Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/33614</u> holds various files of this Leiden University dissertation.

Author: Lehmann, Kathleen Corina Title: Biochemistry and function of nidovirus replicase proteins Issue Date: 2015-06-23

2	
3	
4	CHAPIER D
5	
Discovery of an essential	
nucleotidylating activity associated	
with a newly delineated conserved	
10 domain in the BNA polymerase-	
11 containing protein of all hideviruses	
containing protein of all nidoviruses	
13	
14	C. Lehmann
15	Anastasia Gulyaeva
16	Jessika C. Zevenhoven-Dobbe
17	George M. C. Janssen
18	Mark Ruben
19	Hermen S. Overkleeft
20	Deler A. Vall Veelen
21	Alexander A. Kraychenko
22	Andrey M Leontovich
23	Igor A. Sidorov
24	Eric J. Snijder
25	Clara C. Posthuma
20	and Alexander E. Gorbalenya
27	
Submitted	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	

1 ABSTRACT

RNA viruses encode an RNA-dependent RNA polymerase (RdRp) that catalyzes the synthesis of their RNA(s). In the case of positive-stranded RNA viruses belonging to the order Nidovirales, the RdRp resides in a replicase subunit that is unusually large. Bioin-formatics analysis of this nidoviral nonstructural protein has now revealed a signature domain (genetic marker) that is N-terminally adjacent to the RdRp and has no apparent homologs elsewhere. Based on its conservation profile, this domain is proposed to have nucleotidylation activity. Using recombinant nonstructural protein 9 of the arterivirus equine arteritis virus (EAV), we have demonstrated the manganese-dependent covalent binding of guanosine and uridine phosphates to a basic residue in the newly identified domain, most likely an invariant lysine residue. Substitution of this lysine with alanine severely diminished binding. Furthermore, this mutation crippled EAV and prevented the replication of severe acute respiratory syndrome coronavirus (SARS-CoV) in cell culture, indicating that this domain, named **ni**dovirus **R**dRp-**a**ssociated **n**ucleotidyltransferase (NiRAN), is essential for nidoviruses. Potential functions supported by NiRAN include nucleic acid ligation, mRNA capping, and protein-primed RNA synthesis.

INTRODUCTION

2

3 Positive-stranded (+) RNA viruses of the order *Nidovirales* can infect either vertebrate (families Arteriviridae and Coronaviridae) or invertebrate hosts (Mesoniviridae and 4 5 Roniviridae) (1;2). Examples of nidoviruses with high economical and societal impact are the arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) (3) and the 7 zoonotic coronaviruses (CoVs) causing severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) in humans (4;5). Besides the need to control these life-threatening diseases, studies of nidoviruses are motivated by the quest to 9 understand the molecular biology and evolution of the largest RNA genomes known 11 to-date. Although nidoviruses constitute a monophyletic group, their genome size dif-12 ferences are striking, with genomes ranging from 13-16 kb for arteriviruses to 25-34 kb 13 for roniviruses and coronaviruses. Some major transitions must therefore have occurred 14 during their evolution, which have been postulated to be reflected in the intermediate 15 genome size (20-21 kb) of the mesoniviruses. Genome expansion may have proceeded 16 in a highly ordered but lineage-specific manner that was constrained or promoted by 17 genome organization, host, and mutation, and was likely facilitated by the acquisition of 18 enzymes providing quality control mechanisms for newly synthesized RNAs (6).

19

Nidoviruses are characterized by their distinct polycistronic genome organization, 21 the conservation of key replicative enzymes, and a common genome expression and 22 replication strategy (2). Their distinctive transcription mechanism, which provided the basis for the name nidoviruses, involves the synthesis of subgenome-length negative-24 stranded RNAs that serve as templates for the production of a set of subgenomic (sg) mRNAs, which are 3' co-terminal with the viral genome and may vary considerably in number between nidoviruses (7). In most but not all nidoviruses, sg mRNAs and the 27 genome also share a common 5' leader sequence. It derives from a unique mechanism 28 of discontinuous negative-strand RNA synthesis that is used to equip the subgenomelength negative-stranded RNAs with the complement of the genomic leader sequence (Figure 1A). The synthesis of sg mRNAs (transcription) and genome RNA (replication) 31 is performed by a poorly characterized replication-transcription complex (RTC) that is comprised of multiple protein subunits and is associated with virus-induced cytoplasmic membrane structures (reviewed in (8)). The viral subunits of this complex are encoded 34 in two large open reading frames (ORFs), ORF1a and ORF1b, that are translated from the nidoviral genome. Translation starts from a single initiation codon at the 5' end of ORF1a and proceeds to either the ORF1a or the ORF1b termination codon. In the latter 37 case, which applies to an estimated 20-40% of the ribosomes, a programmed ribosomal frameshift occurs in the short ORF1a/ORF1b overlap region. The two polyproteins (pp) resulting from nidovirus genome translation, pp1a and pp1ab, are auto-catalytically

146 Chapter 5

1 processed by multiple internal proteases, one of which (the 3C-like (3CL^{pro}) or main (M^{pro}) protease) is responsible for the large majority of cleavages. Downstream of ORF1b, nido-3 virus genomes contain multiple smaller ORFs, known as the 3' ORFs, which are expressed from the sq mRNAs described above. The ORF1a-ORF1b-3' ORFs array is flanked by 5'- and 4 3'-terminal untranslated regions, which account for 5-9% of the nidoviral genome size (6). 5 6 7 Α Structural and Accessory 8 Nonstructural Proteins (Replicase) Proteins 9 ORF5a П RFS F GP3 ORF1a GP5 ORF1b GP2 12 13 B ORF1b 14 Arteriviridae RdRp 15 A ZBD NiRAN NendoU 16 AsD 17 Mesoniviridae NIRAN RdRp ExoN ZBD N-MT NiRAN Roniviridae RdRp ExoN **O-M**1

 RsD
 N-MT

 21
 ZBD

 22
 Coronaviridae

 23
 ZBD

 24
 Fine 1

Figure 1. Genome organization and ORF1b-encoded enzymes and domains of nidoviruses. (A) Genome organization of Equine arteritis virus (EAV) including replicase open reading frames (ORFs) 1a and 1b, and 3' ORFs encoding structural proteins. Genomes of other nidoviruses employ similar organizations while they 26 may vary in respect to size of different regions and number of 3' ORFs. RFS, ribosomal frameshift site. (B) 27 ORF1b size and domain comparison between the four nidovirus families shown for EAV (Arteriviridae), Nam 28 Dinh virus (Mesoniviridae), Gill-associated virus (Roniviridae), and Severe acute respiratory syndrome coronavirus (Coronaviridae). NiRAN, nidovirus RdRp-associated nucleotidyltransferase; RdRp, RNA-dependent 29 RNA polymerase; ZBD, zinc-binding domain; Hel1, helicase superfamily 1 core domain; NendoU, nidovirus uridylate-specific endoribonuclease; ExoN, exoribonuclease; N-MT, N7-methyltransferase; O-MT, 2'-O-31 methyltransferase; AsD, arterivirus-specific domain; RsD, ronivirus-specific domain. Depicted is a simplified domain organization since most enzymes are multidomain proteins. Note that viruses of the Coronaviridae family that do not belong to the subfamily of Coronavirinae encode a truncated version of N-MT. Triangles, established cleavage sites by 3CL^{pro} in two virus families; ORF1b-encoded proteins of other viruses may be 34 proteolytically processed in a similar way.

- 36
- 37
- -
- . .

1 During evolution, most conserved proteins of nidoviruses have accepted substitutions at a higher frequency per residue than those of organisms of the Tree of Life. In line with 2 3 the principal function of each region, genome conservation increases from 3' ORFs to ORF1a to ORF1b (6). Accordingly, the 3' ORF region encodes virion proteins and, option-4 5 ally, accessory proteins that are predominantly group- or family-specific and mediate virus-host interactions. ORF1a encodes a variable number of proteins that include co-7 factors of the RNA-dependent RNA polymerase (RdRp) and 2'-O-methyltransferase, three hydrophobic proteins mediating the association of the RTC with membranes, and the viral proteases (7;9;10). The latter include the 3CL^{pro}, which is the only ORF1a-encoded 9 enzyme conserved in all nidoviruses. In contrast, ORF1b is highly conserved and encodes 11 different RNA-processing enzymes that critically control viral RNA synthesis (Figure 1B). 12 These invariantly include the RdRp and a superfamily 1 helicase domain (HEL1), which 13 is fused with a multinuclear zinc-binding domain (ZBD). Both enzymes are expressed 14 as part of two different cleavage products residing next to each other in pp1ab (7). The 15 RdRp is believed to mediate the synthesis of all viral RNA molecules, while over the 16 years the unwinding activity of the helicase was implicated in the control of replication, 17 transcription, translation, virion biogenesis, and, most recently, post-transcriptional RNA quality control (reviewed in (11)). Among the lineage-specific proteins encoded in 18 ORF1b are four enzymes. A 3'-5' exoribonuclease (ExoN, in Coronaviridae, Mesoniviridae, 19 and Roniviridae) and an N7-methyltransferase (N-MT, in the Coronavirinae subfamily, 21 Mesoniviridae, and Roniviridae) constitute adjacent domains in the same pp1b cleavage 22 product. They were implicated in RNA proofreading (12-14) and in 5' end cap formation (15;16), respectively. Downstream of this subunit, nidoviruses encode an uridylate-24 specific endoribonuclease of unknown function (NendoU, in Arteriviridae and Coronaviridae) (17;18) and/or a 2'-O-methyltransferase (O-MT, in Coronaviridae, Mesoniviridae, and Roniviridae), which was implicated in 5' end cap modification and immune evasion 27 (15;19-21). All six ORF1b-encoded enzymes have distantly related viral and/or cellular 28 homologs. Additionally, Roniviridae and Arteriviridae encode family-specific domains of unknown origin and function, RsD and AsD, respectively. RsD is located between the subunits containing the RdRp and ZBD-HEL1 domains (22), respectively, while AsD is the 31 most C-terminal subunit of the arteriviral pp1ab (23).

32

The protein subunit containing the RdRp domain is known as nonstructural protein (nsp) 9 in the *Arteriviridae* and nsp12 in the *Coronaviridae* (7). Its major ORF1b-encoded part (~95% of its full size in all nidoviruses excluding mammalian toroviruses) varies in size from ~700 to ~900 amino acid residues and is N-terminally extended by a portion encoded in ORF1a, which can be as few as five residues long. The borders of the corresponding RdRp-containing proteins of the *Mesoniviridae* and *Roniviridae* have not been computationally or experimentally identified, but based on our bioinformatics

148 Chapter 5

analyses ((2;22) and also see below) these proteins are unlikely to be smaller than those
of arteriviruses. The RdRp-containing replicase subunit of nidoviruses thus seems to be
larger than the characterized RdRps of other RNA viruses, which commonly comprise
less than 500 amino acid residues (24;25).

6 RdRps are known to adopt variations of an α/β fold that is often described as a cupped 7 right hand, with the palm domain being most conserved and accommodating structural 8 elements of the active site while the less conserved fingers and thumb play an assisting 9 role (reviewed in (26;27)). Since the fingers vary in size between known RdRps, nidovi-10 ruses – of all or some lineages – might have evolved unusually large fingers that could 11 account for most of the observed size difference. Alternatively, another domain, either 12 upstream or inside of the RdRp domain, might have been acquired.

13

Prior bioinformatics analyses mapped conserved sequences (motifs), which are known
to be predominantly associated with the palm domain, to the C-terminal one-third of the
nidovirus RdRp-containing protein. Accordingly, the C-terminal two-thirds of SARS-CoV
nsp12 were sufficient to generate three-dimensional RdRp models using as a template
the RdRp structures of either rabbit hemorrhagic disease virus or a combination of those
of hepatitis C virus, poliovirus, rabbit hemorrhagic disease virus, reovirus, phage Φ6, and
human immunodeficiency virus1 (28:29).

21

22 With one notable exception (N-MT) (16), all ORF1b-encoded enzymes were initially identified by comparative genomic analysis involving viral and cellular proteins (23;30). 23 24 These assignments were fully corroborated by the subsequent biochemical character-25 ization of these enzymes (17;18;21;31-36). Furthermore, the (in)tolerance to replace-26 ment of active site residues as tested in reverse genetics studies of coronaviruses and arteriviruses in general correlated well with the observed enzyme conservation at the 27 scale of nidovirus diversity. Accordingly, the replacement of conserved residues of the 28 nidovirus-wide conserved RdRp, ZBD, and HEL1 were lethal for the viruses tested (37-39) 29 while viruses were crippled upon inactivation of ExoN, NendoU, or O-MT enzymes (40-31 42), which are conserved in only some of the nidovirus families (22). This correlation is noteworthy since it coherently links the results of the experimental characterization of 32 a few nidoviruses in cell culture systems to evolutionary patterns that were shaped by 33 34 natural selection in many hosts over an extremely large time frame. The fact that this correlation is evident for nidoviruses overall, rather than for separate families, indicates 36 that nidovirus-wide comparative genomics provides sensible models to the functional 37 characterization of the most conserved replicative proteins in experimental settings in 38 vitro and in vivo.

39

1 In the present study, we aimed to elucidate the domain organization, origin, and function of the RdRp-containing proteins of nidoviruses by integrating bioinformatics, 2 3 biochemistry, and reverse genetics in a manner that was validated in many prior studies. Our extensive bioinformatics analysis revealed a novel domain, encoded upstream of 4 5 the RdRp domain but within the same (predicted) polyprotein cleavage product, which is conserved in all nidoviruses and has no apparent viral or cellular homologs, making it 7 a second genetic marker for the order Nidovirales. Based on a conservation pattern involving lysine, arginine, glutamate, and aspartate residues, this domain was proposed to 9 have nucleotidylation activity. Subsequently, using recombinant nsp9 of the prototypic arterivirus equine arteritis virus (EAV), the covalent binding of guanosine and uridine 11 phosphates was demonstrated, which was found to be extremely sensitive to replace-12 ment of conserved residues. The replication of both EAV and SARS-CoV was found to be 13 severely affected by substitution of these conserved residues. Amongst those was also an 14 invariant lysine residue that presumably binds the nucleoside phosphate. Accordingly, 15 the domain was named **ni**dovirus **R**dRp-**a**ssociated **n**ucleotidyltransferase (NiRAN). We 16 discuss the potential functions in nidovirus replication in which this essential NiRAN 17 activity may be involved, which include RNA ligation, protein-primed RNA synthesis, and 18 the guanylyltransferase function that is necessary for mRNA capping.

