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Chapter 1

Introduction

Background

One of the most famous mathematical texts is the Elements, written by Euclid
300 B.C.. This work consist of 13 books. In Definition 22 of book VII he defines
a number to be perfect if the sum of its proper divisors equals the number itself.
For example 6 is a perfect number, since 1 + 2 + 3 = 6. Also 28 is perfect
because 1 + 2 + 4 + 7 + 14 = 28. Two other perfect numbers were known to the
Greeks, namely 496 and 8128. These four perfect numbers could be found using
the following theorem of Euclid: for any q ∈ Z>0 for which 2q − 1 is prime, the
number 2q−1(2q−1) is perfect (Euler (1707–1783) proved that every even perfect
number is of this form). Hence finding even perfect numbers is equivalent to
finding primes of the form 2q − 1 with q ∈ Z. The fifth perfect number was
found around 1456 by someone who remains unknown. Pietro Cataldi (1552–
1626) found the next two perfect numbers. He also proved that q ∈ Z>0 is prime
if 2q − 1 is prime. Marin Mersenne (1588–1648) claimed that

{2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257}

is the list of all q ∈ Z>0 smaller than 258 for which 2q−1(2q − 1) is perfect. His
claim is false only because 267−1 and 2257−1 are composite and 261−1, 289−1
and 2107− 1 are prime. Nowadays, nevertheless, primes of the form 2q − 1 with
q ∈ Z>0 are called Mersenne primes. Euler proved that 231 − 1 is prime by
using a corollary of one of his theorems, namely prime divisors of 231 − 1 are 1
modulo 31. Until Edouard Lucas (1842–1891) no other Mersenne primes were
found. By applying his very fast test, Lucas was able to show that 2127 − 1 is
prime. Later, Derrick Lehmer (1905–1991) extended Lucas’s test. The main
problem of the present thesis derives from the Lucas-Lehmer-test, which still
produces the largest known primes nowadays (see appendix).

Theorem. Let q ∈ Z>2 be an integer. Define si ∈ Z/(2q − 1)Z for i ∈
{1, 2, . . . , q − 1} by s1 = 4 and si+1 = s2

i − 2. Then 2q − 1 is prime if and
only if sq−1 = 0.
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To illustrate the Lucas-Lehmer-test we will apply the test to q = 5. In the ring
Z/31Z we have

s1 = 4,
s2 = 42 − 2 = 14,
s3 = 142 − 2 = 194 = 8,
s4 = 82 − 2 = 62 = 0.

Since s4 = 0, we conclude that 31 is a Mersenne prime. Lehmer observed:
if sq−1 = 0 and q is odd then sq−2 is either +2(q+1)/2 or −2(q+1)/2 (see Propo-
sition 5.1). The Lehmer symbol ε(4, q) ∈ {+1,−1} is defined for q ∈ Z>0 odd
for which Mq = 2q − 1 is prime by sq−2 = ε(4, q)2(q+1)/2. From the example
above we read that the Lehmer symbol ε(4, 5) is +1, since s3 = +23. We can
also start the Lucas-Lehmer-test with s1 = 10 instead of s1 = 4. As in the case
s = 4 the Lehmer symbol ε(10, n) ∈ {+1,−1} is defined for q ∈ Z>0 odd for
which Mq is prime by sq−2 = ε(10, q)2(q+1)/2. The following table shows the
Lehmer symbols ε(4, q) and ε(10, q) for q up to 521.

q 3 5 7 13 17 19 31 61 89 107 127 521
ε(4, q) + + − + − − + + − − + −
ε(10, q) − − − + + + + + + + + +

In 1996 George Woltman (1957) conjectured a relation between the table for
s = 4 and the table for s = 10, namely these tables show the same sign if
and only if q ≡ 5 or 7 modulo 8 and q 6= 5. Four years later S.Y. Gebre-
Egziabher proved the conjecture of Woltman (see [3]). Moreover he showed
that one can also start the Lucas-Lehmer-test with the rational value s = 2/3
and that the sign table of s = 2/3 is easy to write down since the sign is ‘+’
if and only if q is 1 modulo 4 and q 6= 5. Of course “2/3 modulo Mq” is
defined by (2 mod Mq)(3 mod Mq)

−1. In this thesis we generalize these results
of Gebre-Egziabher.

