which we prove in last section of this chapter, is useful
for calculating the field Ks,t.

Proposition 8.3. Let s, t ∈ K be a related pair of potential starting values.
Then we have [Ks,t : Q(s, t)] = 1, 2 or 4.

45
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Define Fs = Ks,tL
′
s = Ks,t(

√
4− s2, αs + α−1

s ). From Proposition 4.1 it follows
that L′s/Ks is Galois. Hence Fs over Ks,t is Galois. In the last section of this
chapter we prove the next proposition.

Proposition 8.4. Let s, t be potential starting values. Then the restriction map
from Gal(Fs/Ks,t) to Gal(L′s/Ks) is a group isomorphism.

Define F = Fs,t to be the compositum of Fs and Ft. Both Fs and Ft are Galois
over Ks,t, so F is Galois over Ks,t. For a related pair of potential starting values
s, t ∈ K we will study the Galois group G of F over Ks,t. We prove the following
lemma in the last section of this chapter.

Lemma 8.5. Let s, t ∈ K be a related pair of potential starting values. Then
(4 − s2)(4 − t2) and (s + 2)(t + 2) are squares in K∗s,t and Ks,t(

√
4− s2)∗ re-

spectively.

Let E = Es,t = Fs ∩ Ft. Define E′ = E′s,t = Ks,t(
√

4− s2) = Ks,t(
√

4− t2);
note that by Lemma 8.5 the last equality sign holds. By Definition 8.1 we have
[E′ : Ks,t] = 2. Define the subgroup H of G by H = Gal(F/E′).

Proposition 8.6. Let s, t ∈ K be a related pair of potential starting values and
let n = [E : E′]. Then the exact sequence 1 → H → G → Gal(E′/Ks,t) → 1
splits, where the action of the non-trivial element of Gal(E′/Ks,t) on H sends
any group element to its inverse. Moreover H is isomorphic to the additive
group {(a, b) ∈ (Z/8Z)× (Z/8Z) : a ≡ b mod n}, the commutator subgroup of G
is H2 and n equals 2, 4 or 8.

Proposition 8.6 will be proved in the last section of this chapter.

Galois groups and signs

Let s, t ∈ K be a related pair of potential starting values. Let F , E′ and G
be as above. By Lemma 8.5 we can define E′′ by E′′ = E′′s,t = E′(

√
s+ 2) =

E′(
√
t+ 2). Later we prove [E′′ : E′] = 2 (see Lemma 8.15). For convenience we

give an overview of some fields defined so far. In the right diagram one can read
(at the corresponding places) the definitions of the fields in the left diagram.

F

��
� ??

? FsFt
oooo

o OOOO

Fs Ft E′(αs + α−1
s ) E′(αt + α−1

t )

E

??? ���
Fs ∩ Ft

OOOO oooo

E′′ E′(
√
s+ 2)

E′

C2

C8 C8

Ks,t(
√

4− s2)

Ks,t Ks,t
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Let Gal(F/E′)gen be the set of all elements of order 8 of Gal(F/E′). Proposition
8.6 implies Gal(F/E′)gen = {σ ∈ Gal(F/E′) : ord(σ|Fs) = ord(σ|Ft) = 8}. Now
we define the equivalence relation ∼ on G by σ ∼ τ if σ is conjugate to τ in G.
We denote the equivalence class of σ ∈ G by [σ]. Since Gal(F/E′) is a normal
subgroup ofG and conjugate elements have the same order, the set Gal(F/E′)gen

is a union of conjugacy classes. Recall from Chapter 4 the definition of the set
Gal(L′s/K

′
s)

gen/∼. Note that K ′s is a subfield of E′ and that [K ′s : Ks] equals
[E′ : Ks,t]. Therefore by Proposition 8.4 we have a surjective restriction map
rs : Gal(F/E′)gen/∼ → Gal(L′s/K

′
s)

gen/∼. Recall from Definition 4.6 the map
λ′s : Gal(L′s/K

′
s)

gen/∼ → {±1}.

