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Chapter 7

Periodicity

In this chapter we combine the results of the previous chapters to prove the main
theorem of this thesis, that is: for a fixed well-chosen value s ∈ K =

⋃∞
n=1 Q(n

√
2)

the Lehmer symbol ε(s, p) is “periodic in the variable p”.

Main theorem for rational starting values

The first example of a starting value for which the Lehmer symbol ε(s, p) is
periodic in p is given by the following theorem of S.Y. Gebre-Egziabher.

Theorem 7.1. Let p ∈ Z>2 and let M = 2p − 1 be prime. Then

ε(2/3, p) = 1⇔ p ≡ 1 mod 4 and p 6= 5.

This theorem of Gebre-Egziabher follows almost immediately from Theorem 7.2
below. For this theorem we recall that P (s) is the set of p ∈ Z>2 such that 2p−1
is prime and s is a starting value for p (see just before Definition 5.2). Let s ∈ Q
and write s = cs

ds
with cs, ds ∈ Z and gcd(cs, ds) = 1. Let rs =

∏
q|ds q where

the product is taken over all prime numbers q 6= 2 that divide ds. Define ws to
be the multiplicative order of (2 mod rs) in (Z/rsZ)∗.

Theorem 7.2. Let s ∈ Q such that 4− s2 is a square in Q(
√

2)∗. Then for all
p, q ∈ P (s) we have

ε(s, p) = ε(s, q) if p, q ≥ 13 and p ≡ qmod (2 · ws).

To see how Theorem 7.2 implies Theorem 7.1, take s = 2
3 . Then

4− s2 = 32/9 = (4
√

2/3)2,

so Theorem 7.2 applies to s = 2
3 . We have rs = 3 and ws = 2. Hence by

Theorem 7.2 above for all p, q ∈ P (s) such that p, q ≥ 13 we have ε(s, p) = ε(s, q)
if p ≡ q mod 4. After we calculate ε(2/3, p) for p = 3, 5, 7, 13, 19, Theorem 7.1
follows.
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Another example that illustrates Theorem 7.2, is the following corollary.
Recall the definition of bad prime of Chapter 2.

Corollary 7.3. Let s = 626
363 . Then s is a universal starting value with the set

of bad primes equal to {2}. Furthermore we have

ε(s, p) = 1 if and only if p ≡ 1, 7, 9 or 13 mod 20.

Proof . Let s = 626
363 . The elements s−2 = 102 ·11−2 ·−3−1 and −s−2 = (2

√
2 ·

13)2 · 11−2 · −3−1 equal −3 in the multiplicative group Q(
√

2)∗/Q(
√

2)∗
2
. For

u = 3, 5, 11 and 13 the order of (2 mod p) is even, so for odd q ∈ Z>1 we have s−
2,−s−2 ∈ (Z/MqZ)∗. Hence for each odd q ∈ Z>1 the Jacobi symbols

(
s−2
Mq

)
and(−s−2

Mq

)
equal

( −3
Mq

)
= 1. Therefore s is a universal starting value with bad prime

2. The element 4− s2 = 25 · 52 · 132 · 3−2 · 11−4 is a square in the multiplicative
group Q(

√
2)∗. The denominator ds equals 363 = 3 · 112, so rs = 33. The

order ws of (2 mod 33) in (Z/rsZ)∗ is 10. Hence by Theorem 7.2 the equality
ε(s, p) = ε(s, q) holds if p, q ≥ 13 and p ≡ q mod 20. After we calculate ε( 626

363 , p)
for p = 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 2203 the above corollary follows.

Main theorem

To state the main theorem concisely we first define periodicity for Lehmer sym-
bols. Let s ∈ K. In Chapter 5 we defined the map

εs : P (s)→ {±1}

by p 7→ ε(s, p).

Definition 7.4. We call a function ε defined on a set P of prime numbers
periodic if there exist positive integers l, m such that for all p, q ∈ P we have

ε(p) = ε(q) if p, q ≥ l and p ≡ qmodm.

For example if we take s = 2
3 and apply Theorem 7.1 then we see that εs is

periodic, since we can set l = 6 and m = 4.
Let Ks = K ∩Q(s,

√
2,
√
s− 2,

√
−s− 2) (by Proposition 4.4 this definition

agrees with the definition of Ks in Chapter 4). Let Os = OKs be the ring of
integers of Ks, let ds = {x ∈ Os : x · s ∈ Os} and let n = [Ks : Q], so that
Ks = Q(n

√
2). Let rs be the ideal

∏
p|ds p of Os where the product is taken over

all prime ideals p 6= (n
√

2) of Os that divide ds. Define ωs = ord(n
√

2 mod rs) to
be the multiplicative order of the element (n

√
2 mod rs) in (Os/rs)∗.