- 19
- 20

1 RESULTS

22

Delineation of a novel, unique domain that is conserved immediately upstream of the RdRp in polyproteins of all nidoviruses

25

To shed light on the cause of the large size of nidoviral RdRp-containing proteins, we 27 have conducted several bioinformatics analyses of their sequences (see Materials and 28 Methods for technical details). We have produced family-wide multiple sequence alignments (MSAs) of nsp12 of coronaviruses, nsp9 of arteriviruses, and their counterparts of mesoniviruses and roniviruses, whose borders have been tentatively mapped through 31 limited similarity with known 3CL^{pro} cleavage sites of these viruses (43;44) (Figure S1). For simplicity, we will refer to the proteins of mesoni- and roniviruses as nsp12t, with "t" standing for tentative. The final subsets include 35, 10, 6, and 2 sequences representing all established and putative taxa of corona-, arteri-, mesoni-, and roniviruses, respec-34 tively. To scan different databases, MSAs were split into the N-terminal and C-terminal parts, which were converted into Hidden Markov Model (HMM) profiles to conduct 37 profile-sequence (HMMER 3.1) and profile-profile (HH suite 2.0.15) comparisons and into position-specific scoring matrix (PSSM) profiles for profile-tertiary structure (Gen-THREADER 8.9) comparisons.

150 Chapter 5

1 In comparisons with the Protein Data Bank (PDB) (www.rcsb.org, (45)) using Gen-2 THREADER, RdRps of different viruses dominated the hit list for the best sampled nidovi-3 ruses, corona- and arteriviruses, and they were consistently present among the top hits for the two other families (Table S2). Typically the similarity between a nidovirus query 4 and a target encompassed the entire target and was limited to the C-terminal part of 5 the guery, with the N-terminal ~250 and 350 amino acid residues remaining unmatched 6 in arteriviruses and other nidoviruses, respectively (Figures 2A and S2). Likewise, the C-7 8 terminal part of nsp9/nsp12/nsp12t matched the RdRp profiles of different virus families in PFAM (46) and an in-house database although this analysis was complicated by the 9 presence of nidovirus sequences in the top-hit PFAM profile (see below). Based on these results we concluded that nsp9, nsp12, and nsp12t contain N-terminal domains that are 11 12 not part of canonical RdRps.

13

14 Inspection of the intra-family sequence conservation for MSAs of nsp9, nsp12, and nsp12t using a two-dimensional plot (Figure S2) revealed the association of character-15 istic RdRp motifs with some of the most prominent conservation peaks, located in the 16 17 C-terminal half of nsp9 and nsp12. For nsp12t (Figure S2), similar conclusions could be drawn although the conservation profiles of these viruses, especially roniviruses, were 18 of lesser resolution due to the overall higher similarity that was the result of the limited 19 virus sampling and divergence. Importantly, also the N-terminal half of nsp9 and nsp12 included a few above-average conservation peaks although the overall conservation 21 22 was evidently highest around the established RdRp motifs (Figures 2A and S2). We concluded from this analysis that the N-terminal parts of at least nsp9 and nsp12 share 23 24 characteristic conserved motifs (the domain is hereafter referred to as NiRAN, see below). 25

26 To investigate the relation of the NiRAN domains of the four different families, the HHalign program from the HH-suite software package was used to conduct pair-wise 27 profile-profile comparisons, which were visualized in dot-plot format (Figure S3). This 28 analysis revealed strong support (\sim 98% confidence and E= 7.7e-09–1.7e-08) for the 29 similarity between NiRANs of coronavirus nsp12 and mesonivirus nsp12t, and moder-31 ate support (~21-30% confidence and E=0.00091–0.00051) for the similarity between the respective domains of mesoni- and roniviruses. Based on this observation, we have 32 aligned the NiRAN domain of coronavirus nsp12 and mesonivirus nsp12t using the 33 profile mode of ClustalX, with the MSA being slightly adjusted taking into account the 34 HHsearch-mediated results. This MSA of two families was superior compared to each 36 of the two family-specific MSAs with respect to its similarity to the MSA of roniviruses 37 (~54-75% confidence and E=0.00049-0.00011). Consequently, the ronivirus MSA was added to the MSA of corona- and mesoniviruses to generate an MSA of the NiRAN of 38 39

Figure 2: Delineation of the NiRAN domain in RdRp-containing proteins of nidoviruses. (A) Sequence 21 variation, domain organization, and secondary structure of the RdRp-containing protein of arteriviruses, and location of peptides identified by mass spectrometry after FSBG-labeling of arterivirus nsp9. Shown 22 is the similarity density plot obtained for the multiple sequence alignment (MSA) of proteins including NiRAN and RdRp domains of arteriviruses. To highlight the regional deviation of conservation from that 24 of the MSA average, areas above and below the mean similarity are shaded in black and gray, respectively. Uncertainty in respect to the domain boundary between NiRAN and RdRp is indicated by a dashed horizontal line. Sequence motifs of NiRAN and RdRp are labeled. Below the similarity density plot, predicted secondary structure elements are presented in gray for α -helices, black for β -strands. Relative positions of 27 peptides identified by mass spectrometry after FSBG-labeling of arterivirus nsp9 are shown at the top. (B) 28 MSA of the three conserved NiRAN motifs of eight representative nidoviruses and their predicted secondary structures. Absolutely conserved residues are highlighted in red boxes. Partially conserved residues 29 are indicated in red font. Secondary structure predictions were made with JPred (91) based on arterivirus (arteri) or coronavirus (corona) MSAs. Residues mutated in recombinant equine arteritis virus (EAV, Arteri-31 viridae) nonstructural protein (nsp) 9 are indicated by filled (conserved) and empty (control) circles. Amino acid numbers refer to EAV nsp9. GAV, gill-associated virus (Roniviridae); YHV, yellow head virus (Roniviridae); CAVV, Cavally virus (Mesoniviridae); MenoV, Meno virus (Mesoniviridae); SARS-BtCoV, bat severe acute re-33 spiratory syndrome coronavirus (Coronaviridae); MERS-CoV, Middle East respiratory syndrome coronavirus 34 (Coronaviridae); PRRSV-1, porcine reproductive and respiratory syndrome virus EU-type (Arteriviridae).

- 50
- 37
- 38
- 39

152 Chapter 5

1 the three families, which are hereafter called ExoN-encoding nidoviruses, with reference

- 2 to the feature that distinguishes them as a group compared to arteriviruses (Figure 1B).
- 3

In contrast to the above observations, the support for any similarity between the NiRAN 4 MSAs of arteriviruses and ExoN-encoding nidoviruses in our HHalign-based analysis was 5 considered as weak, particularly with respect to confidence (E=0.03-0.04 and ~1% con-6 fidence, when comparing the MSA of arteriviruses versus ExoN-encoding nidoviruses). 7 8 This experience prompted us to compare conserved motifs and predicted secondary structures of the domains of these families (Figures S1 and S2). Ten residues were found 9 to be invariant in the conserved NiRAN of the ExoN-encoding nidoviruses. They map to three motifs designated A_N (with a K-x[6-9]-E pattern in ExoN-encoding nidoviruses), B_N 11 12 (R-x[8-9]-D) and C_N (T-x-DN-x4-G-x[2,4]-DF), respectively (Figure 2A), with motifs B_N and 13 C_N representing the most prominent conservation peaks of this domain in coronaviruses 14 (Figure S2). Remarkably, similar conserved motifs are present in the NiRAN of arteriviruses (Figure 2A), where B_N and C_N again occupy the two most prominent peaks (Figure S2). 15 The three motifs are similarly positioned relative to the ORF1a/ORF1b frameshift signal 16 17 in all nidoviruses, and they were aligned in the HHalign-based analysis discussed above. Specifically, all four invariant residues of motifs A_N and B_N of ExoN-encoding nidoviruses 18 are also conserved in arteriviruses although with slightly smaller distances separating 19 the two residues of each pair (Figure S1). In the most highly conserved motif C_{N} the aspartate-phenylalanine dipeptide and likely glycine (the only deviating arginine at this 21 22 position in the lactate dehydrogenase-elevating virus isolate U15146 may result from a sequencing error) are absolutely conserved among all nidoviruses while the other 23 24 invariant residues of ExoN-encoding nidoviruses may be replaced by similar residues in arteriviruses. Additionally, there is a good agreement between the predicted secondary 26 structure for the domains of arteriviruses and ExoN-encoding nidoviruses, particularly in 27 the area encompassing the sequence motifs as well as regions immediately upstream of motif A_N (named preA motif) and downstream of motif C_N (Figure S1). In ExoN-encoding 28 nidoviruses, motifs B_N and C_N are separated by a variable region of 40-60 amino acid residues that does not include absolutely conserved residues, while in arteriviruses mo-31 tifs B_N and C_N are adjacent. Also, we noted that the C-terminal border of the N-terminal conserved domain was close to that identified in the GenTHREADER analysis discussed 32 above (Figure S2). Based on these observations, we concluded that nsp9, nsp12, and 34 nsp12t contain the NiRAN domain, which is conserved in all nidoviruses.

35

To gain insight into the origin and function of this domain, MSA-based profiles of this domain and its individual motifs of different nidovirus families and the entire order were compared with the PFAM, GenBank, Viralis DB, and PDB databases. As a control, we used the HMM profiles of four other domains that are conserved in all nidoviruses,

1 3CL^{pro}, RdRp, ZBD, and HEL1. None of the database scans involving the NiRAN retrieved 2 a non-nidovirus hit whose E value was better than 0.065 for HMMER and 1.3 for the 3 HHsearch program from HH-suite (Figure 3), and none of these hits had sequences similar to the motifs of the NiRAN. In contrast, statistically significant hits with virus 4 5 and/or host proteins were identified for the nidoviral control proteins either in both or one of the scans; at least some of these hits were true positives in the functional and/ or structural dimension as well. Likewise, in scans of the PDB using GenTHREADER, all 7 top hits for the NiRAN of the four virus families had low support (p=0.014 or worse) with no match of the conserved motifs. In contrast, top hits for four RdRp queries were 9 supported with P values of 0.0003 or better and targeted RdRps of other viruses, at least 11 for arteri- and coronavirus gueries (Table S2). Based on these results and those involving 12 the comparison of arteriviruses and ExoN-containing nidoviruses, we concluded that 13 the NiRAN domain could have diverged from its homologs in other organisms beyond 14 the level of sequence similarity that can be recognized with the available HMM- and PSSM-based tools. 15 16

Figure 3: Comparison of nidovirus-wide conserved domains with sequence databases. Shown are histograms depicting E values of the best non-nidovirus hits obtained during HMMER-mediated profile-sequence (A) and HHsearch-mediated profile-profile (B) searches of the GenBank and PFAM A databases, respectively, using MSA profiles of five nidovirus-wide conserved domains encoded by four nidovirus families. The identity of the non-nidovirus top-hit in the respective databases is specified. Stars indicate hits whose homologous relationship with the respective query is also supported by the functional and/or structural annotation of the respective targets.

- 36
- 37
- 29
- 39

154 Chapter 5

EAV nsp9 has Mn²⁺-dependent nucleotidylation activity with UTP/GTP preference

3

Since we could not identify any homologs of the NiRAN domain whose prior charac-4 terization would facilitate the formulation of a hypothesis about its function, we have 5 reviewed the available information about nidovirus genome organization and the 6 analyses described above. The data were most compatible with the hypothesis that this 7 8 domain is an RNA processing enzyme, in view of i) the abundance of RNA processing enzymes in the ORF1b-encoded polyprotein (Figure 1B), ii) the predicted α/β structural 9 organization (Figure S1), and iii) the profile of invariant residues, composed of aspartate, glutamate, lysine, arginine, and phenylalanine (and possibly glycine) (Figure 2B), the 11 12 first four of which are among the most frequently employed catalytic residues (47). We 13 hypothesized that, because the domain is uniquely conserved in nidoviruses, its activity 14 might work in concert with that of another, similarly unique RNA processing enzyme. At the time of this consideration, the NendoU endoribonuclease of nidoviruses was 15 believed to be such an enzyme (17) (assessment revised in 2011, (22)). Consequently, we 16 17 reasoned that a ligase function would be a natural counterpart for the endoribonuclease, as observed in many biological processes, and would fit in the functional coopera-18 tion framework outlined in our analysis of the SARS-CoV proteome (30). This hypothesis 19 was also compatible with the lack of detectable similarity between the NiRAN and the highly diverse nucleotidyltransferase superfamily, to which nucleic acid ligases belong, 21 22 as this superfamily is known to include groups that differ even in the most conserved sequence motifs, especially in proteins of viral origin (48;49). Based on mechanistic 23 24 insights obtained with other ligases, it was expected that the conserved lysine is the 25 principal catalytic residue of the NiRAN domain.

26

27 To detect this putative NTP-dependent RNA ligase activity, we took advantage of the universal ligase mechanism, which can be separated into three steps (50). First, an NTP 28 molecule, typically ATP, is bound to the enzyme's binding pocket, and a covalent bond 29 is established between the nucleotide's a-phosphate and the side chain of either lysine 31 or histidine, while pyrophosphate is released. Since this protein-NMP is a true, temporarily stable intermediate, it can be readily detected by biochemical methods. In contrast, 32 demonstration of the following two steps, NMP transfer to the 5' phosphate of an RNA 33 substrate and subsequent ligation of a second RNA molecule under release of the NMP, 34 depends on the availability of target RNA sequences whose identification is often not as 36 straightforward. Thus, we first assessed our hypothesis by testing the covalent binding of 37 a nucleotide, known as nucleotidylation.

