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Chapter 5

The Lehmer symbol

In this chapter we state an observation made by Lehmer giving rise to what we
will call the Lehmer symbol (see [4, §A3, page 9]), which is the main object of
study in this thesis. After we have introduced this symbol, we will relate it to
the so-called Frobenius symbol. In Chapters 7 and 9 properties of the Frobenius
symbol will be used to prove properties of the Lehmer symbol.

Lehmer’s observation and the Frobenius symbol

We start with stating Lehmer’s observation. Let p ∈ Z>2 be such that Mp =
2p − 1 is prime, so in particular p is an odd prime. Let s ∈ K be a starting
value for p (see Definition 2.5). Let (s mod Mp) be as in Definition 2.4. Define
si for i ∈ {1, 2, . . . , p− 1} by s1 = (s mod Mp) and si+1 = s2

i − 2.

Proposition 5.1. Let the assumptions be as above. Then we have sp−2 =
ε(s, p)2(p+1)/2 for a unique ε(s, p) ∈ {−1,+1}.

In order to see this, note that by Theorem 2.1 we have sp−1 = 0. So Proposition
5.1 follows from

0 = sp−1 = s2
p−2 − 2 = s2

p−2 − 2p+1 = (sp−2 − 2(p+1)/2)(sp−2 + 2(p+1)/2)

and the fact that Mp is prime.

Now we will define ε(s, p) for s in the field K =
⋃∞
n=1 Q(n

√
2) of characteristic

zero. Take s ∈ K. Define P (s) by

P (s) = {p ∈ Z>2 : Mp is prime and s is a starting value for p}.

Definition 5.2. Let s ∈ K and p ∈ P (s). We define the Lehmer symbol ε(s, p)
by

ε(s, p) = ε(s mod Mp, p).

29



30 CHAPTER 5

Next we define the Frobenius symbol. Let F/E be a finite Galois extension of
number fields with Galois group G. Let m be a non-zero prime ideal of the ring
of integers OE of E that is unramified in F . Let M be a prime ideal of the ring
of integers OF of F above m, i.e. OE ∩M = m. Let H be a subgroup of G. We
denote the fixed field of H by L.

Theorem 5.3. There is a unique element FrobM in G with the property

∀x ∈ OF : FrobM(x) ≡ x#(OE/m) mod M,

where #(OE/m) is the number of elements of OE/m. Furthermore the inertia
degree of OL ∩M over m is 1 if and only if FrobM ∈ H.

For a proof of Theorem 5.3 see the next section. We call the unique element
FrobM of Theorem 5.3 the Frobenius symbol of M over E. If we want to make
the extension F/E explicit, then we denote FrobM by

(M, F/E) or
( M

F/E

)
.

The Galois group G acts transitively on the set of prime ideals of OF above
m and (σ(M), F/E) = σ(M, F/E)σ−1 for any σ ∈ G (see [7, Chapter I, §5]).
Therefore the conjugacy class of (M, F/E) in G does not depend on the choice
of a prime M above m. Hence we can define (m, F/E) to be the conjugacy class
of (M, F/E) in G. When it is clear in which extension we work we will denote
(m, F/E) by Frobm.

We will also use the so-called consistency property of the Frobenius symbol.
We will state this property in the next proposition. Let F ′ be a number field
such that E ⊂ F ′ ⊂ F and F ′/E Galois. Let M′ be the prime below M in F ′,
i.e. M′ = M ∩ F ′.

Proposition 5.4. We have (M, F/E)|F ′ = (M′, F ′/E), where (M, F/E)|F ′ is
the restriction of (M, F/E) to the field F ′.

For a proof of Proposition 5.4 see [7, Chapter X, §1].

Now we relate the Lehmer symbol and the Frobenius symbol. First we
recall some notation of Chapter 4. Let s ∈ K be a potential starting value,
let fs = x16 − sx8 + 1 and let Ls be the splitting field of fs over Q(s). Define
Ks by Ks = Ls ∩ K and let n ∈ Z>0 be such that Ks = Q(n

√
2). Define

K ′′s = Ks(
√
s− 2,

√
−s− 2). As in Chapter 4 let Gs = Gal(Ls/Ks) be the

Galois group of Ls over Ks. Recall that the equivalence relation ∼ on Gs is
defined by conjugation. Note that the set Gal(Ls/K

′′
s )gen of elements of order

8 in Gal(Ls/K
′′
s ) is closed under ∼.