Theorem 7.5. Let s ∈ K be such that 4 − s2 is a square in K∗. Then εs is
periodic. Furthermore we can take l = 4 · n+ 1 and m = ωs in Definition 7.4.

For a proof of Theorem 7.5 see the next section of this chapter.
In the remainder of this section we give some corollaries of the main theorem.

Recall the definition of bad prime of Chapter 2.



PERIODICITY 43

Corollary 7.6. Let s = − 14
75 + 32

25

√
2. Then s is a universal starting value with

the set of bad primes equal to {2}. Furthermore we have

ε(s, p) = −1 if and only if p 6= 3, 5.

Proof . Note that −3 · (s− 2) = ( 6
5 −

8
5

√
2)2 and −3 · (−s− 2) = ( 8

5 + 6
5

√
2)2.

Hence s is a universal starting value with bad prime 2 and in the group K∗/K∗2

the identity 4 − s2 = −3 · (s − 2) · −3 · (−s − 2) = 1 holds. By Theorem 7.5
we conclude that εs is periodic. Next we calculate l and m. From the identities
for −3 · (s − 2) and −3 · (−s − 2) it follows that Ks = Q(

√
2). This yields

n = [Ks : Q] = 2, the ideal ds equals (75) and the ideal rs equals (15). The
order of (

√
2 mod (15)) in (Z[

√
2]/(15))∗ equals 8. We conclude that we can

set l = 4 · n + 1 = 9 and m = ωs = 8. Hence by Theorem 7.5 the equality
ε(s, p) = ε(s, q) holds if p, q ≥ 9 and p ≡ q mod 8. After we calculate ε(s, p) for
p = 3, 5, 7, 13, 17, 19, 31 the above corollary follows.

Corollary 7.7. Let s = 238
507 + 160

169

√
2. Then s is a universal starting value with

the set of bad primes equal to {2}. Furthermore we have

ε(s, p) = 1 if and only if p ≡ 5 mod 6 and p 6= 5.

Proof . Note that −3·(s−2) = (− 24
13 + 10

13

√
2)2 and −3·(−s−2) = (10

13 + 24
13

√
2)2.

Hence s is a universal starting value with bad prime 2 and in the group K∗/K∗2

the identity 4 − s2 = −3 · (s − 2) · −3 · (−s − 2) = 1 holds. By Theorem 7.5
we conclude that εs is periodic. Next we calculate l and m. From the identities
for −3 · (s − 2) and −3 · (−s − 2) it follows that Ks = Q(

√
2). This yields

n = [Ks : Q] = 2, the ideal ds equals (507) and the ideal rs equals (39). The
order of (

√
2 mod (39)) in (Z[

√
2]/(39))∗ equals 24. We conclude that we can

set l = 4 · n + 1 = 9 and m = ωs = 24. Hence by Theorem 7.5 the equality
ε(s, p) = ε(s, q) holds if p, q ≥ 9 and p ≡ q mod 24. After we calculate ε(s, p) for
p = 3, 5, 7, 13, 17, 19, 31, 107, 2281, 4253, 756839 the above corollary follows.

Corollary 7.8. Let s = 118
49 −

800
147

4
√

2− 96
49

4
√

2
2

+ 704
147

4
√

2
3
. Then s is a universal

starting value with the set of bad primes equal to {2, 3}. Furthermore we have

ε(s, p) = 1 if and only if p ≡ 5, 7 mod 12.

Proof . Note that −3 · (s−2) = ( 18
7 + 8

7
4
√

2− 8
7

4
√

2
2− 16

7
4
√

2
3
)2 and −3 · (−s−2) =

(− 16
7 + 16

7
4
√

2 + 18
7

4
√

2
2 − 4

7
4
√

2
3
)2. Hence s is a universal starting value with bad

primes 2 and 3, and in the group K∗/K∗2 the identity 4−s2 = −3 · (s−2) ·−3 ·
(−s − 2) = 1 holds. By Theorem 7.5 we conclude that εs is periodic. Next we
calculate l and m. From the identities for −3 · (s−2) and −3 · (−s−2) it follows
that Ks = Q(4