- 38
- 39

1 To this end, recombinant EAV nsp9 was purified and incubated with each of the four NTPs, which were ³²P-labeled at the α -position, and run on denaturing SDS-PAGE gels to discrimi-2 nate between covalent and affinity-based nucleotide binding. As can be seen in Figure 4A, we could indeed detect a radioactively labeled product with a mobility comparable to 4 that of nsp9 in the presence of GTP and UTP. To verify that this labeled band corresponded 5 to a protein and did not result from 3' end labeling of co-purified E. coli RNA or polyG synthesis by the RNA polymerase residing in the C-terminal domain of nsp9, guanylylation 7 was followed by the addition of either proteinase K or RNase T1, which cleaves singlestranded RNA after G residues. As expected, only protease treatment removed the band 9 while incubation with RNase T1 had no effect on the product (Figure 4B). The same result was obtained after uridylylation using RNase A, which cleaves after pyrimidines in single-11 12 stranded RNA (data not shown). Furthermore, as the use of GTP labeled in the y-position 13 did not result in a radioactive product, we conclude that this phosphate is, in agreement 14 with the general nucleotidylation mechanism, released during the reaction (Figure 4B). Since these results were compatible with the bioinformatics results described above and 15 were corroborated further in experiments described below, the N-terminal domain was 16 17 named nidovirus RdRp-associated nucleotidyltransferase (NiRAN). 18

19

24

28

Figure 4. EAV nsp9 has nucleotidylation activity. Purified recombinant EAV nsp9 (78 kDa) was incubated 33 with the indicated [³²P]NTP in the presence of MnCl₂. Reaction products were visualized after denaturing 34 SDS-PAGE by Coomassie brilliant blue staining (top panels) and phosphor imaging (bottom panels). Positions of molecular weight markers are depicted on the left in kDa. (A) Uridylylation and guanylylation activity as revealed by covalent binding of the respective radioactive nucleotide to nsp9. Note that the protein indicated with an asterisk likely is an E. coli-derived impurity reacting with ATP. Relative band intensities 37 are shown at the bottom. (B) Guanylylation was distinguished from RNA polymerization by incubating the products generated during the nucleotidylation assay with proteinase K (1 mg/ml) or with RNase T1 (0.5 U), which cleaves single-stranded RNA after G residues, for 30 min at 37°C.

156 Chapter 5

1 Unexpectedly, nsp9 showed a marked substrate specificity for UTP, which resulted in the 2 accumulation of 5 times more enzyme-nucleotide complex than observed with GTP. In 3 contrast, no covalent binding was observed with ATP or CTP as substrates (Figure 4A). The observed substrate preferences are remarkable for two reasons. First, since both 4 5 UTP and GTP are present in significantly lower concentrations under physiological conditions than ATP (51) and are in general not used as primary energy source, it suggests 6 that the identity of the base, rather than the energy stored within the phosphodiester 7 8 bonds, may be critical for a subsequent step in the reaction pathway. Obviously, this implies that the involvement of these transitory covalent complexes in reaction pathways 9 other than RNA ligation must be considered. Second, the selective utilization of only one pyrimidine and one purine substrate raised questions about the nature and number of 11 12 active sites involved, for instance, whether both nucleotides bind to separate binding 13 sites or utilize different catalytic residues within the same binding site. Unfortunately, 14 there are no crystal structures for any of the nidovirus nsp9/nsp12/nsp12t subunits available to date, which might have been used to resolve this matter in docking studies. 15 16

Therefore, to address this question indirectly we compared the pH dependence of both activities as a signal for structural differences in the immediate environment of the catalytic residue. Interestingly, while the relative activities below pH 8.5 were identical with both substrates, the relative guanylylation activity was exceedingly higher than uridylylation at a pH above 8.5 (Figure 5A). To test whether a difference in the metal ion requirement could be the cause for the observed dependence, we determined the opti-

1 mal manganese concentration for nucleotidylation with both substrates. As is apparent 2 from Figure 5B, both activities share the same broad optimum between 6 and 10 mM 3 MnCl₂. This result made it unlikely that manganese oxidation and a concomitant decrease of available Mn²⁺ ions, as we observed at a pH above 9.0, would selectively favor the 4 utilization of one of the two substrates. The observed difference between guanylylation 5 and uridylylation with regard to its pH optimum may thus be genuine. For instance, this 7 slightly broadened or – more likely – shifted pH optimum of guanylylation may be the result of a GTP-induced spatial reorientation of amino acid side chains in the vicinity of 9 the catalytic residue and a concomitant alteration of its pK_a . Alternatively, it may also be explained by the two substrates using different binding sites. These possibilities were partially addressed in the experiments described in the subsequent sections. 11

12

FSBG labeling of nsp9 suggests the presence of a nucleotide binding site in the NiRAN domain

15

16 To verify that the newly discovered nucleotidylation activity is associated with the NiRAN 17 domain, we first sought to establish the presence of the expected nucleotide binding 18 site. To this end, we replaced the substrate in the nucleotidylation assay with the reactive guanosine analog 5'-(4-fluorosulfonylbenzoyl)guanosine (FSBG) (Figure S4A) (52). 19 Depending on the exact shape of the nucleotide binding pocket this compound may 21 be suitable for binding and reacting with any nucleophile within the pocket, leaving 22 behind a stable sulfonylbenzoyl tag that can be readily detected by mass spectrometry. In this way, residues that are lining the binding site can be identified. However, because 24 the points of attack of FSBG (sulforyl group sulfur) and GTP (α -phosphorus) are spatially separated (~4Å, Figures S4A and B), these residues are not necessarily of biological relevance to nucleotidylation but rather mark the environment of the nucleotidylation.

27

28 After analysis of the nucleotidylation reaction mixture by mass spectrometry, seven 29 modified peptides representing five distinct nsp9 regions could be assigned: three in (the vicinity of) the NiRAN domain and two in the RdRp domain (Figures 2A and S5C). 31 In agreement with previously published results (52), only lysine and tyrosine residues were found to be modified, as these are thought to provide the chemically most stable bonds. Selectivity of the modification was evident in the fact that only seven lysine and 34 tyrosine residues served as nucleophile for the reaction. Furthermore, all these peptides were identified in independent experiments using FSBG concentrations ranging from 25 μ M to 2 mM. Within this range a concentration of 100 μ M was sufficient to detect 37 all seven peptides. Together this strongly suggests that the reaction with FSBG only occurred after binding to a specific site(s) and did not originate from random collisions. Furthermore, the two modified residues in the EAV RdRp are located in either a predicted

1 α -helix or loop not far upstream and downstream of the A_B and E_B motifs, respectively, 2 which are involved in NTP binding in other better characterized RdRps. The five modified 3 residues in the EAV NiRAN domain are poorly conserved in related arteriviruses and are located in the vicinity of one of the three major motifs in either a predicted loop region 4 (1 residue) or a β -strand (4 residues). These findings are compatible with the expected 5 properties of the FSBG modification that may label any nucleophile within a 4 Å distance 6 from the NTP-binding site(s). We therefore conclude that the peptides identified in this 7 8 experiment reflect the presence of a nucleotide binding site(s) within the RdRp required for RNA synthesis and a second binding site that is located in the NiRAN domain, which 9 could serve for nucleotidylation.

11

Conserved residues of the NiRAN domain but not of the RdRp domain are required for nucleotidylation activity

14

15 In a next step, the importance of conserved NiRAN residues for the guanylylation and uridylylation activities was examined by characterization of alanine substitution mutants 16 17 of several residues, including five invariant residues, in recombinant EAV nsp9. Notably, none of these mutations significantly reduced expression or stability (data not shown), 18 indicating that they are most likely compatible with the protein's structure. Subsequent 19 characterization demonstrated that all conserved NiRAN residues that were probed are important for nucleotidylation activity, as their replacement with alanine led, with the 21 22 exception of \$129A, to a drop to below 10% of wild-type protein activity. In contrast, alanine substitution of a non-conserved N-terminal residue (K106A) as well as a conserved 23 24 residue in the RdRp domain (D445A of motif A_R), which is known to be essential for the polymerase activity in other RNA viruses (27), had only a mild effect, preserving at least 26 75% of the activity (Figure 6). Thus, we concluded that the identified sequence motifs in the EAV nsp9 NiRAN domain are functionally connected to the nucleotidylation activity. 27 In addition, as the level of remaining activity (again with exception of the S129A mutant) 28 did not depend on the substrate used, both guanylylation and uridylylation are likely 29 catalyzed by the same active site.

31

In contrast to these results, the mutation at position S129, the only targeted residue that is fully conserved in arteriviruses but may be replaced by threonine in other nido-viruses, exhibited a slightly different effect on guanylylation and uridylylation. Mutant S129A displayed an intermediate activity when using GTP but was almost as deficient as mutants of the nidovirus-wide conserved residues when UTP was used as substrate (Figure 6). This finding may indicate that S129 is specifically involved in the hydrogen bond network between protein and UTP. Alternatively, as the covalent binding of the nucleotide occurs via a nucleophilic attack on the α-phosphate, this serine may in prin-

Figure 6. Alanine substitution of conserved NiRAN residues dramatically decreased the nucleotidylation activity of nsp9. In contrast, mutation of the non-conserved K106 in the NiRAN domain or the conserved D445 in the RdRp domain had only a mild effect on activity. Error bars represent the standard deviation of the mean based on three independent experiments.

18

11

12 13 14

19

ciple be suitable to play this role. Although to our knowledge nucleic acid ligases typi cally employ lysine and rarely histidine as catalytic residues (50;53), we cannot exclude
 that uridylylation occurs via this S129 while guanylylation utilizes another amino acid.

23

24

Nucleotidylation occurs via the formation of a phosphoamide bond

25

In order to identify which type of amino acid is the catalytic residue involved in nucleo-27 tidylation, the chemical stability of the bond formed between enzyme and nucleotide 28 was probed. To this end, the nucleotidylation product was subjected to either a higher or a lower pH for 4 min, while the protein was heat denatured. The loss of the radioactive label under acidic or alkaline conditions is an indicator for the type of bond that 31 is formed (Figure 7A) (54). As evident from Figure 7B, the bond between guanosine phosphate and nsp9 was acid-labile but stable under alkaline conditions, which was indicative of a phosphoamide bond originating either from a lysine or histidine. This 34 result was also confirmed for uridylylation (data not shown), excluding a direct role for S129 in the attachment of the uridine phosphate. Since there is no conserved histidine present in the NiRAN domain, K94 is the most likely candidate within this domain to fulfill the role of catalytic residue.

- 30
- 39

14

Figure 7. A phosphoamide bond is formed between nsp9 and the guanosine phosphate. (**A**) Chemical stability of different phosphoamino acid bonds. Adapted from (54). (**B**) The protein was labeled with $[\alpha^{-32}P]$ GTP and subsequently incubated at pH 8.5 (control) or under acidic or alkaline conditions. Reaction products were visualized after denaturing SDS-PAGE by Coomassie brilliant blue staining (top panel) and phosphor imaging (bottom panel). Size markers are depicted on the left in kDa.

19

Guanosine and uridine phosphates may be attached via different phosphategroups

22

23 So far we have demonstrated that guanylylation and uridylylation are essentially equally 24 sensitive to replacement of NiRAN residues, share the same metal ion requirements, and 25 that both rely on the formation of a phosphoamide bond. We therefore concluded that 26 there is only one active site responsible for nucleotidylation, which allows utilization of both substrates. Interestingly, if this is true, discrimination of GTP and UTP against ATP 27 and CTP would be solely based on the presence of an oxygen at C6 of GTP and C4 of 28 UTP. However, given the pronounced size difference between UTP and GTP, the position of both substrates within the binding site is unlikely to be equivalent. In principle, two 31 binding scenarios are possible. First, ribose and phosphates of both nucleotides could occupy the same position within the binding site, for example by forming hydrogen 32 bonds via the ribose's 2' and 3' hydroxyl groups and charge interactions between the protein and the phosphates. Yet, due to the size difference of the bases (pyrimidine 34 vs. purine), any additional interactions between protein and bases would involve dif-36 ferent hydrogen bond networks, potentially involving water molecules in the case of the smaller UTP. Alternatively, due to stacking interactions between an aromatic residue of the protein and the bases, uracil and the pyrimidine ring of guanine might occupy 38 equivalent positions. As this would inevitably lead to the relative misplacement of the 39

1 ribose and phosphates of UTP compared to GTP, the catalytic residue may compensate

2 for the size difference by re-adjusting and attacking the β - instead of the α -phosphate

- 3 of UTP.
- 4

To explore this possibility, nsp9 was nucleotidylated as before and non-bound label was removed by extensive washing until no residual radioactivity was detected in the wash buffer. The nucleotide-protein bond was subsequently broken by lowering of the pH and the released nucleotide was analyzed by thin layer chromatography. While nsp9 incubated with GTP clearly released significantly more of the expected GMP in an acidic environment than under alkaline conditions, the results after uridylylation were not as conclusive. Although also in this case the monophosphate was released after HCl

33

Figure 8. GMP is released from labeled EAV nsp9 under acidic conditions. (A) nsp9 was labeled with [α-³²P]
 GTP or [α-³²P]UTP and was incubated at pH 8.5 (control) or under acidic or alkaline conditions after removal
 of non-incorporated nucleotides. Resulting products were separated with PEI-cellulose TLC. Solid lines represent the position where samples have been spotted (bottom) and the running front (top). Dashed lines
 represent the respective mobilities of the indicated nucleotides. (B) [α-³²P]GTP was incubated under the same conditions as in A but omitting nsp9. An nsp9-containing sample treated with HCl served as positive control.

162 Chapter 5

1 treatment, the intensity did not match that of GMP and a second product was present 2 in higher quantities (Figure 8A). This may indicate that UMP is either further hydrolyzed 3 under these conditions or that in fact a UMP-protein adduct is only the minor product 4 during uridylylation. Therefore, it remains unclear whether the binding of UTP indeed 5 forces an attack of the β -phosphate. To exclude that the observed GMP release is caused 6 by the treatment with HCl, control samples lacking nsp9 were also investigated. As 7 expected this did not result in a product with equivalent mobility to GMP (Figure 8B).

9 NiRAN nucleotidylation is essential for EAV and SARS-CoV replication in cell 0 culture

11

To establish the importance of the NiRAN domain for nidoviral replication, reverse ge netics was used to engineer both EAV and SARS-CoV mutants in which conserved NiRAN
 residues were substituted with alanine. Following transfection of *in vitro*-transcribed full-

 Table 1: Reverse genetics analysis of EAV nsp9 and SARS-CoV nsp12 mutants.

