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Chapter 3

Potential starting values

In this chapter we prove a necessary condition for elements in K =
⋃∞
n=1 Q(n

√
2)

to occur as a starting value. Elements of the field K satisfying this condition
will be called potential starting values. In the next chapter we will calculate
certain Galois groups of Galois extensions of K for these starting values.

We also prove in this chapter, with the help of Capelli’s theorem, that each
number field contained in K is of the form Q(n

√
2) with n ∈ Z>0.

A property of starting values

We start with the definition of a potential starting value.

Definition 3.1. A potential starting value is an element s ∈ K for which none
of the elements s+ 2, −s+ 2 and s2 − 4 is in K∗2. We denote by S the set of
potential starting values.

Theorem 3.2. Let s ∈ K. If s is a starting value for some odd q ∈ Z>1, then
s is a potential starting value.

We prove this theorem in the last section of this chapter. The assumption that
q be odd in Theorem 3.2 cannot be omitted. Indeed, s = 0 ∈ K is a starting
value for q = 2, but s is not a potential starting value, since s+ 2 ∈ K∗2. The
converse of Theorem 3.2 is not true. For example one can verify that s = 5 ∈ Z
is a potential starting value, but there does not exist q ∈ Z>1 for which s is a
starting value.

Denote by Q the algebraic closure of Q in the field of complex numbers. Let
i ∈ Q be a primitive 4-th root of unity. We can define the set S from Definition
3.1 in an alternative way.

Proposition 3.3. The set S of potential starting values is equal to the set

{s ∈ K : i /∈ K(
√
s− 2,

√
−s− 2)}.
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16 CHAPTER 3

We prove this proposition in the last section of this chapter.
The following results, which we prove in the next section, will be useful

throughout this thesis; in particular the next theorem will be used in the proof
of Theorem 3.2 and it has already been used in the proof of Example 2.7.

Theorem 3.4. Every subfield of K of finite degree over Q equals Q(n
√

2) for
some integer n ∈ Z>0.

Corollary 3.5. For every n ∈ Z>0 the maximal Galois extension of Q(n
√

2) in
K is Q(2n

√
2).

Corollary 3.6. Let n ∈ Z>0 and let E/Q(n
√

2) be an abelian extension of number
fields. Then we have [E ∩K : Q(n

√
2)] ≤ 2.

Proposition 3.7. Let n ∈ Z>0, let E/Q(n
√

2) be a finite Galois extension and
let F/E be an abelian extension such that the Galois group of F/E is a 2-group.
Suppose that i /∈ EK. Then we have [F ∩ K : E ∩ K] ≤ 2. Moreover if in
addition to the above assumptions F/E is cyclic and i ∈ F , then F ∩K equals
E ∩K.

Recall the definition of pseudo-squares (see the last section of Chapter 2).

Proposition 3.8. Let n ∈ Z>0, let α1, . . . , αn ∈ K be pseudo-squares and let
E = K(

√
α1, . . . ,

√
αn). Then we have i /∈ E.

Subfields of a radical extension

In this section we look at subfields of the radical extension K =
⋃∞
n=1 Q(n

√
2) of

Q. We will use the next theorem of Capelli in our proofs.

Theorem 3.9. Let L be a field, let a ∈ L∗ and n ∈ Z>0. Then the following
two statements are equivalent:

(i) For all prime numbers p such that p | n we have a /∈ L∗p, and if 4 | n then
a /∈ −4L∗4.

(ii) The polynomial xn − a is irreducible in L[x].

For a proof of Capelli’s theorem see ([6, Chapter 6, §9]).

Lemma 3.10. For every n ∈ Z>0 we have [Q(n
√

2) : Q] = n.

Proof . The Eisenstein criterion implies that xn−2 is irreducible over Q, hence
[Q(n
√

2) : Q] = n.

Lemma 3.11. Let n,m ∈ Z>0. We have Q(m
√

2) ⊂ Q(n
√

2) if and only if m | n.

