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Chapter 4

Auxiliary fields

In this chapter we construct, for every potential starting value in K, a Galois
extension that is useful to calculate its Lehmer symbol. The orders of their
Galois groups will divide 32.

Auxiliary Galois groups

We recall that Q is the algebraic closure of Q inside the field of complex numbers.
Let

K =

∞⋃
n=1

Q(
n
√

2)

be as in Chapter 2. For s ∈ K let fs = x16 − sx8 + 1 ∈ K[x]. In this chapter
we will study the Galois group Gs of fs over K for potential starting values s
in K .

We define, for s ∈ K, a Galois extension of number fields with a Galois group
that is naturally isomorphic to Gs. Our results on Gs will be stated in terms
of this Galois group of number fields. Let Ls be the splitting field of fs over
Q(s). Define Ks by Ks = K ∩ Ls. The elements of Gs can be restricted to the
field Ls. This restriction induces a natural isomorphism from Gs to Gal(Ls/Ks)
(see Theorem 3.12). In the remainder of this chapter we will study Gal(Ls/Ks),
which we will also denoted by Gs.

To describe Gs we use some field extensions of Ks that are contained in Ls.
Let

K ′s = Ks(
√

4− s2)

and let
K ′′s = Ks(

√
s− 2,

√
−s− 2).

Let α ∈ Q be a zero of fs and let ζ8 ∈ Q be a primitive 8th root of unity that
satisfies ζ8 +ζ−1

8 =
√

2 (recall that
√

2 ∈ R>0). The zeros of fs are ζi8α
±1 where

i ∈ Z/8Z. Let
L′s = K ′s(α+ α−1).

21



22 CHAPTER 4

Proposition 4.1 implies that L′s does not depend on the choice of α.
The following three propositions, which we prove in the last section, state

the information about the Galois group of fs over Ks that we will use.

Proposition 4.1. Let s ∈ K. Let α and β be zeros of fs. Then Ls is K ′′s (α+
α−1), the extension L′s/Ks is Galois, K ′s(α + α−1) equals K ′s(β + β−1) and
[K ′′s : Ks] equals 2 or 4.

From this proposition we get the field diagram

Ls
��

� ??
?

L′s
???

K ′′s
���

K ′s
��

�

Ks

in which every field is Galois over Ks.
For our purposes it suffices to study Gal(Ls/K

′
s) and Gal(L′s/Ks) rather

than the entire Galois group of Ls over Ks. Furthermore we will concentrate
on potential starting values s ∈ K, i.e. s ∈ S (see Proposition 3.3).

Proposition 4.2. Let s ∈ S. Then the restriction map from Gal(Ls/K
′
s) to

Gal(L′s/K
′
s) × Gal(K ′′s /K

′
s) is an isomorphism and the group Gal(Ls/K

′′
s ) is

cyclic of order 8. Furthermore Gal(Ls/K
′′
s ) is generated by a unique element ω

that satisfies ω(α) = ζ−1
8 α−1 and ω(ζ8) = ζ−1

8 .

From Proposition 4.2 we conclude that Gal(L′s/Ks) is cyclic of order 8 if Ks =
K ′s and s ∈ S. The following proposition describes the Galois group of L′s over
Ks also if Ks 6= K ′s.

Proposition 4.3. Let s ∈ S. Then the exact sequence

1→ Gal(L′s/K
′
s)→ Gal(L′s/Ks)→ Gal(K ′s/Ks)→ 1

splits, where Gal(L′s/K
′
s) is cyclic of order 8 and Gal(K ′s/Ks) has order 1 or

2. If Gal(K ′s/Ks) has order 2, then the action of the non-trivial element of
Gal(K ′s/Ks) on Gal(L′s/K

′
s) sends a group element to its inverse.

Define Q′′s = Q(s,
√

2,
√
s− 2,

√
−s− 2). The next proposition, which we prove

in the last section, is useful for calculating the field Ks.

Proposition 4.4. Let s ∈ S. Then we have K ′′s = Q′′s , Ks = Q′′s ∩ K and
[Ks : Q(s)] ≤ 2.

Remark. Define Q′s = Q(s,
√

2,
√

4− s2). Then [K ′s : Q′s] is 2 for s =
√

2 + 2 ∈
S. Hence in general we do not have K ′s = Q′s.
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Galois groups and signs

The proposition and definitions of this section will be used in the next chapter
to relate certain elements of the Galois group of Ls/Ks to the Lehmer symbol.

