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Chapter 2

The Lucas-Lehmer-test

In this chapter we discuss the Lucas-Lehmer-test, which is a primality test for
integers of the form Mq = 2q−1, where q ∈ Z>1. To apply the test one calculates
a sequence of elements in Z/(2q − 1)Z by iterating the map x 7→ x2 − 2 on a
suitable starting value s ∈ Z/(2q − 1)Z. The integer 2q − 1 is prime if after
q − 2 iterations we get 0. Starting values will be obtained from a certain field
K of algebraic numbers. This field has the property that any given element can
be interpreted in Z/(2q − 1)Z for all q ∈ Z>1 relatively prime to some integer.
Certain well-chosen elements in K can be used as starting values for each Mq

with q relatively prime to some fixed integer. These well-chosen starting values
will in Definition 2.5 be called universal starting values. The classical examples
of universal starting values are 4, 10 ∈ Z. We will construct infinitely many
additional universal starting values in K.

Many starting values

Denote the Jacobi symbol by
( ·
·
)

(see [1, §1, page 16]).

Theorem 2.1. Let q ∈ Z>1 and Mq = 2q − 1. Let s ∈ Z/MqZ. Define
si ∈ Z/MqZ for i ∈ {1, 2, . . . , q− 1} by s1 = s and si+1 = s2

i − 2. Then we have

sq−1 = 0⇐⇒Mq is prime and
(s− 2

Mq

)
=
(−s− 2

Mq

)
= 1.

The Lucas-Lehmer-test (Theorem 2.1) will be proved in the next section. To
illustrate this theorem we give the example q = 7 and s = (4 mod 127). We
calculate

s1 = 4,
s2 = 42 − 2 = 14,
s3 = 142 − 2 = 194 = 67,
s4 = 672 − 2 = 4487 = 42,

7



8 CHAPTER 2

s5 = 422 − 2 = 1762 = −16,
s6 = (−16)2 − 2 = 254 = 0

in the ring Z/127Z. Hence using the theorem we conclude that 127 is prime
and that

(
2

127

)
=
( −6

127

)
= 1.

To apply Theorem 2.1 as a prime test one uses an element s ∈ Z/MqZ such
that

(
s−2
Mq

)
=
(−s−2
Mq

)
= 1. Such an element is called a starting value for q. With

the quadratic reciprocity laws (see [2, Introduction]) one calculates that for the
numbers s = (4 mod Mq) and s = (10 mod Mq) we have

(
s−2
Mq

)
=
(−s−2
Mq

)
= 1

for all odd integers q ∈ Z>1. It follows that the numbers s = (4 mod Mq) and
s = (10 mod Mq) are starting values for all odd integers q ∈ Z>1. In the same
way one can show that number s = (2 mod Mq)(3 mod Mq)

−1 found by S.Y.
Gebre-Egziabher is a starting value for all odd integers q ∈ Z>0 (see [3]). We
prefer to denote (2 mod Mq)(3 mod Mq)

−1 by ( 2
3 mod Mq). In this case q is

assumed to be odd to make sure that division by (3 mod Mq) is possible. Below
we will express the properties of 4, 10, and 2/3 just described, by saying that
these numbers are universal starting values. Later we show that the number
s = ( 238

507 + 160
169 · 2

(q+1)/2 mod Mq) is also a starting value for all odd q ∈ Z>1.

Since (2(q+1)/2 mod Mq) is a square root of (2 mod Mq), we will denote s by
( 238

507 + 160
169 ·

√
2 mod Mq). Hence we have the following example.

Example 2.2. The number s = 238
507 + 160

169 ·
√

2 is a universal starting value.

To make all this precise, we define K to be the subfield of the field R of real num-
bers obtained by adjoining all positive real roots of 2 to Q, so K =

⋃∞
n=1 Q(n

√
2)

with n
√

2 ∈ R the positive zero of the polynomial xn − 2. We write
√

2 for 2
√

2.
We proceed to show that for every s ∈ K there exists a positive integer ks such
that s mod Mq has a natural meaning whenever q is relatively prime to ks.

