Mersenne primes and class field theory

Jansen, B.J.H.

Citation

Jansen, B. J. H. (2012, December 18). Mersenne primes and class field theory. Number Theory, Algebra and Geometry, Mathematical Instiute, Faculty of Science, Leiden University. Retrieved from https://hdl.handle.net/1887/20310

Version: Corrected Publisher's Version
License:
Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/20310

Note: To cite this publication please use the final published version (if applicable).

Universiteit Leiden

The handle http://hdl.handle.net/1887/20310 holds various files of this Leiden University dissertation.

Author: Jansen, Bas
Title: Mersenne primes and class field theory
Date: 2012-12-18

Chapter 3

Potential starting values

In this chapter we prove a necessary condition for elements in $K=\bigcup_{n=1}^{\infty} \mathbb{Q}(\sqrt[n]{2})$ to occur as a starting value. Elements of the field K satisfying this condition will be called potential starting values. In the next chapter we will calculate certain Galois groups of Galois extensions of K for these starting values.

We also prove in this chapter, with the help of Capelli's theorem, that each number field contained in K is of the form $\mathbb{Q}(\sqrt[n]{2})$ with $n \in \mathbb{Z}_{>0}$.

A property of starting values

We start with the definition of a potential starting value.
Definition 3.1. A potential starting value is an element $s \in K$ for which none of the elements $s+2,-s+2$ and $s^{2}-4$ is in $K^{* 2}$. We denote by \mathcal{S} the set of potential starting values.

Theorem 3.2. Let $s \in K$. If s is a starting value for some odd $q \in \mathbb{Z}_{>1}$, then s is a potential starting value.

We prove this theorem in the last section of this chapter. The assumption that q be odd in Theorem 3.2 cannot be omitted. Indeed, $s=0 \in K$ is a starting value for $q=2$, but s is not a potential starting value, since $s+2 \in K^{* 2}$. The converse of Theorem 3.2 is not true. For example one can verify that $s=5 \in \mathbb{Z}$ is a potential starting value, but there does not exist $q \in \mathbb{Z}_{>1}$ for which s is a starting value.

Denote by $\overline{\mathbb{Q}}$ the algebraic closure of \mathbb{Q} in the field of complex numbers. Let $\mathrm{i} \in \overline{\mathbb{Q}}$ be a primitive 4 -th root of unity. We can define the set \mathcal{S} from Definition 3.1 in an alternative way.

Proposition 3.3. The set \mathcal{S} of potential starting values is equal to the set

$$
\{s \in K: \mathrm{i} \notin K(\sqrt{s-2}, \sqrt{-s-2})\}
$$

We prove this proposition in the last section of this chapter.
The following results, which we prove in the next section, will be useful throughout this thesis; in particular the next theorem will be used in the proof of Theorem 3.2 and it has already been used in the proof of Example 2.7.

Theorem 3.4. Every subfield of K of finite degree over \mathbb{Q} equals $\mathbb{Q}(\sqrt[n]{2})$ for some integer $n \in \mathbb{Z}_{>0}$.

Corollary 3.5. For every $n \in \mathbb{Z}_{>0}$ the maximal Galois extension of $\mathbb{Q}(\sqrt[n]{2})$ in K is $\mathbb{Q}(\sqrt[2 n]{2})$.

Corollary 3.6. Let $n \in \mathbb{Z}_{>0}$ and let $E / \mathbb{Q}(\sqrt[n]{2})$ be an abelian extension of number fields. Then we have $[E \cap K: \mathbb{Q}(\sqrt[n]{2})] \leq 2$.

Proposition 3.7. Let $n \in \mathbb{Z}_{>0}$, let $E / \mathbb{Q}(\sqrt[n]{2})$ be a finite Galois extension and let F / E be an abelian extension such that the Galois group of F / E is a 2 -group. Suppose that i $\notin E K$. Then we have $[F \cap K: E \cap K] \leq 2$. Moreover if in addition to the above assumptions F / E is cyclic and $\mathrm{i} \in F$, then $F \cap K$ equals $E \cap K$.