15 16

17 nsp9/nsp12 virus titers sequence of P1 motif mutation (PFU/ml at 16-18 h p.t.) virus^a mutant EAV $1.10^7, 2.10^8$ n.d. wt K94A AAA GCA <20, <20 Reversion AN 21 Non-conserved GCA K106A AAA GCA 3.10⁵, 2.10⁶ B_N R124A CGU <u>GC</u>U <20, <20 Reversion $1.10^4, 5.10^3$ UCG <u>G</u>CG B_N S129A Reversion D132A GAU G<u>C</u>U 3.10⁴, 6.10³ BN Reversion C_N D165A GAU G<u>C</u>U 3.10³, 1.10⁴ Reversion C_N F166A UUU <u>GC</u>U <20, <20 na 27 <20, 1·10⁴ A_R D445A GAC GCC Reversion SARS-CoV 4.10⁶, 3.10⁵ n.d. wt AN K73A AAG GCC <20, <20 n.a. Non-conserved K103A AAG <u>GCA</u> <20, <20 GCA 31 B_N R116A CGU GCU <20, <20 n.a. 1.10⁵, 4.10⁵ GCU B_N T123A ACA GCU D126A GAU G<u>CG</u> <20, <20 B_N n.a. 34 CN D218A GAU G<u>C</u>U <20, <20 n.a. $2 \cdot 10^4$, $8 \cdot 10^2$ GCG F219A UUC GCG C_N D618A GAU GCG <20, <20 n.a. A_R

^aVirus-containing supernatants were collected at 72 h p.t. and subsequently used for re-infection of fresh
 BHK-21 (EAV) or Vero-E6 (SARS-CoV) cells. Total RNA was isolated after appearance of CPE, and nsp9/nsp12
 coding regions were sequenced. All results were confirmed in a second independent experiment. n.d., not
 done; n.a., not applicable (non-viable phenotype).

1 length RNA into permissive cells, viral protein expression and progeny production were 2 monitored (Table 1). As expected for such conserved residues, most alanine substitutions 3 were either lethal for the virus or resulted in a severely crippled virus that reverted, thus confirming the essential role of the nucleotidylation activity during the viral replication 4 5 cycle. Similarly, also replacement of a conserved aspartate in motif A of the downstream RdRp domain, which is known to be required for the activity of polymerases in other (+) RNA viruses (27), was tolerated in neither EAV nor SARS-CoV. Notable exceptions to 7 8 this general pattern, in addition to the replacements of non-conserved lysine residues included as controls, were the T123A and F219A mutations in SARS-CoV nsp12. These 9 mutations were stably maintained although they produced a mixed plague phenotype comprising wild-type-sized and smaller plaques, with F219A also demonstrating a 11 12 markedly lower progeny titer (at least 2 logs) than the wild-type control (Figure 9). The 13 reason for this differential behavior of these two SARS-CoV mutants in comparison to 14 those of EAV is unclear at the moment. 15

- 33
- 34
- 5
- 36
- 37
- 29
- 20

1 DISCUSSION

2

3 NiRAN is the first enzymatic genetic marker of the order Nidovirales

4

5 The NiRAN domain described in this study is the fourth ORF1b-encoded enzyme involved in RNA-dependent processes identified in arteriviruses and the seventh in 6 coronaviruses. Its existence was not predicted by prior nidovirus research, which attests 7 8 to our poor understanding of the molecular machinery that governs nidovirus replication. As in most prior studies of nidoviral replicative proteins, this identification was 9 initiated by comparative genomics analysis, whose results made it clear why this particular enzyme, now called the NiRAN domain, was not identified earlier. Unlike all other 11 12 nidovirus enzymes, NiRAN was found to have no appreciable sequence similarity with 13 proteins outside the order *Nidovirales*. The analysis suggested the extreme divergence 14 of nidovirus NiRAN domains from their prototypes, since even the similarity between the arteriviral NiRAN and that of other nidoviruses was found to be marginal. Five out 15 of the seven amino acid residues that are evolutionary invariant in the NiRAN domain 16 17 belong to the most frequently occurring residues in proteins, which likely complicated the recognition of NiRAN conservation by even the most powerful HMM-based tools. 18 19

Besides technical challenges in the identification of NiRAN, this domain also stands out for its properties that are indicative of an unknown but critical role in nidovirus replica-21 22 tion (see below). NiRAN is the only ORF1b-encoded domain that is located upstream of the RdRp and resides within the same nonstructural protein. This implies that NiRAN may 23 24 influence the folding of the downstream RdRp domain. It would be reasonable to expect that these domains cross-talk to couple the reactions and processes they catalyze. Thus, 26 NiRAN is a prime candidate to be a regulator and/or co-factor of the RdRp, a property that should be taken into account in future experiments aiming at the characterization 27 of the RdRp or reconstitution of RTC activity in vitro. 28

29

The exclusive conservation of NiRAN in nidoviruses makes it a genetic marker of this 31 order, only the second after the previously identified ZBD and the first with enzymatic activity. It may not be a coincidence that each of these markers is associated with a key 32 enzyme in (+) RNA virus replication, RdRp and HEL1, respectively. The modulating role of 33 the ZBD for HEL1 and its involvement in all major processes of the nidovirus replicative 34 cycle have been documented (reviewed in (11)). Similar studies could be performed to 36 probe the function(s) of NiRAN. This emerging parallel between NiRAN-RdRp and ZBD-37 HEL1 highlights the fruitful cooperation between nidovirus-wide comparative genomics and experimental studies during the functional characterization of these proteins. 38

39

1 2

Possible functions of conserved NiRAN residues

- 3 We here demonstrated that NiRAN is essential for EAV and SARS-CoV replication in cell culture by testing mutants in which conserved residues had been replaced. The mutated 4 5 viruses were either crippled (and in most cases reverted to wt) or dead, depending on the targeted residue and the virus studied. Importantly the magnitude of the observed effect paralleled that caused by the replacement of an RdRp active site residue of the 7 respective virus, which can be expected to put the greatest possible constraints on viral 9 replication with the RdRp being the central enzyme involved in this process. This similarity between the two enzymes is most notable because of the much higher divergence of 11 the NiRAN sequence compared to the RdRp. These results also show that the significance 12 of NiRAN for virus replication must be different from that of NendoU, the only other 13 ORF1b-encoded enzyme that has been probed extensively by mutagenesis in reverse 14 genetics in both corona- and arteriviruses (17;41;55). Two of those studies revealed that 15 EAV and mouse hepatitis virus (MHV) NendoU mutants with replacements in the active 16 site were stable and in the latter case even displayed similar plaque phenotypes as the 17 wild-type virus while being only slightly delayed in growth (41;55).
- 18

19 In our biochemical assays we detected a second enzymatic activity that is associated with the nidovirus RdRp subunit (31;33;56). This new activity, which was categorized as 21 nucleotidylation, is associated with the N-terminal domain of EAV nsp9, as demonstrated 22 by mass spectrometry analysis (Figures 2A and S4) and the importance of conserved NiRAN residues for this activity (Figure 6). Nucleotidylation was most pronounced with 24 UTP as substrate but was also observed with GTP (Figure 4A). Despite their size difference, both substrates appeared to be utilized by the same NiRAN binding site since uridylylation as well as guanylylation depended on the same conserved residues. To 27 our knowledge such dual specificity has never been reported for a protein of an RNA 28 virus and (likely) a host. Our results strongly suggested the nucleotidylated residue to 29 be either a lysine or a histidine (Figure 7). Since NiRAN lacks a conserved histidine, K94 in EAV nsp9 is the most likely target for nucleotidylation. Alternatively, reminiscent of 31 the protein kinase mechanism, the conserved NiRAN residues might merely constitute a nucleotide binding site that presents the nucleotide to a catalytic residue located in the C-terminal RdRp domain.

34

Next to K94 and/or R124, which may mediate NTP binding via interactions with the negatively charged phosphates, a third conserved residue which may contribute to NTP binding is F166 in EAV. Since phenylalanine would most likely interact with the nucleo-tide substrate by base stacking, its contribution in terms of binding energy would be one order of magnitude lower than that of electrostatic interactions of lysine/arginine with

166 Chapter 5

1 the phosphates (57). Based solely on these considerations, F166 could be expected to 2 be of "lesser" importance than the basic residues. However, this was apparently not the 3 case since the replacement of the aromatic residue with alanine was lethal for EAV while substitution of either of the basic residues led to a low level of replication that eventu-4 ally facilitated reversion (Table 1). When analyzing these results, a consideration must be 5 made about the feasibility of reversion for different engineered substitutions, which all 6 require two nucleotide point mutations to revert back to wild-type. As simultaneous re-7 8 version of both nucleotides during a single round of replication should be an extremely rare event, the dead phenotype of the F166A mutant may hint at a lower tolerance of 9 single-nucleotide partial revertants (F166V or F166S) in comparison to those originating from K94A (K94T or K94E) and R124A (R124P or R124G). Alternatively, the observed dead 11 12 F166A phenotype may be explained by a vital interaction between NiRAN and RdRp 13 or other proteins involving F166. In contrast to EAV, the homologous residue in SARS-14 CoV nsp12, F219, appeared to be less essential since its replacement merely reduced progeny titers and altered the plaque phenotype, while the nucleotide changes were 15 maintained. At present, the exact reason for this difference between EAV and SARS-CoV 16 17 is unclear, but it suggests that the role and/or regulation of this conserved phenylalanine may have evolved in these distantly related nidoviruses, whose NiRAN domains are of 18 strikingly different sizes; such evolution has parallels in other enzymes (58). 19

20

Since neither binding of phosphates nor base stacking would enable the enzyme to 21 22 discriminate between the four bases, it is likely that some of the conserved residues are involved in the formation of a hydrogen bond network that is specific for GTP or UTP. We 23 24 already speculated on the participation of nsp9 S129 in such a network, as substitution of this serine was the only mutation that had a differential effect on guanylylation and 26 uridylylation (Figure 6). Finally, in agreement with observations for other nucleotidylateforming enzymes (59-61), also nsp9 nucleotidylation is metal-dependent (Figure 4B), 27 potentially due to an important role for metal ions in coordination of the triphosphate 28 or charge neutralization of the pyrophosphate leaving group. We thus propose that at 29 least one of the three acidic conserved residues (E100, D132, and D165 in EAV nsp9) is 31 directly involved in the binding of the essential manganese ion(s).

- 32
- 33

Possible roles of nucleotidylation in the context of viral replication

34

The identification of the nucleotidylation activity raises the question which role it may play in the nidovirus replicative cycle. Given that the roles of other replicative enzymes of nidoviruses are far from firmly established, considerable challenges may be expected in the characterization of the NiRAN domain, starting from the identification of the ultimate target of the nucleotidylation. In this respect, it is relevant that many cellular enzymes employ covalent binding of NMPs to catalyze different reactions, which are dominated
by those that generate essential metabolites in an energy-dependent manner. These
host metabolites are utilized by RNA viruses, whose relatively small genomes can thus
be used to encode NMP-binding enzymes for other, virus-specific purposes. Therefore,
in the discussion that follows we will consider the pros and cons of the involvement of
NiRAN's nucleotidylation activity in three previously described functions that are not
involved in metabolism: nucleic acid ligation, mRNA capping, and protein-primed RNA
synthesis.

9

10 Ligase function

11

12 We initially considered NiRAN to be a non-canonical ATP-dependent RNA ligase. It was 13 reasoned that in the context of nidovirus replication such an activity would be the 14 functional complement of the NendoU endoribonuclease (6). Moreover, at that time 15 both enzymes were considered to have been conserved across all taxa during evolution of the nidovirus lineage. Prompted by nidovirus comparative genomics, it recently 16 17 became clear that NendoU is conserved only in nidoviruses infecting vertebrate hosts. 18 Consequently, our original hypothesis would not explain why this putative ligase would be conserved in roni- and mesoniviruses, which do not encode the endoribonuclease. 19 Another complication regarding that original hypothesis has emerged from the present study, which identified NiRAN as being UTP/GTP-specific. Although the hydrolysis of all 21 22 NTPs results in the release of the same amount of energy, ATP-dependent RNA ligases, which dominate the ligase family, are – as their name already suggests – restricted in 24 their substrate use. It would therefore be surprising, if nidoviruses encoded a ligase that strongly discriminates against ATP. To our knowledge the GTP-specific tRNA-splicing ligase RtcB is the only currently known example of a protein involved in nucleic acid 27 strand joining exhibiting this kind of substrate specificity (53). Also no substrates which 28 would require a ligase function were identified in the nidovirus replication, which however remains poorly characterized.

30

31 5' end cap guanylyltransferase function

32

Besides RNA ligases, there is another group of enzymes, known as guanylyltransferases
(GTases), that employ a very similar mechanism of nucleotidylation and may be relevant
to nidovirus replication. Unlike ligases, the covalent binding of GMP by GTases does not
occur for energetic reasons. Rather, the bound GMP is used to permanently modify the 5'
end of RNA in a process called RNA capping (reviewed in (62)). Intriguingly, three of the
four enzyme activities required for this pathway have been identified in coronaviruses
(35;63), with the missing activity being the GTase. Furthermore, recent characterization

168 Chapter 5

1 of EAV nsp10 in our lab (unpublished) showed that it resembles its coronavirus homolog 2 in terms of possessing RNA-triphosphatase activity, which is required prior to GTase 3 activity in the conventional capping pathway. In line with these findings, experimental evidence supporting the presence of a cap structure on genomic RNA was reported 4 for three very distantly related species of the Nidovirales order, namely for MHV (64), 5 Equine torovirus (EToV) (65) (both Coronaviridae), and Simian hemorrhagic fever virus 6 (SHFV) (Arteriviridae) (66). Thus, the NiRAN domain could be a candidate for catalyzing 7 8 the important GTase reaction in the nidovirus capping pathway. Like ligases, canonical cellular GTases share the characteristic Kx(D/N)G motif including the principal catalytic 9 lysine, which has no match in NiRAN. Although this deviation is notable, it is not unprecedented in established viral GTases. For instance, upstream of its RdRp domain, flavivirus 11 12 NS5 contains the GTase domain, which neither has homology to any other GTase nor 13 contains the canonical $K_x(D/N)G$ motif (67). Likewise, the GTase activity of alphavirus 14 nsP1 and related proteins is associated with a unique domain (60;68). Thus, NiRAN being a cap-synthesizing GTase could be reconciled with our current knowledge about GTase 15 structural and sequence diversity. 16

17

The same cannot be said about NiRAN's substrate preference for UTP over GTP, which has not been reported for GTases mediating cap formation. To reconcile this property with the considered functional model, we would therefore have to assume that either NiRAN has another substrate or that uridylylation is an *in vitro* artifact due to the absence of essential interaction partners of NiRAN. For instance, it would be conceivable that the association with other proteins modulates the binding site allowing discrimination against UTP.