We fix q ∈ Z>1 and construct a large subring of K that maps to Z/(2q−1)Z.
Define the ring Rq by

Rq =
⋃

gcd(n,q)=1

Z[
n
√

2],

where n runs over all positive integers relatively prime to q. There is a unique
ring homomorphism ϕq from Rq to Z/MqZ that sends n

√
2 to 2a, where a ∈ Z>0

is such that an ≡ 1 mod q. Note that 2a mod Mq is an n-th root of 2 mod Mq,
since (2a)n = (2q)(an−1)/q · 2 ≡ 2 mod Mq. Let (Z/MqZ)∗ be the group of units
of Z/MqZ and denote the multiplicatively closed subset ϕ−1

q ((Z/MqZ)∗) of Rq
by Sq. Clearly we can extend ϕq uniquely to a ring homomorphism from the
ring S−1

q Rq = { vw ∈ K : v ∈ Rq and w ∈ Sq} to Z/MqZ, which we again denote
by ϕq.

The following theorem, which will be proved in the next section, leads di-
rectly to our definition of s mod Mq.

Theorem 2.3. For every s ∈ K there exists a non-zero integer ks such that for
all q ∈ Z>1 with gcd(q, ks) = 1 we have s ∈ S−1

q Rq.
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We motivate Theorem 2.3 with the universal starting value s of Example 2.2.
So let s be as in Example 2.2. We can choose ks = 2. To illustrate this we
show that s ∈ S−1

q Rq for q ∈ Z>1 odd. The integer ks is relatively prime to q.

Therefore
√

2 is an element of Rq. The map ϕq : Rq → Z/(2q − 1)Z sends
√

2
to (2(q+1)/2 mod 2q − 1). The only prime divisors of 169 and 507 are 3 and 13.
The multiplicative orders of (2 mod 3) and (2 mod 13) are 2 and 12 respectively.
Since both orders are divisible by ks, it follows that neither 3 nor 13 divides
2q − 1 for q relatively prime to ks. This implies that both (3 mod 2q − 1) and
(13 mod 2q − 1) are elements of (Z/(2q − 1)Z)∗. Therefore the multiplicative
set Sq contains the elements 3 and 13. Hence s ∈ S−1

q Rq. In particular one can
calculate that ϕ5(s) equals

(21 mod 31)(11 mod 31)−1 + (5 mod 31)(14 mod 31)−1(23 mod 31)

which is (10 mod 31).

Definition 2.4. Let q ∈ Z>1 be an integer and let s ∈ S−1
q Rq. We define

(smodMq) ∈ Z/MqZ and
(
s
Mq

)
by

(smodMq) = ϕq(s) and
(
s
Mq

)
=
(ϕq(s)
Mq

)
.

By the phrase “for almost all” we mean that a finite number of exceptions are
allowed. For the next definition it is useful to note that if s ∈ K then for almost
all prime numbers p we have s ∈ S−1

p Rp (see Theorem 2.3).

Definition 2.5. Let q ∈ Z>1. A starting value for q is an element s ∈ S−1
q Rq

with the property
(
s−2
Mq

)
=
(−s−2
Mq

)
= 1. We call s a universal starting value if s

is a starting value for almost all prime numbers.

To prove Example 2.2 one verifies the equalities

s− 2 =
(24− 10

√
2)2

−3 · 132
,

−s− 2 =
(10 + 24

√
2)2

−3 · 132
,

and
( −3
Mq

)
= 1 for q ∈ Z>1 odd, and then one applies the multiplicative property

of the Legendre symbol to conclude that(s− 2

Mq

)
=
(−s− 2

Mq

)
= 1.

Hence the value of s in Example 2.2 is a universal starting value.
For a universal starting value s we call a prime number p bad if s is not

a starting value for p. For the universal starting value of Example 2.2 only
2 is a bad prime. From Theorem 2.1 and the fact that Mq is prime only if
q is prime, one easily derives the following theorem, which justifies the term
‘universal starting value’ in Definition 2.5.
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Theorem 2.6. Let s ∈ K be a universal starting value, let ks ∈ Z>0 be as in
Theorem 2.3, let q ∈ Z>1 be an integer relatively prime to ks and q not a bad
prime, and let Mq = 2q − 1. Define si ∈ Z/MqZ for i ∈ {1, 2, . . . , q − 1} by
s1 = (smodMq) and si+1 = s2

i − 2. Then we have

sq−1 = 0⇔Mq is prime.