Main results

Define K =
⋃∞
n=1 Q(n

√
2). Let q ∈ Z>1 and recall Mq = 2q − 1. For every s ∈ K

there exists a non-zero integer ks such that for all q ∈ Z>1 with gcd(q, ks) = 1
we can define a natural ring homomorphism Z[s]→ Z/MqZ (see first paragraph
of Chapter 2). This ring homomorphism allows us to use starting values of K
for the Lucas-Lehmer-test. We call s ∈ K a universal starting value if s can be
used as a starting value in the Lucas-Lehmer-test for almost all prime numbers
q (see Definition 2.5). The elements 4, 10 and 2/3 of K are examples of universal
starting values. A new example of a universal starting value is s = 238

507 + 160
169 ·
√

2.
Example 2.7 gives an infinite family of universal starting values. Moreover we
show in Chapter 2 how one can make more families of universal starting values
(see Theorem 2.9).
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For every universal starting value s we can study the Lehmer symbol ε(s, q)
(see Definition 5.2). The following theorem is the first main result of this thesis.

Theorem. Let s ∈ K. Suppose 4 − s2 is a square in K∗. Then there exist
positive integers l and m such that ε(s, p) = ε(s, q) if p, q ≥ l and p ≡ q mod m.
Moreover l and m are easy to compute by Theorem 7.5.

Gebre-Egziabher’s result for the universal starting value s = 2/3 described above
follows from this theorem. Indeed, 4 − (2/3)2 equals (4

√
2/3)2 ∈ K∗2. Other

examples are Corollary 7.3, Corollary 7.6, Corollary 7.7 and Corollary 7.8. More
examples can easily be made by taking a equal to b in Theorem 2.9.

Next we will describe a generalisation of Gebre-Egziabher’s result on the
conjecture of Woltman for related pairs of potential starting values (see Defini-
tion 8.1). An example of a related pair of potential starting values is 4 and 10.
The following theorem is the second main result of this thesis.

Theorem. Let s, t ∈ K be a related pair of potential starting values. Suppose
(2 +

√
2 + s)(2 +

√
2 + t) is a square in K(

√
2 + s,

√
2− s)∗. Then there exist

positive integers l and m such that ε(s, p) · ε(t, p) = ε(s, q) · ε(t, q) if p, q ≥ l and
p ≡ q mod m. Moreover l and m are easy to compute by Corollary 9.4.

Since (2 +
√

2 + 4)(2 +
√

2 + 10) equals (4
√

2(1 +
√

2 +
√

3))2 ∈ K(
√

6,
√
−2)∗

2
,

this theorem implies Woltman’s conjecture. Other examples are Corollary 9.5
and Corollary 9.6.

Let s ∈ K. If for only finitely many q ∈ Z>1 the Lehmer symbol ε(s, q)
is defined, then the two theorems above trivially hold. This is the case when
there are only finitely many Mersenne primes or s is a starting value for only
finitely many q ∈ Z>1 (for example s = 5 is not a starting value for any q).
One might wonder if the two theorems above allow a converse for universal
starting values if one assumes that there are infinitely many Mersenne primes.
We were able to prove a weaker theorem (see two theorems below) by assuming
a stronger hypothesis on Mersenne primes. We call this hypothesis the working
hypothesis.

The working hypothesis roughly says that the only restrictions for Frobenius
symbols of Mersenne primes in a finite Galois extension of Q come from abelian
extensions of K. Let L = Q(ζ8,

8
√

5). The precise statement of the working
hypothesis for the extension L/Q is: for every σ ∈ Gal(L/Q) with σ|Q(ζ8) the

non-trivial element of Gal(Q(ζ8)/Q(
√

2)) there are infinitely many Mersenne
primes Mp such that the Frobenius symbol of Mp in the extension L/Q equals
the conjugacy class of σ in Gal(L/Q). This statement is partly motivated by the

fact that the Artin symbol of the prime ideal (n
√

2
p− 1) in the abelian extension

Q(ζ8,
√

5)/Q(
√

2) is non-trivial. There are no other conditions for the Frobenius
symbol of Mp in L/Q that we can come up with. The following two theorems
can been seen as the converses of the two main results above.

Theorem. Let s ∈ K be a universal starting value. Suppose 4 − s2 is not a
square in K∗ and suppose that there exist positive integers l and m such that
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ε(s, p) = ε(s, q) if p, q ≥ l and p ≡ q mod m. Then the working hypothesis is
false.

Theorem. Let s, t ∈ K be a related pair of potential starting values and suppose
both s and t are universal starting values. Suppose (2+

√
2 + s)(2+

√
2 + t) is a

not a square in K(
√

2 + s,
√

2− s)∗ and suppose that there exist positive integers
l and m such that ε(s, p) · ε(t, p) = ε(s, q) · ε(t, q) if p, q ≥ l and p ≡ q mod m.
Then the working hypothesis is false.