Definition 8.7. For s, t ∈ K a related pair of potential starting values we define
the map

λ′s,t : Gal(F/E′)gen/∼ → {±1}

by: λ′s,t([σ]) equals the product of (λ′s ◦ rs)([σ]) and (λ′t ◦ rt)([σ]).

Proposition 8.8. The map λ′s,t is surjective if and only if [E : E′] = 2 or 4.

We prove Proposition 8.8 in the last section of this chapter. Next we state when
and how the map λ′s,t factors via the Galois group of an abelian extension of
Ks,t.

Proposition 8.9. Let s, t ∈ K be a related pair of potential starting values.
Then there exists an intermediate field T in the extension F/Ks,t such that
TE′′ is the maximal abelian extension of Ks,t in F and T ∩ E′′ equals Ks,t.
Moreover for each such T we are in one of the following two cases:

(i) [T : Ks,t] = 1 and [E : E′] = 8,
(ii) [T : Ks,t] = 2 and [E : E′] = 2 or 4.

We prove Proposition 8.9 in the last section of this chapter. Let rs,t be the
restriction map rs,t : Gal(F/E′)gen/∼ → Gal(T/Ks,t). The following theorem
will be proved in the last section of this chapter.

Theorem 8.10. Let s, t ∈ K be a related pair of potential starting values
and let T be as in Proposition 8.9. Then there exists an injective map µs,t :
Gal(T/Ks,t)→ {±1} together with a commutative diagram

Gal(F/E′)gen/∼

rs,t

��

λ′s,t

''NNNNNNNNNNN

Gal(T/Ks,t) µs,t
// {±1}

if and only if [E : E′] equals 4 or 8.
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Proofs

In this section we prove the propositions, lemmas and theorems stated in this
chapter.

Inspired by the definition of a potential starting value (see Definition 3.1)
and Proposition 3.3 we give the following definition for a potential starting pair.

Definition 8.11. We call s, t ∈ K a potential starting pair if

i /∈ K(
√
s− 2,

√
−s− 2,

√
t− 2,

√
−t− 2).

Proposition 8.12. If s, t ∈ K is a related pair of potential starting values then
s, t ∈ K is a potential starting pair.

Proof. Suppose s, t ∈ K is a related pair of potential starting values. By Def-
inition 8.1 the element (4 − s2)(4 − t2) is a square in K∗, so K(

√
4− s2) =

K(
√

4− t2). Also by Definition 8.1 the element (s + 2)(t + 2) is a square in
K(
√

4− s2)∗, so (−s − 2)(−t − 2) is a square in K(
√

4− s2)∗. Hence we have
K(
√

4− s2,
√
−s− 2) = K(

√
4− t2,

√
−t− 2). Definition 8.1 yields that s is a

potential starting value, so by Proposition 3.3 we have i /∈ K(
√
s− 2,

√
−s− 2) =

K(
√

4− s2,
√
−s− 2). Therefore i /∈ K(

√
s− 2,

√
−s− 2,

√
t− 2,

√
−t− 2). By

definition of potential starting pair the proposition follows.

Proof of Proposition 8.2. Proposition 8.12 implies s, t is a potential starting
pair. Definition 8.11 and Proposition 3.3 imply that both s and t are potential
starting values.

Proposition 8.13. Let s, t ∈ K be a potential starting pair. Then we have
[Ks,t : Q(s, t)] = 1, 2 or 4.

Proof. Let s, t ∈ K be a potential starting pair. Recall the definition of Q′′s
and Q′′t in the last section of Chapter 4. We recall that Ls is the splitting field
of fs = x16− sx8 + 1 over Q(s). Let L = LsLt and M = Q′′sQ′′t . The definitions
of Q′′s and Q′′t imply that M/Q(s, t) is Galois with Gal(M/Q(s, t)) abelian. By
Corollary 3.6 we get [M ∩K : Q(s, t)] ≤ 2. Proposition 4.9 implies that L/M
is Galois with Gal(L/M) an abelian 2-group. Since s, t is a potential starting
pair, we have i /∈ MK. Hence Proposition 3.7 implies [L ∩ K : M ∩ K] ≤ 2.
By definition one has Ks,t = L ∩ K. Therefore we have [Ks,t : Q(s, t)] =
1, 2 or 4.

