

Mersenne primes and class field theory Jansen, B.J.H.

Citation

Jansen, B. J. H. (2012, December 18). *Mersenne primes and class field theory*. Number Theory, Algebra and Geometry, Mathematical Institute, Faculty of Science, Leiden University. Retrieved from https://hdl.handle.net/1887/20310

Version:	Corrected Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/20310

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/20310</u> holds various files of this Leiden University dissertation.

Author: Jansen, Bas Title: Mersenne primes and class field theory Date: 2012-12-18

Chapter 5 The Lehmer symbol

In this chapter we state an observation made by Lehmer giving rise to what we will call the *Lehmer symbol* (see [4, §A3, page 9]), which is the main object of study in this thesis. After we have introduced this symbol, we will relate it to the so-called *Frobenius symbol*. In Chapters 7 and 9 properties of the Frobenius symbol will be used to prove properties of the Lehmer symbol.

Lehmer's observation and the Frobenius symbol

We start with stating Lehmer's observation. Let $p \in \mathbb{Z}_{>2}$ be such that $M_p = 2^p - 1$ is prime, so in particular p is an odd prime. Let $s \in K$ be a starting value for p (see Definition 2.5). Let $(s \mod M_p)$ be as in Definition 2.4. Define s_i for $i \in \{1, 2, \ldots, p-1\}$ by $s_1 = (s \mod M_p)$ and $s_{i+1} = s_i^2 - 2$.

Proposition 5.1. Let the assumptions be as above. Then we have $s_{p-2} = \epsilon(s,p)2^{(p+1)/2}$ for a unique $\epsilon(s,p) \in \{-1,+1\}$.

In order to see this, note that by Theorem 2.1 we have $s_{p-1} = 0$. So Proposition 5.1 follows from

$$0 = s_{p-1} = s_{p-2}^2 - 2 = s_{p-2}^2 - 2^{p+1} = (s_{p-2} - 2^{(p+1)/2})(s_{p-2} + 2^{(p+1)/2})$$

and the fact that M_p is prime.

Now we will define $\epsilon(s, p)$ for s in the field $K = \bigcup_{n=1}^{\infty} \mathbb{Q}(\sqrt[n]{2})$ of characteristic zero. Take $s \in K$. Define P(s) by

 $P(s) = \{ p \in \mathbb{Z}_{>2} : M_p \text{ is prime and } s \text{ is a starting value for } p \}.$

Definition 5.2. Let $s \in K$ and $p \in P(s)$. We define the Lehmer symbol $\epsilon(s, p)$ by

$$\epsilon(s, p) = \epsilon(s \mod M_p, p).$$

Next we define the Frobenius symbol. Let F/E be a finite Galois extension of number fields with Galois group G. Let \mathfrak{m} be a non-zero prime ideal of the ring of integers \mathcal{O}_E of E that is unramified in F. Let \mathfrak{M} be a prime ideal of the ring of integers \mathcal{O}_F of F above \mathfrak{m} , i.e. $\mathcal{O}_E \cap \mathfrak{M} = \mathfrak{m}$. Let H be a subgroup of G. We denote the fixed field of H by L.

Theorem 5.3. There is a unique element $\operatorname{Frob}_{\mathfrak{M}}$ in G with the property

$$\forall x \in \mathcal{O}_F$$
: Frob _{\mathfrak{M}} $(x) \equiv x^{\#(\mathcal{O}_E/\mathfrak{m})} \mod \mathfrak{M}$.

where $\#(\mathcal{O}_E/\mathfrak{m})$ is the number of elements of $\mathcal{O}_E/\mathfrak{m}$. Furthermore the inertia degree of $\mathcal{O}_L \cap \mathfrak{M}$ over \mathfrak{m} is 1 if and only if $\operatorname{Frob}_{\mathfrak{M}} \in H$.

For a proof of Theorem 5.3 see the next section. We call the unique element $\operatorname{Frob}_{\mathfrak{M}}$ of Theorem 5.3 the *Frobenius symbol* of \mathfrak{M} over E. If we want to make the extension F/E explicit, then we denote $\operatorname{Frob}_{\mathfrak{M}}$ by

$$(\mathfrak{M}, F/E)$$
 or $\left(\frac{\mathfrak{M}}{F/E}\right)$.

