Mersenne primes and class field theory

Jansen, B.J.H.

Citation

Jansen, B. J. H. (2012, December 18). Mersenne primes and class field theory. Number Theory, Algebra and Geometry, Mathematical Instiute, Faculty of Science, Leiden University. Retrieved from https://hdl.handle.net/1887/20310

Version: Corrected Publisher's Version
License:
Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/20310

Note: To cite this publication please use the final published version (if applicable).

Universiteit Leiden

The handle http://hdl.handle.net/1887/20310 holds various files of this Leiden University dissertation.

Author: Jansen, Bas
Title: Mersenne primes and class field theory
Date: 2012-12-18

Chapter 5

The Lehmer symbol

In this chapter we state an observation made by Lehmer giving rise to what we will call the Lehmer symbol (see [4, §A3, page 9]), which is the main object of study in this thesis. After we have introduced this symbol, we will relate it to the so-called Frobenius symbol. In Chapters 7 and 9 properties of the Frobenius symbol will be used to prove properties of the Lehmer symbol.

Lehmer's observation and the Frobenius symbol

We start with stating Lehmer's observation. Let $p \in \mathbb{Z}_{>2}$ be such that $M_{p}=$ $2^{p}-1$ is prime, so in particular p is an odd prime. Let $s \in K$ be a starting value for p (see Definition 2.5). Let $\left(s \bmod M_{p}\right)$ be as in Definition 2.4. Define s_{i} for $i \in\{1,2, \ldots, p-1\}$ by $s_{1}=\left(s \bmod M_{p}\right)$ and $s_{i+1}=s_{i}^{2}-2$.

Proposition 5.1. Let the assumptions be as above. Then we have $s_{p-2}=$ $\epsilon(s, p) 2^{(p+1) / 2}$ for a unique $\epsilon(s, p) \in\{-1,+1\}$.

In order to see this, note that by Theorem 2.1 we have $s_{p-1}=0$. So Proposition 5.1 follows from

$$
0=s_{p-1}=s_{p-2}^{2}-2=s_{p-2}^{2}-2^{p+1}=\left(s_{p-2}-2^{(p+1) / 2}\right)\left(s_{p-2}+2^{(p+1) / 2}\right)
$$

and the fact that M_{p} is prime.
Now we will define $\epsilon(s, p)$ for s in the field $K=\bigcup_{n=1}^{\infty} \mathbb{Q}(\sqrt[n]{2})$ of characteristic zero. Take $s \in K$. Define $P(s)$ by

$$
P(s)=\left\{p \in \mathbb{Z}_{>2}: M_{p} \text { is prime and } s \text { is a starting value for } p\right\}
$$

Definition 5.2. Let $s \in K$ and $p \in P(s)$. We define the Lehmer symbol $\epsilon(s, p)$ by

$$
\epsilon(s, p)=\epsilon\left(s \bmod M_{p}, p\right)
$$

Next we define the Frobenius symbol. Let F / E be a finite Galois extension of number fields with Galois group G. Let \mathfrak{m} be a non-zero prime ideal of the ring of integers \mathcal{O}_{E} of E that is unramified in F. Let \mathfrak{M} be a prime ideal of the ring of integers \mathcal{O}_{F} of F above \mathfrak{m}, i.e. $\mathcal{O}_{E} \cap \mathfrak{M}=\mathfrak{m}$. Let H be a subgroup of G. We denote the fixed field of H by L.

Theorem 5.3. There is a unique element $\mathrm{Frob}_{\mathfrak{M}}$ in G with the property

$$
\forall x \in \mathcal{O}_{F}: \quad \operatorname{Frob}_{\mathfrak{M}}(x) \equiv x^{\#\left(\mathcal{O}_{E} / \mathfrak{m}\right)} \bmod \mathfrak{M}
$$

where $\#\left(\mathcal{O}_{E} / \mathfrak{m}\right)$ is the number of elements of $\mathcal{O}_{E} / \mathfrak{m}$. Furthermore the inertia degree of $\mathcal{O}_{L} \cap \mathfrak{M}$ over \mathfrak{m} is 1 if and only if $\mathrm{Frob}_{\mathfrak{M}} \in H$.

