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Abstract
New circulating and local arterial biomarkers may help the clinician with risk strati-
fication or diagnostic assessment of patients and selecting the proper therapy for a 
patient. Additionally they may be used for follow-up and testing efficacy of therapy, 
which is not provided by current biomarkers. Processes  leading to post-interven-
tional restenosis and accelerated atherosclerosis are complex due to many biolo-
gical variables mediating the specific inflammatory and immunogenic responses 
involved. Adequate assessment of these processes requires different and more spe-
cific biomarkers. Post-interventional remodeling is associated with cell stress and 
tissue damage causing apoptosis, release of damage-associated molecular patterns 
(DAMPs) and upregulation of specific cyto/chemokines that could serve as suitable 
clinical biomarkers. Furthermore, plasma titers of pathophysiological process-rela-
ted (auto)antibodies could aid in the identification of restenosis risk or lesion severity. 
This review provides an overview of a number of potential biomarkers selected on 
the basis of their role in the remodeling process.
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Introduction
The current concept that inflammation plays a key role in the development of (post-
interventional) atherosclerotic vascular remodeling has led to the investigation of in-
flammatory factors to serve as biomarkers for cardiovascular risk prediction. Multiple 
local arterial and blood-based biomarkers have been identified and selected for their 
association with a more adverse cardiovascular risk profile independently of known 
traditional risk factors such as dyslipidemia, hypertension, diabetes and smoking. 
Many of these markers have been incorporated into risk prediction models to im-
prove risk assessment accuracy in addition to current diagnostic strategies1. Of the-
se, C-reactive protein (CRP) is currently the best-validated inflammatory biomarker. 
Despite the value of plasma lipoprotein profiling and CRP measurements the picture 
is not yet clear. Many patients but not all continue to develop vascular remodeling 
following revascularization procedures and ongoing investigations into newer and 
more accurate or combined biomarker risk profiles remain necessary2. This review 
retracts the underlying pathophysiology of atherosclerosis and post-interventional 
vascular remodeling and the value of recently discovered inflammatory biomarkers3 
in the prediction of cardiovascular events in the biological context that require target 
lesion revascularization, highlighting their potential clinical value. Other biomarkers 
including genetic differences such as polymorphisms are not taken into account in 
this review.

Background of atherosclerosis and restenosis
Native atherosclerosis
Atherosclerosis is a chronic inflammatory disease of the large and medium-sized 
arteries and is initiated by a qualitative change in the endothelial monolayer by ir-
ritative stimuli such as dyslipidemia, hypertension, and pro-inflammatory mediators 
that lead to the exposure of adhesion molecules and infiltration of circulating leuko-
cytes into the arterial wall4. Such mediators could be of high value when measured 
as biomarkers of lesion progression and stage of severity. Changes in endothelial 
permeability provoke the retention of cholesterol-containing low-density lipoprotein 
(LDL) particles that are endocytosed by monocytes-derived macrophages leading 
to foam cell and atheromatous lesion formation in the arterial tree5, 6. Tunica media-
derived smooth muscle cell (SMC) migration and proliferation and extracellular ma-
trix deposition lead to the formation of a fibrous cap overlying a necrotic core due to 
inefficient efferocytosis5, 7. Physical disruption of the plaque exposes the underlying 
thrombogenic material to the circulation triggering thrombosis formation, that may be 
monitored as biomarkers, and luminal occlusion with progressing ischemia in distal 
tissues6, eventually leading to infarction requiring angioplasty or bypass-grafting6, 8.

Post-interventional restenosis
Restenosis following angioplasty and stent implantation has been the major problem 
limiting the success rate of coronary interventions and tremendous efforts have been 
made to target this problem9. Acute and long-term vessel occlusion requiring target 
lesion revascularization following balloon angioplasty occurred in 30-60% of all pa-
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tients due to elastic recoil and negative remodeling. The introduction of bare-metal 
stents (BMS) prevented elastic recoil and has reduced this incidence of restenosis 
to 16-44%, but also led to the development of neointimal hyperplasia10. Drug-eluting 
stents (DES) have been developed to counter this phenomenon, although incidence 
rates of 5-10% of in-stent restenosis (ISR) are still reported, encompassing over 
200.000 revascularizations annually in the United States alone11.Inflammation has 
been shown to be the driving factor behind these remodeling processes, pointing to 
a role as biomarker for this factor in the analysis of disease progression.  DES have 
been successful in the prevention of neointimal hyperplasia, but have not been able 
to completely prevent the process of ISR. These figures support the need for deve-
lopment of new biomarker assays that allow careful screening of patients at risk for 
restenosis.
Restenosis is defined as more than 50% luminal loss at follow-up angiography with 
clinical restenosis defined as recurrence of symptoms such as angina pectoris or 
ischemia at rest, requiring repeat revascularization12. It has been proposed to be the 
result of an overshooting healing response that originally occurred in three distinc-
tive phases: early loss due to elastic recoil, which occurs within minutes and has 
been successfully countered by the application of intracoronary stenting, followed by 
neointimal hyperplasia and eventually accelerated atherosclerosis development13. 
 