√
2). This yields n = [Ks : Q] = 4, the ideal ds divides (147) and

the ideal rs divides (21). The order of (4
√

2 mod (21)) in (Z[ 4
√

2]/(21))∗ equals
24. We conclude that we can set l = 4 · n+ 1 = 17 and m = ωs = 24. Hence by
Theorem 7.5 the equality ε(s, p) = ε(s, q) holds if p, q ≥ 17 and p ≡ q mod 24.
After we calculate ε(s, p) for p = 5, 7, 13, 17, 19, 31, 61, 107, 2281, 4253, 756839
the above corollary follows.
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Proof of the main theorem

We recall the notation of Chapters 4 and 5. Let s ∈ K be a potential starting
value, let α ∈ Q be a zero of fs = x16 − sx8 + 1, let Ls be the splitting field
of fs over Q(s) and let n ∈ Z>0 be such that Ks = Ls ∩ K = Q(n

√
2). Let

L′s = Ks(
√

4− s2, α+ α−1) (by Proposition 4.1 the field L′s is well-defined and
Galois over Ks) and let G′s be the Galois group of L′s over Ks.

Lemma 7.9. Let s ∈ K. Suppose 4 − s2 is a square in K∗. Then 4 − s2 is a
square in K∗s .

Proof . Clearly
√

4− s2 ∈ K∗ and by Proposition 4.1 we have
√

4− s2 ∈ Ls,
so
√

4− s2 ∈ K∗ ∩ Ls = K∗s . Hence 4− s2 is a square in K∗s .

Proof of Theorem 7.5. If P (s) ⊂ {2} then the theorem follows immediately.
Suppose P (s) 6⊂ {2}. Then P (s) contains an odd prime. By Theorem 3.2 the
value s is a potential starting value. Lemma 7.9 yields 4 − s2 ∈ (K∗s )2. Hence
K ′s, defined by K ′s = Ks(

√
4− s2), equals the field Ks, so by Proposition 4.3

the group G′s is cyclic of order 8.
Next we describe a modulus for L′s/Ks. Let f be the conductor of L′s/Ks.

Write f as the product (n
√

2)i · fodd where i ∈ Z≥0 and fodd is not divisible by the
prime (n

√
2). By Proposition 5.9 we know that all primes 6= (n

√
2) that ramify in

L′s/Ks divide ds and hence rs. By Theorem 6.3 and [L′s : Ks] = 8, the ideal
fodd equals the product of the primes 6= (n

√
2) that ramify in L′s/Ks. Hence fodd

divides rs. By Corollary 6.4 we have i ≤ 4n + 1. Hence m = (n
√

2)4n+1 · rs is a
modulus for L′s/Ks.

Suppose p, q ∈ P (s) satisfy p ≡ q mod ωs and p, q ≥ 4n+1. Letmp = n
√

2
p−1

and let mq = n
√

2
q − 1. By definition ωs is the order of n

√
2 in (Os/rs)∗, so

p ≡ q mod ωs implies mp ≡ mq mod rs. The assumption p, q ≥ 4n + 1 implies
mp ≡ mq mod (n

√
2)4n+1. Hence we have mp ≡ mq mod m. Let x = mp ·m−1

q .
The ideal m is a modulus for L′s/Ks, so ordp(x−1) ≥ ordp(f) for all prime ideals
p | f. The field Ks has two real embeddings, namely σ defined by σ(n

√
2) = n

√
2

and τ defined by τ(n
√

2) = −n
√

2. Since both p and q are odd, we see that
σ(x) > 0 and τ(x) > 0, i.e. x is totally positive in L′s/Ks. Now conditions
(i) and (ii) of Theorem 6.1 are satisfied, therefore we conclude that the ideal
(x) is in the kernel of the Artin map. Hence ((x), L′s/Ks) is the trivial element
of G′s, so ((mp), L

′
s/Ks) = ((mq), L

′
s/Ks). By Corollary 5.7 it follows that

εs(p) = εs(q).

Proof of Theorem 7.2. Let s ∈ Q be such that 4− s2 is a square in Q(
√

2)∗.
By Proposition 4.4 we have n = [Ks : Q(s)] = 2. From Theorem 7.5 it follows
that εs is periodic. Since s ∈ Q, we have ds = (ds), the ideal rs equals (rs) and
hence ωs divides 2 ·ws. Hence we can take l ≥ 4 ·2 + 1 = 9 and m = ωs = 2 ·ws.
Since p, q ∈ P (s) and p, q ≥ 9 imply p, q ≥ 13, we set l = 13.