Recall the definition of pseudo-squares (see the last section of Chapter 2).
Proposition 3.8. Let $n \in \mathbb{Z}_{>0}$, let $\alpha_{1}, \ldots, \alpha_{n} \in K$ be pseudo-squares and let $E=K\left(\sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{n}}\right)$. Then we have $\mathrm{i} \notin E$.

Subfields of a radical extension

In this section we look at subfields of the radical extension $K=\bigcup_{n=1}^{\infty} \mathbb{Q}(\sqrt[n]{2})$ of \mathbb{Q}. We will use the next theorem of Capelli in our proofs.

Theorem 3.9. Let L be a field, let $a \in L^{*}$ and $n \in \mathbb{Z}_{>0}$. Then the following two statements are equivalent:
(i) For all prime numbers p such that $p \mid n$ we have $a \notin L^{* p}$, and if $4 \mid n$ then $a \notin-4 L^{* 4}$.
(ii) The polynomial $x^{n}-a$ is irreducible in $L[x]$.

For a proof of Capelli's theorem see ([6, Chapter $6, \S 9]$).
Lemma 3.10. For every $n \in \mathbb{Z}_{>0}$ we have $[\mathbb{Q}(\sqrt[n]{2}): \mathbb{Q}]=n$.
Proof. The Eisenstein criterion implies that $x^{n}-2$ is irreducible over \mathbb{Q}, hence $[\mathbb{Q}(\sqrt[n]{2}): \mathbb{Q}]=n$.

Lemma 3.11. Let $n, m \in \mathbb{Z}_{>0}$. We have $\mathbb{Q}(\sqrt[m]{2}) \subset \mathbb{Q}(\sqrt[n]{2})$ if and only if $m \mid n$.
Proof. " \Leftarrow ": Suppose $m \mid n$. Then we have $n / m \in \mathbb{Z}$, so $\sqrt[n]{2}^{n / m}=\sqrt[m]{2}$. (Recall that $\sqrt[n]{2}, \sqrt[m]{2} \in \mathbb{R}_{>0}$ by definition, see Chapter 2.) Hence we have $\mathbb{Q}(\sqrt[m]{2}) \subset$ $\mathbb{Q}(\sqrt[n]{2})$.
$" \Rightarrow "$: Suppose $\mathbb{Q}(\sqrt[m]{2}) \subset \mathbb{Q}(\sqrt[n]{2})$. From Lemma 3.10 we get

$$
n=[\mathbb{Q}(\sqrt[n]{2}): \mathbb{Q}(\sqrt[m]{2})] \cdot[\mathbb{Q}(\sqrt[m]{2}): \mathbb{Q}]=[\mathbb{Q}(\sqrt[n]{2}): \mathbb{Q}(\sqrt[m]{2})] \cdot m
$$

Hence m divides n.
Proof of Theorem 3.4. Let L be a finite extension of \mathbb{Q} contained in K. Take $m \in \mathbb{Z}_{>0}$ maximal and $n \in \mathbb{Z}_{>0}$ such that $\mathbb{Q}(\sqrt[m]{2}) \subset L \subset \mathbb{Q}(\sqrt[n]{2})$. Using Lemma 3.11 we see that $r=n / m \in \mathbb{Z}_{>0}$. We will show using Theorem 3.9 that $x^{r}-\sqrt[m]{2}$ is irreducible in $L[x]$. By maximality of m it follows that for all prime numbers p we have $\sqrt[m]{2} \notin L^{* p}$. Since $\sqrt[m]{2}>0$, it follows that $\sqrt[m]{2} \notin-4 L^{* 4}$. Therefore $x^{r}-\sqrt[m]{2}$ is irreducible in $L[x]$, so $[\mathbb{Q}(\sqrt[n]{2}): L]=r$. From this we see that $[L: \mathbb{Q}(\sqrt[m]{2})]=[\mathbb{Q}(\sqrt[n]{2}): \mathbb{Q}(\sqrt[m]{2})] /[\mathbb{Q}(\sqrt[n]{2}): L]=r / r=1$, so $L=\mathbb{Q}(\sqrt[m]{2})$.