For a proof of Theorem 5.3 see the next section. We call the unique element Frob $_{\mathfrak{M}}$ of Theorem 5.3 the Frobenius symbol of \mathfrak{M} over E. If we want to make the extension F / E explicit, then we denote Frob $_{\mathfrak{M}}$ by

$$
(\mathfrak{M}, F / E) \text { or }\left(\frac{\mathfrak{M}}{F / E}\right) \text {. }
$$

The Galois group G acts transitively on the set of prime ideals of \mathcal{O}_{F} above \mathfrak{m} and $(\sigma(\mathfrak{M}), F / E)=\sigma(\mathfrak{M}, F / E) \sigma^{-1}$ for any $\sigma \in G$ (see [7, Chapter I, §5]). Therefore the conjugacy class of $(\mathfrak{M}, F / E)$ in G does not depend on the choice of a prime \mathfrak{M} above \mathfrak{m}. Hence we can define ($\mathfrak{m}, F / E$) to be the conjugacy class of $(\mathfrak{M}, F / E)$ in G. When it is clear in which extension we work we will denote $(\mathfrak{m}, F / E)$ by Frob $_{\mathfrak{m}}$.

We will also use the so-called consistency property of the Frobenius symbol. We will state this property in the next proposition. Let F^{\prime} be a number field such that $E \subset F^{\prime} \subset F$ and F^{\prime} / E Galois. Let \mathfrak{M}^{\prime} be the prime below \mathfrak{M} in F^{\prime}, i.e. $\mathfrak{M}^{\prime}=\mathfrak{M} \cap F^{\prime}$.

Proposition 5.4. We have $\left.(\mathfrak{M}, F / E)\right|_{F^{\prime}}=\left(\mathfrak{M}^{\prime}, F^{\prime} / E\right)$, where $\left.(\mathfrak{M}, F / E)\right|_{F^{\prime}}$ is the restriction of $(\mathfrak{M}, F / E)$ to the field F^{\prime}.

For a proof of Proposition 5.4 see [7, Chapter X, §1].
Now we relate the Lehmer symbol and the Frobenius symbol. First we recall some notation of Chapter 4 . Let $s \in K$ be a potential starting value, let $f_{s}=x^{16}-s x^{8}+1$ and let L_{s} be the splitting field of f_{s} over $\mathbb{Q}(s)$. Define K_{s} by $K_{s}=L_{s} \cap K$ and let $n \in \mathbb{Z}_{>0}$ be such that $K_{s}=\mathbb{Q}(\sqrt[n]{2})$. Define $K_{s}^{\prime \prime}=K_{s}(\sqrt{s-2}, \sqrt{-s-2})$. As in Chapter 4 let $G_{s}=\operatorname{Gal}\left(L_{s} / K_{s}\right)$ be the Galois group of L_{s} over K_{s}. Recall that the equivalence relation \sim on G_{s} is defined by conjugation. Note that the set $\operatorname{Gal}\left(L_{s} / K_{s}^{\prime \prime}\right)^{\text {gen }}$ of elements of order 8 in $\operatorname{Gal}\left(L_{s} / K_{s}^{\prime \prime}\right)$ is closed under \sim.

Proposition 5.5. Let $s \in K$ and let $p \in P(s)$. Then the ideal $\left(\sqrt[n]{2}^{p}-1\right)$ in $\mathcal{O}_{K_{s}}$ is prime and unramified in L_{s}. Furthermore we have $\operatorname{Frob}\left(\left(\sqrt[n]{2}^{p}-1\right), L_{s} / K_{s}\right) \in$ $\operatorname{Gal}\left(L_{s} / K_{s}^{\prime \prime}\right)^{\mathrm{gen}} / \sim$.

We prove Proposition 5.5 in the last section of this chapter. Recall the map

$$
\lambda_{s}: \operatorname{Gal}\left(L_{s} / K_{s}^{\prime \prime}\right)^{\mathrm{gen}} / \sim \rightarrow\{+1,-1\}
$$

of Chapter 4. We define the map

$$
\epsilon_{s}: P(s) \rightarrow\{+1,-1\}
$$

by $\epsilon_{s}: p \mapsto \epsilon(s, p)$ and we define a map

$$
\text { Frob : } P(s) \rightarrow \operatorname{Gal}\left(L_{s} / K_{s}^{\prime \prime}\right)^{\operatorname{gen}}
$$

by $p \mapsto \operatorname{Frob}\left(\left(\sqrt[n]{2}^{p}-1\right), L_{s} / K_{s}\right)$. Note that this map is well-defined by Proposition 5.5.