Let s ∈ S. By Proposition 3.3 we have i /∈ K ′′s . Since i ∈ Ls, Propo-
sition 4.2 implies that each element of Gal(Ls/K

′′
s )\Gal(Ls/K

′′
s (i)) generates

Gal(Ls/K
′′
s ). We denote Gal(Ls/K

′′
s )\Gal(Ls/K

′′
s (i)) by Gal(Ls/K

′′
s )gen.

Now we define the equivalence relation ∼ for σ, τ ∈ Gs by σ ∼ τ if σ is
conjugate to τ . We denote the equivalence class of σ ∈ Gs by [σ]. Since
Gal(Ls/K

′′
s ) is a normal subgroup of Gs and conjugate elements have the same

order, the set Gal(Ls/K
′′
s )gen is a union of conjugacy classes.

Proposition 4.5. Let s ∈ S. Then the map

λs : Gal(Ls/K
′′
s )gen/∼ → {+1,−1}

defined by

λs : [ρ] 7→ ρ(α)α+ ρ(α−1)α−1

√
2

,

does not depend on the choice of α ∈ Q. Moreover, if ω is as in Proposition
4.2, then λ−1

s (+1) equals {[ω], [ω7]} and λ−1
s (−1) equals {[ω3], [ω5]}.

A proof of this proposition can be found in the last section of this chapter.
By Proposition 4.3 the Galois group Gal(L′s/K

′
s) is cyclic of order 8. We

denote the set of elements of order 8 of Gal(L′s/K
′
s) by Gal(L′s/K

′
s)

gen. Sim-
ilarly as above we can define an equivalence relation ∼ on Gal(L′s/Ks): for
σ, τ ∈ Gal(L′s/Ks) we have σ ∼ τ if σ is conjugate to τ . Proposition 4.1 and
Proposition 4.2 imply that the restriction map Gal(Ls/K

′′
s ) → Gal(L′s/K

′
s) is

an isomorphism. This map induces a bijective map r : Gal(L′′s/Ks)
gen/∼ →

Gal(L′s/K
′
s)

gen/∼. Now we can give the following definition.

Definition 4.6. Let s ∈ S. We define the map

λ′s : Gal(L′s/K
′
s)

gen/∼ → {+1,−1}

by λ′s = λs ◦ r−1.

Next we describe the set Gal(L′s/K
′
s)

gen. By definition of K ′′s the field K ′′s (i)
equals K ′′s (

√
s+ 2) and by Proposition 3.3 we have

√
s+ 2 /∈ K ′′s , so K ′s(

√
s+ 2)

is a quadratic extension of K ′s. By definition of α we get (α8)2 − sα8 + 1 = 0,
so the identity s = α8 + α−8 holds. From this identity we see that s + 2 =
(((α+ α−1)2 − 2)2 − 2)2. By definition L′s equals K ′s(α+ α−1), so K ′s(

√
s+ 2)

is a subfield of L′s. Hence the only quadratic extension of L′s/K
′
s is K ′s(

√
s+ 2).

This leads to the following description of Gal(L′s/K
′
s)

gen.

Proposition 4.7. Let s ∈ S. Then the set Gal(L′s/K
′
s)

gen is equal to set
Gal(L′s/K

′
s)\Gal(Ls/K

′′
s (
√
s+ 2)).
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Examples

In this section we calculate the Galois extensions Ls of Ks and their groups for
s = 2/3, s = 4, s =

√
2, s = 0, s = −2 and s = 2. We recall that S is the set of

potential starting values in K and Gs = Gal(Ls/Ks). For n ∈ Z>0 we write Cn
for a cyclic group of order n.

Example s = 2/3. In this case s is a universal starting value, so by Theo-
rem 3.2 we have s ∈ S. Note that

√
4− s2 = 4

√
2/3, so by Proposition 4.4 we

have Ks = Q(
√

2) and by definition of K ′s we have Ks = K ′s. Hence Proposition
4.1 and Proposition 4.2 imply that Gs is isomorphic to C8 × C2.

Example s = 4. In this case s is a universal starting value, so by Theo-
rem 3.2 we have s ∈ S. Note that

√
s− 2 =

√
2, so by Proposition 4.4 we have

Ks = Q(
√

2) and by definition of K ′′s we have K ′s = K ′′s . Hence Proposition 4.1
and Proposition 4.3 imply that Gs is a dihedral group of 16 elements.