Proof of Proposition 8.3. Proposition 8.3 follows directly from Proposition
8.12 and Proposition 8.13.

Proof of Proposition 8.4. We have a restriction map from Gal(Fs/Ks,t) to
Gal(L′s/Ks). By the definitions of the fields Ks and Ks,t it is clear that Ks,t is
an extension of Ks, the intersection L′s ∩Ks,t equals Ks and L′s/Ks is Galois.
Since Fs = Ks,tL

′
s, the proposition follows from Theorem 3.12.

For n ∈ Z>0 write Cn for a cyclic group of order n.
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Lemma 8.14. Let H be a finite abelian group. Let the non-trivial element of
C2 act on H by sending an element of G to its inverse. Then the commutator
subgroup of C2 nH is H2.

Proof. Define G = C2 n H. Let c be the non-trivial element of C2 and let
h ∈ H. The identity chc−1h−1 = h−2 implies H2 ⊂ [G,G].

Clearly H is a normal subgroup of G. Note that H2 is a characteristic
subgroup of H, i.e. every automorphism of H leaves H2 invariant. Hence H2

is a normal subgroup of G. The group G/H2 = C2 n (H/H2) = C2 × (H/H2)
is abelian, so [G,G] ⊂ H2. Hence we have [G,G] = H2.

Proof of Lemma 8.5. From Definition 8.1 it follows that
√

(4− s2)(4− t2) ∈
K∗ and

√
(s+ 2)(t+ 2) ∈ K(

√
4− s2)∗ . By Proposition 4.1 we have

√
4− s2,√

s+ 2 ∈ Ls and
√

4− t2,
√
t+ 2 ∈ Lt. This implies that both elements√

(4− s2)(4− t2) and
√

(s+ 2)(t+ 2) lie in LsLt. Therefore we obtain that the

element
√

(4− s2)(4− t2) lies in K∗ ∩ (LsLt) = K∗s,t and that
√

(s+ 2)(t+ 2)

lies in K(
√

4− s2)∩(LsLt) = Ks,t(
√

4− s2)∗, so (4−s2)(4−t2) and (s+2)(t+2)
are squares in Ks,t(

√
4− s2)∗ and K∗s,t respectively.

Lemma 8.15. Let s, t ∈ K be a related pair of potential starting values. Then
we have [E′′ : E′] = 2.

Proof. By Proposition 4.11 we have [K ′s(
√
s+ 2) : K ′s] = 2. Recall that

K ′s = Ks(
√

4− s2). Since E′ = Ks,t(
√

4− s2) and E′′ = Ks,t(
√

4− s2,
√
s+ 2),

Proposition 8.4 implies [E′′ : E′] = 2.

Lemma 8.16. Let s, t ∈ K be a related pair of potential starting values. Then
we have [E : E′] = 2, 4 or 8.

Proof. The definition of related pair of potential starting values, the definition
of E′, the definition of E′′ and Lemma 8.5 imply E′ ⊂ E′′ ⊂ E ⊂ Fs. By
Proposition 4.2 we have [Fs : E′] = 8. Since E′ 6= E′′ (see Lemma 8.15), we
have [E : E′] = 2, 4 or 8.

Let n ∈ Z>0 with n | 8. Let H ′n = {(a, b) ∈ (Z/8Z)× (Z/8Z) : a ≡ b mod n}.

Proof of Proposition 8.6. By assumption s, t ∈ K is a related pair of po-
tential starting values. From the definition of related pair of potential starting
values and Lemma 8.5 it follows that [E′ : Ks,t] = 2 and E′ ⊂ E. By Propo-
sition 8.4 the restriction map Gal(Fs/Ks,t) → Gal(L′s/Ks) is an isomorphism.
Now Proposition 4.3 implies Gal(Fs/E

′) is isomorphic to C8. Hence by Propo-
sition 3.13 the group H is isomorphic to H ′n where n = [E : E′]. (In the case
n 6= 2 choose two elements σ ∈ Gal(Fs/E