The Galois group G acts transitively on the set of prime ideals of \mathcal{O}_F above \mathfrak{m} and $(\sigma(\mathfrak{M}), F/E) = \sigma(\mathfrak{M}, F/E)\sigma^{-1}$ for any $\sigma \in G$ (see [7, Chapter I, §5]). Therefore the conjugacy class of $(\mathfrak{M}, F/E)$ in G does not depend on the choice of a prime \mathfrak{M} above \mathfrak{m} . Hence we can define $(\mathfrak{m}, F/E)$ to be the conjugacy class of $(\mathfrak{M}, F/E)$ in G. When it is clear in which extension we work we will denote $(\mathfrak{m}, F/E)$ by $\operatorname{Frob}_{\mathfrak{m}}$.

We will also use the so-called consistency property of the Frobenius symbol. We will state this property in the next proposition. Let F' be a number field such that $E \subset F' \subset F$ and F'/E Galois. Let \mathfrak{M}' be the prime below \mathfrak{M} in F', i.e. $\mathfrak{M}' = \mathfrak{M} \cap F'$.

Proposition 5.4. We have $(\mathfrak{M}, F/E)|_{F'} = (\mathfrak{M}', F'/E)$, where $(\mathfrak{M}, F/E)|_{F'}$ is the restriction of $(\mathfrak{M}, F/E)$ to the field F'.

For a proof of Proposition 5.4 see [7, Chapter X, §1].

Now we relate the Lehmer symbol and the Frobenius symbol. First we recall some notation of Chapter 4. Let $s \in K$ be a potential starting value, let $f_s = x^{16} - sx^8 + 1$ and let L_s be the splitting field of f_s over $\mathbb{Q}(s)$. Define K_s by $K_s = L_s \cap K$ and let $n \in \mathbb{Z}_{>0}$ be such that $K_s = \mathbb{Q}(\sqrt[n]{2})$. Define $K''_s = K_s(\sqrt{s-2},\sqrt{-s-2})$. As in Chapter 4 let $G_s = \operatorname{Gal}(L_s/K_s)$ be the Galois group of L_s over K_s . Recall that the equivalence relation \sim on G_s is defined by conjugation. Note that the set $\operatorname{Gal}(L_s/K''_s)^{\operatorname{gen}}$ of elements of order 8 in $\operatorname{Gal}(L_s/K''_s)$ is closed under \sim .

Proposition 5.5. Let $s \in K$ and let $p \in P(s)$. Then the ideal $(\sqrt[n]{2}^p - 1)$ in \mathcal{O}_{K_s} is prime and unramified in L_s . Furthermore we have $\operatorname{Frob}((\sqrt[n]{2}^p - 1), L_s/K_s) \in \operatorname{Gal}(L_s/K_s'')^{\operatorname{gen}}/\sim$.

We prove Proposition 5.5 in the last section of this chapter. Recall the map

$$\lambda_s : \operatorname{Gal}(L_s/K_s'')^{\operatorname{gen}}/\sim \to \{+1, -1\}$$

of Chapter 4. We define the map

$$\epsilon_s: P(s) \to \{+1, -1\}$$

by $\epsilon_s: p \mapsto \epsilon(s, p)$ and we define a map

Frob :
$$P(s) \to \operatorname{Gal}(L_s/K_s'')^{\operatorname{gen}}$$

by $p \mapsto \operatorname{Frob}((\sqrt[n]{2}^p - 1), L_s/K_s)$. Note that this map is well-defined by Proposition 5.5.

The following theorem relates the Lehmer symbol to the Frobenius symbol.

Theorem 5.6. Let $s \in K$ be a potential starting value. Then the diagram

commutes.

A proof of Theorem 5.6 can be found in the last section of this chapter.

We finish this section with a corollary of Theorem 5.6. First we recall some notation of Chapter 4. The map $r : \operatorname{Gal}(L_s/K'_s)^{\operatorname{gen}}/\sim \to \operatorname{Gal}(L'_s/K'_s)^{\operatorname{gen}}/\sim$ induced by the restriction map $\operatorname{Gal}(L_s/K_s) \to \operatorname{Gal}(L'_s/K_s)$ is bijective. We define the map $\operatorname{Frob}' = r \circ \operatorname{Frob}$ from P(s) to $\operatorname{Gal}(L'_s/K'_s)^{\operatorname{gen}}/\sim$. Note that the consistency property implies $\operatorname{Frob}'(p) = \operatorname{Frob}(\sqrt[n]{2^p} - 1), L'_s/K_s)$. Recall the map $\lambda'_s : \operatorname{Gal}(L'_s/K'_s)^{\operatorname{gen}}/\sim \to \{+1, -1\}$ (see Definition 4.6). Now Theorem 5.6 and the definition of λ'_s yield the following corollary.

