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Chapter 6

Class field theory

Theorem 5.6 relates the Lehmer symbol to the Frobenius symbol. For abelian
extensions of number fields one can calculate the Frobenius symbol using the
Artin map of class field theory. In this chapter we will introduce class field
theory. In the next chapter we will apply class field theory to prove properties
of the Lehmer symbol.

The Artin map

In this section we will briefly explain the Artin map. We also state the theorems
of class field theory concerning the Artin map that we apply in the next chapter.

Let F/E be a finite abelian extension of number fields with Galois group
G and discriminant ∆. Let p 6= 0 be a prime of E relatively prime to ∆, so
that p is unramified in F/E. Let P be a prime ideal of the ring of integers
of F such that P ∩ OE = p, i.e. P lies above p. In the previous chapter
we introduced the Frobenius symbol. The Frobenius symbol has the property
σ(P, F/E)σ−1 = (σ(P), F/E) for any σ ∈ G. The extension F/E is abelian, so
the Frobenius symbol does not depend on the choice of the prime P. Hence we
can define Frobp by (P, F/E).

Let I = IE(∆) be the group of fractional ideals generated by the prime ideals
p - ∆ of OE . The group I is a free abelian group generated by the set of primes
of E relatively prime to ∆. The Artin map is the group homomorphism

I → G

defined on the generators p of I by

p 7→ Frobp.

From class field theory it follows that the Artin map is surjective. This theory
also gives a description of the kernel of the Artin map.

In order to describe the kernel of the Artin map we will use the notion of a
totally positive element. A real embedding of E is a ring homomorphism from
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E to the field of real numbers R. An element x ∈ E is called totally positive in
F/E if for every real embedding σ of E which is not induced by a real embedding
of F we have σ(x) > 0.

Theorem 6.1. Let F/E be a finite abelian extension of number fields. Let OE
be the ring of integers of E. Then there exists a non-zero ideal f in OE, which
is divisible by all ramified primes in F/E, such that for each x ∈ E∗ with

(i) ordp(x− 1) ≥ ordp(f) for all prime ideals p | f,
(ii) x is totally positive in F/E,

the ideal (x) =
∏

p p
ordp(x) is in the kernel of the Artin map, where the product

runs over all prime ideals p of OE. Furthermore, the Artin map is surjective.

For a proof of Theorem 6.1 see [7, Chapter X, §1, Theorem 1] and [7, Chapter
X, §2, Theorem 2]. We call an ideal f for which the conclusion of Theorem 6.1
holds a modulus for F/E.

Theorem 6.2. If f1 and f2 are two moduli for F/E then their greatest common
divisor gcd(f1, f2) is also a modulus.

For a proof of Theorem 6.2 see [5, Chapter V, §6]. From Theorem 6.2 it follows
that for every extension F/E of number fields, we have a unique modulus f for
F/E such that every modulus of F/E is divisible by f. We call this modulus f
the conductor of F/E. (Readers already familiar with class field theory should
note that we give a different definition of modulus here than one would find in
the literature, since our definition of modulus does not allow the modulus to
“contain” the so-called infinite primes.) The following theorem gives an upper
bound for the conductor.

Theorem 6.3. Let F/E be a finite abelian extension of number fields. Let ∆
be the discriminant of F/E. Let f be the conductor of the extension. Then

f | gcd(∆, [F : E] ·
( ∏
p|[F :E]

p
)∏

p|∆

p),

where the first product runs over all primes of Z which divide [F : E] and the
second product runs over all primes p of E which divide ∆.

We will prove Theorem 6.3 in the next section, assuming the well-known fact
that f divides ∆ (see [11, Chapter 5, §3, Theorem 3.27]).

The following corollary gives an upper-bound of the 2-part of the conductor
in a special case.