Figure 2.1 Post-interventional restenosis development
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Neointimal hyperplasia is evoked by injury to the endothelium and underlying athero-
sclerotic plaque, with exposure of thrombogenic content to flowing blood, supporting 
the adhesion and activation of thrombocytes and thrombosis. Platelets release mi-
togens, which can be traced throughout the plasma to serve as biological markers of 
thrombosis extent, and promote SMC migration and proliferation to the tunica intima 
with local extracellular matrix deposition14. This process is prevented or delayed (e.g. 
by many years) by DES compared to BMS implantation through the release of drugs 
that affect SMC migration and proliferation. This process is ultimately followed by a 
phase of vascular remodeling, in which accelerated atherosclerosis and concentric 
adventitial compression together further comprise lumen patency13. 

Underlying causes of restenosis
The underlying causes of restenosis can be divided into four general causes, namely 
biological, arterial, stent and implantation factors10, 12. Biological factors encompass 
the natural (genetic) vascular wall resistance to anti-proliferative drugs and the 
development of a sustained hypersensitivity reaction directed towards the polymer 
or metallic stent platform. Additionally, the initial levels of proteinases that determine 
SMC proliferation and migration are of great importance to treatment success10. These 
effects of proteinase of SMC proliferation and migration may be direct or indirect 
effects. In vascular remodeling matrix metalloproteinases may regulate migration, 
proliferation, and death of vascular smooth muscle cells by degrading matrix and 
non-matrix substrates15, but also may play a role in activating other factors such 
as growth factor or other pericellular proteases16. Arterial factors that influence the 
vascular response are comprised of factor regulated by local wall shear stress levels, 
the progression of original atherosclerosis lesions growth within a stented segment, 
but also previous positive vascular remodeling. Stent factors that contribute to the 
development of ISR are the specific type of coating used, drug concentration and 
sustained period of release and to a lesser extent the drug of choice17, 18. Differences 
between effectiveness rates of specific drugs are determined by their ability to meet 
the biological threshold that exists and determines the initiation of an inflammatory 
response and the eventual occurrence of neointimal hyperplasia, which could be 
tracked with biomarker levels in plasma10. The stent gap, strut thickness and possible 
polymer disruption or cracking and eventual fractures are all important for proper stent 
effectiveness in the prevention of ISR10. Finally, technical implantation factors can 
limit therapeutic effectiveness that stenting could offer, such as an incomplete stent 
expansion and geographical misses, where the stent is deployed short of or beyond 
the complete lesion area12. During every interventional procedure the eventually of 
barotrauma to unstented segments and the deployment of a DES in a clot-laden 
arterial segment remains, that raise the chance of ISR after discontinuation of anti-
thrombotic drugs. These factors support the search for biomarkers that could offer 
diagnostic insight at the time of procedure. These markers should be an adequate 
reflection of acute vessel injury. 

Inflammation status as biomarker
The overall requirement of a cardiovascular disease biomarker is to enhance the 
ability to optimally manage the patient, identification of patients, to differentiate 
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patients, assess the likelihood of a therapeutic response, the risk of future recurrences 
and progression of disease19. The use of BMS or DES may have different effects on 
the pathophysiological process initiated and thereby on the inflammatory response 
and eventual potential biomarkers related to restenosis or in-stent thrombosis. For 
potential novel biomarkers it would be of major importance to be easily detectable 
and that levels correlate with disease progression. Since inflammation is importantly 
involved in vascular disease many studies focused on CRP as a biomarker. CRP is 
a strong marker of inflammation and upregulated in response to pro-inflammatory 
cytokines. No association was found for major cardiovascular events and high 
sensitivity-CRP, IL6 or TNFα by Sukhija and co-workers20. However, CRP seemed 
to be an excellent marker for post-stenting inflammation since it was produced 
mostly in response to pro-inflammatory cytokines released as a response upon 
the vascular damage initiated by the procedure1. In addition pre-procedural serum 
CRP-level proved to be an independent predictor of adverse outcome after coronary 
stent implantation, suggesting that a systemically detectable inflammatory activity 
is associated with proliferative responses within successfully implanted stents21. 
Higher baseline CRP levels of patients undergoing BMS implantation are a predictor 
of restenosis22. Interactions were also found between CRP levels, statin treatment 
and restenosis-incidence23. No clear association of CRP and restenosis was found 
during application of drug-eluting stents1. A study on first cardiovascular events and 
death based on the Framingham Offspring Study by Wang and co-workers showed 
that the most informative circulating biomarkers for predicting death proved to be 
B-type natriuretic peptide, C-reactive protein, homocysteine, renin, and the urinary 
albumin-to-creatinin ratio2. Other studies focused on CRP levels did not find a direct 
relation with restenosis24. Currently the limitation of existing biomarkers is that even 
in combination, they only add moderately to the prediction of risk in an individual 
person2. This statement is confirmed by Ware who explains that a risk factor must 
have a much stronger association with the disease outcome than we ordinarily 
see in etiologic research if it is to provide a basis for early diagnosis or prediction 
in individual patients. Most studies are of limited value for the risk stratification 
of individual patients as we have discovered new biologic variables that lie on 
the complex pathway leading to chronic disease and death25. Therefore the role 
of experimental research is very important in identifying novel biomarkers since it 
provides the tools to focus more specifically on the pathophysiological process.
Currently a lot of contradicting data is available of using CRP as a biomarker in 
cardiovascular disease, a notion merely worsened by the use of different stents 
types. The approaches thus far may not be specific enough to serve as good 
reflectors of the pathophysiological process that is initiated by the interventional 
procedure. CRP is possibly just an indirect reflection of inflammation which is easily 
become upregulated by other underlying inflammatory processes. The application of 
individual biomarkers only contributes moderately to risk assessment of individual 
patients. The prospect of combining multiple known markers could possibly contribute 
significantly more to the optimization of patient selection and individual tailor-made 
treatment1. The future success of biomarker strategies in this field could possibly 
depend on the discovery of new biomarkers to complement the current markers 
and diagnostic strategies. The identification of patients at elevated risk based upon 
biomarker assessment could be of additive value for the management of patients 
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receiving stent implantation. In this review, we provide an overview of considered 
novel potential biomarkers in post-interventional atherosclerotic vascular remodeling 
with the emphasis on inflammation. 