Corollary 5.7. Let $s \in K$ be a potential starting value. Then the diagram

commutes.

Corollary 5.7 implies that if $p, q \in P(s)$ and $\operatorname{Frob}'(p) = \operatorname{Frob}'(q)$ then p and q have the same Lehmer symbol.

In the next chapter we state well-known properties of the Frobenius symbol. In the case $\operatorname{Gal}(L'_s/K_s)$ is abelian these properties allow us to calculate the Lehmer symbol more efficiently than by direct calculation of $\epsilon_s(p)$.

Ramification and ramification groups

In this section we introduce decomposition groups and ramification groups. The proposition that we state about these groups will imply Theorem 5.3.

Let F/E be a Galois extension of number fields with Galois group G. Let \mathfrak{M} be a non-zero prime ideal of \mathcal{O}_F , let $\mathfrak{m} = \mathcal{O}_E \cap \mathfrak{M}$ and let $p \in \mathbb{Z}$ be the prime number below \mathfrak{M} , i.e. $(p) = \mathbb{Z} \cap \mathfrak{M}$. We define the decomposition group $G_{\mathfrak{M}}$ of \mathfrak{M} by

$$G_{\mathfrak{M}} = \{ \sigma \in G : \sigma(\mathfrak{M}) = \mathfrak{M} \}.$$

Since $\sigma \in G_{\mathfrak{M}}$ leaves \mathfrak{M} fixed and is the identity on \mathcal{O}_E , the element σ induces an element $\overline{\sigma}$ of $\overline{G}_{\mathfrak{M}} = \operatorname{Gal}((\mathcal{O}_F/\mathfrak{M})/(\mathcal{O}_E/\mathfrak{m}))$. Hence we have a group homomorphism

$$r: G_{\mathfrak{M}} \to \overline{G}_{\mathfrak{M}}.$$

For $n \in \mathbb{Z}_{>0}$ we define the *n*-th ramification group $V_{\mathfrak{M},n}$ of \mathfrak{M} by

$$V_{\mathfrak{M},n} = \{ \sigma \in G : \text{for all } x \in \mathcal{O}_F \text{ we have } \sigma(x) \equiv x \mod \mathfrak{M}^{n+1} \}.$$

Denote the fixed field of $G_{\mathfrak{M}}$ by D and denote the fixed field of $V_{\mathfrak{M},n}$ by T_n . Let L be a number field such that $E \subset L \subset F$. In the following proposition we state well-known results about the decomposition group and the ramification groups that we will use in this thesis (see [14, Chapter 1 §7 and §8, Chapter 4]).

Proposition 5.8. We have:

- (i) the map r is surjective and has kernel $V_{\mathfrak{M},0}$,
- (ii) $\forall \sigma \in G \ \forall n \in \mathbb{Z}_{\geq 0}: \ G_{\sigma(\mathfrak{M})} = \sigma G_{\mathfrak{M}} \sigma^{-1} \ and \ V_{\sigma(\mathfrak{M}),n} = \sigma V_{\mathfrak{M},n} \sigma^{-1},$
- (iii) $e(\mathcal{O}_L \cap \mathfrak{M}/\mathfrak{m}) = f(\mathcal{O}_L \cap \mathfrak{M}/\mathfrak{m}) = 1$ if and only if $L \subset D$,
- (iv) $e(\mathcal{O}_L \cap \mathfrak{M}/\mathfrak{m}) = 1$ if and only if $L \subset T_0$,
- (v) there is an injective group homomorphism $V_{\mathfrak{M},0}/V_{\mathfrak{M},1} \to (\mathcal{O}_F/\mathfrak{M})^*$,
- (vi) $V_{\mathfrak{M},1} = \{ \sigma \in V_{\mathfrak{M},0} : \text{ order of } \sigma \text{ equals } p^n \text{ for some } n \in \mathbb{Z}_{\geq 0} \}.$