′) and τ ∈ Gal(Ft/E
′) of order 8 such

that σ|E = τ |E and send (σ, τ) to (1, 1).)
By Proposition 4.3 it follows that Gal(Fs/Ks,t) is isomorphic to the group

Gal(Fs/E
′)oGal(E′/Ks,t) where the non-trivial element of Gal(E′/Ks,t) acts as

−1 on Gal(Fs/E
′). This result we also get for t, namely Gal(Ft/Ks,t) is isomor-

phic to Gal(Ft/E
′)oGal(E′/Ks,t) where the non-trivial element of Gal(E′/Ks,t)
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acts as −1 on Gal(Ft/E
′). By Proposition 3.13 the group G = Gal(F/Ks,t) is

isomorphic to Gal(Fs/Ks,t)×Gal(E/Ks,t) Gal(Ft/Ks,t). Let σ be any element of
G such that σ|E′ is the non-trivial element of Gal(E′/Ks,t). Since Gal(Fs/Ks,t)
is a dihedral group, the order of σ|Fs equals two (same for t). Hence the or-
der of (σ|Fs, σ|Ft) ∈ Gal(Fs/Ks,t) ×Gal(E/Ks,t) Gal(Ft/Ks,t) equals 2. By the
isomorphism above the order of σ equals two. Therefore the exact sequence
1 → Gal(F/E′) → G → Gal(E′/Ks,t) → 1 splits. Since Gal(Fs/Ks,t) is a
dihedral group, the action of σ|E′ on Gal(Fs/E

′) sends a group element to its
inverse. We get a similar result for t. By the isomorphism above the action
of σ|E′ on Gal(F/E′) sends a group element to its inverse. By Lemma 8.14 it
follows that [G,G] is H2. From Lemma 8.16 we get [E : E′] = 2, 4 or 8.

Lemma 8.17. Let s, t ∈ K be a related pair of potential starting values and let
[σ] ∈ Gal(F/E′)gen/∼. Then λ′s,t([σ]) equals λ′s,t([σ

i]) for any odd i ∈ Z.

Proof. By definition Gal(F/E′)gen is the set of elements of order 8 of Gal(F/E′).
Hence for i ≡ 1 or 7 mod 8 Proposition 8.6 implies [σ] = [σi]. Therefore in the
case i ≡ 1 or 7 mod 8 Lemma 8.17 holds.

Let i ≡ 3 or 5 mod 8. Recall the map rs of the previous section. Also
recall the map λ′s of Definition 4.6. The definition of λ′s and Proposition 4.5
imply (λ′s ◦ rs)([σ]) = −(λ′s ◦ rs)([σi]). We get a similar result for t. Hence the
product of (λ′s ◦ rs)([σ]) and (λ′t ◦ rt)([σ]) equals the product of (λ′s ◦ rs)([σi])
and (λ′t ◦ rt)([σi]). By definition of λ′s,t Lemma 8.17 follows.

Proof of Proposition 8.8. From Lemma 8.16 we get [E : E′] = 2, 4 or 8.
Suppose [E : E′] = 8. Then Proposition 8.6 implies that the group Gal(F/E′)
is isomorphic to C8 and hence Gal(F/E′)gen equals {[σ], [σ3]} where σ is a
generator of Gal(F/E′). Now Lemma 8.17 implies λ′s,t is constant.

Suppose [E : E′] = 2 or 4. Then by Proposition 8.6 there exist σ, τ ∈
Gal(F/E′)gen such that σ|Fs = τ |Fs and σ|Ft = (τ |Ft)[E:E′]+1. Clearly we
have (λ′s ◦ rs)([σ]) = (λ′s ◦ rs)([τ ]). By definition of λ′t and Proposition 4.5
we have (λ′t ◦ rt)([σ]) = −(λ′t ◦ rt)([τ ]). Now the definition of λ′s,t implies
λ′s,t([σ]) 6= λ′s,t([τ ]). Hence λ′s,t is surjective.