Proof . “⇐”: Suppose m | n. Then we have n/m ∈ Z, so n
√

2
n/m

= m
√

2. (Recall
that n

√
2,m
√

2 ∈ R>0 by definition, see Chapter 2.) Hence we have Q(m
√

2) ⊂
Q(n
√

2).
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“⇒”: Suppose Q(m
√

2) ⊂ Q(n
√

2). From Lemma 3.10 we get

n = [Q(
n
√

2) : Q(
m
√

2)] · [Q(
m
√

2) : Q] = [Q(
n
√

2) : Q(
m
√

2)] ·m.

Hence m divides n.

Proof of Theorem 3.4. Let L be a finite extension of Q contained in K. Take
m ∈ Z>0 maximal and n ∈ Z>0 such that Q(m

√
2) ⊂ L ⊂ Q(n

√
2). Using Lemma

3.11 we see that r = n/m ∈ Z>0. We will show using Theorem 3.9 that xr−m
√

2
is irreducible in L[x]. By maximality of m it follows that for all prime numbers
p we have m

√
2 /∈ L∗p. Since m

√
2 > 0, it follows that m

√
2 /∈ −4L∗4. Therefore

xr − m
√

2 is irreducible in L[x], so [Q(n
√

2) : L] = r. From this we see that
[L : Q(m

√
2)] = [Q(n

√
2) : Q(m

√
2)]/[Q(n

√
2) : L] = r/r = 1, so L = Q(m

√
2).

Proof of Corollary 3.5. Since [Q(2n
√

2) : Q(n
√

2)] is 2, the extension Q(2n
√

2)
over Q(n

√
2) is Galois.

Let L ⊂ K be a finite Galois extension of Q(n
√

2). Theorem 3.4 implies
L = Q( l

√
2) for some l ∈ Z>0. By Lemma 3.10 and Lemma 3.11 we have

[Q( l
√

2) : Q(n
√

2)] = l/n. Hence the l/n-th roots of unity are contained in Q(n
√

2).
Since L ⊂ K ⊂ R, we have l/n = 1 or l/n = 2. Hence L = Q(n

√
2) or L =

Q(2n
√

2).

Proof of Corollary 3.6. By assumption the extension E/Q(n
√

2) is abelian.
Hence (E∩K)/Q(n

√
2) is abelian. Corollary 3.5 implies [E∩K : Q(n

√
2)] ≤ 2.

The following theorem will be used in the proof of Proposition 3.7.

Theorem 3.12. Let M be a Galois extension of field L, let F be an arbitrary
field extension of L and assume that M , F are subfields of some other field.
Then MF is Galois over F , and M is Galois over M ∩F . Let H be the Galois
group of MF over F , and G the Galois group of M over L. If σ ∈ H then the
restriction of σ to M is in G, and the map σ 7→ σ|K gives an isomorphism of
H with the Galois group of M over M ∩ F .

For a proof of Theorem 3.12 see [6, Chapter VI, §1, Theorem 1.12].

Proof of Proposition 3.7. Consider the following diagram.

F
??

? EK

��
�

E(F ∩K)

��
� ??

?

E
???

? F ∩K
���

�

E ∩K

The intersection of E and F ∩K is E∩K. Hence Theorem 3.12 implies [E : E∩
K] = [E(F∩K) : F∩K)]. Therefore we have [E(F∩K) : E] = [F∩K) : E∩K)].
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Let t = [F ∩K : E ∩K]. Let m = [E ∩K : Q], so that E ∩K = Q(m
√

2).
Then E(F ∩ K) = E(tm

√
2) and xt − m

√
2 is irreducible in E[x]. Since F/E is

abelian, the extension E(tm
√

2)/E is Galois. Hence E(tm
√

2) contains a primitive
t-th root of unity. The Galois group of F/E is a 2-group, so the only prime
number that can divide t is 2. However i /∈ EK, so t = 1 or 2. This proves the
first part of the proposition.

To prove the second part of the proposition we assume (for a contradiction)
that t = 2. Since F/E is a cyclic 2-group and i ∈ F , we have E(2m

√
2) = E(i).

This contradicts i /∈ EK.