Proof of Theorem 5.3. Let the notation be as in Theorem 5.3. By assumption \mathfrak{m} is unramified in F. Now proposition 5.8(iv) implies $T_0 = F$, so V_0 is the trivial group. Hence by Proposition 5.8(i) the map r is an isomorphism. We know by the theory of finite fields that there exists a unique element $\overline{\sigma} \in \overline{G}_{\mathfrak{M}}$ defined by $\overline{\sigma} : x \mapsto x^{\#(\mathcal{O}_E/\mathfrak{m})}$ that generates $\overline{G}_{\mathfrak{M}}$. Hence there exists an element $\mathrm{Frob}_{\mathfrak{M}} \in G$ that has the property described in Theorem 5.3. To prove uniqueness we have to show that every $\sigma \in G$ with the property as described in Theorem 5.3 belongs to $G_{\mathfrak{M}}$. Let $\sigma \in G$ be an element with the property described in Theorem 5.3. Suppose $x \in \mathfrak{M}$. Then we have $\sigma(x) \equiv x^{\#(\mathcal{O}_E/\mathfrak{m})} \equiv 0 \mod \mathfrak{M}$, so $\sigma(\mathfrak{M}) \subset \mathfrak{M}$. Since σ has finite order, we see that $\sigma(\mathfrak{M}) = \mathfrak{M}$. Hence we have $\sigma \in G_{\mathfrak{M}}$. Therefore we conclude that the element $\mathrm{Frob}_{\mathfrak{M}}$ is unique. The second part of Theorem 5.3 follows directly from (iii).

We finish this section with a proposition that controls the ramification in L_s/K_s . Let $\mathfrak{d}_s = \{x \in \mathcal{O}_{K_s} : x \cdot s \in \mathcal{O}_{K_s}\}$ be the denominator ideal of $s \in K$. **Proposition 5.9.** Let $s \in K$. If a non-zero prime ideal \mathfrak{m} of \mathcal{O}_{K_s} ramifies in L_s then $\mathfrak{m} \mid 2\mathfrak{d}_s$ or \mathfrak{m} ramifies in $K_s(\sqrt{4-s^2})$.

Proof of Proposition 5.9. We recall from the first section of Chapter 4 that $L_s = K_s(\alpha, \zeta_8)$. If a non-zero prime ideal \mathfrak{m} of \mathcal{O}_{K_s} ramifies then it ramifies in $K_s(\alpha^8, \zeta_8)/K_s$ or in $L_s/K_s(\alpha^8, \zeta_8)$.

By definition of α the element α^8 is a zero of the polynomial $x^2 - sx + 1$, hence $K_s(\alpha^8, \zeta_8) = K_s(\sqrt{4-s^2}, \zeta_8)$. In the extension $K_s(\zeta_8)/K_s$ only the prime ideal $(\sqrt[n]{2})$ can ramify, hence if \mathfrak{m} ramifies in $K_s(\alpha^8, \zeta_8)/K_s$ then $\mathfrak{m}|_2$ or \mathfrak{m} ramifies in $K_s(\sqrt{4-s^2})/K_s$.

Let $d \in \mathfrak{d}_s$. Then $d \cdot s$ is an element of \mathcal{O}_K , so $g = x^2 - dsx + d^2 \in \mathcal{O}_K[x]$. Both $d\alpha^8$ and $d\alpha^{-8}$ are zeros of g. Hence it follows that $d\alpha^8, d\alpha^{-8} \in \mathcal{O}_K$. Therefore the zero $d\alpha$ of the polynomial $x^8 - (d\alpha)^8$ is an algebraic integer. Hence if \mathfrak{m} ramifies in $L_s/K_s(\alpha^8, \zeta_8)$ then $\mathfrak{m}|8(d\alpha)^8$ (see [7, Chapter II, §2]). Similarly if \mathfrak{m} ramifies in $L_s/K_s(\alpha^8, \zeta_8)$ then $\mathfrak{m}|8(d\alpha^{-1})^8$. Therefore \mathfrak{m} divides $8(d\alpha)^8 \cdot 8(d\alpha^{-1})^8 = 64d^{16}$, so $\mathfrak{m}|2d$. Hence if \mathfrak{m} ramifies in $L_s/K_s(\alpha^8, \zeta_8)$ then $\mathfrak{m}|8(d\alpha^{-1})^8 = 64d^{16}$.