25

26 Protein-priming function

27

If UTP binding by NiRAN faithfully reflects a genuine property of the enzyme, a plausible 28 explanation for the nucleotidylation activity of nsp9 may be its involvement in protein-29 primed RNA synthesis. This mechanism is used by many viruses including a large group of 31 picornavirus-like viruses, which notably have evolutionary affinity to nidoviruses (69:70). In these viruses a nucleotide is covalently attached to a protein commonly known as 32 VPg (viral protein genome-linked), which may then be extended to a dinucleotide. This 33 dinucleotide is subsequently base-paired to the 3' end of the viral RNA where it serves 34 as the primer for synthesis of the complementary RNA strand (71). Interestingly, the 36 first nucleotide of the EAV genome is a G while the 3' end is equipped with a poly(A) 37 tail. Thus, the dual specificity of nsp9 for GTP and UTP would be compatible with the different requirements for the initiation of (+) and (-) strand synthesis of genomic and 38 subgenomic mRNAs. 39

1 However, there are also observations that distinguish nidoviruses from viruses that use a VPg. First, to our knowledge, all currently described nucleotide-VPg bonds are 2 3 realized via the hydroxyl group of either a tyrosine or a serine/threonine (72-76) while NiRAN is most likely to use the invariant lysine residue (Figure 7). Second, at least for 4 5 coronaviruses, the VPg-based mechanism would compete with the already proposed primase-based mechanism (77) for the initiation of RNA synthesis. The latter mechanism 7 is yet to be fully established since it assigns primase activity to a protein complex that may merely be a processivity co-factor for the nsp12 RdRp according to a recent study 9 (78). Finally, as mentioned before, nidovirus mRNAs were concluded to be capped at their 5' end, a modification that is not observed in known VPg-utilizing viruses. To use 11 both capping and VPg, it would thus be necessary for nidoviruses to actively or passively 12 remove the attached protein in order to allow mRNA capping to commence. Such a 13 reaction sequence would also imply a variation of the capping pathway as the RNA 5' 14 end would not be di- or triphosphorylated after removal of the VPq, a requirement for 15 entering any of the known viral capping pathways (62).

16

In view of the considerations outlined for each of the three possible scenarios employing nucleotidylation activity, it is evident that presently none of these can be fully reconciled with the evolutionary, structural, and functional characteristics of NiRAN described in this study. This may reflect yet-to-be revealed specifics of the nidovirus RTC and its unparalleled complexity. On the other hand, the unique NiRAN is now part of this complexity and its properties must be taken into account in future experiments involving RdRp-encoding and other replicative proteins, as well as in theoretical models describing the molecular biology of nidoviruses.

- 25
- 26

27 MATERIAL AND METHODS

28

29 Virus genomes

30

Genomes of nidoviruses were retrieved from GenBank (79) and RefSeq (80) using Homology-Annotation hYbrid retrieval of GENetic Sequences (HAYGENS) tool http:// veb.lumc.nl/HAYGENS. Genomes of all viruses were used to produce sequence alignments (see below), which were purged to retain only subsets of viruses representing the known diversity of each nidovirus family for downstream bioinformatics analyses. For the *Arteriviridae* and *Coronaviridae* families, one representative was drawn randomly from each evolutionary compact cluster corresponding to known and tentative species that were defined with the help of DEmARC1.3 (81). Twenty nine viruses of the family *Mesoniviridae* were clustered into six groups, whose intra- and inter-group evolution-

170 Chapter 5

5

7

ary distance was below and above 0.075, respectively. One representative was chosen
 randomly from each of the six groups. For the *Roniviridae* family, two viruses, each
 prototyping a species, were used. To retrieve information about genomes, the SNAD
 program (82) was used.

6 Multiple sequence alignments

8 MSAs of five nidovirus-wide conserved protein domains: 3C-like protease (3CL^{pro}), RNA-dependent RNA polymerase (RdRp), RdRp-associated nucleotidyltransferase (Ni-9 RAN), superfamily 1 helicase (HEL1) and zinc-binding domain fused with HEL1 (ZBD) were obtained for four nidovirus families using the Viralis platform (83) and assisted by 11 12 HMMER 3.1 (84), Muscle 3.8.31 (85), and ClustalW 2.012 (86) programs. Family-specific 13 MSAs of the NiRAN domain were combined in a step-wise manner using the HH-suite 14 2.0.15 software (87;88) and the profile mode of ClustalW with subsequent manual refinement to produce MSAs that included two, three, and four families, respectively, 15 namely: Coronavirinae, Torovirinae, and Mesoniviridae (named CoToMe), Coronaviridae, 16 17 Mesoniviridae, and Roniviridae (CoToMeRo), Coronaviridae, Mesoniviridae, Roniviridae, and Arteriviridae (CoToMeRoAr). To reveal all local similarities between two MSAs, their 18 profiles were compared in a dot-plot fashion using a routine in HH-suite 2.0.15, whose 19 results were visualized. Distribution of similarity density in MSAs was plotted using R package Bio3D (89) under the conservation assessment method "similarity", substitution 21 22 matrix Blosum62 (90) and a sliding window of 11 MSA columns. Peaks of similarity were attributed to the known RdRp motifs G, F, A, B, C, D, E (69), or named and assigned to the 23 24 newly recognized motifs of NiRAN, preA, A, B, and C. To facilitate distinguishing between the RdRp and NiRAN motifs, suffix R and N were added to motif labels of the RdRp and 26 NiRAN domain, respectively. Based on family-specific MSAs of NiRAN and RdRp, the secondary structure of these domains was predicted using software Jpred 3 (91) and 27 28 PSIPRED (92). In both cases, the sequence with the least gaps was selected from the sequences forming the MSA. The prediction was made only for columns of the MSA in 29 which the selected sequence does not contain gaps. The MSAs were converted into the 31 final figure using ESPript (93).

32

33 Homology detection

34

The obtained MSAs were converted into HMM profiles or PSSMs and used as queries to search for homologs in three different types of databases composed of: individual sequences (nr database, including GenBank CDS translations, RefSeq proteins, SwissProt, PIR and PRF (94)), profiles (PFAM A (46)), and protein 3D structures (PDB (45)). For GenBank scanning, HMMER 3.1 software (84) was used under E value significance threshold -10. To search for homologs among profiles, HH-suite 2.0.15 software (87;88)
 was used. To search for homologs among protein 3D structures pGenTHREADER 8.9
 software (95-97) was used.

4

Protein Expression and Purification

7 Nucleotides 5256 to 7333 of the EAV Bucyrus strain were cloned into a pASK3 (IBA) vector essentially as described (38) to yield a construct that expresses nsp9 that is Nterminally fused to ubiguitin and tagged with hexahistidine at its C-terminus. Mutations 9 were introduced according to the QuikChange protocol and verified by sequencing. Plasmids were transformed into E. coli C2523/pCG1, which constitutively express the 11 12 Ubp1 protease to remove the ubiquitin tag during expression and thereby generate the 13 native nsp9 N-terminus. Cells were cultured in Luria Broth in the presence of ampicillin 14 (100 μ g/ml) and chloramphenicol (34 μ g/ml) at 37°C until an OD₆₀₀ >0.7. At this point 15 protein expression was induced by the addition of anhydrotetracycline to a final con-16 centration of 200 ng/ml, and incubation was continued at 20°C overnight. Cell pellets 17 were harvested by centrifugation and stored at -20°C until further use.

18

19 Proteins were batch purified by immobilized metal ion affinity chromatography using Co²⁺ Talon beads. In short, cell pellets were resuspended in lysis buffer (20 mM HEPES, pH 7.5, 10% glycerol (v/v), 10 mM imidazole, 5 mM β -mercaptoethanol) supplemented 21 22 with 500 mM NaCl. Lysis was achieved by a 30-min incubation with 0.1 mg/ml lysozyme and five subsequent cycles of 10-s sonication to shear genomic DNA. Cellular debris 24 was removed by centrifugation at 20,000g for 20 min. The cleared supernatant was recovered, and equilibrated Talon-beads were added. After 1 h of binding under agitation, beads were washed four times for 15 min with a 25-times bigger volume of lysis buffer containing first 500 mM, than 250 mM, and finally twice 100 mM NaCl. In the 27 end, proteins were eluted twice with lysis buffer containing 100 mM NaCl and 150 mM 28 imidazole. Both fractions were pooled and dialyzed twice for 6 h or longer against an at least 100-fold bigger volume of 20 mM HEPES, pH 7.5, 50% glycerol (v/v), 100 mM 31 NaCl, 2 mM DTT. All steps of the purification were performed at 4°C or on ice. All mutant proteins were expressed and purified in parallel with the wild-type protein used as reference in nucleotidylation assays. Protein concentrations were measured by absorbance at 280 nm using a calculated extinction coefficient of 93,170 M⁻¹ cm⁻¹ and a molecular 34 mass of 77,885 Da for wild-type nsp9. Typical protein yields were 5 mg/l culture and nucleotidylation activity was observed for at least 4 months if stored at -20°C at a 37 concentration below 15 μ M. Finally, the absence of the N-terminal ubiquitin tag was confirmed by mass spectrometry.

1 Nucleotidylation Assay

2

3 Nucleotidylation assays were performed in a total volume of 10 μ l containing, unless specified otherwise, 50 mM Tris, pH 8.5, 6 mM MnCl₂, 5 mM DTT, up to 2.5 µM nsp9, 4 and 0.17 μM [α-³²P]NTP (Perkin Elmer, 3000 Ci/mmol). Furthermore, 12.5% glycerol 5 (v/v), 25 mM NaCl, 5 mM HEPES, pH 7.5, and 0.5 mM DTT were carried over from the 6 protein storage buffer. In preliminary experiments magnesium (1-20 mM) did not sup-7 8 port nucleotidylation activity and was consequently not pursued further. Samples were incubated for 30 min at 30°C. Reactions were stopped by addition of 5 µl gel loading 9 buffer (62.5 mM Tris, pH 6.8, 100 mM DTT, 2.5% SDS, 10% glycerol, 0.005% bromophenol blue) and denaturing of the proteins by heating at 95°C for 5 min. 12% SDS-PAGE 11 12 gels were run, stained with Coomassie G-250, and destained overnight. After drying, 13 phosphorimager screens were exposed to gels for 5 h and scanned on a Typhoon vari-14 able mode scanner (GE healthcare), after which band intensities were analyzed with ImageQuant TL software (GE healthcare). The buffers used to find the pH optimum of 15 the nucleotidylation reaction were MES (pH 5.5 – 6.5), MOPS (pH 7.0), Tris (pH 7.5 – 8.5), 16 17 and CHES (pH 9.0 – 9.5) (20 mM).

18

To assess the chemical nature of the nucleotide-protein bond, the pH was temporarily shifted after product formation. To this end, 1 μl HCl or NaOH (both 1 M) was added before incubation at 95°C for 4 min. Afterwards the original pH was restored by addition of the complementary base or acid, and samples were separated and analyzed as described.

24

25 FSBG Labeling and Mass Spectrometry

26

Reaction mixtures were the same as described for the nucleotidylation assay with 27 two modifications. Radioactive nucleotides were replaced by the reactive GTP analog 28 5'-(4-fluorosulfonylbenzoyl)guanosine (FSBG) (52) (up to 2 mM) (see supplementary 29 Materials and Methods for the synthesis protocol), and samples were incubated for 1 h 31 at 30°C to increase the ratio between labeled and unlabeled protein. Subsequently, the protein (20 µg) was reduced by addition of 5 mM DTT and denatured in 1% SDS for 32 10 min at 70°C. Next, the samples were alkylated by addition of 15 mM iodoacetamide 33 34 and incubation for 20 min at RT. Next, the protein was applied to a centrifugal filter (Millipore Microcon, MWCO 30 kDa) and washed three times with NH₄HCO₃ (25 mM) before 36 a protease digestion was performed with 2 μ g trypsin in 100 μ l NH₄HCO₃ overnight at 37 RT. Recovered peptides were treated with 50 mM NaOH for 25 min, desalted using Oasis spin columns (Waters), and finally analyzed by on-line nano-liquid chromatography tan-38 39 dem mass spectrometry on an LTQ-FT Ultra (Thermo, Bremen, Germany). Tandem mass spectra were searched against the Uniprot database, using mascot version 2.2.04, with a
 precursor accuracy of 2 ppm, and product ion accuracy of 0.5 Da. Carbamidomethyl was
 set as a fixed modification, and oxidation, N-acetylation (protein N-terminus), and FSBG
 were set as variable modifications.

Label Release

For analysis of the released nucleotides, 350 pmol of nsp9 were nucleotidylated with $[\alpha^{-32}P]$ NTPs as described above for 1 h at 30°C. After the reaction free NTPs were re-9 moved by buffer exchange and extensive washing with the help of a centrifugal filter 11 (Millipore ultrafree-0.5, MWCO 10 kDa). Protein was precipitated with a 5-times greater 12 volume of acetone overnight at -20°C. The resulting pellet was resuspended in 20 mM 13 Tris, pH 8.5, 100 mM NaCl. Equal amounts of the solutions were incubated at 95°C for 14 4 min after addition of HCl or NaOH (1 M). Samples were adjusted to their original pH 15 and spotted onto polyethylenimine cellulose thin layer chromatography plates, which 16 were developed in 80% acetic acid (1 M), 20% ethanol (v/v), 0.5 M LiCl. Plates were dried 17 and phosphorimaging was performed as described above. Non-radioactive nucleotide 18 standards were run on each plate and visualized by UV-shadowing to allow the identifi-19 cation of the radioactive products.