Future biomarkers
Circulating Factors
Several factors involved in the pathophysiological process of post-interventional 
remodeling may be detected in the circulation soon after the interventional damage, 
thereby forming potential biomarkers that are easily available such as damage-
associated molecular patterns (DAMPs). DAMPs are endogenous structures that 
can be released upon tissue damage and can be recognised by receptors on 
inflammatory cells e.g. Toll Like Receptors. Balloon angioplasty with or without 
stent placement will cause damage to the vessel wall that will cause al release of 
DAMPs and activate toll-like receptors that cause a release of several inflammatory 
cytokines and chemokines26, 27. Also antibodies may be formed upon (auto-) antigens 
that become present after the intervention. Original papers on this subject are 
summarized in the citation overview below.

Annexin A5
Annexin A5 is a member of the annexin family, a group of highly-conserved Ca2+ 
dependent proteins that bind to negatively-charged phospholipid surfaces. Annexin 
A5 is primarily an intracellular protein that is released upon injury and binds specifically 
and with high affinity to phosphatidylserine (PS)28. PS becomes externalized and 
presented upon the outer cellular membrane during the process of apoptosis, but 
also during platelet activation and erythrocyte aging29. For this reason annexin A5, 
alone and bound to contrast agents, has been used world-wide for the detection of 
apoptosis in vitro and in pilot experiments in vivo in patients28. 
PS serves as an ‘eat-me’ signal on apoptotic cells for circulating phagocytes. 
Annexin A5 than binds PS leading to the formation two-dimensional crystals. 
Annexin A5 thereby may act as a lattice shielding PS from phagocytes and from 
interacting in phospholipid-dependent coagulation reactions30, 31. In addition to its 
anti-thrombogenic properties, annexin A5 binds with high affinity to oxLDL cholesterol 
which together with apoptotic cells is present in native atherosclerotic and restenotic 
lesions in high concentrations32. For this reason, annexin A5 is also detectable in 
high concentrations in (accelerated) atherosclerotic lesions33. 
Next to its presence in the vascular wall, annexin A5 has been suggested in the 
prevention of pro-inflammatory microparticle formation. Stimulated platelets and 

Citation overview 
Biomarker References
AnnexinA5           28-35   

DAMPS 26, 27, 36-62
Cytokines/chemokines 1, 22, 26, 39, 63-85

Plasma antibodies 86-96
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apoptotic cells expressing PS on their membrane have been shown to shed PS-
containing membrane-derived microparticles. Annexin A5 is able to inhibit the 
formation of microparticles by binding to PS on these cells30.
Annexin A5 is partially removed from the circulation by binding to specific 
components of atherosclerotic tissues, such as oxLDL and activated or damaged 
cells. Measurement of plasma annexin A5 concentration requires only limited 
amounts of venous blood and is therefore an easy-to-perform diagnostic test. 
Although this information does not allow discrimination between a restenotic and a 
de novo atherosclerotic lesion, it could certainly be of much additive value to current 
diagnostic strategies and screening purposes. In addition, it was found that the 
prognostic value of the oxLDL / annexin A5 ratio is even more sensitive than annexin 
A5 alone, stressing the importance of combined biomarkers for disease screening34. 
The presence of high concentrations of annexin A5 in atherosclerotic lesions leads 
to annexin A5 release in the circulation following myocardial infarction35. Increased 
annexin A5 levels are therefore indicative of the extent of myocardial tissue damage. 
Since annexin A5 levels provide both information on plaque severity in the stable 
period of atherosclerosis and on infarction severity during acute episodes of plaque 
rupture, annexin A5 is a highly potential future biomarker of cardiovascular disease 
progress.  