Proof of Proposition 3.8. Suppose for a contradiction that −1 is a square
in E∗. Define the subgroup H of K∗ by H = Hn = 〈α1, . . . , αn〉. If we apply
Kummer theory (see [6, Chapter VI, §8]) to the extension E/K, then we get
−1 ∈ HK∗2. Now we write −1 as −1 = hk2 with h ∈ H and k ∈ K∗. By
Theorem 2.3 there exists a positive integer m such that for all prime numbers
p > m the inclusion H ∪ {k} ⊂ (S−1

p Rp)
∗ holds. Let p ∈ Z>m be a prime

number. Since all elements of H are pseudo-squares, we get the contradiction

−1 =
( −1
Mp

)
=
(
hk2

Mp

)
=
(
h
Mp

)(
k2

Mp

)
= 1. We conclude that −1 is not a square in

E∗.

The following proposition will be used in Chapter 8.

Proposition 3.13. Let E1 and E2 be field extensions of a number field F con-
tained in some common field. If E1 and E2 are Galois over F , then E1E2

and E1 ∩ E2 are Galois over F , and the restriction map Gal(E1E2/F ) →
Gal(E1/F ) × Gal(E2/F ) defined by σ 7→ (σ|E1, σ|E2) is an injective homo-
morphism with image

{(σ1, σ2) ∈ Gal(E1/F )×Gal(E2/F ) : σ1|(E1 ∩ E2) = σ2|(E1 ∩ E2)}.

For a proof of Proposition 3.13 see [12, Chapter 3, The fundamental theorem of
Galois theory, Proposition 3.20].

Starting values are potential starting values

In this section we prove Proposition 3.3 and Theorem 3.2.

Proof of Proposition 3.3. It suffices to prove that s /∈ S if and only if x2 + 1
is reducible in K(

√
s− 2,

√
−s− 2)[x]. Suppose s /∈ S. Then we can choose

a ∈ {s+ 2,−s+ 2, s2− 4} such that a ∈ K∗2. Hence
√
a and

√
−a are elements

of K(
√
s− 2,

√
−s− 2), so i ∈ K(

√
s− 2,

√
−s− 2). It follows that x2 + 1 is

reducible in K(
√
s− 2,

√
−s− 2)[x].

Suppose x2 + 1 is reducible in K(
√
s− 2,

√
−s− 2)[x]. Then i is an element

of K(
√
s− 2,

√
−s− 2). Since i /∈ R and K ⊂ R, the element i is not in K. From

Galois theory it follows that K(i) = K(
√
b) for some b ∈ {s− 2,−s− 2, 4− s2}.

Let σ be the non-trivial element of Gal(K(i)/K). Then σ keeps i
√
b fixed. Hence

i
√
b ∈ K∗ and therefore −b ∈ K∗2. Hence s /∈ S.
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Lemma 3.14. Let q, n ∈ Z>0 and q > 1. Suppose that gcd(q, n) = 1 and
suppose ϕ : Z[n

√
2] → Z/MqZ is a ring homomorphism. Let p ∈ Z>0 be a

prime divisor of Mq. Then there exist an odd positive integer u and a ring
homomorphism ϕ′ from the ring of integers OQ(n

√
2) of Q(n

√
2) to the finite field

Fpu of pu elements, such that the diagram

Z[n
√

2]

��

ϕ // Z/MqZ
r // // Fp

��
OQ(n

√
2)

ϕ′
// Fpu

of ring homomorphisms commutes, where the two unlabeled arrows and r are
the natural ones.

Proof . Write n = m · pt with p - m ∈ Z>0 and t ∈ Z≥0. Let p be the ideal
{x ∈ Z[m

√
2] : (r ◦ ϕ)(x) = 0}. Since Fp is a field of characteristic p, the ideal

p is prime and p ∈ p. Let OQ(m
√

2) be the ring of integers of the field Q(m
√

2).