In the next section we prove Theorem 2.6. The proof shows that the theorem
is also valid with the condition gcd(ks, q) = 1 replaced by the weaker condition
s ∈ S−1

q Rq.
We illustrate Theorem 2.6 with the universal starting value s of Example

2.2 and q = 5. We already showed that s1 = (10 mod 31). The next values
in the sequence are s2 = s2

1 − 2 = (5 mod 31), s3 = s2
2 − 2 = (23 mod 31) and

s4 = s2
3 − 2 = (0 mod 31). Theorem 2.6 implies that M5 is prime.

In the last section of the present chapter we describe a method to construct
families of universal starting values. The following example is made with this
method.

Example 2.7. For every t ∈ K the element

4 · t
4 +
√

2t3 + 3t2 −
√

2t+ 1

(t2 −
√

2t− 1)2

is a universal starting value.

In the next section we prove Example 2.7 using the two equalities

4 · t
4 +
√

2t3 + 3t2 −
√

2t+ 1

(t2 −
√

2t− 1)2
− 2 =

(
√

2(t2 + 2
√

2t− 1))2

(t2 −
√

2t− 1)2
,

−4 · t
4 +
√

2t3 + 3t2 −
√

2t+ 1

(t2 −
√

2t− 1)2
− 2 =

−3(
√

2(t2 + 1))2

(t2 −
√

2t− 1)2

and
( −3
Mq

)
= 1 for q ∈ Z>0 odd. Taking t = 0 and t = 1 in Example 2.7 we

obtain the two well-known universal starting values 4 and 10 respectively.

Correctness of the Lucas-Lehmer-test

In this section we prove Theorem 2.1, Theorem 2.3, Theorem 2.6, and Example
2.7. We start with a lemma that will be applied in the proof of Theorem 2.1.

Lemma 2.8. Let R 6= 0 be a finite commutative ring. Suppose that for all ideals
a 6= R of R we have #a <

√
#R. Then R is a field.

Proof . Take x ∈ R. Define a = {r ∈ R : rx = 0}. Then we have #Rx = [R : a],
so #Rx·#a = #R. Since Rx and a are both ideals, it follows by our assumption
that either Rx = R or a = R. Hence either x ∈ R∗ or x = 0. Since R is also
commutative, we conclude that R is a field.
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Proof of Theorem 2.1. Let M = Mq. Define the ring R by

R = (Z/MZ)[x]/(x2 − sx+ 1).

The equality x2− sx+ 1 = 0 in R implies x ∈ R∗ and s = x+ x−1. Hence from
s1 = s = x+x−1 and si+1 = s2

i − 2 we get si = x2i−1

+x−2i−1

for all i ≥ 1, and
in particular

sq−1 = x2q−2

+ x−2q−2

. (2.1)

The straightforward calculation (x − 1)2 = x2 − 2x + 1 = sx − 2x = (s − 2)x
shows that

(x− 1)2 = (s− 2)x. (2.2)

Assume that R is a field. Then M is prime, x2 − sx + 1 is irreducible in Z[x]
and R over Z/MZ is a Galois extension of degree two. The Frobenius map
R → R defined by Frob : a 7→ aM is the non-trivial element of this group (see
[6, Chapter 5, §5]). On the other hand one knows that Frob maps one zero of
the polynomial x2 − sx+ 1 to the other zero of this polynomial, therefore

Frob(x) = x−1. (2.3)

The element x is not in the prime field of R, so x−1 is nonzero in the field R and

therefore a unit. Raising both sides of (2.2) to the power M−1
2 yields (x−1)M

x−1 =(
s−2
M

)
x(M−1)/2. The numerator (x−1)M equals Frob(x−1) by definition of the

Frobenius map, so via (2.3) we see that (x−1)M

x−1 = x−1−1
x−1 = −x−1. Therefore

−x−1 =
(
s−2
M

)
x(M−1)/2, hence

x(M+1)/2 = −
(s− 2

M

)
. (2.4)

Now we drop the assumption R is a field.

“⇐”: Suppose that M is prime and
(
s−2
M

)
=
(−s−2

M

)
= 1. The discriminant

of x2 − sx+ 1 is s2 − 4. From
(−1
M

)
= −1 it follows that

(
s2−4
M

)
=
(
s+2
M

)
= −1.

Hence the ring R is a field. From (2.4) it follows that x(M+1)/2 = −1. Hence
by (2.1) we have sq−1 = x(M+1)/4 +x−(M+1)/4 = (x(M+1)/2 + 1)x−(M+1)/4 = 0.