Damage Associated Molecular Patterns (DAMPs)
Restenosis is a late process, although it is believed that events that take place 
within 72 hours after intervention are already triggering the restenosis process. 
The intervention will cause severe damage to the vessel wall leading to a release 
op DAMPs. DAMPs can be seen as endogenous fragments that are recognized 
by the immune system by toll-like receptors (TLR)26.  During the whole process of 
restenosis a continuous process of cell stress, lipid influx, inflammation and matrix 
degradation, the release of DAMPs will continue. The last decade much focus has 
been towards the involvement of TLR in cardiovascular disease where the TLRs 
were predominantly found on circulating cells and in vascular lesions36-38. TLRs are 
membrane-bound receptors located on a variety of immune and non-immune cells 
including macrophages, endothelium, SMCs and platelets. Release of the DAMPS 
as endogenous TLR ligands may have serious consequences due to the activation 
of the TLR signalling pathway on variety of cells carrying TLRs.  These cells may 
than initiate a severe inflammatory response with direct activation of the vessel wall 
but also platelet activation and infiltration of inflammatory cells26, 39, 40. A causal role 
for TLR4 in post-interventional vascular remodeling was previously demonstrated. 
Neointima formation, arterial outward remodeling as well as vein graft remodelling 
were decreased by in TLR4 deficient mice, and TLR4 ligands and TLR4 silencing 
tools could modify these processes41-43. Furthermore TLR4 is importantly involved in 
the sterile inflammatory response upon CD36 activation by oxLDL particles44. Two 
very important DAMPs that can be linked to multiple TLRs are high mobility group box 
1 (HMGB1) and fibronectin-EDA (FN-EDA) that also come available in the circulation 
upon their release. These DAMPS may potentially serve as ideal biomarkers since 
they are only upregulated in response to tissue damage, have direct inflammatory 
effects via multiple TLRs and can also be detected in the plasma27, 49-51. 
Nuclear HMGB1 may become present in the cytoplasm or even outside the cell 
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where it is known to act as TLR2 and TLR4 ligand45, 49. Not only can this release be 
initiated upon cell stress but also activated macrophages are capable of releasing 
HMGB126, 49-51. Previously our group was able to detect intra- and extra-nuclear 
HMGB1 in remodeled vein grafts42. Furthermore presence of HMGB1 was detected 
in atherosclerotic plaques. Although the number of macrophages increased markedly 
in fatty streaks and fibrofatty lesions, the proportion that expressed HMGB1 did not 
alter significantly. However, the proportion of macrophages containing HMGB1 in 
both cytoplasm and nuclei increased markedly52. Others showed that elevation of 
serum HMGB1 level is associated with severe cardiac remodeling complications 
such as pump failure, cardiac rupture, and eventually in-hospital cardiac death. 
This was in association with an increased serum C-reactive protein level in these 
patients. However, in an animal model for myocardial infarction blockade of HMGB1 
caused impaired infarct healing and marked scar thinning thereby worsening left 
ventricular remodelling53. Furthermore, HMGB1 serum levels are markedly increased 
upon surgical thoracic aortic aneurysm repair54. HMGB1 is also of interest in other 
inflammatory disease processes like SLE and kidney ischemia reperfusion55, 56. 
HMGB1 also has pro-thrombogenic features by increasing tissue factor expression 
on monocytes and inhibiting anti-coagulant protein C pathway in vitro. In vivo the 
combined administration of thrombin and HMGB1 caused prolonged plasma clotting 
times57. The effect of HMBG1 on platelets via direct TLR4 activation is still unknown. 
Fibronectin is a part of the extracellular matrix that undergoes severe stress during 
interventional procedures. Fibronectin-EDA (FN-EDA) is an adhesive glycoprotein 
spliced from fibronectin and is important in wound healing and can be produced 
by activated endothelium and fibroblasts. FN-EDA has been implicated in fibroblast 
differentiation, proliferation and migration and is capable of monocytes activation and 
induction of inflammation through upregulation of cytokines like interleukin-1α and β 
and matrix metalloproteinases. Interestingly, FN-EDA is the only spliced variant of FN 
that binds and activates TLR458, 59. FN-EDA targets antigen to TLR4-expressing cells 
and induces cytotoxic T cell responses60. FN-EDA is also considered to be a TLR2 
ligand and therefore has the potential to activate the two most important TLRs in 
vascular disease. We showed that lack of FN-EDA prevents myocardial remodeling 
and preserves pump function after infarction61. FN-EDA was also found in restenotic 
lesions with features of accelerated atherosclerosis and in the myocardium in the 
early phase of the remodeling process following infarction61. Additionally absence 
of FN-EDA reduced atherosclerosis formation. In normal aortas the spliced FN-
EDA could not be found, although FN-EDA was found in atherosclerotic plaques 
and in plasma of atherosclerotic mice. FN-EDA was shown to have effects in both 
plasma lipoprotein metabolism and in macrophage foam cell formation59, 62. Studies 
with atherosclerotic mice that lack FN-EDA indeed showed that cholesterol levels 
were lowered59, 62. In addition, FN-EDA may influence post-interventional remodeling 
directly via inducing an inflammatory reaction but also via effects on lipid metabolism. 