Example s =
√

2. Set s1 = s and si+1 = s2
i − 2 for i ∈ Z>0. Then s2 = 0,

s3 = −2 and si = 2 for i > 3, so for q ∈ Z>0 we have sq−1 ≡ 0 mod Mq if
and only if q = 3. By Theorem 2.1 the value s is a starting value for q = 3,
so by Theorem 3.2 we have s ∈ S. Let ζ64 be a primitive 64-th root of unity
such that ζ8

64 = ζ8. The identity ζ16
64 − (ζ8 + ζ−1

8 )ζ8
64 + 1 = 0 shows that ζ64 is a

zero of fs. Hence Ls is the cyclotomic field Q(ζ64). The identity
√

4− s2 =
√

2
yields Ks = K ′s. By Corollary 3.5 we have Q(s) = Ks = Q(

√
2). We have

32 = [Q(ζ64) : Q] = [Ls : K ′s] · [K ′s : Q] = [Ls : K ′s] · 2, so [Ls : K ′s] = 16. Hence
Proposition 4.2 implies that Gs is isomorphic to C8 × C2.

Example s = 0. Note that s /∈ S. Let ζ32 be a primitive 32-nd root of unity.
The field Ls is Q(ζ32). The extension Ls/Q is abelian, therefore Corollary 3.6
implies Ks ⊂ Q(

√
2). On the other hand

√
2 ∈ Ks, so Ks = Q(

√
2). Note that√

4− s2 = 2, hence Ks = K ′s = Q(
√

2). Since Ks = Q(
√

2) = Q(ζ4
32 + ζ−4

32 ),
it follows that the Galois group of Ls over Ks is isomorphic to the group
{a ∈ (Z/32Z)∗ : ζ4

32 + ζ−4
32 = ζ4a

32 + ζ−4a
32 } = 〈7,−1〉, i.e. Gs is isomorphic

to C4 × C2.

Example s = −2. Note that s /∈ S. Let ζ16 be a primitive 16-th root of unity.
The field Ls is Q(ζ16). The extension Ls/Q is abelian, therefore Corollary 3.6
implies Ks ⊂ Q(

√
2). On the other hand

√
2 ∈ Ks, so Ks = Q(

√
2). Note that√

4− s2 = 0, hence Ks = K ′s = Q(
√

2). Since Ks = Q(
√

2) = Q(ζ2
16 + ζ−2

16 ),
it follows that the Galois group of Ls over Ks is isomorphic to the group
{a ∈ (Z/16Z)∗ : ζ2

16 + ζ−2
16 = ζ2a

16 + ζ−2a
16 } = 〈7,−1〉, i.e. Gs is isomorphic

to C2 × C2.

Example s = 2. Note that s /∈ S. Let ζ8 be a primitive 8-th root of unity.
The field Ls is Q(ζ8). The extension Ls/Q is abelian, therefore Corollary 3.6
implies Ks ⊂ Q(

√
2). On the other hand

√
2 ∈ Ks, so Ks = Q(

√
2). Note that
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√
4− s2 = 0, hence Ks = K ′s = Q(

√
2). Hence Gs is isomorphic to C2.

Calculating a Galois group

In this last section we prove the propositions of the first section and Proposition
4.5 of this chapter.

For convenience we give an overview of the fields defined in this chapter.

Ls
��

� ??
?

L′s
��� ???

K ′′s
��� ???

L′′s
??

?
K ′s

��
� ???

Q′′s
���

Ks

??
? Q′s

���

Qs

Let s ∈ K, let fs = x16−sx8 +1 and let Ls be the splitting field of fs over Q(s).
Define Qs = Q(s,

√
2). In this section we study the Galois group Gal(Ls/Qs).

Recall Ks = Ls ∩K. Note that this Galois group contains Gs = Gal(Ls/Ks).
Define Q′s = Qs(

√
4− s2) and recall Q′′s = Qs(

√
s− 2,

√
−s− 2). Recall that α

is a zero of fs. Define L′′s = Ks(α+α−1). The field L′′s may depend on the choice
of α. Recall the definitions of the fields K ′s, K

′′
s , L′s and Ls. For convenience we

give an overview of the fields defined in this chapter. The inclusions L′s ⊂ Ls
and K ′′s ⊂ Ls follow from the next proposition. All other inclusions in the field
diagram above follow directly from the definitions of the fields. We stress again
that L′′s may depend on the choice of α. However from the next proposition it
follows that L′s does not depend on the choice of α.