Since p - m, the index (OQ(m
√

2) : Z[m
√

2]) is not divisible by p. Hence there is a

ring homomorphism, extending the restriction of ϕ to Z[m
√

2], from OQ(m
√

2) to
Fp with kernel q, such that q lies above p. Let e denote the ramification index
and f the inertia degree of primes of Q(n

√
2) above q. Then we have∑

r|q

e(r/q)f(r/q) = [Q(
n
√

2) : Q(
m
√

2)] = pt,

where the sum is taken over all primes r of Q(n
√

2) that divide q. Hence we
can choose a prime r of Q(n

√
2) above q such that f(r/q) is odd. Therefore we

can define a ring homomorphism ϕ′, with kernel r, from OQ(n
√

2) to Fpu where

u = f(r/q). The prime ideal r lies above p, so the map ϕ′ is an extension
of the restriction of ϕ to Z[m

√
2]. Hence we have r ◦ ϕ(m

√
2) = ϕ′(m

√
2). The

map σ : x 7→ xp
t

is a automorphism of Fpu and m
√

2 = n
√

2
pt

, so an image of
n
√

2 ∈ Z[n
√

2] in Fpu induced by the diagram above equals σ−1 applied on the
image of m

√
2 ∈ Z[n

√
2] in Fpu induced by the diagram above. Therefore the

diagram above commutes.

Lemma 3.15. Let q, n ∈ Z>0 and q > 1. Suppose that gcd(q, n) = 1. Let

ϕ : Z[n
√

2] → Z/MqZ be a ring homomorphism and let a ∈ Z[n
√

2] ∩ Q(n
√

2)∗
2
.

Then (ϕ(a)

Mq

)
equals 0 or 1.

Proof . Since a ∈ Z[n
√

2] ∩ Q(n
√

2)∗
2
, there exists an element b ∈ Q(n

√
2)∗ such

that b2 = a. Moreover a is an algebraic integer, so b ∈ OQ(n
√

2). Let p be a prime
divisor of Mq. The hypotheses of Lemma 3.14 hold and we let u ∈ Z>0 and
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ϕ′ be as in Lemma 3.14. We have ϕ′(a) = ϕ′(b)2, so ϕ′(a) is a square in Fpu .

However from 2 - [Fpu : Fp] it follows that [Fp(
√
ϕ′(a)) : Fp] = 1, so ϕ′(a) is a

square in Fp. By Lemma 3.14 we have(ϕ(a)

Mq

)
=
∏
p|Mq

(ϕ′(a)

p

)ordp(Mq)

= 0 or 1.

Corollary 3.16. Let q ∈ Z>1 be odd, let ϕq : S−1
q Rq → Z/MqZ be defined as

just before Theorem 2.3, and let a ∈ S−1
q Rq ∩K∗2. Then(ϕq(a)

Mq

)
equals 0 or 1.

Proof . Let a ∈ S−1
q Rq ∩ K∗2. Take b ∈ Rq and c ∈ Sq such that a = b/c.

Choose m ∈ Z>0 such that gcd(q,m) = 1 and b, c ∈ Z[m
√

2]. Since bc = a · c2 ∈
K∗2 ∩Q(m

√
2), we have

bc ∈ Q(
m
√

2,
√
bc)∗

2
⊂ Q(

2m
√

2)∗
2
,

where the last inclusion follows from Theorem 3.4. Let n = 2m. Since q
is odd, we have Z[n

√
2] ⊂ Rq. Hence we can restrict the map ϕq to a map

ϕ : Z[n
√

2]→ Z/MqZ. Since bc ∈ Z[n
√

2] ∩Q(n
√

2)∗
2
, we have by Lemma 3.15(ϕq(a)

Mq

)
=
(ϕq(b/c)

Mq

)
=
(ϕq(bc)

Mq

)
= 0 or 1.

Proof of Theorem 3.2. Let s be a starting value for q ∈ Z>1 odd. Then(s− 2

Mq

)
=
(−s− 2

Mq

)
=
(4− s2

Mq

)
= 1.

Since
( −1
Mq

)
= −1, we see that

(−s+ 2

Mq

)
=
(s+ 2

Mq

)
=
(s2 − 4

Mq

)
= −1.

By Corollary 3.16 we see that none of the elements −s + 2, s + 2 and s2 − 4
is in S−1

q Rq ∩K∗2. Since −s + 2, s + 2 and s2 − 4 are elements of S−1
q Rq, we

conclude that none of the elements −s+ 2, s+ 2 and s2 − 4 is in K∗2. Hence s
is a potential starting value.