The following theorem relates the Lehmer symbol to the Frobenius symbol.
Theorem 5.6. Let $s \in K$ be a potential starting value. Then the diagram

commutes.
A proof of Theorem 5.6 can be found in the last section of this chapter.
We finish this section with a corollary of Theorem 5.6. First we recall some notation of Chapter 4. The map $r: \operatorname{Gal}\left(L_{s} / K_{s}^{\prime \prime}\right)^{\text {gen }} / \sim \rightarrow \operatorname{Gal}\left(L_{s}^{\prime} / K_{s}^{\prime}\right)^{\text {gen }} / \sim$ induced by the restriction map $\operatorname{Gal}\left(L_{s} / K_{s}\right) \rightarrow \operatorname{Gal}\left(L_{s}^{\prime} / K_{s}\right)$ is bijective. We define the map Frob ${ }^{\prime}=r \circ$ Frob from $P(s)$ to $\operatorname{Gal}\left(L_{s}^{\prime} / K_{s}^{\prime}\right)^{\text {gen }} / \sim$. Note that the consistency property implies $\operatorname{Frob}^{\prime}(p)=\operatorname{Frob}\left(\left(\sqrt[n]{2}^{p}-1\right), L_{s}^{\prime} / K_{s}\right)$. Recall the $\operatorname{map} \lambda_{s}^{\prime}: \operatorname{Gal}\left(L_{s}^{\prime} / K_{s}^{\prime}\right)^{\text {gen }} / \sim \rightarrow\{+1,-1\}$ (see Definition 4.6). Now Theorem 5.6 and the definition of λ_{s}^{\prime} yield the following corollary.

Corollary 5.7. Let $s \in K$ be a potential starting value. Then the diagram

commutes.
Corollary 5.7 implies that if $p, q \in P(s)$ and $\operatorname{Frob}^{\prime}(p)=\operatorname{Frob}^{\prime}(q)$ then p and q have the same Lehmer symbol.

In the next chapter we state well-known properties of the Frobenius symbol. In the case $\operatorname{Gal}\left(L_{s}^{\prime} / K_{s}\right)$ is abelian these properties allow us to calculate the Lehmer symbol more efficiently than by direct calculation of $\epsilon_{\mathcal{S}}(p)$.

Ramification and ramification groups

In this section we introduce decomposition groups and ramification groups. The proposition that we state about these groups will imply Theorem 5.3.

Let F / E be a Galois extension of number fields with Galois group G. Let \mathfrak{M} be a non-zero prime ideal of \mathcal{O}_{F}, let $\mathfrak{m}=\mathcal{O}_{E} \cap \mathfrak{M}$ and let $p \in \mathbb{Z}$ be the prime number below \mathfrak{M}, i.e. $(p)=\mathbb{Z} \cap \mathfrak{M}$. We define the decomposition group $G_{\mathfrak{M}}$ of \mathfrak{M} by

$$
G_{\mathfrak{M}}=\{\sigma \in G: \sigma(\mathfrak{M})=\mathfrak{M}\}
$$

Since $\sigma \in G_{\mathfrak{M}}$ leaves \mathfrak{M} fixed and is the identity on \mathcal{O}_{E}, the element σ induces an element $\bar{\sigma}$ of $\bar{G}_{\mathfrak{M}}=\operatorname{Gal}\left(\left(\mathcal{O}_{F} / \mathfrak{M}\right) /\left(\mathcal{O}_{E} / \mathfrak{m}\right)\right)$. Hence we have a group homomorphism

$$
r: G_{\mathfrak{M}} \rightarrow \bar{G}_{\mathfrak{M}} .
$$

For $n \in \mathbb{Z}_{\geq 0}$ we define the n-th ramification group $V_{\mathfrak{M}, n}$ of \mathfrak{M} by

$$
V_{\mathfrak{M}, n}=\left\{\sigma \in G: \text { for all } x \in \mathcal{O}_{F} \text { we have } \sigma(x) \equiv x \bmod \mathfrak{M}^{n+1}\right\}
$$

Denote the fixed field of $G_{\mathfrak{M}}$ by D and denote the fixed field of $V_{\mathfrak{M}, n}$ by T_{n}. Let L be a number field such that $E \subset L \subset F$. In the following proposition we state well-known results about the decomposition group and the ramification groups that we will use in this thesis (see [14, Chapter $1 \S 7$ and $\S 8$, Chapter 4]).