Cytokines and chemokines
Cytokines and chemokines are important mediators of inflammatory responses 
and can be easily measured in serum. Both lowered and elevated concentrations 
of cytokines and chemokines are associated with cardiovascular risk profiles 
and specifically post-interventional vascular remodeling due to accelerated 
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atherosclerosis development. Nevertheless their levels can strongly differ due to 
different pathophysiological processes initiated by different treatment strategies. 
The treatment strategy (BMS vs. DES) therefore may have strong influence on the 
reliability of a selected cytokine or chemokine as biomarker1, 22. Interestingly conditions 
after acute myocardial infarction could exacerbate post-angioplasty restenosis by 
stimulating signaling via TNFα63. This may cause differences for patients that undergo 
scheduled PCI versus patients that had an acute myocardial infarction before PCI. 
It may therefore be important to look for combinations of specific cytokines besides 
a selected biomarker. Activation of innate immune response via TLRs will lead to 
nuclear factor kappa B (NFκB) activation followed by upregulation of cytokines and 
chemokines26, 39. Many different cytokines have been studied in relation to post-
interventional remodeling and may be used in combination with specific biomarkers 
to correlate DAMP presence with remodeling related cytokines. Additionally this may 
provide better insight in the underlying mechanism of the pathophysiological process 
and thereby indications for proper treatment strategies. Cytokines could also be 
interesting to measure the effect of these treatment strategies by checking ratios of 
pro- and anti-inflammatory cytokines. Here we discuss a few cytokines/chemokines 
that have been intensively researched in relation to cardiovascular disease and have 
showed biomarker potential

Tumor necrosis factor α
Tumor necrosis factor (TNF) α is a pro-inflammatory cytokine that is importantly 
involved in inflammatory responses. Multiple cells including endothelial cells, 
vascular smooth muscle cells and monocytes-derived macrophages can secrete it. 
Several studies have shown that blockade of TNF α caused a reduction in neointimal 
formation via acceleration of endothelium repair, found increased mRNA expression 
of TNF α in the neointima of damaged vessels which may be upregulated 4000 
times compared to resting levels. These kinds of studies also showed a relation with 
accelerated atherosclerosis64, 65.
Interestingly, the local delivery of thalidomide as a potent TNF α biosynthesis 
inhibitor demonstrated a powerful reduction of the neointima formation in mice. In 
humans single nucleotide polymorphisms in the TNF α gene were found and showed 
associations with an increased clinical and angiographic risk for restenosis66. 
Angioplasty in peripheral arterial segments gave increased levels of TNF α within 
1 hour, although no statistically significant correlation was found between failed 
angioplasty and the following inflammatory response67. Kubica et al stated that 
the combined analysis of CRP and TNF α might be an effective approach to the 
clinical restenosis prediction and long-term outcome is markedly influenced by the 
periprocedural activation of inflammation68. 

Monocyte chemoattractant protein 1
Monocyte chemoattractant protein (MCP)-1 binds to its receptor CC chemokine 
receptor 2 (CCR2) that belongs to the family of G-coupled receptors and is a 
chemokine that is capable of attracting immune cells like monocytes. Upon vascular 
injury MCP-1 recruits monocytes, memory T cells and dendritic cells to the injured 
site. Attracted monocytes infiltrate the vessel and contribute importantly to neointima 
formation69. MCP-1 is strongly expressed locally in different stages of the remodeling 
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process. Furthermore, it has strong influence on SMC proliferation. Both mouse 
models for arterial restenosis as for vein graft remodeling showed a MCP-1 inhibitor 
showed sufficient reduction in neointima formation. Furthermore studies in which the 
receptor for MCP-1 was targeted gave similar results70-72. No differences in MCP-1 
concentrations between patients with acute MI, patients with stable coronary artery 
disease and healthy individuals were found73. However, an inverse correlation was 
found between MCP-1 concentration at baseline and the time to reperfusion, and 
a significant decrease in MCP-1 concentration immediately after PCI and lower 
MCP-1 concentrations over time in patients who developed restenosis within 6 
months were found73. Elevated baseline level of MCP-1 was associated both with 
traditional risk factors for atherosclerosis as well as an increased risk for death or 
myocardial infarction, independent of baseline variables. Interestingly MCP-1 levels 
are not associated with CRP levels indicating the importance of selecting specific 
inflammatory markers in stead of general markers like CRP74. MCP-1 levels are 
different amongst patients that received a BMS versus a DES75. Furthermore in 
the same study they found increased monocyte CCR-2 expression 24 hr and 48 
hr after stenting in the BMS but not the DES group and changes in plasma MCP-1 
after stenting correlated significantly with in-stent lumen loss. Previously another 
Japanese study already showed a correlation between MCP-1 and the risk for 
restenosis after stenting76.