“⇒”: Suppose sq−1 = 0. Recall that x ∈ R∗. Then we have sq−1 =
x(M+1)/4 + x−(M+1)/4 = (x(M+1)/2 + 1)x−(M+1)/4 = 0. Therefore x(M+1)/2

equals −1. Let a 6= R be an ideal of R. We have the natural ring homomorphism
R → R/a. The integers 2 and M are relatively prime. So 1 6= 0 and M = 0
in R/a imply 2 6= 0 in R/a. Hence 1 6= −1 in R/a. Note that (M + 1)/2 is
a power of 2. Therefore the identity x(M+1)/2 = −1 in R/a implies that the
order of x in (R/a)∗ is M + 1. This yields #(R/a) > M =

√
#R, which implies

#a <
√

#R. By Lemma 2.8 it follows that R is a field. Hence M is prime and
x2 − sx + 1 is irreducible in (Z/MZ)[x]. The discriminant of the irreducible

polynomial x2 − sx+ 1 is s2 − 4, therefore
(
s2−4
M

)
= −1. From x(M+1)/2 = −1

and (2.4) it follows that
(
s−2
M

)
= 1. Since

(
s2−4
M

)
=
(
s−2
M

)(
s+2
M

)
= −1 and(−1

M

)
= −1, we conclude that

(−s−2
M

)
= 1.
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Proof of Theorem 2.3. Let n ∈ Z>0 be such that s ∈ Q(n
√

2). Write s as

1

2ec
·
n−1∑
i=0

ai
n
√

2
i
,

where ai ∈ Z, c, e ∈ Z≥0 and c odd. Take ks ∈ Z>0 divisible by n and by
order(2 mod p) for all prime divisors p of c, where order(2 mod p) denotes the
order of (2 mod p) in the group (Z/pZ)∗. Let q ∈ Z>0 be such that gcd(q, ks) =
1. We prove that s ∈ S−1

q Rq. From the definition of Rq it follows that n
√

2 ∈ Rq.
The inverse of (2 mod 2q − 1) is (2q−1 mod 2q − 1), so 2 ∈ Sq. In order to prove
that s ∈ S−1

q Rq, it suffices to show that for all prime divisors p of c we have
p ∈ Sq. Let p be any prime divisor of c. By our assumption on ks we have
gcd(q, order(2 mod p)) = 1. Since order(2 mod p) > 1, this implies 2q − 1 6= 0
in Z/pZ. Therefore gcd(2q − 1, p) = 1, and so p ∈ (Z/(2q − 1)Z)∗. Hence we
can conclude that p ∈ Sq.

Proof of Theorem 2.6. Since gcd(q, ks) = 1, we have s ∈ S−1
q Rq, hence

s mod Mq is well defined. Suppose that sq−1 = 0. Then from Theorem 2.1
it follows that Mq is prime.

Suppose Mq is prime. Then q is prime. Since s is a universal starting value,
q is prime and q /∈ Bs, we conclude that s is a starting value for q. Applying
Theorem 2.1 yields sq−1 = 0.

Proof of Example 2.7. The discriminant of t2 −
√

2t− 1 is 6. Now we apply
Theorem 3.4 (the proof of Theorem 3.4 does not use Example 2.7) to conclude
that t2 −

√
2t − 1 has no zeros in K. By Theorem 2.3 there exists an integer

k ∈ Z>0 such that t, t2 −
√

2t− 1, t2 + 2
√

2t− 1, t2 + 1 and
√

2 are elements of
S−1
q Rq if gcd(k, q) = 1. Hence

s = 4 · t
4 +
√

2t3 + 3t2 −
√

2t+ 1

(t2 −
√

2t− 1)2
∈ S−1

q Rq

and the two equalities below Example 2.7 can be interpreted in S−1
q Rq if k and

q are relatively prime. Let p be an odd prime number not dividing k. Then
we have s ∈ S−1

p Rp. From the two equalities below Example 2.7, the identity( −3
Mp

)
= 1 and the fact that ϕp is a ring homomorphism it follows that s is a

starting value for p. Hence s is a universal starting value.