Proposition 5.5. Let s ∈ K and let p ∈ P (s). Then the ideal (n
√

2
p−1) in OKs

is prime and unramified in Ls. Furthermore we have Frob((n
√

2
p− 1), Ls/Ks) ∈

Gal(Ls/K
′′
s )gen/∼.
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We prove Proposition 5.5 in the last section of this chapter. Recall the map

λs : Gal(Ls/K
′′
s )gen/∼ → {+1,−1}

of Chapter 4. We define the map

εs : P (s)→ {+1,−1}

by εs : p 7→ ε(s, p) and we define a map

Frob : P (s)→ Gal(Ls/K
′′
s )gen

by p 7→ Frob((n
√

2
p − 1), Ls/Ks). Note that this map is well-defined by Propo-

sition 5.5.
The following theorem relates the Lehmer symbol to the Frobenius symbol.

Theorem 5.6. Let s ∈ K be a potential starting value. Then the diagram

P (s)
εs //

Frob ))SSSSSSSSSSSSSSSS {+1,−1}

Gal(Ls/K
′′
s )gen/∼

λs

OO

commutes.

A proof of Theorem 5.6 can be found in the last section of this chapter.
We finish this section with a corollary of Theorem 5.6. First we recall some

notation of Chapter 4. The map r : Gal(Ls/K
′′
s )gen/∼ → Gal(L′s/K

′
s)

gen/∼
induced by the restriction map Gal(Ls/Ks) → Gal(L′s/Ks) is bijective. We
define the map Frob′ = r ◦ Frob from P (s) to Gal(L′s/K

′
s)

gen/∼. Note that

the consistency property implies Frob′(p) = Frob((n
√

2
p− 1), L′s/Ks). Recall the

map λ′s : Gal(L′s/K
′
s)

gen/∼ → {+1,−1} (see Definition 4.6). Now Theorem 5.6
and the definition of λ′s yield the following corollary.

Corollary 5.7. Let s ∈ K be a potential starting value. Then the diagram

P (s)
εs //

Frob′ ))SSSSSSSSSSSSSSSS {+1,−1}

Gal(L′s/K
′
s)

gen/∼

λ′s

OO

commutes.

Corollary 5.7 implies that if p, q ∈ P (s) and Frob′(p) = Frob′(q) then p and q
have the same Lehmer symbol.

In the next chapter we state well-known properties of the Frobenius symbol.
In the case Gal(L′s/Ks) is abelian these properties allow us to calculate the
Lehmer symbol more efficiently than by direct calculation of εs(p).
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Ramification and ramification groups

In this section we introduce decomposition groups and ramification groups. The
proposition that we state about these groups will imply Theorem 5.3.

Let F/E be a Galois extension of number fields with Galois group G. Let
M be a non-zero prime ideal of OF , let m = OE ∩M and let p ∈ Z be the prime
number below M, i.e. (p) = Z ∩M. We define the decomposition group GM of
M by

GM = {σ ∈ G : σ(M) = M}.

Since σ ∈ GM leaves M fixed and is the identity on OE , the element σ in-
duces an element σ of GM = Gal((OF /M)/(OE/m)). Hence we have a group
homomorphism

r : GM → GM.

For n ∈ Z≥0 we define the n-th ramification group VM,n of M by

VM,n = {σ ∈ G : for all x ∈ OF we have σ(x) ≡ x mod Mn+1}.

Denote the fixed field of GM by D and denote the fixed field of VM,n by Tn. Let
L be a number field such that E ⊂ L ⊂ F . In the following proposition we state
well-known results about the decomposition group and the ramification groups
that we will use in this thesis (see [14, Chapter 1 §7 and §8, Chapter 4]).

Proposition 5.8. We have:

(i) the map r is surjective and has kernel VM,0,
(ii) ∀σ ∈ G ∀n ∈ Z≥0 : Gσ(M) = σGMσ

−1 and Vσ(M),n = σVM,nσ
−1,

(iii) e(OL ∩M/m) = f(OL ∩M/m) = 1 if and only if L ⊂ D,
(iv) e(OL ∩M/m) = 1 if and only if L ⊂ T0,
(v) there is an injective group homomorphism VM,0/VM,1 → (OF /M)∗,
(vi) VM,1 = {σ ∈ VM,0 : order of σ equals pn for some n ∈ Z≥0}.