Proposition 8.18. Let s, t be a related pair of potential starting values. Let
G = Gal(F/Ks,t). Let [G,G] be the commutator subgroup of G. Then G/[G,G]
is isomorphic to C2 × C2 × C2 if [E : E′] equals 2 or 4. Moreover G/[G,G] is
isomorphic to C2 × C2 if [E : E′] equals 8.

Proof. By Proposition 8.6 the group G/[G,G] is isomorphic to (H/H2) o C2,
where H is isomorphic to C8×C[E:E′]C8. Lemma 8.16 yields [E : E′] = 2, 4 or 8.

Suppose [E : E′] = 4 or 2. Then H/H2 is isomorphic to C2×C2, so G/[G,G] is
isomorphic to C2 × C2 × C2. Suppose [E : E′] = 8. Then H/H2 is isomorphic
to C2, so G/[G,G] is isomorphic to C2 × C2.

Proof of Proposition 8.9. Let D be the maximal abelian extension of Ks,t

in F . Then Gal(D/Ks,t) is isomorphic to G/[G,G]. We will use the structure
of G/[G,G] to prove Proposition 8.9. The definition of E′′ implies that E′′ is
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a subfield of D and that Gal(E′′/Ks,t) is isomorphic to C2 × C2. Lemma 8.16
yields [E : E′] = 2, 4 or 8. Suppose [E : E′] = 8. Proposition 8.18 implies
that G/[G,G] is isomorphic to C2 × C2. Therefore we can take T = Ks,t in
Proposition 8.9.

Suppose [E : E′] = 4 or 2. Proposition 8.18 implies that G/[G,G] is isomor-
phic to C2 × C2 × C2. Hence there exist four different quadratic extensions T
of Ks,t such that E′′ ∩ T = Ks,t and TE′′ = D.

Lemma 8.19. Let s, t ∈ K be a related pair of potential starting values. Then
the restriction map rs,t : Gal(F/E′)gen/∼ → Gal(T/Ks,t) is surjective.

Proof. Suppose for a contradiction that rs,t is not surjective. Then we have
T 6= Ks,t, so Proposition 8.9 implies [T : Ks,t] = 2 and T ∩ E′′ = Ks,t. Hence
the restriction map Gal(F/E′′) → Gal(T/Ks,t) is surjective. Recall that H =
Gal(F/E′). The Galois group Gal(F/E′′) is H[4] = {x ∈ H : x4 = 1}, so the
restriction map H[4]→ Gal(T/Ks,t) is surjective. Since [E′′ : E′] = 2, the index
(H : H[4]) equals 2. Let g ∈ Gal(F/E′)gen, so that g has order 8. Then we have
Gal(F/E′)gen = gH[4]. Since the map H[4] → Gal(T/Ks,t) is surjective, the
map gH[4]→ Gal(T/Ks,t) is surjective as well. Therefore rs,t is surjective.

Lemma 8.20. Let s, t ∈ K be a related pair of potential starting values and let
n = [E : E′]. Then Gal(F/E′) has precisely 8/n cyclic subgroups of order 8.

Proof. Lemma 8.16 implies n = 2, 4 or 8. Let H = Gal(F/E′). From Propo-
sition 8.6 we get H is isomorphic to C8 ×Cn C8. Hence H has 32/n elements
of order 8. Every cyclic group of order 8 has precisely 4 elements of order 8.
Therefore H has precisely (32/n)/4 cyclic subgroups of order 8. Since (32/n)/4
equals 8/n, Lemma 8.20 follows.

Let s, t ∈ K be a related pair of potential starting values, let [E : E′] = 2 or 4
and let D be the maximal abelian extension in F/Ks,t. Then Proposition 8.9 im-
plies that Gal(D/E′) is isomorphic to C2×C2. Hence there are three quadratic
extension of E′ which are subfields of D. Two of these quadratic extensions are
E′′ and TE′. We define T ′ to be the remaining quadratic extension of E′. For
convenience we give the following diagram.

D = TE′′

TE′

���
� ??

?

���
T ′ E′′

???

T
??