Proof of Corollary 3.5. Since $[\mathbb{Q}(\sqrt[2 n]{2}): \mathbb{Q}(\sqrt[n]{2})]$ is 2 , the extension $\mathbb{Q}(\sqrt[2 n]{2})$ over $\mathbb{Q}(\sqrt[n]{2})$ is Galois.

Let $L \subset K$ be a finite Galois extension of $\mathbb{Q}(\sqrt[n]{2})$. Theorem 3.4 implies $L=\mathbb{Q}(\sqrt[l]{2})$ for some $l \in \mathbb{Z}_{>0}$. By Lemma 3.10 and Lemma 3.11 we have $[\mathbb{Q}(\sqrt[l]{2}): \mathbb{Q}(\sqrt[n]{2})]=l / n$. Hence the l / n-th roots of unity are contained in $\mathbb{Q}(\sqrt[n]{2})$. Since $L \subset K \subset \mathbb{R}$, we have $l / n=1$ or $l / n=2$. Hence $L=\mathbb{Q}(\sqrt[n]{2})$ or $L=$ $\mathbb{Q}(\sqrt[2 n]{2})$.

Proof of Corollary 3.6. By assumption the extension $E / \mathbb{Q}(\sqrt[n]{2})$ is abelian. Hence $(E \cap K) / \mathbb{Q}(\sqrt[n]{2})$ is abelian. Corollary 3.5 implies $[E \cap K: \mathbb{Q}(\sqrt[n]{2})] \leq 2$.

The following theorem will be used in the proof of Proposition 3.7.
Theorem 3.12. Let M be a Galois extension of field L, let F be an arbitrary field extension of L and assume that M, F are subfields of some other field. Then $M F$ is Galois over F, and M is Galois over $M \cap F$. Let H be the Galois group of $M F$ over F, and G the Galois group of M over L. If $\sigma \in H$ then the restriction of σ to M is in G, and the map $\sigma \mapsto \sigma \mid K$ gives an isomorphism of H with the Galois group of M over $M \cap F$.

For a proof of Theorem 3.12 see [6, Chapter VI, $\S 1$, Theorem 1.12].
Proof of Proposition 3.7. Consider the following diagram.

The intersection of E and $F \cap K$ is $E \cap K$. Hence Theorem 3.12 implies $[E: E \cap$ $K]=[E(F \cap K): F \cap K)]$. Therefore we have $[E(F \cap K): E]=[F \cap K): E \cap K)]$.

Let $t=[F \cap K: E \cap K]$. Let $m=[E \cap K: \mathbb{Q}]$, so that $E \cap K=\mathbb{Q}(\sqrt[m]{2})$. Then $E(F \cap K)=E(\sqrt[t m]{2})$ and $x^{t}-\sqrt[m]{2}$ is irreducible in $E[x]$. Since F / E is abelian, the extension $E(\sqrt[t m]{2}) / E$ is Galois. Hence $E(\sqrt[t m]{2})$ contains a primitive t-th root of unity. The Galois group of F / E is a 2 -group, so the only prime number that can divide t is 2 . However $\mathrm{i} \notin E K$, so $t=1$ or 2 . This proves the first part of the proposition.

To prove the second part of the proposition we assume (for a contradiction) that $t=2$. Since F / E is a cyclic 2 -group and $\mathrm{i} \in F$, we have $E(\sqrt[2 m]{2})=E(\mathrm{i})$. This contradicts i $\notin E K$.

Proof of Proposition 3.8. Suppose for a contradiction that -1 is a square in E^{*}. Define the subgroup H of K^{*} by $H=H_{n}=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$. If we apply Kummer theory (see [6, Chapter VI, §8]) to the extension E / K, then we get $-1 \in H K^{* 2}$. Now we write -1 as $-1=h k^{2}$ with $h \in H$ and $k \in K^{*}$. By Theorem 2.3 there exists a positive integer m such that for all prime numbers $p>m$ the inclusion $H \cup\{k\} \subset\left(S_{p}^{-1} R_{p}\right)^{*}$ holds. Let $p \in \mathbb{Z}_{>m}$ be a prime number. Since all elements of H are pseudo-squares, we get the contradiction $-1=\left(\frac{-1}{M_{p}}\right)=\left(\frac{h k^{2}}{M_{p}}\right)=\left(\frac{h}{M_{p}}\right)\left(\frac{k^{2}}{M_{p}}\right)=1$. We conclude that -1 is not a square in E^{*}.