Corollary 6.4. Let n ∈ Z>0, let L/Q(n
√

2) be an abelian extension of degree 8,

let f be the conductor of L/Q(n
√

2), and let m ∈ Z≥0 be such that n
√

2
m ‖ f. Then

we have m ≤ 4n+ 1.

Corollary 6.4 follows directly from Theorem 6.3. Indeed by Theorem 6.3 we
have (n

√
2)m | 8 · 2 · (n

√
2) = (n

√
2)4n+1 where m = ord(n

√
2)(f).
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An example: primes of the form x2 + 23y2

To illustrate how one can apply class field theory we will prove that we can
write a prime p as p = x2 + 23y2 with x, y ∈ Z if and only if x3−x+ 1 has three
zeros in Fp or p = 23 (for more examples see [1]).

The statement above is clear for p = 23. For the remaining part of this
section assume p 6= 23.

Let L be the splitting field of the polynomial f = x3−x+1. The polynomial
f has no zeros in F2, hence f is irreducible over Q. The discriminant of f is
−23. Therefore

√
−23 ∈ L. Hence Gal(L/Q) is isomorphic to the full symmetric

group of degree 3. Let F = Q(
√
−23). Now we show that the conductor of L/F

is 1. The only primes that ramify in L/Q divide the discriminant of f , so only
the prime (

√
−23) can ramify in L/F . Suppose for a contradiction that (

√
−23)

ramifies in L/F . Then 23 is totally ramified in L/Q, since L/Q is Galois. Hence
the inertia group of 23 in L/F is Gal(L/Q). However by Proposition 5.8(v) and
(vi) the inertia group of a tamely ramified prime is cyclic, hence we have a
contradiction. Therefore no prime ramifies in the extension L/F .

By Theorem 6.3 the conductor of L/F is 1. Note that F cannot be embedded
in the field of real numbers, so every element of F is totally positive. Now the
Artin Reciprocity Law implies that all principal ideals of F are in the kernel of
the (surjective) Artin map IF → Gal(L/F ). Let ClF be the class group of F .
The class number of F is 3. Hence the Artin map induces a isomorphism from
ClF to Gal(L/F ). This isomorphism implies that the Frobenius symbol of every
principal ideal in F in the extension L/F is trivial. Therefore every principal
prime ideal of F splits completely in L. Let p ∈ Z be a prime number. Then
p splits in F completely into principal ideals if and only if p splits completely
in L. Proposition 5.8(iii) implies: p splits completely in L if and only if f has
three zeros in Fp. Hence p splits in principal ideals in F if and only if f has
three zeros in Fp.

Let α = (1 +
√
−23)/2 and α = (1 −

√
−23)/2. The ring of integers OF is

Z[α]. Suppose p = x2 + 23y2. Then (p) is the product of the principal ideals
(x+

√
−23y) and (x−

√
−23y) of OF . Now suppose that p splits into principal

ideals in OF . Then we have p = (a + bα)(a + bα) = a2 + ab + 6b2. If b is odd,
then p is divisible by 2. Since p is an odd prime, b is even. Therefore we get
a + bα ∈ Z[

√
−23], so p can be written in the form x2 + 23y2. Hence p can be

written as x2 + 23y2 if and only if p splits into principal ideals in F .
Now we can conclude that p can be written as x2 + 23y2 if and only if f has

three zeros in Fp.

Estimating conductors

In this section we give a proof of Theorem 6.3 based on well-known theorems of
local class field theory and Newton polygons.

Let F/E be an abelian extension of number fields. Let f be the conductor
of F/E and let ∆ be the discriminant of F/E. A rough approximation of the
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conductor is given by the following theorem.

Theorem 6.5. We have f | ∆.

Proof . See [14, Chapter VI, §3, Corollary 2] or [11, Chapter 5, §3, Theorem
3.27].