Proposition 4.8. Let s ∈ K. Let α and β be zeros of fs. Then Ls equals
Q′′s (α+ α−1), the extension Q′s(α+ α−1)/Qs is Galois and Q′s(α+ α−1) equals
Q′s(β + β−1).

Proof. Let E = Q′′s (α + α−1). First we prove E ⊂ Ls. Since α is a zero of
fs = x16 − sx8 + 1, it follows that

α8 + α−8 = s, (4.1)

hence
(α4 + α−4)2 = s+ 2 (4.2)

and
(α4 − α−4)2 = s− 2. (4.3)

The element ζ8 is contained in Ls, so Ls also contains the square roots of −s−2.
Hence Q′′s ⊂ Ls. Since α ∈ Ls, we see α + α−1 ∈ Ls, so E ⊂ Ls, as desired.
Next we show Ls ⊂ E. It suffices to show that ζ8, α ∈ E. Equation (4.2) implies
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√
s+ 2 ∈ E. By definition s−2 is a square in Q′′s , so in the case s = −2 we have√
−4 ∈ E and in the case s 6= −2 we have

√
−s− 2/

√
s+ 2 =

√
−1 ∈ E. Since√

2 ∈ E, we conclude ζ8 ∈ E. Suppose α2 +α−2 = 0 or α+α−1 = 0. Then α is
an element of the multiplicative group 〈ζ8〉, so Ls ⊂ E. Now suppose that both
α2 +α−2 and α+α−1 are non-zero. Then the equation (α2 +α−2)(α2−α−2) =
α4−α−4 yields α2−α−2 ∈ E. Similarly (α+α−1)(α−α−1) = α2−α−2 implies
α− α−1 ∈ E. Hence α ∈ E, so Ls ⊂ E. We conclude Ls = Q′′s (α+ α−1).

Next we prove Q′s(α+ α−1)/Qs is Galois and Q′s(α+ α−1) = Q′s(β + β−1).
If s = ±2, then this follows from the fact that Ls ⊂ Q(ζ16) and α + α−1 ∈ Q′s
(see the last two examples in the previous section). Suppose s 6= ±2. The
field Ls is defined to be the splitting field of fs over Q(s), so Ls is Galois over
Q(s) and also over Qs. Let σ be an element of the Galois group of Ls over
Q′s(α + α−1). The equation α + α−1 = σ(α + α−1) implies that σ keeps the
coefficients of (x − α)(x − α−1) fixed, so σ(α) = α±1. Since

√
2 ∈ Qs, we also

have σ(ζ8) = ζ±1
8 . From equation (4.2) and (4.3) we get

(ζ2
8 (α8 − α−8))2 = 4− s2. (4.4)

Since s 6= ±2, equation (4.4) yields α 6= α−1. We have
√

4− s2 ∈ Q′s, so σ keeps
ζ2
8 (α8 − α−8) fixed. Hence either σ acts trivially on both α and ζ8 or σ sends

both α and ζ8 to their multiplicative inverses. This implies that σ either is the
identity or sends every zero of fs to its multiplicative inverse. Therefore σ is in
the center of Gs. Hence Q′s(α+ α−1)/Qs is Galois.

The element β is also a root of fs, thus σ(β + β−1) = β + β−1. Hence
β + β−1 ∈ Q′s(α + α−1) and by symmetry α + α−1 ∈ Q′s(β + β−1), so Q′s(α +
α−1) = Q′s(β + β−1).

Recall the definition of K ′′s .

Proof of Proposition 4.1. The first three statements of Proposition 4.1 fol-
low directly from Proposition 4.8 and the inclusions in the field diagram above.

It remains to show that [K ′′s : Ks] = 2 or 4. From the definition of K ′′s it
is clear that [K ′′s : Ks] = 1, 2 or 4. The sum of s − 2 and −s − 2 is negative.
Therefore K ′′s contains a square root of a negative real number, so K ′′s is not
contained in R. Since Ks ⊂ R, the results follows.

Proposition 4.9. Let s ∈ S. Then the group Gal(Ls/Q′′s ) is cyclic of order
8. Furthermore Gal(Ls/Q′′s ) is generated by a unique element ω that satisfies
ω(α) = ζ−1

8 α−1 and ω(ζ8) = ζ−1
8 .