Relating the symbols

In this section we prove Proposition 5.5 (actually we prove a stronger result, namely Proposition 5.10 below) and Theorem 5.6. Let $s \in K$. Recall the definitions of L_s , L'_s , K''_s , K'_s and K_s of Chapter 4.

Proposition 5.10. Let $s \in K$, take $p \in P(s)$ and set $n = [K_s : \mathbb{Q}]$. Define \mathfrak{m}_p to be the ideal $(\sqrt[n]{2}^p - 1)$ of \mathcal{O}_{K_s} . Then we have:

- (i) s is a potential starting value,
- (ii) \mathfrak{m}_p is a prime ideal of \mathcal{O}_{K_s} of degree one over \mathbb{Q} unramified in L_s ,
- (iii) Frob_{\mathfrak{M}_p} generates the group Gal (L_s/K''_s) ,
- (iv) Frob_{\mathfrak{M}'_{s}} generates the group $\operatorname{Gal}(L'_{s}/K'_{s})$,

where \mathfrak{M}_p and \mathfrak{M}'_p are prime ideals of \mathcal{O}_{L_s} and $\mathcal{O}_{L'_s}$ above \mathfrak{m}_p respectively.

Proof. (i) The assumption $p \in P(s)$ implies by definition that s is a starting value for p and that p is odd. Hence s is by Theorem 3.2 a potential starting value.

(ii) By Proposition 4.4 the integer $[K_s : \mathbb{Q}(s)]$ equals 1 or 2. Since $p \in P(s)$, we have $gcd(p, [\mathbb{Q}(s) : \mathbb{Q}]) = 1$ and p is odd. Hence we have $gcd(p, [K_s : \mathbb{Q}]) = 1$. Since n is even, we see that the absolute norm of $\sqrt[n]{2}^p - 1$ is $(-1)^n \cdot -M_p = -M_p$. Hence \mathfrak{m}_p is a prime of degree one and the fields $\mathcal{O}_{K_s}/\mathfrak{m}_p$ and $\mathbb{Z}/M_p\mathbb{Z}$ are isomorphic. Since $p \in P(s)$, we can write s = r/t with $r \in R_p$ and $t \in S_p$ (see Definition 2.5). By definition of R_p and S_p there is a positive integer $m \in n\mathbb{Z}$ such that $r, t \in \mathbb{Z}[\sqrt[m]{2}]$ and $p \nmid m$. The prime $\mathfrak{M}_p = (\sqrt[m]{2}^p - 1)$ of $\mathcal{O}_{\mathbb{Q}(\sqrt[m]{2})}$ lies above \mathfrak{m}_p . Since $t \in S_p$ and S_p is the inverse image of $(\mathbb{Z}/M_p\mathbb{Z})^*$ under the map $\varphi_p : R_p \to \mathbb{Z}/M_p\mathbb{Z}$ (see Chapter 2), the prime \mathfrak{M}_p does not divide the ideal (t) of $\mathcal{O}_{\mathbb{Q}(\sqrt[m]{2})}$. Hence we have $\operatorname{ord}_{\mathfrak{m}_p}(s) \geq 0$, so $4 - s^2$ maps naturally to $\mathcal{O}_{K_s}/\mathfrak{m}_p$ and \mathfrak{m}_p does not divide the denominator ideal \mathfrak{d}_s of s.

Since s is a starting value for p, it follows that $4 - s^2$ is a nonzero square in $\mathbb{Z}/M_p\mathbb{Z}$. Therefore $4-s^2$ is a nonzero square in $\mathcal{O}_{K_s}/\mathfrak{m}_p$, so \mathfrak{m}_p splits completely in $K_s(\sqrt{4-s^2})$. Now Proposition 5.9 implies (ii).