The following proposition will be used in Chapter 8.
Proposition 3.13. Let E_{1} and E_{2} be field extensions of a number field F contained in some common field. If E_{1} and E_{2} are Galois over F, then $E_{1} E_{2}$ and $E_{1} \cap E_{2}$ are Galois over F, and the restriction map $\operatorname{Gal}\left(E_{1} E_{2} / F\right) \rightarrow$ $\operatorname{Gal}\left(E_{1} / F\right) \times \operatorname{Gal}\left(E_{2} / F\right)$ defined by $\sigma \mapsto\left(\sigma\left|E_{1}, \sigma\right| E_{2}\right)$ is an injective homomorphism with image

$$
\left\{\left(\sigma_{1}, \sigma_{2}\right) \in \operatorname{Gal}\left(E_{1} / F\right) \times \operatorname{Gal}\left(E_{2} / F\right): \sigma_{1}\left|\left(E_{1} \cap E_{2}\right)=\sigma_{2}\right|\left(E_{1} \cap E_{2}\right)\right\}
$$

For a proof of Proposition 3.13 see [12, Chapter 3, The fundamental theorem of Galois theory, Proposition 3.20].

Starting values are potential starting values

In this section we prove Proposition 3.3 and Theorem 3.2.
Proof of Proposition 3.3. It suffices to prove that $s \notin \mathcal{S}$ if and only if $x^{2}+1$ is reducible in $K(\sqrt{s-2}, \sqrt{-s-2})[x]$. Suppose $s \notin \mathcal{S}$. Then we can choose $a \in\left\{s+2,-s+2, s^{2}-4\right\}$ such that $a \in K^{* 2}$. Hence \sqrt{a} and $\sqrt{-a}$ are elements of $K(\sqrt{s-2}, \sqrt{-s-2})$, so $\mathrm{i} \in K(\sqrt{s-2}, \sqrt{-s-2})$. It follows that $x^{2}+1$ is reducible in $K(\sqrt{s-2}, \sqrt{-s-2})[x]$.

Suppose $x^{2}+1$ is reducible in $K(\sqrt{s-2}, \sqrt{-s-2})[x]$. Then i is an element of $K(\sqrt{s-2}, \sqrt{-s-2})$. Since $\mathrm{i} \notin \mathbb{R}$ and $K \subset \mathbb{R}$, the element i is not in K. From Galois theory it follows that $K(\mathrm{i})=K(\sqrt{b})$ for some $b \in\left\{s-2,-s-2,4-s^{2}\right\}$. Let σ be the non-trivial element of $\operatorname{Gal}(K(\mathrm{i}) / K)$. Then σ keeps $\mathrm{i} \sqrt{b}$ fixed. Hence $\mathrm{i} \sqrt{b} \in K^{*}$ and therefore $-b \in K^{* 2}$. Hence $s \notin \mathcal{S}$.

Lemma 3.14. Let $q, n \in \mathbb{Z}_{>0}$ and $q>1$. Suppose that $\operatorname{gcd}(q, n)=1$ and suppose $\varphi: \mathbb{Z}[\sqrt[n]{2}] \rightarrow \mathbb{Z} / M_{q} \mathbb{Z}$ is a ring homomorphism. Let $p \in \mathbb{Z}_{>0}$ be a prime divisor of M_{q}. Then there exist an odd positive integer u and a ring homomorphism φ^{\prime} from the ring of integers $\mathcal{O}_{\mathbb{Q}(\sqrt[n]{2})}$ of $\mathbb{Q}(\sqrt[n]{2})$ to the finite field $\mathbb{F}_{p^{u}}$ of p^{u} elements, such that the diagram

of ring homomorphisms commutes, where the two unlabeled arrows and r are the natural ones.