20

7

21 Reverse Genetics of EAV

22

Alanine-coding mutations for conserved and control residues were introduced into
full-length cDNA clone pEAV211 (98) using appropriate shuttle vectors and restriction
enzymes. The presence of the mutations was confirmed by sequencing. pEAV plasmid
DNA was *in vitro* transcribed with the mMessage-mMachine T7 kit (Ambion), and the
synthesized RNA was transfected into BHK-21 cells after LiCl precipitation as described
previously (99). Virus replication was monitored by immunofluorescence microscopy
until 72 h post transfection (p.t.) using antibodies directed against nsp3 and N protein
as described (100) and by plaque assays (99) using transfected cell culture supernatants,
to monitor the production of viral progeny.

32

Sequence analysis of the nsp9-coding region was performed to either verify the presence of the introduced mutations or to monitor the presence of (second site) reversions.
For this purpose, fresh BHK-21 cells were infected with virus-containing cell culture
supernatants and total RNA was extracted with Tripure Isolation Reagent (Roche Applied Science) after appearance of cytopathic effect (CPE) (typically at 18 h post infection (p.i.)). EAV-specific primers were used to reverse transcribe RNA and PCR amplify
the nsp9-coding region (nt 5256-7333). RT-PCR fragments of the EAV genome were

sequenced after gel purification and sequences compared to those of the respective
 RNA used for transfection.

3

5

4 Reverse Genetics of SARS-CoV

Mutations in the SARS-CoV nsp12-coding region were engineered in prSCV, a pBelo-6 Bac11 derivative containing a full-length cDNA copy of the SARS-CoV Frankfurt-1 se-7 8 quence (101) by using "en passant recombineering" as described in Tischer et al. (102). The (mutated) BAC DNA was linearized with Notl, extracted with phenol-chloroform, 9 and transcribed with T7 RNA Polymerase (mMessage-mMachine T7 kit; Ambion) using an input of 2 µg of BAC DNA per 20-µL reaction. Viral RNA transcripts were precipitated 11 12 with LiCl according to the manufacturer's protocol. Subsequently, 6 µg of RNA were electroporated into 5×10^6 BHK-Tet-SARS-N cells, which expressed the SARS-CoV N 13 14 protein following 4 h induction with 2 μ M doxycycline as described previously (78). Electroporated BHK-Tet-SARS-N cells were seeded in a 1:1 ratio with Vero-E6 cells. Viral 15 protein expression and the production of viral progeny was followed until 72 h p.t. by 16 17 immunofluorescence microscopy using antibodies directed against nsp4 and N protein and by plaque assays of cell culture supernatants, respectively (both methods were 18 described previously in Subissi et al. (78)). All work with live SARS-CoV was performed in-19 side biosafety cabinets in a biosafety level 3 facility at Leiden University Medical Center. 21

- For sequence analysis of viral progeny, fresh Vero-E6 cells were infected with harvests from viable mutants taken at 72 h p.t., and SARS-CoV RNA was isolated 18 h p.i. using TriPure Isolation Reagent (Roche Applied Science) as described in the manufacturer's instructions. Random hexamers were used to prime the RT reaction, which was followed by amplification of the nsp12-coding region (nt 13398-16166) by using SARS-CoV-specific primers. RT-PCR products were sequenced to verify the presence of the introduced mutations.
- 29

30

31 FUNDING

32

This work was supported by the European Union Seventh Framework program through the EUVIRNA project (European Training Network on (+) RNA virus replication and Antiviral Drug Development, grant agreement no. 264286) and the SILVER project (grant agreement no. 260644); the Netherlands Organization for Scientific Research (NWO) through TOP-GO grant 700.10.352; the Leiden University Fund; and through the Collaborative Agreement in Bioinformatics between Leiden University Medical Center and Moscow State University (MoBiLe).

ACKNOWLEDGEMENTS

3 The authors thank Bruno Canard, Etienne Decroly, Isabelle Imbert, Barbara Selisko,

4 Lorenzo Subissi, and Aartjan te Velthuis for helpful discussions; Chris Lauber and Erik

5 Hoogendoorn for help with the DEmARC-based analysis, and Daniel Cupac and Linda

- 6 Boomaars for technical assistance.

SUPPLEMENTARY DATA

Supplementary Material and Methods

Synthesis of 5'-(4-fluorosulfonylbenzoyl)quanosine (FSBG)

Guanosine monohydrate (875 mg, 2.90 mmol) was co-evaporated twice with anhydrous DMF and subsequently dissolved in DMPU with gentle warming. The clear solution was cooled in an ice bath, and 4-(fluorosulfonyl)benzoyl chloride (812 mg, 3.65 mmol) was added. After 15 minutes the mixture was warmed to room temperature and stirred for another 4 hours. Petroleum ether 40/60 (50 ml) was added and a white precipitate formed. The organic layer was decanted and the residue triturated twice with a 1/1 mixture of ethyl acetate/diethyl ether (2 x 50 ml). The residue was re-crystallized from MeOH/water and further purified by C18-RP-HPLC (Phenomenex Gemini C18, pore size 110Å, particle size 5 μm, 150 x 21.2 mm, gradient 20 – 50% Acetonitrile in 0.1 % aque-ous TFA, 20 ml/min) to yield the title compound as a white solid (232 mg, yield 17%) (Supplementary Figure 5).

Table S1: GenBank accession number, name, and acronym of each virus genome used for the bioinformat-

cs analyses.			
Acession number	Virus name	Acronym	Species
AF227196	Gill-associated virus	GAV	Gill-associated virus
EU487200	Yellow head virus	YHV	to be established
HM746600	Cavally virus	CAVV	Alphamesonivirus 1
NC_023986	Casuarina virus	CASV	to be established
AB753015.2	Dak Nong virus	DKNV	to be established
JQ957872	Hana virus	HanaV	to be established
JQ957874	Nse virus	NseV	to be established
JQ957873	Meno virus	MenoV	to be established
DQ412042	Bat SARS coronavirus Rf1	SARS-Rf1-BtCoV	Severe acute respiratory syndrome-related coronavirus
IN874560	Rabbit coronavirus HKU14	RbCoV_HKU14	Betacoronavirus 1
AF201929	Murine hepatitis virus strain 2	MHV-2	Murine coronavirus
AY884001	Human coronavirus HKU1	HCoV_HKU1	Human coronavirus HKU1
KC545383	Betacoronavirus Erinaceus/VMC/ DEU/2012	EriCoV	to be established
DQ648794	Bat coronavirus (BtCoV/133/2005)	BtCoV/133/2005	Tylonycteris bat coronavirus HKU4
EF065509	Bat coronavirus HKU5-1	BtCoV_HKU5	Pipistrellus bat coronavirus H
JX869059.2	MERS coronavirus EMC/2012	HCoV-EMC/2012	to be established
HM211101	Bat coronavirus HKU9-10-2	BtCoV_HKU9	Rousettus bat coronavirus HK
KF430219	Bat coronavirus CDPHE15/USA/2006	BtCoV_CDPHE15	to be established
AY567487	Human coronavirus NL63	HCoV-NL63	Human coronavirus NL63
EU420139	Miniopterus bat coronavirus HKU8	BtCoV_HKU8	Miniopterus bat coronavirus HKU8
EF203064	Rhinolophus bat coronavirus HKU2	BtCoV_HKU2	Rhinolophus bat coronavirus HKU2
EU420138	Bat coronavirus 1A	BtCoV_1A	Miniopterus bat coronavirus 1
JQ410000	Alpaca respiratory coronavirus	ACoV	Human coronavirus 229E
DQ648858	Bat coronavirus (BtCoV/512/2005)	BtCoV/512/2005	Scotophilus bat coronavirus 5
KC140102	Porcine epidemic diarrhea virus	PEDV	Porcine epidemic diarrhea viru
JQ989271	Rousettus bat coronavirus HKU10	BtCoV_HKU10	to be established
HM245925	Mink coronavirus strain WD1127	MCoV	to be established
FJ938060	Feline coronavirus UU2	FCoV_UU2	Alphacoronavirus 1
KC008600	Infectious bronchitis virus	IBV	Avian coronavirus
KF793824	Bottlenose dolphin coronavirus HKU22	BdCoV_HKU22	Beluga whale coronavirus SW
JQ065045	Sparrow coronavirus HKU17	SpCoV_HKU17	to be established
FJ376622	Munia coronavirus HKU13-3514	MuCoV_HKU13	Munia coronavirus HKU13

178 Chapter 5

Table S1: GenBank accession number, name, and acronym of each virus genome used for the bioinformatics analyses. (continued)

Acession number	Virus name	Acronym	Species
IQ065049	Common-moorhen coronavirus HKU21	CMCoV_HKU21	to be established
FJ376619.2	Bulbul coronavirus HKU11-934	BuCoV_HKU11	Bulbul coronavirus HKU11
FJ376621	Thrush coronavirus HKU12-600	ThCoV_HKU12	Thrush coronavirus HKU12
JQ065044	White-eye coronavirus HKU16	WECoV_HKU16	to be established
JQ065047	Night-heron coronavirus HKU19	NHCoV_HKU19	to be established
JQ065048	Wigeon coronavirus HKU20	WiCoV_HKU20	to be established
NC_022787	Porcine torovirus	PToV_SH1	Porcine torovirus
AY427798	Breda virus	BRV-1	Bovine torovirus
DQ898157	White bream virus	WBV	White bream virus
GU002364.2	Fathead minnow nidovirus	FHMNV	to be established
NC_024709	Ball python nidovirus	BPNV	to be established
JN116253	Possum nidovirus	WPDV	to be established
AF180391	Simian hemorrhagic fever virus	SHFV-LVR	Simian hemorrhagic fever vir
JX473847	Simian hemorrhagic fever virus	SHFV-krtg1	to be established
JX473848	Simian hemorrhagic fever virus	SHFV-krtg2	to be established
HQ845737	Simian hemorrhagic fever virus	SHFV-krc1	to be established
JX138233	Porcine reproductive and respiratory syndrome virus	PRRSV-2	Porcine reproductive and respiratory syndrome virus
GU737264.2	Porcine reproductive and respiratory syndrome virus	PRRSV-1	Porcine reproductive and respiratory syndrome virus
L13298	Lactate dehydrogenase-elevating virus	LDV-C	Lactate dehydrogenase- elevating virus
U15146	Lactate dehydrogenase-elevating virus	LDV-P	Lactate dehydrogenase- elevating virus
DQ846750	Equine arteritis virus	EAV-VBS	Equine arteritis virus

 33 34 35 36 37 38 39 	30 31 32	24 25 26 27 28 29	21 22 23	10 11 12 13 14 15 16 17 18 19 20	1 2 3 4 5 6 7 8 9
Table S2: GenTHREADER cor	mparisons of n	iidovirus nsp9/nsp12(t) w	/ith known Rd	Rps	
query: Arteriviridae NiRAN	(alignment of	nsp9, columns 1-223, firs	t sequence JN	116253)	
target PDB ID	Hit #	Score	P-value	Confidence assigned to the hit (query: Ar, Co, Me, Ro)	Coordinates on query (columns of alignment)
3t3l (chain A)	1 (top hit)	31,382	0,034	LOW, NA, GUESS, NA	29-171
Coordinates on target (aa residues)	Target length	Target species		Target description	
1-121	121	Homo sapiens		Mitochondrial friedreich ataxia pi	otein
query: Coronaviridae NiRAN	(alignment of	nsp12, columns 1-310, f	rst sequence l	JQ412042)	
target PDB ID	Hit #	Score	P-value	Confidence assigned to the hit (query: Ar, Co, Me, Ro)	Coordinates on query (columns of alignment)
1e8y (chain A)	1 (top hit)	35,365	0,014	NA, LOW, GUESS, NA	14-310
Coordinates on target (aa residues)	Target length	Target species		Target description	
517-790	841	Homo sapiens	Pho	ssphatidylinositol 4,5-bisphosphate 3-kinase cataly	ic subunit gamma isoform
query: Mesoniviridae NiRAN	l (alignment of	nsp12t, columns 1-238,	first sequence	HM746600)	
target PDB ID	Hit #	Score	P-value	Confidence assigned to the hit (query: Ar, Co, Me, Ro)	Coordinates on query (columns of alignment)
3s44 (chain A)	1 (top hit)	32,68	0,025	GUESS, NA, LOW, NA	1-238
Coordinates on target (aa residues)	Target length	Target species		Target description	
22-276	388	Pasteurella multocida		Alpha-2,3/2,6-sialyltransferase/sia	lidase

Chapte

34 35 36 37 38 39	29 30 31 32	24 25 26 27 28	20 21 22 23	9 10 11 12 13 14 15 16 17 18 19	1 2 3 4 5 6 7 8
Table S2: GenTHREADER	comparisons of nic	dovirus nsp9/nsp12(t)	with known RdR	ps (continued)	
query: Roniviridae NiRAN	(alignment of nsp1	2t, columns 1-252, fir	st sequence AF2	27196)	
target PDB ID	Hit #	Score	P-value	Confidence assigned to the hit (query: Ar, Co, Me, Ro)	Coordinates on query (columns of alignment)
1 usu (chain A)	1 (top hit)	27,856	0,078	GUESS, NA, NA, LOW	1-211
Coordinates on target (aa residues)	Target length	Target species		Target description	
4-246	246	Saccharomyces cerevisiae		ATP-dependent molecular chaperone	HSP82
query: Arteriviridae RdRp	alignment of nsp9), columns 224-727, fii	rst sequence JN1	16253)	
target PDB ID	Hit #	Score	P-value	Confidence assigned to the hit (query: Ar, Co, Me, Ro)	Coordinates on query (columns of alignment)
2ckw (chain A)	1 (top hit)	73,964	2,00E-06	CERT, CERT, NA, MEDIUM	263-727
Coordinates on target (aa residues)	Target length	Target species		Target description	
1-486	487	Sapporo virus		RdRp	
query: Coronaviridae RdR	o (alignment of nsp	12, columns 311-101	2, first sequence	DQ412042)	
target PDB ID	Hit #	Score	P-value	Confidence assigned to the hit (query: Ar, Co, Me, Ro)	Coordinates on query (columns of alignment)
3uqs (chain A)	1 (top hit)	73,91	2,00E-06	CERT, CERT, LOW, MEDIUM	483-965
Coordinates on target (aa residues)	Target length	Target species		Target description	
1-478	478	Murine norovirus 1		RdRp	