Proposition 5.8. We have:
(i) the map r is surjective and has kernel $V_{\mathfrak{M}, 0}$,
(ii) $\forall \sigma \in G \forall n \in \mathbb{Z}_{\geq 0}: G_{\sigma(\mathfrak{M})}=\sigma G_{\mathfrak{M}} \sigma^{-1}$ and $V_{\sigma(\mathfrak{M}), n}=\sigma V_{\mathfrak{M}, n} \sigma^{-1}$,
(iii) $e\left(\mathcal{O}_{L} \cap \mathfrak{M} / \mathfrak{m}\right)=f\left(\mathcal{O}_{L} \cap \mathfrak{M} / \mathfrak{m}\right)=1$ if and only if $L \subset D$,
(iv) $e\left(\mathcal{O}_{L} \cap \mathfrak{M} / \mathfrak{m}\right)=1$ if and only if $L \subset T_{0}$,
(v) there is an injective group homomorphism $V_{\mathfrak{M}, 0} / V_{\mathfrak{M}, 1} \rightarrow\left(\mathcal{O}_{F} / \mathfrak{M}\right)^{*}$,
(vi) $V_{\mathfrak{M}, 1}=\left\{\sigma \in V_{\mathfrak{M}, 0}\right.$: order of σ equals p^{n} for some $\left.n \in \mathbb{Z}_{\geq 0}\right\}$.

Proof of Theorem 5.3. Let the notation be as in Theorem 5.3. By assumption \mathfrak{m} is unramified in F. Now proposition $5.8(\mathrm{iv})$ implies $T_{0}=F$, so V_{0} is the trivial group. Hence by Proposition 5.8(i) the map r is an isomorphism. We know by the theory of finite fields that there exists a unique element $\bar{\sigma} \in \bar{G}_{\mathfrak{M}}$ defined by $\bar{\sigma}: x \mapsto x^{\#\left(\mathcal{O}_{E} / \mathfrak{m}\right)}$ that generates $\bar{G}_{\mathfrak{M}}$. Hence there exists an element $\operatorname{Frob}_{\mathfrak{M}} \in G$ that has the property described in Theorem 5.3. To prove uniqueness we have to show that every $\sigma \in G$ with the property as described in Theorem 5.3 belongs to $G_{\mathfrak{M}}$. Let $\sigma \in G$ be an element with the property described in Theorem 5.3. Suppose $x \in \mathfrak{M}$. Then we have $\sigma(x) \equiv x^{\#\left(\mathcal{O}_{E} / \mathfrak{m}\right)} \equiv 0 \bmod \mathfrak{M}$, so $\sigma(\mathfrak{M}) \subset \mathfrak{M}$. Since σ has finite order, we see that $\sigma(\mathfrak{M})=\mathfrak{M}$. Hence we have $\sigma \in G_{\mathfrak{M}}$. Therefore we conclude that the element $\operatorname{Frob}_{\mathfrak{M}}$ is unique. The second part of Theorem 5.3 follows directly from (iii).

We finish this section with a proposition that controls the ramification in L_{s} / K_{s}. Let $\mathfrak{d}_{s}=\left\{x \in \mathcal{O}_{K_{s}}: x \cdot s \in \mathcal{O}_{K_{s}}\right\}$ be the denominator ideal of $s \in K$.

Proposition 5.9. Let $s \in K$. If a non-zero prime ideal \mathfrak{m} of $\mathcal{O}_{K_{s}}$ ramifies in L_{s} then $\mathfrak{m} \mid 2 \mathfrak{d}_{s}$ or \mathfrak{m} ramifies in $K_{s}\left(\sqrt{4-s^{2}}\right)$.

Proof of Proposition 5.9. We recall from the first section of Chapter 4 that $L_{s}=K_{s}\left(\alpha, \zeta_{8}\right)$. If a non-zero prime ideal \mathfrak{m} of $\mathcal{O}_{K_{s}}$ ramifies then it ramifies in $K_{s}\left(\alpha^{8}, \zeta_{8}\right) / K_{s}$ or in $L_{s} / K_{s}\left(\alpha^{8}, \zeta_{8}\right)$.