Interleukin 10
Interleukin 10 (IL-10) is one of the most prominent anti-inflammatory cytokines. It 
may suppress antigen presentation and is capable of inhibiting pro-inflammatory 
cytokine production. Different animal models for restenosis and atherosclerosis 
showed protective effects of IL-10 by the use of recombinant human IL-10 or using 
animals deficient in IL-10. 
In humans three polymorphisms significantly increased the risk of restenosis 
in patients and demonstrate that IL-10 is associated with restenosis77-79. IL-10 is 
however upregulated together with pro-inflammatory cytokines to maintain a balance 
between pro- and anti-inflammatory cytokines. Most of the time upregulation of pro-
inflammatory cytokines exerts the upregulation of IL-10. Peripheral therapeutic 
angioplasty gave no difference in IL-10 levels compared to patients that underwent 
only angiography67. In a study using BMS after PCI a significant low IL-10 levels was 
associated with an increase in restenosis after 6 months80. The use of undergoing 
zotarolimus-eluting (zotarolimus is a semi-synthetic derivative of rapamycin that 
works as immunosupressant) stent implantation combined with pioglitazone 
significantly reduced neointimal hyperplasia within the stented lesion and attenuated 
total plaque burden in the in-segment regions of the stent at the 8-month follow-up. 
These changes were preceded by an elevated IL-10 concentration 10 days after 
implantation81.

RANTES/CCL5
CCL5 (RANTES) deposition was involved in wire-induced intimal hyperplasia and 
blocking of RANTES receptors attenuates neointima formation and macrophage 
infiltration in animal studies82. Two clinical studies focused on the relation of RANTES 
levels and restenosis. While one of these studies found a decrease of RANTES in 
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time in the non-restenosis group another found a significant time-dependent increase 
in the restenosis group83, 84. No association was found between RANTES promoter 
genotype and restenosis85. 

Plasma antibodies
Recent results from murine interventional studies indicate that inflammation and 
(auto)immune mechanisms are both strong contributors to the development of 
post-interventional restenosis development have led to the hypothesis that (auto)
antibodies are both causally related to restenosis development, and titers could 
serve as biological biomarkers for the identification of restenosis risk or lesion 
severity. Longitudinal studies will be required to determine both the diagnostic and 
predictive values of antibody profiles, but promising candidates have emerged over 
the past decade, which will be discussed below. 
The immune system can be divided into the innate and adaptive systems, which are 
closely linked and regulated. The innate immunity forms the first line of defense and 
offers a quick but unspecific response to invading microorganisms, whilst adaptive 
immunity takes longer to develop, but targets highly specific antigen-bearing foreign 
intruders. To this end, the former system is comprised of various toll-like receptors, 
the complement system and cytokines and chemokines, whilst the latter depends 
on the vast variety of B and T cell receptors and antigen-specific immunoglobulines.  

Anti-oxidized LDL and phosphorylcholine antibodies
Immune responses against oxidized forms of cholesterol-containing LDL particles 
play a critical role in activation and regulation of the inflammatory process that 
characterizes all stages of atherosclerosisp86. LDL cholesterol is the most important 
risk factor for cardiovascular disease and cholesterol-lowering therapy (statins) alone 
can reduce CVD-risk by 30-40%. LDL has been found to play a key role in lesion 
development and LDL oxidation by enzymes such as lipoxygenases primarily occurs 
in the extracellular matrix in the arterial wall. Oxidative modification of phospholipid 
fatty acids, degradation of apoB-100 into peptide fragments and modification of these 
structures by aldehydes derived from oxidized fatty acids leads to the development 
of immunogenic neo-antigens87, 88. These contain pathogen-associated molecular 
patterns (PAMPs) that are recognized by the pathogen recognition receptors (PRRs) 
from the immune system, of which TLRs and scavenger receptors are considered to 
be the most important. TLRs occur both intra- and extracellular and are activated by 
lipopolysaccharide (LPS) and various other (viral) micro-biological antigens, but also 
by endogenous ligands such as heat shock proteins and fibronectin extra-domain 
A89.Their activation stimulates MyD88-dependent and independent intracellular 
cascades that eventually all lead to increased NFκB transcription and inflammation.
In both mouse and man, natural anti-oxLDL IgM and IgG antibodies occur, whilst in 
vitro, antibodies are directed towards malondialdehyde (MDA) and copper-oxidized 
LDL87. These antibodies proved to be exactly similar to those produced by natural 
occurring T15 B-1 cell clones and all recognize the phosphorylcholine (PC) antigen 
on oxLDL90, but also on apoptotic cells and Streptococcus pneumoniae, which share 
molecular mimicry91, 92. 
These antibodies are suggested to block the oxLDL-uptake by scavenger receptor-
bearing macrophages and block foam cell and atherosclerotic lesion formation, 
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but could also serve as risk markers for atherosclerotic and restenotic lesion 
development. Several studies have reported increased plasma titers of IgG anti-
oxLDL antibodies in patients with angiographically verified coronary artery disease 
and with acute myocardial infarction93-95.Many studies found that low levels of IgM 
anti-oxLDL antibodies are associated with increased atherosclerosis in hypertensive 
patients and low levels of IgM anti-PC antibodies with acute myocardial infarction, 
ischemic stroke and cardiovascular disease in general in both the general population 
and patients with either hypertension or SLE93-96. Therefore, this could also hold 
true for restenosis due to accelerated atherosclerosis development and the severity 
of lesion development. In general, these studies have identified anti-oxLDL and 
specifically anti-PC antibodies as biomarkers for cardiovascular disease monitoring 
with potentially high additive value to current diagnostic strategies.