180 Chapter 5

1 2 3 4 5			es on query f alignment)	-1054	5-987					es on query f alignment)	3-841	5-975			
6 7 8 9			Coordinat (columns o	239	536	E	ted protein 22			Coordinat (columns o	253	486	E		
11 12 13 14 15 16 17 18 19 20	Rps (continued)	ce HM746600)	Confidence assigned to the hit (query: Ar, Co, Me, Ro)	NA, MEDIUM, CERT, NA	CERT, CERT, MEDIUM, NA	Target description	U3 small nucleolar RNA-associat	RdRp	AF227196)	Confidence assigned to the hit (query: Ar, Co, Me, Ro)	GUESS, LOW, HIGH, HIGH	CERT, CERT, NA, MEDIUM	Target description	SidC, interaptin	BdBn
21 22 23	with known Rd	03, first sequend	P-value	2,00E-05	0,001				first sequence H	P-value	0,0003	0,002			
24 25 26 27 28	idovirus nsp9/nsp12(t)	p12t, columns 239-11(Score	62,877	46,01	Target species	Saccharomyces cerevisiae S288c	Norwalk virus	2t, columns 253-1033,	Score	51,624	44,591	Target species	Legionella pneumophila subsp. pneumophila str. Philadelphia 1	Enterovirus A71
29 30 31 32 33 34 35	READER comparisons of n	dae RdRp (alignment of ns	Hit #	1 (top hit)	71 (top +ssRNA virus hit)	Target length	881	479	e RdRp (alignment of nsp1	Hit #	1 (top hit)	12 (top +ssRNA virus hit)	Target length	604	462
36 37 38 39	Table S2: GenTH	query: Mesoniviri	target PDB ID	4m5d (chain A)	3bso (chain A)	Coordinates on target (aa residues)	30-881	1-479	query: Roniviridae	target PDB ID	4ooj (chain A)	3n6m (chain A)	Coordinates on target (aa residues)	83-604	1-462

Discovery of NiRAN 181

Table S2: GenTHREAL	DER comparisons of r	6 8 2 9 9 9 5 F	with known RdR	9 0 1 2 3 4 5 6 7 9 0 tbs (continued)	1 2 3 4 5 6 7 8
query: Arteriviridae N	iRAN+RdRp (alignm€	int of nsp9, columns 1-7	27, first sequenc	e JN116253)	
target PDB ID	Hit #	Score	P-value	Confidence assigned to the hit (query: Ar, Co, Me, Ro)	Coordinates on query (columns of alignment)
2ckw (chain A)	1 (top hit)	73,669	2,00E-06	CERT, CERT, NA, MEDIUM	263-727
Coordinates on target (aa residues)	Target length	Target species		Target description	
1-486	487	Sapporo virus		RdRp	
query: Coronaviridae	NiRAN+RdRp (alignn	ient of nsp12, columns	1-1012, first sequ	ience DQ412042)	
target PDB ID	Hit #	Score	P-value	Confidence assigned to the hit (query: Ar, Co, Me, Ro)	Coordinates on query (columns of alignment)
3uqs (chain A)	1 (top hit)	73,16	2,00E-06	CERT, CERT, LOW, MEDIUM	483-965
Coordinates on target (aa residues)	Target length	Target species		Target description	
1-478	478	Murine norovirus 1		RdRp	
query: Mesoniviridae	NiRAN+RdRp (alignn	ient of nsp12t, columns	1-1103, first seq	uence HM746600)	
target PDB ID	Hit #	Score	P-value	Confidence assigned to the hit (query: Ar, Co, Me, Ro)	Coordinates on query (columns of alignment)
4cei (chain B)	1 (top hit)	63,048	2,00E-05	NA, NA, CERT, LOW	71-1097
3bso (chain A)	59 (top +ssRNA virus hit)	47,569	0,0008	CERT, CERT, HIGH, NA	536-987
Coordinates on target (aa residues)	Target length	Target species		Target description	
1-992	992	Bacillus subtilis subsp. subtilis str. 168		ATP-dependent helicase/deoxyribonuclea	ise subunit B
1-479	479	Norwalk virus		RdRp	

182 Chapter 5

Table S2: GenTHRE	ADER comparisons of nid	ovirus nsp9/nsp12(t)	with known RdR	ps (continued)	
query: Roniviridae N	liRAN+RdRp (alignment c	of nsp12t, columns 1-	1033, first sequen	nce AF227196)	
target PDB ID	Hit #	Score	P-value	Confidence assigned to the hit (query: Ar, Co, Me, Ro)	Coordinates on query (columns of alignment)
3izx (chain A)	1 (top hit)	60,044	4,00E-05	GUESS, GUESS, CERT, CERT	1-1033
3n6m (chain A)	14 (top +ssRNA virus hit)	43,099	0,002	CERT, CERT, NA, MEDIUM	486-975
Coordinates on target (aa residues)	Target length	Target species		Target description	
100-992	1057	Bombyx mori cypovirus 1		Structural protein VP3	
1-462	462	Enterovirus A71		RdRp	

Figure S1: Core part of the nidovirus-wide NiRAN MSA encompassing conserved motifs. Virus names and
 accession numbers are listed in Table S1. Fully and partially conserved residues are depicted in red boxes or
 red font, respectively. Sequence motifs are indicated by stars. Secondary structure predictions are shown
 on the top of the MSA. The name of each prediction indicates what software (Jpred 3 (91) or PSIPRED (91))
 and which family-specific NiRAN MSA (R, *Roniviridae*; M, *Mesoniviridae*; C, *Coronaviridae*; A, *Arteriviridae*)
 were used to produce it. The plot was generated with ESPript (93).

Figure S2: Sequence variation, domain organization, and secondary structure of NiRAN-RdRp-containing
proteins of nidovirus families. For each family, the similarity density plot obtained for the MSA of proteins
including the NiRAN and RdRp domains is shown. To highlight the regional deviation of conservation from
that of the MSA average, areas above and below the mean similarity are shaded in black and gray, respectively. Sequence motifs of NiRAN and RdRp are labelled. Uncertainty in respect to the domain boundary
between NiRAN and RdRp is indicated by dashed horizontal lines. Domain boundaries used for all bioinformatics analyses are indicated by dashed vertical lines. Below each similarity density plot predicted secondary structure elements are presented in gray for α-helices and black for β-strands.

Figure S3: Pairwise MSA-based HMM-HMM comparison of NiRANs of different origins. Each MSA of NiRAN was converted to an HMM profile, all possible pairs of obtained HMMs were aligned with the help of HH-suite 2.0.15 software (87,88). Information about each HMM-HMM comparison is presented in a pseudo-symmetrical matrix whose row (left) and column (top) label specifies the group of viruses used as query and target, respectively. Below each dot-plot the probability of the target being homologous to the query and the E value of all aligned pairs of match states are shown in black and green, respectively.

Figure S4: (A) FSBG and (B) GTP structures indicating the spatial separation of the points of attack in FSBG and GTP. Asterisks mark the positions of the nucleophilic attack. (C) Mass spectrometry analysis of FSBG-linked EAV nsp9 identified seven unique, modified peptides (outlined) located either in vicinity of the Ni-RAN (dark gray background) or within the C-terminal RdRp domain (light gray background). Residues carrying the sulfonylbenzoyl modification are colored in red. Sequence or structural motifs are indicated by dashed lines above the sequence in the order preA_N, A_N, B_N, C_N, A_R, and E_R. See also Figure 2A.

- . .
- .

188 Chapter 5

Figure S5: NMR analysis of 5'-(4-fluorosulfonylbenzoyl)guanosine. (A) ¹H NMR (300 MHz, DMSO-d₆) δ 10.70
 (s, 1H), 8.38 - 8.12 (m, 4H), 7.93 (s, 1H), 6.52 (broad s, 2H), 5.75 (d, J = 4.8 Hz, 1H), 5.75 (broad s, 2H), 4.65 (dd, J = 11.9, 3.6 Hz, 1H), 4.59 - 4.42 (m, 2H), 4.34 (t, J = 5.1 Hz, 1H), 4.25 - 4.12 (m, 1H). (B) ¹³C NMR (75 MHz, DMSO-d₆) δ 163.92, 156.63, 153.77, 151.20, 136.22, 135.72, 130.97, 128.98, 104.16, 87.13, 81.06, 72.98, 70.17, 65.53. Corresponding peaks and atoms are indicated by numbers.

1	REFE	RENCE LIST
2		
3	1.	de Groot RJ, Baker SC, Baric R, <i>et al.</i> Family <i>Coronaviridae</i> . In King AMQ, Adams MJ, Carstens EB <i>et</i>
4		<i>al.</i> editors, Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses,
5		Oxford, Elsevier, 2012;800-828.
6	2.	Lauber C, Ziebuhr J, Junglen S, et al. Mesoniviridae: a proposed new family in the order Nidovirales
7		formed by a single species of mosquito-borne viruses. Arch.Virol. 2012;157(8):1623-1628.
8	з	Neumann El Kliabenstain IB Johnson CD et al Assessment of the economic impact of norcine
9	э.	reproductive and respiratory syndrome on swine production in the United States 1 Am Vet Med
10		Assoc. 2005;227(3):385-392.
11		
12	4.	Coleman CM, Frieman MB. Coronaviruses: important emerging human pathogens. J.Virol. 2014;
13		88(10):5209-5212.
14	5.	Hilgenfeld R, Peiris M. From SARS to MERS: 10 years of research on highly pathogenic human
15		coronaviruses. Antiviral Res. 2013;100(1):286-295.
16		
17	6.	Lauber C, Goeman JJ, Parquet MC, <i>et al.</i> The footprint of genome architecture in the largest
12		genome expansion in RNA viruses. PLoS.Pathog. 2013;9(7):e1003500.
10	7.	Snijder EJ, Siddell SG, Gorbalenya AE. The order Nidovirales. In Mahy BW, ter Meulen V, editors,
20		Topley and Wilson's Microbiology and Microbial Infections: Virology Volume, London, Hodder
21		Arnold, 2005;390-404.
21	8	Pasternak AO Snaan WI Sniider EI Nidovirus transcription: how to make sense ? I Gen Virol
22	0.	2006;87(Pt 6):1403-1421.
23		
27	9.	Gorbalenya AE, Enjuanes L, Ziebuhr J, et al. Nidovirales: evolving the largest RNA virus genome.
25		Virus Res. 2006;117(1):17-37.
20	10.	Subissi L, Imbert I, Ferron F, et al. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replica-
27		tive enzymes as antiviral targets. Antiviral Res. 2014;101:122-130.
20		
29	11.	Lehmann KC, Snijder EJ, Posthuma CC, <i>et al.</i> What we know but do not understand about nido- virus balicases. Virus Res. 2014/(in prosc)
30		virus heilcases. virus Res. 2014;(in press)
22	12.	Denison MR, Graham RL, Donaldson EF, et al. Coronaviruses: an RNA proofreading machine
32		regulates replication fidelity and diversity. RNA.Biol. 2011;8(2):270-279.
33	12	Powert M. Import I. Cubicci I. at al. DNA 2' and micmatch aveician by the cavere acute requiratory.
34	15.	syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc Natl.
30		Acad.Sci.U.S.A 2012;109(24):9372-9377.
50		
5/	14.	Minskaia E, Hertzig T, Gorbalenya AE, <i>et al.</i> Discovery of an RNA virus 3'->5' exoribonuclease that is
30		critically involved in coronavirus KNA synthesis. Proc.Natl.Acad.Sci.U.S.A 2006;103(13):5108-5113.
5.5		

190	Chapter 5

1 2	15.	Bouvet M, Debarnot C, Imbert I, <i>et al. In vitro</i> reconstitution of SARS-coronavirus mRNA cap methylation. PLoS.Pathog. 2010;6(4):e1000863.
3 4	16.	Chen Y, Cai H, Pan J, <i>et al</i> . Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc.Natl.Acad.Sci.U.S.A 2009;106(9):3484-3489.
5 6 7	17.	Ivanov KA, Hertzig T, Rozanov M, <i>et al.</i> Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc.Natl.Acad.Sci.U.S.A 2004;101(34):12694-12699.
8 9 10	18.	Nedialkova DD, Ulferts R, van den Born E, <i>et al.</i> Biochemical characterization of arterivirus non- structural protein 11 reveals the nidovirus-wide conservation of a replicative endoribonuclease. J.Virol. 2009;83(11):5671-5682.
11 12 13	19.	Chen Y, Su C, Ke M, <i>et al.</i> Biochemical and structural insights into the mechanisms of SARS coro- navirus RNA ribose 2'-O-methylation by nsp16/nsp10 protein complex. PLoS.Pathog. 2011;7(10): e1002294.
14 15 16	20.	Daffis S, Szretter KJ, Schriewer J, <i>et al.</i> 2'-O methylation of the viral mRNA cap evades host restric- tion by IFIT family members. Nature 2010;468(7322):452-456.
17 18	21.	Decroly E, Imbert I, Coutard B, <i>et al.</i> Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2'O)-methyltransferase activity. J.Virol. 2008;82(16):8071-8084.
19 20	22.	Nga PT, Parquet MC, Lauber C, <i>et al</i> . Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes. PLoS.Pathog. 2011;7(9):e1002215.
21 22 23	23.	Gorbalenya AE. Big nidovirus genome. When count and order of domains matter. Adv.Exp.Med. Biol. 2001;49:41-17.
24 25 26 27	24.	Gibrat JF, Mariadassou M, Boudinot P, <i>et al.</i> Analyses of the radiation of birnaviruses from diverse host phyla and of their evolutionary affinities with other double-stranded RNA and positive strand RNA viruses using robust structure-based multiple sequence alignments and advanced phylogenetic methods. BMC.Evol.Biol. 2013;13:154.
28 29	25.	Cerny J, Cerna BB, Valdes JJ, <i>et al.</i> Evolution of tertiary structure of viral RNA dependent polymer- ases. PLoS.One. 2014;9(5):e96070.
30 31	26.	Kadare G, Haenni AL. Virus-encoded RNA helicases. J.Virol. 1997;71(4):2583-2590.
32 33	27.	Ng KK, Arnold JJ, Cameron CE. Structure-function relationships among RNA-dependent RNA polymerases. Curr.Top.Microbiol.Immunol. 2008;320:137-156.
34 35 36	28.	Azzi A, Lin SX. Human SARS-coronavirus RNA-dependent RNA polymerase: activity determinants and nucleoside analogue inhibitors. Proteins 2004;57(1):12-14.
37 38 30	29.	Xu X, Liu Y, Weiss S, <i>et al.</i> Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucleic Acids Res. 2003;31(24):7117-7130.
50		