Sketch of the proofs of the main results

Denote the Jacobi symbol by
( ·
·
)

(see [1, §1, page 16]). Let q ∈ Z>1 and
Mq = 2q − 1. Let s ∈ Z/MqZ. Define si ∈ Z/MqZ for i ∈ {1, 2, . . . , q − 1} by
s1 = s and si+1 = s2

i − 2. Then we have

sq−1 = 0⇐⇒Mq is prime and
(s− 2

Mq

)
=
(−s− 2

Mq

)
= 1

(see Theorem 2.1). In the proof of Theorem 2.1 we show that

sq−1 = 0 =⇒ R = (Z/MqZ)[x]/(x2 − sx+ 1) is a field.

From the definition of R one easily deduces the equalities

si+1 = s2
i − 2 = x2i + x−2i (1.1)

in R (see proof of Theorem 2.1). Suppose sq−1 = 0. Then the Lehmer symbol
ε(s, q) is defined and R is a field. Equation (1.1) enables us to link the Lehmer
symbol to the Frobenius automorphism Frob : x 7→ xMq in an extension R′ of
R which contains an element y such that y8 = x (see proof of Theorem 5.6).
Indeed, in R′ we have

ε(s, q)2
q+1
2 = sq−2 = x2q−3

+ x−2q−3

= y2q + y−2q = Frob(y)y + Frob(y−1)y−1.

Next we study this Frobenius symbol in an extension of global fields. Let
Mp be a Mersenne prime. Let s ∈ K =

⋃∞
n=1 Q(n

√
2) be a universal starting

value such that s is a starting value for p. Let Ls be the splitting field of
fs = x16− sx8 + 1 over Q(s) and let Ks = Ls ∩K = Q(n

√
2). Note that a zero of

fs has the same algebraic properties as the element y ∈ R′ above. The equation
in R′ above shows that the Frobenius symbol of the prime ideal mp = (n

√
2
p− 1)

of Ks in Ls/Ks determines the Lehmer symbol ε(s, p). In the case 4− s2 ∈ K∗2
the extension Ls/Ks is abelian. Hence we can determine the Frobenius symbol
of mp easily via the Artin map. The integers l and m of the first main result
stated above can be calculated using the conductor of Ls/Ks.

Next we describe the outline of the second main result. Let Mp be a
Mersenne prime. Let s, t ∈ K be a related pair of potential starting values and
suppose that both s and t are universal starting values such that both s and t
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are starting values for p. Let Ls,t = LsLt and let Ks,t = Ls,t∩K = Q(n
√

2). The
subgroup of Gal(Ls,t/Ks,t) generated by the Frobenius symbol of any prime

ideal of Ls,t above of the prime ideal mp = (n
√

2
p − 1) of Ks,t in Ls,t/Ks,t

determines the product of Lehmer symbols ε(s, p) · ε(t, p). In the case that
(2 +

√
2 + s)(2 +

√
2 + t) is a square in K(

√
2 + s,

√
2− s)∗ we can study this

subgroup in an abelian extension of Ks,t. We can use the Artin symbol of mp
to determine the subgroup and hence the value of ε(s, p) · ε(t, p). Similarly as
above the conductor of this abelian extension of Ks,t can be used to calculate
the integers l and m in the second main result described above.

Overview of the chapters

In Chapter 2 we treat the Lucas-Lehmer-test and create families of universal
starting values.

In Chapter 3 we define potential starting values s ∈ K and show that if s is
a starting value for some odd positive integer q, then s is a potential starting
value. Potential starting values have some properties of universal starting values
but their definition does not depend on Mersenne numbers.

In Chapter 4 we construct for potential starting values s ∈ K a Galois
extension and we define a map λs that maps certain elements of this Galois
group to a sign. This map λs allows us to express the Lehmer symbol in terms
of the Frobenius symbol

In Chapter 5 we make a connection between the Lehmer symbol ε(s, p) and
the Frobenius symbol via a commutative diagram with the map λs.

In Chapter 6 we state the sufficient properties of the Artin map and we prove
a theorem to estimate conductors.

In Chapter 7 we apply the connection made in Chapter 5 and the Artin map
in order to prove the first main result of this thesis.

In Chapter 8 we construct a Galois extension for a related pair of potential
starting values and we define a map λ′s,t that maps certain elements of this
Galois group to a sign.

In Chapter 9 we make a connection between the product of two Lehmer
symbols ε(s, p) · ε(t, p) and the Frobenius symbol via a commutative diagram
with the map λ′s,t. We use this diagram to prove the second main result of this
thesis.

In Chapter 10 we introduce the working hypothesis for abelian extension
over Q.

In Chapter 11 we state the working hypothesis and reformulate it so that it
can easily be applied in the next Chapter.

In Chapter 12 we prove, assuming the working hypothesis, the converse of
the two main results of this thesis.