Microparticles
Thrombocytes, monocytes and those cellular types lining the arterial wall including 
endothelial cells and SMCs have been shown to vesiculate and release membrane-
shed microparticles in response to cellular activation and apoptosis such as occur 
during the development of atherosclerotic and restenotic lesions97, 98. Membrane 
integrity is largely controlled by intracellular calcium and caspase homeostasis99. 
Disorganization of the cytoskeleton enables blebbing to occur and disruption of 
the membrane phospholipid symmetry supports PS externalization99. These PS-
containing microparticles have been implicated in the development, progression and 
complications of atherosclerotic lesions and patients suffering from atherosclerotic 
or restenotic cardiovascular disease display high levels of circulating microparticles 
and since these microparticles are absent in healthy individuals, their circulating 
levels prove to allow excellent follow-up of lesion progression and serve as surrogate 
markers for vascular function99. 
Specifically endothelium-derived microparticles, but not those originating from other 
cellular types, have been shown to bear high prognostic value in the risk assessment 
of mortality and major adverse cardiovascular events in patients with coronary artery 
disease, but also pulmonary hypertension and end-stage renal failure98. 

What can we learn from the lesion itself for selecting 
novel biomarkers?  
In an ideal situation we would like to extract our biomarkers directly out of the lesion 
since this area previously gave problems and here postinterventional remodeling will 
start again.
Previously detectable CRP levels in the arterial intima were found preceding the 
appearance of monocytes. Furthermore, CRP had actually chemotactic capacities 
by direct influence on monocyte recruitment both in vitro as in vivo100. Another study 
showed that immunoreactivity to CRP was localized to macrophages, SMCs and 
necrotic areas. Moreover, the immunoreactivity to CRP in coronary atheromatous 
plaque increases in culprit lesions of unstable angina and it affects restenosis101. This 
may indicate that local CRP levels are much more specific to study while the role 
of circulating CRP and the relation with post-interventional remodeling may still be 
difficult to assess since it may be upregulated in multiple ways even independently 
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of the interventional procedure. Another factor of which its plaque levels were more 
than 70 times higher in plaques than in plasma is oxLDL in patients undergoing 
carotid endarterectomy102. The same authors also found differences in the oxLDL 
amount in macrophages rich plaques versus macrophage poor plaques. Interestingly 
plasma oxLDL levels were only significantly different between control patients and 
patients with macrophage-rich plaques which may indicate that when studying only 
oxLDL on the plasma level will not discriminate patients without or patients with 
a macrophage-poor plaque and may be more helpful in determination of plaque 
vulnerability than just plaque formation or progression102. Bamberg and co-workers 
showed that different biomarkers of inflammation, vascular remodeling, oxidation, 
and lipoprotein metabolism maybe associated with different patterns of coronary 
atherosclerosis as quantified by coronary CT angiography103. So lesion phenotype 
may be very important for the selection of proper novel biomarkers. Only recently a 
novel study was conducted that uses the knowledge of specific lesions to study the 
disease process and use it as a predictor of future restenosis and or atherosclerosis 
occurrence even at other sites than the initial lesion. This Athero-Express study 
was the first study to provide prospective evidence that plaque composition may 
predict the risk of restenosis after endarterectomy. Here they found associations 
for non-vulnerable plaque phenotype to be more prone to develop restenosis104. 
The Athero-Express biobank was also used for a proteomics search approach 
to identify local biomarkers (selected proteins that have been identified earlier in 
experimental set-ups with any cardiovascular phenotype but not necessarily with 
atherosclerosis, osteopontin (OPN) and Macrophage migration inhibitory factor 
(MIF)) in the atherosclerotic plaque to predict atherosclerotic plaque development in 
other vascular beds. The authors collected plaques from carotids as well as plaques 
from femoral arteries and in both cases they found plaque osteopontin (OPN) levels 
highly predictive for secondary atherosclerotic development. Furthermore, plaque 
MIF levels were strongly associated with secondary cardiovascular events and 
showed that the concept not only applies for OPN105. Although beyond the scope 
of this review, the field of proteomic research is evolving and could contribute 
substantially to the discovery of new biomarkers in post-interventional restenosis 
and accelerated atherosclerosis. 
Most studies are of limited value for the risk stratification of individual patients with 
the current available biomarkers25 and are therefore playing a very little role in the 
prediction of restenosis and decision-making for its exploration and treatment. 
Furthermore, in many clinical centers it is not possible yet to sample and extract tissue 
to select for biomarkers patient specifically however combining results of these kind 
of studies on plaque development and progression together with increased specific 
knowledge on the complex pathways extracted from experimental research may help 
us in understanding not only the pathophysiological process but also to select novel 
biomarkers. They probably will contribute largely to our knowledge and selection of 
novel biomarkers and may find new correlations between local and circulating levels 
of biomarkers and post-interventional remodeling and accelerated atherosclerosis. 
In addition these local studies may even come up with novel biomarkers inside the 
plaque that can not be detected in plasma due to their low plasma levels, incapacity 
of being released outside the plaque or just being plaque specific. 
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Conclusion
Recently published studies have demonstrated that both lowered and elevated 
concentrations of local arterial and circulating biomarkers are associated with 
cardiovascular risk profiles and specifically post-interventional vascular remodeling 
due to accelerated atherosclerosis development. These associations are independent 
of traditional risk factors and could serve as helpful tools for risk stratification or 
diagnostic assessment of patients eligible for intensified treatment for clinicians 
performing target lesion revascularization interventions. Improved assays have 
identified not only circulating biomarkers, but also cellular-expressed receptors, co-
factors and microparticles that all directly causally involved in disease progress, but 
also indirectly as biomarkers of inflammatory status and vascular function. Provided 
these findings are replicated in other studies, the combined power of current 
diagnostic strategies with the latest tools and multiple biological risk markers could 
contribute significantly to the optimization of patient selection and future individual 
tailor-made treatment.