1	30.	Snijder EJ, Bredenbeek PJ, Dobbe JC, et al. Unique and conserved features of genome and pro-
2		teome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J.Mol.Biol.
3		2003;331(5):991-1004.
4	31.	Ahn DG, Choi JK, Taylor DR, et al. Biochemical characterization of a recombinant SARS coronavirus
5		nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. Arch.Virol. 2012;
6		157(11):2095-2104.
7	30	Rautista FM Faahard KS Mickelson D et al Functional properties of the predicted helicase of
8	JZ.	porcine reproductive and respiratory syndrome virus. Virology 2002;298(2):258-270.
10	33.	Beerens N, Selisko B, Ricagno S, et al. De novo initiation of RNA synthesis by the arterivirus RNA-
11		dependent RNA polymerase. J.Virol. 2007;81(16):8384-8395.
11		
12	34.	Ivanov KA, Thiel V, Dobbe JC, et al. Multiple enzymatic activities associated with severe acute
13		respiratory syndrome coronavirus helicase. J.Virol. 2004;78(11):5619-5632.
14	35.	Ivanov KA, Ziebuhr J. Human coronavirus 229E nonstructural protein 13: characterization of
15		duplex-unwinding, nucleoside triphosphatase, and RNA 5'-triphosphatase activities. J.Virol. 2004;
16		78(14):7833-7838.
17		
18	36.	Seybert A, van Dinten LC, Snijder EJ, et al. Biochemical characterization of the equine arteritis
19		virus helicase suggests a close functional relationship between arterivirus and coronavirus heli-
20		cases. J.Virol. 2000;74(20):9586-9593.
21	37.	Seybert A, Posthuma CC, van Dinten LC, et al. A complex zinc finger controls the enzymatic activi-
22		ties of nidovirus helicases. J.Virol. 2005;79(2):696-704.
23		
24	38.	te Velthuis AJ, van den Worm SH, Sims AC, <i>et al.</i> Zn(2+) inhibits coronavirus and arterivirus RNA
25		polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell
26		Culture. PL03.Fathog. 2010,0(11).e1001170.
20	39.	van Dinten LC, van Tol H, Gorbalenya AE, et al. The predicted metal-binding region of the arteri-
20		virus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion
20		biogenesis. J.Virol. 2000;74(11):5213-5223.
30	40.	Eckerle LD, Lu X, Sperry SM, et al. High fidelity of murine hepatitis virus replication is decreased in
31		nsp14 exoribonuclease mutants. J.Virol. 2007;81(22):12135-12144.
32		
33	41.	Postnuma CC, Nedialkova DD, Zevenhoven-Dobbe JC, et al. Site-directed mutagenesis of the
34		cvcle. J.Virol. 2006:80(4):1653-1661.
35		-,
36	42.	Zust R, Cervantes-Barragan L, Habjan M, <i>et al.</i> Ribose 2'-O-methylation provides a molecular
37		signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat.
38		
20		

1 2	43.	Ziebuhr J, Bayer S, Cowley JA, <i>et al.</i> The 3C-like proteinase of an invertebrate nidovirus links coronavirus and potyvirus homologs. J.Virol. 2003;77(2):1415-1426.
3 4	44.	Blanck S, Stinn A, Tsiklauri L, <i>et al</i> . Characterization of an alphamesonivirus 3C-like protease defines a special group of nidovirus main proteases. J.Virol. 2014;88(23):13747-13758.
5 6 7	45.	Berman HM, Westbrook J, Feng Z, <i>et al.</i> The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235-242.
8 9	46.	Finn RD, Bateman A, Clements J, <i>et al</i> . Pfam: the protein families database. Nucleic Acids Res. 2014;42(Database issue):D222-230.
10 11 12	47.	Bartlett GJ, Porter CT, Borkakoti N, <i>et al.</i> Analysis of catalytic residues in enzyme active sites. J.Mol. Biol. 2002;324(1):105-121.
12 13 14	48.	Henderson BR, Saeedi BJ, Campagnola G, <i>et al.</i> Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme. PLoS.One. 2011;6(10):e25795.
15 16	49.	Shuman S, Schwer B. RNA capping enzyme and DNA ligase: a superfamily of covalent nucleotidyl transferases. Mol.Microbiol. 1995;17(3):405-410.
17 18 19	50.	Shuman S, Lima CD. The polynucleotide ligase and RNA capping enzyme superfamily of covalent nucleotidyltransferases. Curr.Opin.Struct.Biol. 2004;14(6):757-764.
20 21	51.	Traut TW. Physiological concentrations of purines and pyrimidines. Mol.Cell Biochem. 1994; 140(1):1-22.
22 23	52.	Hanoulle X, Van DJ, Staes A, <i>et al</i> . A new functional, chemical proteomics technology to identify purine nucleotide binding sites in complex proteomes. J.Proteome.Res. 2006;5(12):3438-3445.
24 25 26 27	53.	Chakravarty AK, Subbotin R, Chait BT, <i>et al.</i> RNA ligase RtcB splices 3'-phosphate and 5'-OH ends via covalent RtcB-(histidinyl)-GMP and polynucleotide-(3')pp(5')G intermediates. Proc.Natl.Acad. Sci.U.S.A 2012;109(16):6072-6077.
28 29	54.	Duclos B, Marcandier S, Cozzone AJ. Chemical properties and separation of phosphoamino acids by thin-layer chromatography and/or electrophoresis. Methods Enzymol. 1991;201:10-21.
30 31	55.	Kang H, Bhardwaj K, Li Y, <i>et al.</i> Biochemical and genetic analyses of murine hepatitis virus Nsp15 endoribonuclease. J.Virol. 2007;81(24):13587-13597.
33 34	56.	te Velthuis AJ, Arnold JJ, Cameron CE, <i>et al.</i> The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res. 2010;38(1):203-214.
35 36 37 38	57.	Kumar NV, Govil G. Theoretical studies on protein-nucleic acid interactions. III. Stacking of aromatic amino acids with bases and base pairs of nucleic acids. Biopolymers 1984;23(10):2009-2024.
39		

192 Chapter 5

1	58.	Bartlett GJ, Borkakoti N, Thornton JM. Catalysing new reactions during evolution: economy of residues and mechanism. J.Mol.Biol. 2003:331(4):829-860.
2		
3 4	59.	Schmelz S, Naismith JH. Adenylate-forming enzymes. Curr.Opin.Struct.Biol. 2009;19(6):666-671.
5	60.	Ahola T, Laakkonen P, Vihinen H, et al. Critical residues of Semliki Forest virus RNA capping enzyme
6		involved in methyltransferase and guanylyltransferase-like activities. J.Virol. 1997;71(1):392-397.
7	61.	Nandakumar J. Shuman S. Lima CD. RNA ligase structures reveal the basis for RNA specificity and
8		conformational changes that drive ligation forward. Cell 2006;127(1):71-84.
9	62	Decrety E Ferron E Loscar L et al Conventional and unconventional mechanisms for capping viral
10	02.	mRNA. Nat.Rev.Microbiol. 2012;10(1):51-65.
11		
12	63.	Bouvet M, Debarnot C, Imbert I, <i>et al. In vitro</i> reconstitution of SARS-coronavirus mRNA cap
13		methylation. PLoS.Pathog. 2010;6(4):e1000863.
14	64.	Lai MM, Patton CD, Stohlman SA. Further characterization of mRNA's of mouse hepatitis virus:
15		presence of common 5'-end nucleotides. J.Virol. 1982;41(2):557-565.
16	65	van Vliet Al Smits SI Rottier PL et al Discontinuous and non-discontinuous subgenomic RNA
17	05.	transcription in a nidovirus. EMBO J. 2002;21(23):6571-6580.
18		
20	66.	Sagripanti JL, Zandomeni RO, Weinmann R. The cap structure of simian hemorrhagic fever virion
20		KNA. VIROIOGY 1986;151(1):146-150.
21	67.	Issur M, Geiss BJ, Bougie I, et al. The flavivirus NS5 protein is a true RNA guanylyltransferase that
22		catalyzes a two-step reaction to form the RNA cap structure. RNA. 2009;15(12):2340-2350.
23	68	Abola T Ablquist P Putative RNA capping activities encoded by brome mosaic virus; methylation
25	00.	and covalent binding of guanylate by replicase protein 1a. J.Virol. 1999;73(12):10061-10069.
26		
27	69.	Gorbalenya AE, Pringle FM, Zeddam JL, <i>et al.</i> The palm subdomain-based active site is internally
28		47-62.
29		
30	70.	Gorbalenya AE, Koonin EV, Donchenko AP, et al. Coronavirus genome: prediction of putative func-
31		tional domains in the non-structural polyprotein by comparative amino acid sequence analysis.
32		Nucleic Acius nes. 1909, 17 (12).4047-4001.
33	71.	Paul AV, Rieder E, Kim DW, et al. Identification of an RNA hairpin in poliovirus RNA that serves as
34		the primary template in the <i>in vitro</i> uridylylation of VPg. J.Virol. 2000;74(22):10359-10370.
35	72.	Ambros V. Baltimore D. Protein is linked to the 5' end of poliovirus RNA by a phosphodiester
36		linkage to tyrosine. J.Biol.Chem. 1978;253(15):5263-5266.
37		
38	73.	Pan J, Lin L, Tao YJ. Self-guanylylation of birnavirus VP1 does not require an intact polymerase
39		activity site. virology 2009;395(1):87-96.

194 Chapter 5

1 2	74.	Mitra T, Sosnovtsev SV, Green KY. Mutagenesis of tyrosine 24 in the VPg protein is lethal for feline calicivirus. J.Virol. 2004;78(9):4931-4935.
3 4	75.	Jiang J, Laliberte JF. The genome-linked protein VPg of plant viruses-a protein with many part- ners. Curr.Opin.Virol. 2011;1(5):347-354.
5 6 7 8	76.	Zeddam JL, Gordon KH, Lauber C, <i>et al</i> . Euprosterna elaeasa virus genome sequence and evolu- tion of the Tetraviridae family: emergence of bipartite genomes and conservation of the VPg signal with the dsRNA Birnaviridae family. Virology 2010;397(1):145-154.
9 10	77.	Imbert I, Guillemot JC, Bourhis JM, <i>et al.</i> A second, non-canonical RNA-dependent RNA poly- merase in SARS coronavirus. EMBO J. 2006;25(20):4933-4942.
11 12 13	78.	Subissi L, Posthuma CC, Collet A, <i>et al.</i> One severe acute respiratory syndrome coronavirus pro- tein complex integrates processive RNA polymerase and exonuclease activities. Proc.Natl.Acad. Sci.U.S.A 2014;111(37):e3900
14 15 16	79.	Benson DA, Cavanaugh M, Clark K, <i>et al.</i> GenBank. Nucleic Acids Res. 2013;41(Database issue): D36-42.
17 18	80.	Pruitt KD, Brown GR, Hiatt SM, et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 2014;42(Database issue):D756-763.
19 20	81.	Lauber C, Gorbalenya AE. Partitioning the genetic diversity of a virus family: approach and evalu- ation through a case study of picornaviruses. J.Virol. 2012;86(7):3890-3904.
21 22 23	82.	Sidorov IA, Reshetov DA, Gorbalenya AE. SNAD: Sequence Name Annotation-based Designer. BMC.Bioinformatics. 2009;10:251.
24 25	83.	Gorbalenya AE, Lieutaud P, Harris MR, <i>et al.</i> Practical application of bioinformatics by the multidis- ciplinary VIZIER consortium. Antiviral Res. 2010;87(2):95-110.
26 27 28	84.	Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39(Web Server issue):W29-37.
29 30	85.	Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-1797.
31 32	86.	Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947-2948.
33 34 35	87.	Soding J. Protein homology detection by HMM-HMM comparison. Bioinformatics. 2005;21(7): 951-960.
36	88.	Remmert M, Biegert A, Hauser A, et al. HHblits: lightning-fast iterative protein sequence searching
37		by HMM-HMM alignment. Nat.Methods 2012;9(2):173-175.
38		
39		

1 2	89.	Grant BJ, Rodrigues AP, ElSawy KM, <i>et al.</i> Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics. 2006;22(21):2695-2696.
3 4	90.	Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc.Natl.Acad. Sci.U.S.A 1992;89(22):10915-10919.
5 6 7	91.	Cole C, Barber JD, Barton GJ. The Jpred 3 secondary structure prediction server. Nucleic Acids Res. 2008;36(Web Server issue):W197-201.
8 9	92.	Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J.Mol.Biol. 1999;292(2):195-202.
10 11 12	93.	Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42(Web Server issue):W320-324.
13 14	94.	Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2015;43(Database issue):D6-17.
15 16	95.	Jones DT. GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J.Mol.Biol. 1999;287(4):797-815.
17 18 19	96.	McGuffin LJ, Jones DT. Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics. 2003;19(7):874-881.
20 21 22	97.	Lobley A, Sadowski MI, Jones DT. pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics. 2009;25(14): 1761-1767.
23 24	98.	van den Born E, Gultyaev AP, Snijder EJ. Secondary structure and function of the 5'-proximal region of the equine arteritis virus RNA genome. RNA. 2004;10(3):424-437.
25 26 27 28	99.	Nedialkova DD, Gorbalenya AE, Snijder EJ. Arterivirus Nsp1 modulates the accumulation of minus-strand templates to control the relative abundance of viral mRNAs. PLoS.Pathog. 2010; 6(2):e1000772.
29 30	100.	van der Meer Y, van TH, Locker JK, <i>et al.</i> ORF1a-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex. J.Virol. 1998;72(8):6689-6698.
31 32 33	101.	Pfefferle S, Krahling V, Ditt V, <i>et al.</i> Reverse genetic characterization of the natural genomic deletion in SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo. Virol.J. 2009;6:131.
34 35 36	102.	Tischer BK, Smith GA, Osterrieder N. En passant mutagenesis: a two step markerless red recombi- nation system. Methods Mol.Biol. 2010;634:421-430.
37		
38		
39		