By definition of α the element α^{8} is a zero of the polynomial $x^{2}-s x+1$, hence $K_{s}\left(\alpha^{8}, \zeta_{8}\right)=K_{s}\left(\sqrt{4-s^{2}}, \zeta_{8}\right)$. In the extension $K_{s}\left(\zeta_{8}\right) / K_{s}$ only the prime ideal $(\sqrt[n]{2})$ can ramify, hence if \mathfrak{m} ramifies in $K_{s}\left(\alpha^{8}, \zeta_{8}\right) / K_{s}$ then $\mathfrak{m} \mid 2$ or \mathfrak{m} ramifies in $K_{s}\left(\sqrt{4-s^{2}}\right) / K_{s}$.

Let $d \in \mathfrak{d}_{s}$. Then $d \cdot s$ is an element of \mathcal{O}_{K}, so $g=x^{2}-d s x+d^{2} \in \mathcal{O}_{K}[x]$. Both $d \alpha^{8}$ and $d \alpha^{-8}$ are zeros of g. Hence it follows that $d \alpha^{8}, d \alpha^{-8} \in \mathcal{O}_{K}$. Therefore the zero $d \alpha$ of the polynomial $x^{8}-(d \alpha)^{8}$ is an algebraic integer. Hence if \mathfrak{m} ramifies in $L_{s} / K_{s}\left(\alpha^{8}, \zeta_{8}\right)$ then $\mathfrak{m} \mid 8(d \alpha)^{8}$ (see [7, Chapter II, §2]). Similarly if \mathfrak{m} ramifies in $L_{s} / K_{s}\left(\alpha^{8}, \zeta_{8}\right)$ then $\mathfrak{m} \mid 8\left(d \alpha^{-1}\right)^{8}$. Therefore \mathfrak{m} divides $8(d \alpha)^{8} \cdot 8\left(d \alpha^{-1}\right)^{8}=64 d^{16}$, so $\mathfrak{m} \mid 2 d$. Hence if \mathfrak{m} ramifies in $L_{s} / K_{s}\left(\alpha^{8}, \zeta_{8}\right)$ then $\mathfrak{m} \mid 2 \mathfrak{d}_{s}$.

Relating the symbols

In this section we prove Proposition 5.5 (actually we prove a stronger result, namely Proposition 5.10 below) and Theorem 5.6. Let $s \in K$. Recall the definitions of $L_{s}, L_{s}^{\prime}, K_{s}^{\prime \prime}, K_{s}^{\prime}$ and K_{s} of Chapter 4.