(iii) From (ii) it follows that \mathfrak{m}_p is unramified in L_s . In the proof of (ii) we showed that $\operatorname{ord}_{\mathfrak{m}_p}(s) \geq 0$. Since s is a starting value for p, the elements s-2 and -s-2 are nonzero squares in $\mathbb{Z}/M_p\mathbb{Z}$. Hence the natural images of s-2 and -s-2 are nonzero squares in $\mathcal{O}_{K_s}/\mathfrak{m}_p$. From this it follows that \mathfrak{m}_p splits completely in $K''_s = K_s(\sqrt{s-2},\sqrt{-s-2})$. The primes above \mathfrak{m}_p in K''_s are inert in the extension $K''_s(\alpha^4 + \alpha^{-4}) = K''_s(\mathrm{i})$ over K''_s since $\left(\frac{-1}{M_p}\right) = -1$. Now Theorem 5.3 implies that $(\mathfrak{m}''_p, K''_s(\mathrm{i})/K''_s)$ generates $\operatorname{Gal}(K''_s(\mathrm{i})/K''_s)$, where \mathfrak{m}''_p is the prime of K''_s below \mathfrak{M}_p . By Proposition 4.2 the extension L_s/K''_s is cyclic of order 8. By Proposition 5.4 the element $(\mathfrak{m}''_p, L_s/K''_s)$ generates $\operatorname{Gal}(L_s/K''_s)$ equals $\operatorname{Frob}_{\mathfrak{M}_p}$. This completes the proof of (iii).

(iv) Take \mathfrak{M}_p above \mathfrak{M}'_p . By (iii) we know that $(\mathfrak{M}_p, L_s/K_s)$ generates $\operatorname{Gal}(L_s/K''_s)$. Using Proposition 4.2 and Proposition 5.4 for the extension $K_s \subset L'_s \subset L_s$ yields that $(\mathfrak{M}'_p, L'_s/K_s)$ generates $\operatorname{Gal}(L'_s/K'_s)$.

Proof of Proposition 5.5. Directly from Proposition 5.10(ii) and (iii). \Box

Proof of Theorem 5.6. Let \mathcal{O}_{L_s} be the ring of integers of L_s . Since ring morphisms respect inverting, it follows that Theorem 5.3 can also be applied to elements x in the local ring $(\mathcal{O}_{L_s})_{\mathfrak{M}_p}$, where \mathfrak{M}_p is as above.

Let $p \in P(s)$. Then $(s \mod M_p) \in \mathbb{Z}/M_p\mathbb{Z}$ is defined. Hence α , a root of the polynomial $x^{16} - sx^8 + 1$, is an element of $(\mathcal{O}_{L_s})_{\mathfrak{M}_p}$. By Theorem 5.3 we have

$$\operatorname{Frob}_{\mathfrak{M}_p}(\alpha)\alpha + \operatorname{Frob}_{\mathfrak{M}_p}(\alpha^{-1})\alpha^{-1} = \alpha^{M_p+1} + \alpha^{-(M_p+1)} = (\alpha^8)^{2^{p-3}} + (\alpha^{-8})^{2^{p-3}}$$

in the field $\mathcal{O}_{L_s}/\mathfrak{M}_p$. Recall that

$$s_{i+1} = s_i^2 - 2.$$

From $s_1 = s = \alpha^8 + \alpha^{-8}$ we get $s_{p-2} = (\alpha^8)^{2^{p-3}} + (\alpha^{-8})^{2^{p-3}}$. Note $\zeta_8 \in L_s$ implies that *n* is even. Hence $\sqrt{2} - 2^{(p+1)/2} = \sqrt{2}(1 - \sqrt{2}^p)$ and $\mathfrak{M}_p \mid (1 - \sqrt[n]{2}^p) \mid (1 - \sqrt{2}^p)$ imply

$$(\alpha^8)^{2^{p-3}} + (\alpha^{-8})^{2^{p-3}} = s_{p-2} = \epsilon(s,p)2^{(p+1)/2} = \epsilon(s,p)\sqrt{2}$$

in the field $\mathcal{O}_{L_s}/\mathfrak{M}_p$. This means that the equality

$$(\operatorname{Frob}_{\mathfrak{M}_p}(\alpha)\alpha + \operatorname{Frob}_{\mathfrak{M}_p}(\alpha^{-1})\alpha^{-1})/\sqrt{2} = \epsilon(s,p)$$

holds in the field $\mathcal{O}_{L_s}/\mathfrak{M}_p$. By Proposition 5.10(iii) the element $[\operatorname{Frob}_{\mathfrak{m}_p}]$ is in the domain of λ_s . Applying Proposition 4.5 we see that

$$\epsilon_s = \lambda_s \circ \text{Frob.}$$