Proof. Proposition 3.3 implies i /∈ Q′′s , so there exists an element σ in the
Galois group Gal(Ls/Q′′s ) such that σ(i) = −i. Since ζ8 + ζ−1

8 ∈ Q′′s , we have
σ(ζ8) = ζ−1

8 . From
√
−s− 2 ∈ Q′′s we get Q′′s (

√
s+ 2) = Q′′s (i), so σ(

√
s+ 2) =

−
√
s+ 2. Since

√
s− 2 ∈ Q′′s , we have

σ((
√
s− 2 +

√
s+ 2)/2) · (

√
s− 2 +

√
s+ 2)/2 = (s− 2− (s+ 2))/4 = −1.

Equations (4.2) and (4.3) imply α4 = (
√
s− 2 +

√
s+ 2)/2 for some choice of√

s+ 2 and
√
s− 2. By the above calculation σ(α4)α4 = −1. Hence σ(α) =
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ζi8α
−1 where i ∈ {1, 3, 5, 7}. Since σ2(α) = ±iα and σ4(α) = −α, we see that

σ has order 8. Taking a suitable odd power of σ we get ω ∈ Gal(Ls/Q′′s ) as
defined in the proposition. Clearly the order of ω is 8. By equation (4.2) the
element α + α−1 is a zero of the polynomial ((x2 − 2)2 − 2)2 − (s + 2). From
Proposition 4.8 we get Ls = Q′′s (α + α−1). This yields [Ls : Q′′s ] ≤ 8. Hence ω
generates Gal(Ls/Q′′s ), so Gal(Ls/Q′′s ) is cyclic of order 8.

Proof of Proposition 4.4. By definition of Q′′s the Galois group of Q′′s/Q(s)
is an abelian 2-group. Proposition 4.9 yields that Gal(Ls/Q′′s ) is cyclic of order
8. Proposition 3.3 implies i /∈ Q′′sK. Since ζ8 ∈ Ls, we have i ∈ Ls. If
we set n = [Q(s) : Q], E = Q′′s and F = Ls, then all the hypotheses of
Proposition 3.7 are satisfied. Proposition 3.7 implies [Ls ∩K : Q′′s ∩K] = 1 and
Corollary 3.6 implies [Q′′s ∩K : Q(s)] ≤ 2. By definition Ks = Ls ∩K, therefore
[Ks : Q(s)] = [Q′′s ∩K : Q(s)] ≤ 2 and Ks = Ls ∩K = Q′′s ∩K . Thus Ks ⊂ Q′′s ,
so K ′′s ⊂ Q′′s . Clearly Q′′s ⊂ K ′′s , thus we have K ′′s = Q′′s .

Lemma 4.10. Let s ∈ K be a potential starting value. Then L′s ∩ K ′′s = K ′s
and L′′s ∩K ′s = Ks.

Proof. By Proposition 4.4 we have K ′′s = Q′′s and from Proposition 4.8 we get
Ls = K ′′s (α + α−1). Hence Proposition 4.9 implies [Ls : K ′′s ] = 8. This yields
[L′s : K ′s] ≥ 8 and [L′′s : Ks] ≥ 8. Since the element α + α−1 is a zero of the
polynomial ((x2 − 2)2 − 2)2 − (s + 2), we can conclude that [L′s : K ′s] = 8 and
[L′′s : Ks] = 8. We have 8 = [Ls : K ′′s ] ≤ [L′s : L′s ∩ K ′′s ] ≤ [L′s : K ′s] = 8, so
L′s∩K ′′s = K ′s. Similarly we have 8 = [L′s : K ′s] ≤ [L′′s : L′′s∩K ′s] ≤ [L′′s : Ks] = 8,
so L′′s ∩K ′s = Ks.

Proof of Proposition 4.2. Let s ∈ S. Then Proposition 4.1, Proposition
4.4 and Lemma 4.10 imply Ls = K ′′s L

′
s, L

′
s ∩ K ′′s = K ′s and both L′s/K

′
s and

K ′′s /K
′
s are Galois. Hence the restriction map from Gal(Ls/K

′
s) to Gal(L′s/K

′
s)×

Gal(K ′′s /K
′
s) is an isomorphism. The second part of the proposition follows

directly from Proposition 4.4 and Proposition 4.9.