Proposition 5.10. Let $s \in K$, take $p \in P(s)$ and set $n=\left[K_{s}: \mathbb{Q}\right]$. Define \mathfrak{m}_{p} to be the ideal $\left(\sqrt[n]{2}^{p}-1\right)$ of $\mathcal{O}_{K_{s}}$. Then we have:
(i) s is a potential starting value,
(ii) \mathfrak{m}_{p} is a prime ideal of $\mathcal{O}_{K_{s}}$ of degree one over \mathbb{Q} unramified in L_{s},
(iii) $\operatorname{Frob}_{\mathfrak{M}_{p}}$ generates the group $\operatorname{Gal}\left(L_{s} / K_{s}^{\prime \prime}\right)$,
(iv) $\operatorname{Frob}_{\mathfrak{M}_{p}^{\prime}}$ generates the group $\operatorname{Gal}\left(L_{s}^{\prime} / K_{s}^{\prime}\right)$,
where \mathfrak{M}_{p} and $\mathfrak{M}_{p}^{\prime}$ are prime ideals of $\mathcal{O}_{L_{s}}$ and $\mathcal{O}_{L_{s}^{\prime}}$ above \mathfrak{m}_{p} respectively.
Proof. (i) The assumption $p \in P(s)$ implies by definition that s is a starting value for p and that p is odd. Hence s is by Theorem 3.2 a potential starting value.
(ii) By Proposition 4.4 the integer $\left[K_{s}: \mathbb{Q}(s)\right]$ equals 1 or 2 . Since $p \in P(s)$, we have $\operatorname{gcd}(p,[\mathbb{Q}(s): \mathbb{Q}])=1$ and p is odd. Hence we have $\operatorname{gcd}\left(p,\left[K_{s}: \mathbb{Q}\right]\right)=1$. Since n is even, we see that the absolute norm of $\sqrt[n]{2}-1$ is $(-1)^{n} \cdot-M_{p}=-M_{p}$. Hence \mathfrak{m}_{p} is a prime of degree one and the fields $\mathcal{O}_{K_{s}} / \mathfrak{m}_{p}$ and $\mathbb{Z} / M_{p} \mathbb{Z}$ are isomorphic. Since $p \in P(s)$, we can write $s=r / t$ with $r \in R_{p}$ and $t \in S_{p}$ (see Definition 2.5). By definition of R_{p} and S_{p} there is a positive integer $m \in n \mathbb{Z}$ such that $r, t \in \mathbb{Z}[\sqrt[m]{2}]$ and $p \nmid m$. The prime $\mathfrak{M}_{p}=\left(\sqrt[m]{2}^{p}-1\right)$ of $\mathcal{O}_{\mathbb{Q}}(\sqrt[m]{2})$ lies above \mathfrak{m}_{p}. Since $t \in S_{p}$ and S_{p} is the inverse image of $\left(\mathbb{Z} / M_{p} \mathbb{Z}\right)^{*}$ under the map $\varphi_{p}: R_{p} \rightarrow \mathbb{Z} / M_{p} \mathbb{Z}$ (see Chapter 2), the prime \mathfrak{M}_{p} does not divide the ideal (t)
of $\mathcal{O}_{\mathbb{Q}(\sqrt[m]{2})}$. Hence we have $\operatorname{ord}_{\mathfrak{m}_{p}}(s) \geq 0$, so $4-s^{2}$ maps naturally to $\mathcal{O}_{K_{s}} / \mathfrak{m}_{p}$ and \mathfrak{m}_{p} does not divide the denominator ideal \mathfrak{d}_{s} of s.

Since s is a starting value for p, it follows that $4-s^{2}$ is a nonzero square in $\mathbb{Z} / M_{p} \mathbb{Z}$. Therefore $4-s^{2}$ is a nonzero square in $\mathcal{O}_{K_{s}} / \mathfrak{m}_{p}$, so \mathfrak{m}_{p} splits completely in $K_{s}\left(\sqrt{4-s^{2}}\right)$. Now Proposition 5.9 implies (ii).
(iii) From (ii) it follows that \mathfrak{m}_{p} is unramified in L_{s}. In the proof of (ii) we showed that $\operatorname{ord}_{\mathfrak{m}_{p}}(s) \geq 0$. Since s is a starting value for p, the elements $s-2$ and $-s-2$ are nonzero squares in $\mathbb{Z} / M_{p} \mathbb{Z}$. Hence the natural images of $s-2$ and $-s-2$ are nonzero squares in $\mathcal{O}_{K_{s}} / \mathfrak{m}_{p}$. From this it follows that \mathfrak{m}_{p} splits completely in $K_{s}^{\prime \prime}=K_{s}(\sqrt{s-2}, \sqrt{-s-2})$. The primes above \mathfrak{m}_{p} in $K_{s}^{\prime \prime}$ are inert in the extension $K_{s}^{\prime \prime}\left(\alpha^{4}+\alpha^{-4}\right)=K_{s}^{\prime \prime}(\mathrm{i})$ over $K_{s}^{\prime \prime}$ since $\left(\frac{-1}{M_{p}}\right)=-1$. Now Theorem 5.3 implies that $\left(\mathfrak{m}_{p}^{\prime \prime}, K_{s}^{\prime \prime}(\mathrm{i}) / K_{s}^{\prime \prime}\right)$ generates $\operatorname{Gal}\left(K_{s}^{\prime \prime}(\mathrm{i}) / K_{s}^{\prime \prime}\right)$, where $\mathfrak{m}_{p}^{\prime \prime}$ is the prime of $K_{s}^{\prime \prime}$ below \mathfrak{M}_{p}. By Proposition 4.2 the extension $L_{s} / K_{s}^{\prime \prime}$ is cyclic of order 8. By Proposition 5.4 the element $\left(\mathfrak{m}_{p}^{\prime \prime}, L_{s} / K_{s}^{\prime \prime}\right)$ generates $\operatorname{Gal}\left(L_{s} / K_{s}^{\prime \prime}\right)$. Since $\operatorname{Gal}\left(L_{s} / K_{s}^{\prime \prime}\right)$ is abelian and \mathfrak{M}_{p} lies above $\mathfrak{m}_{p}^{\prime \prime}$, the element $\left(\mathfrak{m}_{p}^{\prime \prime}, L_{s} / K_{s}^{\prime \prime}\right)$ equals Frob \mathfrak{M}_{p}. This completes the proof of (iii).
(iv) Take \mathfrak{M}_{p} above $\mathfrak{M}_{p}^{\prime}$. By (iii) we know that ($\mathfrak{M}_{p}, L_{s} / K_{s}$) generates $\operatorname{Gal}\left(L_{s} / K_{s}^{\prime \prime}\right)$. Using Proposition 4.2 and Proposition 5.4 for the extension $K_{s} \subset$ $L_{s}^{\prime} \subset L_{s}$ yields that $\left(\mathfrak{M}_{p}^{\prime}, L_{s}^{\prime} / K_{s}\right)$ generates $\operatorname{Gal}\left(L_{s}^{\prime} / K_{s}^{\prime}\right)$.