Proof. Write $n=m \cdot p^{t}$ with $p \nmid m \in \mathbb{Z}_{>0}$ and $t \in \mathbb{Z}_{\geq 0}$. Let \mathfrak{p} be the ideal $\{x \in \mathbb{Z}[\sqrt[m]{2}]:(r \circ \varphi)(x)=0\}$. Since \mathbb{F}_{p} is a field of characteristic p, the ideal \mathfrak{p} is prime and $p \in \mathfrak{p}$. Let $\mathcal{O}_{\mathbb{Q}(\sqrt[m]{2})}$ be the ring of integers of the field $\mathbb{Q}(\sqrt[m]{2})$. Since $p \nmid m$, the index $\left(\mathcal{O}_{\mathbb{Q}(\sqrt[m]{2})}: \mathbb{Z}[\sqrt[m]{2}]\right)$ is not divisible by p. Hence there is a ring homomorphism, extending the restriction of φ to $\mathbb{Z}[\sqrt[m]{2}]$, from $\mathcal{O}_{\mathbb{Q}(\sqrt[m]{2})}$ to \mathbb{F}_{p} with kernel \mathfrak{q}, such that \mathfrak{q} lies above \mathfrak{p}. Let e denote the ramification index and f the inertia degree of primes of $\mathbb{Q}(\sqrt[n]{2})$ above \mathfrak{q}. Then we have

$$
\sum_{\mathfrak{r} \mid \mathfrak{q}} e(\mathfrak{r} / \mathfrak{q}) f(\mathfrak{r} / \mathfrak{q})=[\mathbb{Q}(\sqrt[n]{2}): \mathbb{Q}(\sqrt[m]{2})]=p^{t}
$$

where the sum is taken over all primes \mathfrak{r} of $\mathbb{Q}(\sqrt[n]{2})$ that divide \mathfrak{q}. Hence we can choose a prime \mathfrak{r} of $\mathbb{Q}(\sqrt[n]{2})$ above \mathfrak{q} such that $f(\mathfrak{r} / \mathfrak{q})$ is odd. Therefore we can define a ring homomorphism φ^{\prime}, with kernel \mathfrak{r}, from $\mathcal{O}_{\mathbb{Q}(\sqrt[n]{2})}$ to $\mathbb{F}_{p^{u}}$ where $u=f(\mathfrak{r} / \mathfrak{q})$. The prime ideal \mathfrak{r} lies above \mathfrak{p}, so the map φ^{\prime} is an extension of the restriction of φ to $\mathbb{Z}[\sqrt[m]{2}]$. Hence we have $r \circ \varphi(\sqrt[m]{2})=\varphi^{\prime}(\sqrt[m]{2})$. The map $\sigma: x \mapsto x^{p^{t}}$ is a automorphism of $\mathbb{F}_{p^{u}}$ and $\sqrt[m]{2}=\sqrt[n]{2}{ }^{p^{t}}$, so an image of $\sqrt[n]{2} \in \mathbb{Z}[\sqrt[n]{2}]$ in $\mathbb{F}_{p^{u}}$ induced by the diagram above equals σ^{-1} applied on the image of $\sqrt[m]{2} \in \mathbb{Z}[\sqrt[n]{2}]$ in $\mathbb{F}_{p^{u}}$ induced by the diagram above. Therefore the diagram above commutes.

Lemma 3.15. Let $q, n \in \mathbb{Z}_{>0}$ and $q>1$. Suppose that $\operatorname{gcd}(q, n)=1$. Let $\varphi: \mathbb{Z}[\sqrt[n]{2}] \rightarrow \mathbb{Z} / M_{q} \mathbb{Z}$ be a ring homomorphism and let $a \in \mathbb{Z}[\sqrt[n]{2}] \cap \mathbb{Q}(\sqrt[n]{2})^{*^{2}}$. Then