The next theorem we state enables us to calculate the conductor.
Let p be a non-zero prime ideal of OE and let P be a prime ideal of OF

above p. Let FP/Ep be the corresponding abelian extension of local fields. Let
OEp

be the ring of integers of Ep. For i ∈ Z>0 we define the multiplicative
group Ui by 1 + pi and we let U0 = O∗Ep

. Denote the norm map from F ∗P to E∗p
by NFP/Ep

. Denote the subgroup NFP/Ep
(F ∗P) of E∗p by N , so

N = NFP/Ep
(F ∗P).

Theorem 6.6. Let i ∈ Z≥0 be the smallest integer such that Ui ⊂ N . Then we
have pi ‖ f.

Proof . See [14, Chapter XV, §2, Corollary 2].

In order to apply Theorem 6.6 efficiently we will use one of the main theorems
of local class field theory.

Let G be the Galois group of F/E. Since F/E is abelian, Proposition 5.8(ii)
implies that the decomposition group GP does not depend on the prime P above
p. Hence we can denote the decomposition group by Gp. Similarly we denote
the ramification groups by Vp,i. An element σ of the Galois group of FP/Ep

can be restricted to F . Since E ⊂ Ep, the element σ acts as the identity on E.
Therefore we have a restriction map r : Gal(FP/Ep)→ G. This map is injective
and the image of r is Gp (see [14, Chapter II, §3, Corollary 4]). Hence we can
identify Gal(FP/Ep) with Gp.

Theorem 6.7. We have a group isomorphism E∗p/N → Gp that for n ∈ {0, 1}
maps UnN/N bijectively to Vp,n.

Proof . For n = 0 see [14, Chapter IV, §3] and [14, Chapter XV, §2]. Suppose
n = 1. Then U1N/N is the Sylow p-subgroup of U0N/N (see [7, Chapter 2,
§3]). By Proposition 5.8(vi) the group Vp,1 is a Sylow p-subgroup of Vp,0. Hence
for n = 1 the theorem also holds.

Theorem 6.8. The prime ideal p is unramified in F if and only if p - f. Suppose
p is ramified in F . Then p is tamely ramified in F if and only if p ‖ f.

Proof . Assume p is unramified in F/E. Then Proposition 5.8(iv) implies that
Vp,0 is the trivial group. Hence the group isomorphism of Theorem 6.7 maps
U0N/N to the identity element of Gp. Therefore U0 ⊂ N . Now Theorem 6.6
implies p - f.

Assume p - f. Then Theorem 6.6 implies U0 ⊂ N . Therefore U0N/N is
the trivial group. By Theorem 6.7 the group Vp,0 is trivial. Hence Proposition
5.8(iv) implies p is unramified.
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Assume p is tamely ramified in F . Then Proposition 5.8(vi) implies that
Vp,1 is the trivial group. Hence the group isomorphism of Theorem 6.7 maps
U1N/N to the identity element of Gp. Therefore U1 ⊂ N . Since p is ramified,
Proposition 5.8(iv) implies that Vp,0 is a non-trivial group. From Theorem 6.7
we get that the group U0 is not contained in N . Now Theorem 6.6 implies p ‖ f.

Assume p ‖ f. Then Theorem 6.6 implies U1 ⊂ N . Therefore U1N/N is
the trivial group, so Theorem 6.7 implies that Vp,1 is the trivial group. Now
Proposition 5.8(vi) implies that p is tamely ramified.

Let p ∈ Z be the prime under p. Let e = e(p/p) = ordp(p) be the ramification
index of p in E/Q. Let b e

p−1c ∈ Z be such that 0 ≤ e
p−1 − b

e
p−1c < 1.

Lemma 6.9. Let i ∈ Z≥0. If i ≥ b e
p−1c+ 1 then the map Ui → Ui+e defined by

x 7→ xp is a group isomorphism.

Proof . Let O = OEp
be the ring of integers of Ep. Let π ∈ O be such that

(π) = p. Note that i ≥ b e
p−1c+ 1 implies i(p−1) ≥ e+ 1. Hence p · i ≥ i+ e+ 1.