Proof of Theorem 5.3. Let the notation be as in Theorem 5.3. By assump-
tion m is unramified in F . Now proposition 5.8(iv) implies T0 = F , so V0 is the
trivial group. Hence by Proposition 5.8(i) the map r is an isomorphism. We
know by the theory of finite fields that there exists a unique element σ ∈ GM

defined by σ : x 7→ x#(OE/m) that generates GM. Hence there exists an element
FrobM ∈ G that has the property described in Theorem 5.3. To prove unique-
ness we have to show that every σ ∈ G with the property as described in The-
orem 5.3 belongs to GM. Let σ ∈ G be an element with the property described
in Theorem 5.3. Suppose x ∈M. Then we have σ(x) ≡ x#(OE/m) ≡ 0 mod M,
so σ(M) ⊂M. Since σ has finite order, we see that σ(M) = M. Hence we have
σ ∈ GM. Therefore we conclude that the element FrobM is unique. The second
part of Theorem 5.3 follows directly from (iii).

We finish this section with a proposition that controls the ramification in Ls/Ks.
Let ds = {x ∈ OKs : x · s ∈ OKs} be the denominator ideal of s ∈ K.
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Proposition 5.9. Let s ∈ K. If a non-zero prime ideal m of OKs ramifies in
Ls then m | 2ds or m ramifies in Ks(

√
4− s2).

Proof of Proposition 5.9. We recall from the first section of Chapter 4 that
Ls = Ks(α, ζ8). If a non-zero prime ideal m of OKs ramifies then it ramifies in
Ks(α

8, ζ8)/Ks or in Ls/Ks(α
8, ζ8).

By definition of α the element α8 is a zero of the polynomial x2−sx+1, hence
Ks(α

8, ζ8) = Ks(
√

4− s2, ζ8). In the extension Ks(ζ8)/Ks only the prime ideal
(n
√

2) can ramify, hence if m ramifies in Ks(α
8, ζ8)/Ks then m|2 or m ramifies in

Ks(
√

4− s2)/Ks.
Let d ∈ ds. Then d · s is an element of OK , so g = x2 − dsx + d2 ∈ OK [x].

Both dα8 and dα−8 are zeros of g. Hence it follows that dα8, dα−8 ∈ OK .
Therefore the zero dα of the polynomial x8 − (dα)8 is an algebraic integer.
Hence if m ramifies in Ls/Ks(α

8, ζ8) then m|8(dα)8 (see [7, Chapter II, §2]).
Similarly if m ramifies in Ls/Ks(α

8, ζ8) then m|8(dα−1)8. Therefore m divides
8(dα)8 · 8(dα−1)8 = 64d16, so m|2d. Hence if m ramifies in Ls/Ks(α

8, ζ8) then
m|2ds.

Relating the symbols

In this section we prove Proposition 5.5 (actually we prove a stronger result,
namely Proposition 5.10 below) and Theorem 5.6. Let s ∈ K. Recall the
definitions of Ls, L

′
s, K

′′
s , K ′s and Ks of Chapter 4.

Proposition 5.10. Let s ∈ K, take p ∈ P (s) and set n = [Ks : Q]. Define mp
to be the ideal (n

√
2
p − 1) of OKs . Then we have:

(i) s is a potential starting value,
(ii) mp is a prime ideal of OKs of degree one over Q unramified in Ls,
(iii) FrobMp generates the group Gal(Ls/K

′′
s ),

(iv) FrobM′p
generates the group Gal(L′s/K

′
s),

where Mp and M′p are prime ideals of OLs and OL′s above mp respectively.

Proof . (i) The assumption p ∈ P (s) implies by definition that s is a starting
value for p and that p is odd. Hence s is by Theorem 3.2 a potential starting
value.

(ii) By Proposition 4.4 the integer [Ks : Q(s)] equals 1 or 2. Since p ∈ P (s),
we have gcd(p, [Q(s) : Q]) = 1 and p is odd. Hence we have gcd(p, [Ks : Q]) = 1.