$$
\left(\frac{\varphi(a)}{M_{q}}\right) \text { equals } 0 \text { or } 1 .
$$

Proof. Since $a \in \mathbb{Z}[\sqrt[n]{2}] \cap \mathbb{Q}(\sqrt[n]{2})^{*}$, there exists an element $b \in \mathbb{Q}(\sqrt[n]{2})^{*}$ such that $b^{2}=a$. Moreover a is an algebraic integer, so $b \in \mathcal{O}_{\mathbb{Q}(\sqrt[n]{2})}$. Let p be a prime divisor of M_{q}. The hypotheses of Lemma 3.14 hold and we let $u \in \mathbb{Z}_{>0}$ and
φ^{\prime} be as in Lemma 3.14. We have $\varphi^{\prime}(a)=\varphi^{\prime}(b)^{2}$, so $\varphi^{\prime}(a)$ is a square in $\mathbb{F}_{p^{u}}$. However from $2 \nmid\left[\mathbb{F}_{p^{u}}: \mathbb{F}_{p}\right]$ it follows that $\left[\mathbb{F}_{p}\left(\sqrt{\varphi^{\prime}(a)}\right): \mathbb{F}_{p}\right]=1$, so $\varphi^{\prime}(a)$ is a square in \mathbb{F}_{p}. By Lemma 3.14 we have

$$
\left(\frac{\varphi(a)}{M_{q}}\right)=\prod_{p \mid M_{q}}\left(\frac{\varphi^{\prime}(a)}{p}\right)^{\operatorname{ord}_{p}\left(M_{q}\right)}=0 \text { or } 1 .
$$

Corollary 3.16. Let $q \in \mathbb{Z}_{>1}$ be odd, let $\varphi_{q}: S_{q}^{-1} R_{q} \rightarrow \mathbb{Z} / M_{q} \mathbb{Z}$ be defined as just before Theorem 2.3, and let $a \in S_{q}^{-1} R_{q} \cap K^{* 2}$. Then

$$
\left(\frac{\varphi_{q}(a)}{M_{q}}\right) \text { equals } 0 \text { or } 1 .
$$

Proof. Let $a \in S_{q}^{-1} R_{q} \cap K^{* 2}$. Take $b \in R_{q}$ and $c \in S_{q}$ such that $a=b / c$. Choose $m \in \mathbb{Z}_{>0}$ such that $\operatorname{gcd}(q, m)=1$ and $b, c \in \mathbb{Z}[\sqrt[m]{2}]$. Since $b c=a \cdot c^{2} \in$ $K^{* 2} \cap \mathbb{Q}(\sqrt[m]{2})$, we have

$$
b c \in \mathbb{Q}(\sqrt[m]{2}, \sqrt{b c})^{*^{2}} \subset \mathbb{Q}(\sqrt[2 m]{2})^{*^{2}}
$$

where the last inclusion follows from Theorem 3.4. Let $n=2 m$. Since q is odd, we have $\mathbb{Z}[\sqrt[n]{2}] \subset R_{q}$. Hence we can restrict the map φ_{q} to a map $\varphi: \mathbb{Z}[\sqrt[n]{2}] \rightarrow \mathbb{Z} / M_{q} \mathbb{Z}$. Since $b c \in \mathbb{Z}[\sqrt[n]{2}] \cap \mathbb{Q}(\sqrt[n]{2})^{*^{2}}$, we have by Lemma 3.15

$$
\left(\frac{\varphi_{q}(a)}{M_{q}}\right)=\left(\frac{\varphi_{q}(b / c)}{M_{q}}\right)=\left(\frac{\varphi_{q}(b c)}{M_{q}}\right)=0 \text { or } 1 .
$$

Proof of Theorem 3.2. Let s be a starting value for $q \in \mathbb{Z}_{>1}$ odd. Then

$$
\left(\frac{s-2}{M_{q}}\right)=\left(\frac{-s-2}{M_{q}}\right)=\left(\frac{4-s^{2}}{M_{q}}\right)=1 .
$$

Since $\left(\frac{-1}{M_{q}}\right)=-1$, we see that

$$
\left(\frac{-s+2}{M_{q}}\right)=\left(\frac{s+2}{M_{q}}\right)=\left(\frac{s^{2}-4}{M_{q}}\right)=-1 .
$$

By Corollary 3.16 we see that none of the elements $-s+2, s+2$ and $s^{2}-4$ is in $S_{q}^{-1} R_{q} \cap K^{* 2}$. Since $-s+2, s+2$ and $s^{2}-4$ are elements of $S_{q}^{-1} R_{q}$, we conclude that none of the elements $-s+2, s+2$ and $s^{2}-4$ is in $K^{* 2}$. Hence s is a potential starting value.