Therefore πi+e+1 | πip. We will use this result in order to apply Hensel’s Lemma.
Since (p) = (π)e and πi+e+1 | πip, the coefficients of the polynomial (1 +

πiy)p − 1 = pπiy + . . . + πp·iyp ∈ O[y] are elements of (π)i+e · O. Hence for
all x ∈ Ui we have xp ∈ Ui+e, so the map φ : x 7→ xp from Ui to Ui+e is
well-defined.

To show that φ is a group isomorphism it suffices to prove that φ is a
bijection. First we show that φ is surjective. Let u ∈ Ui+e. Then we see
g(y) = (1 + πiy)p − u ∈ (π)i+e · O[y], so f(y) = g(y)/πi+e ∈ O[y]. Let
a ∈ O be such that u = 1 + pπia. Since πi+e+1 | πpi, we have g(a) =
1
2p(p−1)π2ia2 + . . .+πpiap ∈ πi+e+1 ·O. Hence we have π|f(a). The derivative
of f(y) equals f ′(y) = p · (1+πiy)p−1 ·πi ·π−i−e ∈ (1+πiy)p−1 ·O∗, so π - f ′(a).
Therefore Hensel’s Lemma implies that there exists an element α ∈ O such that
f(α) = 0. By definition of f(y) we see that g(y) also has a zero in O. This
proves that φ is surjective.

Let ζp be a primitive p-th root of unity. To show that φ is injective it suffices
to prove that ζp /∈ Ui. From above we know i(p − 1) ≥ e + 1. Hence we have
(π)i(p−1) - (π)e = (p) = (1− ζp)p−1. This implies 1− ζp /∈ πi · O. Therefore we
can conclude that ζp /∈ Ui. This finishes the proof of Lemma 6.9.

Proof of Theorem 6.3. By Theorem 6.8 only primes p that ramify in F/E
can divide the conductor f of F/E. We recall from Proposition 5.8(vi) that
Vp,1 is the p-part of the inertia group Vp,0 in F/E. We define ε by ε = ε(p) =
ordp(exponent of Vp,1), where p is the prime of Q below p. Now we prove that

Ub e
p−1 c+1+eε = Up

ε

b e
p−1 c+1 ⊂ U

pε

1 ⊂ N

hold (see just above Theorem 6.6 for the definition of N). The equality follows
from applying Lemma 6.9 precisely ε times starting with i = b e

p−1c + 1. The
first inclusion follows from Ub e

p−1 c+1 ⊂ U1. Now we prove the second inclusion.
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By definition of ε we have that pε annihilates Vp,1. Hence by Theorem 6.7 the

integer pε annihilates U1N/N . Therefore we have Up
ε

1 ⊂ N .
From Theorem 6.6 we get ordp(f) ≤ b e

p−1c + 1 + eε. Hence together with
Theorem 6.5 we have

f | gcd(∆,
∏
p|∆

pb
e(p)
p−1 c+1+e(p)ε(p)).

Now we prove that this result implies Theorem 6.3.
Assume that p is wildly ramified. Then p | ∆ implies p | [F : E]. Hence we

have ∏
p|∆

pb
e(p)
p−1 c

∣∣∣ ∏
p|[F :E]

∏
p|p

pe(p)
∣∣∣ ∏
p|[F :E]

p.

Let m(p) be the maximum of the set {ε(p) : p | p}. The order of Vp,1 divides
the order of G, so

m(p) ≤ ordp([F : E]).

Hence we have∏
p|∆

pε(p)e(p)
∣∣∣ ∏
p|[F :E]

∏
p|p

pe(p)ε(p)
∣∣∣ ∏
p|[F :E]

(∏
p|p

pe(p)
)m(p)

∣∣∣ ∏
p|[F :E]

pm(p) | [F : E].

Theorem 6.8 implies f divides
∏
p|[F :E] p ·

∏
p|∆ p · [F : E].