Since n is even, we see that the absolute norm of n
√

2
p−1 is (−1)n ·−Mp = −Mp.

Hence mp is a prime of degree one and the fields OKs/mp and Z/MpZ are
isomorphic. Since p ∈ P (s), we can write s = r/t with r ∈ Rp and t ∈ Sp (see
Definition 2.5). By definition of Rp and Sp there is a positive integer m ∈ nZ
such that r, t ∈ Z[m

√
2] and p - m. The prime Mp = (m

√
2
p − 1) of OQ(m

√
2) lies

above mp. Since t ∈ Sp and Sp is the inverse image of (Z/MpZ)∗ under the map
ϕp : Rp → Z/MpZ (see Chapter 2), the prime Mp does not divide the ideal (t)
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of OQ(m
√

2). Hence we have ordmp(s) ≥ 0, so 4 − s2 maps naturally to OKs/mp
and mp does not divide the denominator ideal ds of s.

Since s is a starting value for p, it follows that 4− s2 is a nonzero square in
Z/MpZ. Therefore 4−s2 is a nonzero square in OKs/mp, so mp splits completely
in Ks(

√
4− s2). Now Proposition 5.9 implies (ii).

(iii) From (ii) it follows that mp is unramified in Ls. In the proof of (ii) we
showed that ordmp(s) ≥ 0. Since s is a starting value for p, the elements s− 2
and −s − 2 are nonzero squares in Z/MpZ. Hence the natural images of s − 2
and −s− 2 are nonzero squares in OKs/mp. From this it follows that mp splits
completely in K ′′s = Ks(

√
s− 2,

√
−s− 2). The primes above mp in K ′′s are

inert in the extension K ′′s (α4 + α−4) = K ′′s (i) over K ′′s since
( −1
Mp

)
= −1. Now

Theorem 5.3 implies that (m′′p ,K
′′
s (i)/K ′′s ) generates Gal(K ′′s (i)/K ′′s ), where m′′p

is the prime of K ′′s below Mp. By Proposition 4.2 the extension Ls/K
′′
s is cyclic

of order 8. By Proposition 5.4 the element (m′′p , Ls/K
′′
s ) generates Gal(Ls/K

′′
s ).

Since Gal(Ls/K
′′
s ) is abelian and Mp lies above m′′p , the element (m′′p , Ls/K

′′
s )

equals FrobMp
. This completes the proof of (iii).

(iv) Take Mp above M′p. By (iii) we know that (Mp, Ls/Ks) generates
Gal(Ls/K

′′
s ). Using Proposition 4.2 and Proposition 5.4 for the extension Ks ⊂

L′s ⊂ Ls yields that (M′p, L
′
s/Ks) generates Gal(L′s/K

′
s).

Proof of Proposition 5.5. Directly from Proposition 5.10(ii) and (iii).

Proof of Theorem 5.6. Let OLs be the ring of integers of Ls. Since ring
morphisms respect inverting, it follows that Theorem 5.3 can also be applied to
elements x in the local ring (OLs)Mp

, where Mp is as above.
Let p ∈ P (s). Then (s mod Mp) ∈ Z/MpZ is defined. Hence α, a root of the

polynomial x16 − sx8 + 1, is an element of (OLs)Mp . By Theorem 5.3 we have

FrobMp(α)α+ FrobMp(α−1)α−1 = αMp+1 + α−(Mp+1) = (α8)2p−3

+ (α−8)2p−3

in the field OLs/Mp. Recall that

si+1 = s2
i − 2.

From s1 = s = α8 + α−8 we get sp−2 = (α8)2p−3

+ (α−8)2p−3

. Note ζ8 ∈ Ls
implies that n is even. Hence

√
2−2(p+1)/2 =

√
2(1−

√
2
p
) and Mp | (1−n

√
2
p
) |

(1−
√

2
p
) imply

(α8)2p−3

+ (α−8)2p−3

= sp−2 = ε(s, p)2(p+1)/2 = ε(s, p)
√

2

in the field OLs/Mp. This means that the equality

(FrobMp(α)α+ FrobMp(α−1)α−1)/
√

2 = ε(s, p)

holds in the field OLs/Mp. By Proposition 5.10(iii) the element [Frobmp ] is in
the domain of λs. Applying Proposition 4.5 we see that

εs = λs ◦ Frob.