Proof of Proposition 5.5. Directly from Proposition 5.10(ii) and (iii).
Proof of Theorem 5.6. Let $\mathcal{O}_{L_{s}}$ be the ring of integers of L_{s}. Since ring morphisms respect inverting, it follows that Theorem 5.3 can also be applied to elements x in the local ring $\left(\mathcal{O}_{L_{s}}\right)_{\mathfrak{M}_{p}}$, where \mathfrak{M}_{p} is as above.

Let $p \in P(s)$. Then $\left(s \bmod M_{p}\right) \in \mathbb{Z} / M_{p} \mathbb{Z}$ is defined. Hence α, a root of the polynomial $x^{16}-s x^{8}+1$, is an element of $\left(\mathcal{O}_{L_{s}}\right)_{\mathfrak{M}_{p}}$. By Theorem 5.3 we have $\operatorname{Frob}_{\mathfrak{M}_{p}}(\alpha) \alpha+\operatorname{Frob}_{\mathfrak{M}_{p}}\left(\alpha^{-1}\right) \alpha^{-1}=\alpha^{M_{p}+1}+\alpha^{-\left(M_{p}+1\right)}=\left(\alpha^{8}\right)^{2^{p-3}}+\left(\alpha^{-8}\right)^{2^{p-3}}$ in the field $\mathcal{O}_{L_{s}} / \mathfrak{M}_{p}$. Recall that

$$
s_{i+1}=s_{i}^{2}-2
$$

From $s_{1}=s=\alpha^{8}+\alpha^{-8}$ we get $s_{p-2}=\left(\alpha^{8}\right)^{2^{p-3}}+\left(\alpha^{-8}\right)^{2^{p-3}}$. Note $\zeta_{8} \in L_{s}$ implies that n is even. Hence $\sqrt{2}-2^{(p+1) / 2}=\sqrt{2}\left(1-\sqrt{2}^{p}\right)$ and $\mathfrak{M}_{p}\left|\left(1-\sqrt[n]{2}^{p}\right)\right|$ $\left(1-\sqrt{2}^{p}\right)$ imply

$$
\left(\alpha^{8}\right)^{2^{p-3}}+\left(\alpha^{-8}\right)^{2^{p-3}}=s_{p-2}=\epsilon(s, p) 2^{(p+1) / 2}=\epsilon(s, p) \sqrt{2}
$$

in the field $\mathcal{O}_{L_{s}} / \mathfrak{M}_{p}$. This means that the equality

$$
\left(\operatorname{Frob}_{\mathfrak{M}_{p}}(\alpha) \alpha+\operatorname{Frob}_{\mathfrak{M}_{p}}\left(\alpha^{-1}\right) \alpha^{-1}\right) / \sqrt{2}=\epsilon(s, p)
$$

holds in the field $\mathcal{O}_{L_{s}} / \mathfrak{M}_{p}$. By Proposition 5.10 (iii) the element [Frob \mathfrak{m}_{p}] is in the domain of λ_{s}. Applying Proposition 4.5 we see that

$$
\epsilon_{s}=\lambda_{s} \circ \text { Frob. }
$$