Proof of Proposition 4.3. By definition of L′s we have L′s = L′′sK
′
s. From

Lemma 4.10 we get L′′s ∩ K ′s = Ks. The group Gal(L′s/K
′
s) is normal in

Gal(L′s/Ks). HenceGs = Gal(L′s/L
′′
s )Gal(L′s/K

′
s) and Gal(L′s/L

′′
s )∩Gal(L′s/K

′
s)

is the trivial subgroup of Gs, so the exact sequence in the proposition splits.
Proposition 4.2 implies that Gal(L′s/K

′
s) is cyclic of order 8. From the

definition of K ′s we see [K ′s : Ks] = 1 or 2. Suppose [K ′s : Ks] = 2. Then
by Lemma 4.10 we have [L′s : L′′s ] = 2. Let σ ∈ Gal(Ls/L

′′
s )\Gal(Ls/L

′
s).

The equation α + α−1 = σ(α + α−1) implies that σ keeps the coefficients of
(x − α)(x − α−1) fixed, so σ(α) = α±1. Since σ does not leave

√
4− s2 fixed

and ζ8 + ζ−1
8 ∈ Ks, equation (4.4) implies: if σ(α) = α then σ(ζ8) = ζ−1

8 ,
and if σ(α) = α−1 then σ(ζ8) = ζ8. These two possibilities yield σ(ζ8α) =
ζ−1
8 α or ζ8α

−1. Let ω be as in Proposition 4.2. Now we calculate σωσω(α +
α−1). We have σωσω(α + α−1) = σωσ(ζ−1

8 α−1 + ζ8α) = σω(ζ−1
8 α + ζ8α

−1) =
σ(ζ8ζ

−1
8 α−1 +ζ−1

8 ζ8α) = σ(α+α−1) = α+α−1. One easily sees σωσω(ζ8) = ζ8.
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Hence σωσω is the identity of Gal(Ls/L
′′
s ), so σωσ = ω−1. Now we restrict every

element in the identity σωσ = ω−1 to the field L′s in order to conclude that the
non-trivial element of Gal(K ′s/Ks) acts as −1 on Gal(L′s/K

′
s).

Proof of Proposition 4.5. Let s ∈ S and let α a zero of fs. In the following
table we calculated the action of ωi on α and ζ8 for i ∈ Z≥0.

ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7

α ζ−1
8 α−1 ζ2

8α ζ−3
8 α−1 ζ4

8α ζ−5
8 α−1 ζ6

8α ζ−7
8 α−1

ζ8 ζ−1
8 ζ8 ζ−1

8 ζ8 ζ−1
8 ζ8 ζ−1

8

Let j ∈ {1, 3, 5, 7}. Then

λs([ω
j ]) =

ωj(α)α+ ωj(α−1)α−1

√
2

=
ζ−jα−1α+ ζjαα−1

√
2

=
ζj8 + ζ−j8√

2

is an element of {+1,−1}. Let β be a zero of fs. Then β equals ζi8α
±1 for some

i ∈ Z/8Z and choice of sign. Since

ωj(β)β = ωj(ζi8α
±1)ζi8α

±1 = ζ−i8 ωj(α±1)ζi8α
±1 = ωj(α±1)α±1,

we also see that λs is independent of the choice of α. By definition of ζ8 we have
ζ8 + ζ−1

8 =
√

2 = ζ7
8 + ζ−7

8 . Multiplying the equation by ζ4
8 we see ζ3

8 + ζ−3
8 =

−
√

2 = ζ5
8 + ζ−5

8 . Hence λs([ω]) = λs([ω
7]) = +1 and λs([ω

3]) = λs([ω
5]) = −1.

Since [ω] ⊂ {ω, ω−1} (see end of the proof of Proposition 4.3), we see that λs is
well-defined.

Let s be a potential starting value. The following proposition will be used in
Chapter 9. It describes the intermediate fields of L′s/K

′
s.

Proposition 4.11. Let s be a potential starting value. Then we have the in-
clusions

K ′s ( K ′s(
√

2 + s) ( K ′s

(√
2 +
√

2 + s
)
( K ′s

(√
2 +

√
2 +
√

2 + s
)

= L′s.

Moreover these fields are all the intermediate fields of the extension L′s/K
′
s.

Proof. Since α is a zero of f = x16 − sx8 + 1, it follows that α8 + α−8 = s.
Hence (((α+ α−1)2 − 2)2 − 2)2 equals 2 + s. By Proposition 4.1 the field L′s is
Galois over Ks. Hence we have

K ′s

(√
2 +

√
2 +
√

2 + s
)

= L′s.

By Proposition 4.3 the Galois group of L′s/K
′
s is cyclic of order 8. From this

Proposition 4.11 follows.