Constructing universal starting values

In this section we give a method to produce theorems similar to Example 2.7.
In particular we show how one can find identities just like the one following
Example 2.7.
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In this section we call an element a ∈ K a pseudo-square if
(
a
Mp

)
= 1 for

almost all prime numbers p. Anarghya Vardhana found the following 9 multi-
plicatively independent pseudo-squares (see [17]):

2,
−3 = −1 · 3,
−91 = −1 · 7 · 13,
−6355 = −1 · 5 · 31 · 41,
−76627 = −1 · 19 · 37 · 109,
−8435 = −1 · 5 · 7 · 241,
790097 = 7 · 11 · 31 · 331,

133845041 = 11 · 61 · 151 · 1321,
−33678726917899 = −1 · 7 · 43 · 1429 · 5419 · 14449.

Theorem 2.9. Let a, b ∈ K be pseudo-squares, let x, y ∈ K be such that

−4 = ax2+by2. Then ax2−by2
2 is a universal starting value. Moreover if we write

c0 = a3x2 − a2by2,
c1 = 8a2bxy,
c2 = −6a2bx2 + 6ab2y2,
c3 = −8ab2xy,
c4 = ab2x2 − b3y2.

then for each t ∈ K the element (c4t
4 + c3t

3 + c2t
2 + c1t + c0)/(2(bt2 + a)2)

is a universal starting value.

Proof . Define s by 2s = ax2− by2. We will prove that s is a universal starting
value. From the identity 2s = ax2 − by2 and the identity −4 = ax2 + by2 it
follows that s− 2 = ax2 and −s− 2 = by2. Theorem 2.3 and the fact that both
a and b are pseudo-squares imply that

(
s−2
Mp

)
=
(−s−2
Mp

)
= 1 for almost all prime

numbers p. Hence s = (ax2 − by2)/2 is a universal starting value.
Next we show that bt2 +a 6= 0. Suppose for a contradiction that there exists

t ∈ K such that bt2 + a = 0. This yields bt2 = −a, but then both a and −a are
pseudo-squares. This is a contradiction since

( −1
Mp

)
= −1 for all integers p > 1.

Hence bt2 + a 6= 0.
Via the identity −4 = ax2 + by2 we can parametrize all v, w ∈ K such

that −4 = av2 + bw2 (see [15, Chapter 1, §1]). The parametrization w(t) =
t · (v(t) − x) + y and some calculations (as described in [15, Chapter 1, §1])

yield v(t) = −bxt2+2byt+ax
bt2+a and w(t) = −byt2−2axt+ay

bt2+a . Now the definition of

c0, c1, c2, c3 and c4 are such that (c4t
4 + c3t

3 + c2t
2 + c1t + c0)/2(bt2 + a)2 =

(a · v(t)2 − b · w(t)2)/2 holds. Hence the first part of Theorem 2.9 implies that
(c4t

4 + c3t
3 + c2t

2 + c1t+ c0)/2(bt2 + a)2 is a universal starting value.

Example 2.10. Take a = b = −3 as pseudo-squares. Take x = 2
3 and y = 2

3

√
2.

Then
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c0 = 12,
c1 = −96

√
2,

c2 = −72,
c3 = 96

√
2,

c4 = 12

and for every t ∈ K the value f(t) = (c4t
4 + c3t

3 + c2t
2 + c1t+ c0)/(2(a+ bt2)2)

is a universal starting value. For example

f(0) = 2
3 ,

f(2) = − 14
75 + 32

25

√
2 and

f(− 1
2

4
√

2) = 118
49 −

800
147

4
√

2− 96
49

4
√

2
2

+ 704
147

4
√

2
3

are all three examples of universal starting values.

Example 2.11. Take a = b = −3 · 5 · 13 · 241 as pseudo-squares. Take
x = −121 + 32

√
2 and y = 32 + 121

√
2. Then

c0 = 54468− 61952
√

2,
c1 = 123904− 435744

√
2,

c2 = 326808 + 371712
√

2,
c3 = −123904 + 435744

√
2,

c4 = −54468− 61952
√

2.

and for every t ∈ K the value (c4t
4 + c3t

3 + c2t
2 + c1t + c0)/(2(a + bt2)2)

is a universal starting value.

Remark. Searching for x, y ∈ K such that −4 = ax2 + by2 can be done using
Hasse-Minkowski theorem as described in the introduction of [16, § Introduction,
page 2], or in the case that a = b ∈ Z by solving the equation −4a = (x+iy)(x−
iy) in the ring Z[i] of Gaussian integers.