? E′

��
�

���

Ks,t = T ∩ E′

Lemma 8.21. Let s, t ∈ K be a related pair of potential starting values. Let
σ ∈ Gal(F/E′)gen, let T be as in Proposition 8.9 and let [E : E′] = 2 or 4.
Then the fixed field of 〈σ〉 contains either TE′ or T ′.
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Proof. The definition of Gal(F/E′)gen implies that σ acts trivially on E′ and
non-trivially on E′′. Hence either σ acts trivially on TE′ or σ acts trivially on
T ′. Therefore Lemma 8.21 follows.

We recall the restriction map rs,t : Gal(F/E′)gen/∼ → Gal(T/Ks,t). Let r =
rs,t.

Corollary 8.22. Let s, t ∈ K be a related pair of potential starting values. Let
σ ∈ Gal(F/E′)gen. Then r([σ]) equals r([σi]) for any odd i ∈ Z.

Proof. By definition all elements in Gal(F/E′)gen have order 8, so 〈σ〉 = 〈σi〉
for any odd i ∈ Z. By Proposition 8.9 the order of Gal(T/Ks,t) equals 1 or 2.
Hence Corollary 8.22 follows.

Proof of Theorem 8.10. Lemma 8.16 implies [E : E′] = 2, 4 or 8. Suppose
[E : E′] = 8. Then Proposition 8.8 implies that λ′s,t is not surjective. From
Proposition 8.9 we get Gal(T/Ks,t) has precisely one element. Therefore there
exists a map µs,t such that the diagram in Theorem 8.10 commutes.

Suppose [E : E′] = 4 and let σ, τ ∈ Gal(F/E′)gen. Then by Lemma 8.20 the
group Gal(F/E′) has precisely two cyclic subgroups of order 8. By Proposition
8.8 the map λ′s,t is surjective. Now Lemma 8.17 yields: λ′s,t([σ]) = λ′s,t([τ ]) ⇐⇒
〈σ〉 = 〈τ〉. By Lemma 8.19 the map r : Gal(F/E′)gen/∼ → Gal(T/Ks,t) is
surjective. Corollary 8.22 implies r([σ]) = r([σi]) for any odd i ∈ Z. Since
Gal(F/E′) has precisely two cyclic subgroups of order 8, we get: r([σ]) =
r([τ ]) ⇐⇒ 〈σ〉 = 〈τ〉. Hence we have: r([σ]) = r([τ ]) ⇐⇒ λ′s,t([σ]) = λ′s,t([τ ]).
Hence there exists a map µs,t such that the diagram in Theorem 8.10 commutes.

Suppose [E : E′] = 2. Then Proposition 8.6 implies that Gal(F/E′) is
isomorphic to {(a, b) ∈ (Z/8Z) × (Z/8Z) : a ≡ b mod 2}. Hence there exist
σ, τ ∈ Gal(F/E′)gen such that σ|Fs = τ |Fs and σ|Ft = (τ |Ft)7. By definition
of λ′t and Proposition 4.5 we have (λ′t ◦ rt)([σ]) = (λ′t ◦ rt)([τ ]). The equation
σ|Fs = τ |Fs implies (λ′s ◦ rs)([σ]) = (λ′s ◦ rs)([τ ]). Hence by definition of λ′s,t
we have λ′s,t([σ]) = λ′s,t([τ ]). To prove Theorem 8.10, it suffices to show that
r([σ]) 6= r([τ ]). The equation σ|Ft = (τ |Ft)7 implies that (σ|Ft)2 6= (τ |Ft)2 and
(σ|Ft)4 = (τ |Ft)4. Therefore 〈σ〉 ∩ 〈τ〉 has precisely 2 elements, so the order
of 〈σ, τ〉 is 32. Hence we have Gal(F/E′) = 〈σ, τ〉. From Lemma 8.21 we get
that the fixed field of 〈σ〉 contains either TE′ or T ′. We get the same result
for τ . Since Gal(F/E′) = 〈σ, τ〉, we have: the fixed field of 〈σ〉 contains TE′ if
and only if the fixed field of 〈τ〉 contains T ′. Therefore σ|T 6= τ |T , so we have
r([σ]) 6= r([τ ]). Hence there does not exist a map µs,t such that the diagram in
Theorem 8.10 commutes.