Executive summary
Introduction

• Coronary heart disease remains the leading cause of death and is caused by 
atherosclerosis, a chronic inflammatory disease 

Underlying causes of restenosis
• Post-PCI restenosis is determined by biological, arterial, stent and technical 

factors
Inflammation status as biomarker

• Biomarkers can be divided into local, circulating and circulating cell-bound 
markers and are most valuable when causally related to disease progression

Circulating biomarkers
• Circulating markers and ligands of the innate immune system such as 

fibronectin, inflammatory cytokines, annexin A5 and natural antibodies 
towards oxidized LDL cholesterol and HMGB-1 can be highly predictive

• Inflammatory receptors on circulating leukocytes such as TLRs and 
scavenger receptors, but also microparticles are directly implicated in and 
strongly indicative of atherosclerotic vascular remodeling

What can we learn from the lesion itself for selecting novel biomarkers?  
• Biobanks containing mRNA and protein profiles from numerous atherosclerotic 

plaques are highly valuable for local biomarker screening
Conclusion

• Biomarkers of inflammation status possess the highest predictive value for 
accelerated atherosclerosis disease progression, especially when combined 
and in addition to current diagnostic strategies

Future perspective
The insight into the development of atherosclerosis and post-PCI restenosis has 
developed very quickly over the past decade. Ever since, atherosclerosis is primarily 
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viewed as a chronic inflammatory disease due to a dysfunctional immune response 
towards the arterial wall. To this end, the focus on atheroscleroticbiomarkers has shifted 
from traditional markers that serve as risk factors, such as hypercholesterolemia, 
towards markers of systemic inflammation (e.g. C-reactive protein) and arterial 
dysfunction. The important notion remains that causal factors are additionally 
powerful predictors of disease progression and the same would apply for inflammatory 
markers. The field of diagnostic and treatment-evaluation markers will shift in the 
same direction, guided by new insights, and rely heavily on the additional value 
of new biomarkers to the current diagnostic strategies. Epidemiologic assessment 
of additional value from combining biomarkers is a powerful tool to discover new 
biomarkers entities for the development of highly specific assays, specifically for 
genetic biomarkers such as polymorphisms that are associated with disease risk. 
The field of biomarkers for accelerated atherosclerosis and post-interventional 
vascular remodeling has changed due to the introduction of drug-eluting stents. 
These stents have rendered various markers of little use, since they closely followed 
the inflammatory reaction towards BMS placement and are currently prevented by 
adequate local drug release. Their usefulness could be further compromised in future 
due to the ever-increasing application of drug-eluting balloons. Nevertheless, new 
inflammatory factors such as intraplaque and circulating proteins, natural antibodies, 
microparticles and cellular receptor expression could prove to be of highly-specific 
and diagnostic value. Furthermore, application of such screening assays would allow 
for optimal treatment evaluation such as occurred in the past with the introduction of 
cholesterol-lowering statin therapy. 
Development and application of future biomarkers requires clinical validation, which 
remains a time-consuming and expansive entity, and this uncertainty is inherently 
(most notably on safety issues) present at the final stages of drug validation, limiting 
future biomarker development. In spite of this, investigations continue to proceed and 
will improve diagnostic and treatment accuracy of post-interventional atherosclerotic 
vascular remodeling.
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