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Chapter 1 Introduction

Dystrophinopathies comprise a spectrum of muscle diseases caused by mutations in the
DMD gene which codes for the muscle protein dystrophin. The clinical spectrum ranges
from mild to severe and includes asymptomatic increase of serum concentration of creatine
phosphokinase (hyperCKemia), X-linked myalgia/cramps with myoglobinuria, isolated
quadriceps myopathy, X-linked cardiomyopathy, Becker muscular dystrophy (BMD) and
Duchenne muscular dystrophy (DMD) (Darras et al., 2008).

The DMD gene is located in band Xp21.2 and the inheritance of dystrophinopathies is X-
linked. Mutations in the gene lead to absent or less functional dystrophin. The most common
dystrophinopathy is DMD; its incidence varies between 1 in 3600 to 1 in 6000 (Emery,
1991). The incidence in the Netherlands has been estimated to be 1 in 4200 live born males
in the period 1961-1974 (van Essen et al., 1992b) and 1 in 4685 in the period 1993-2002
(Helderman-van den Enden et al., 2012). The exact incidence of BMD is not known and has
been estimated to be in the range of 1 in 12000 to 1 in 30000 male live births (Bushby et al.,
1991; Emery, 1991).

Insufficient information is available on other dystrophinopathies. Results of immuno-
histochemical analysis of the muscle biopsy on individuals with hyperCKemia showed
that 8% (3/40) of those without or with minimal symptoms showed abnormal dystrophin
staining, resembling Becker pathology (Dabby et al., 2006), but molecular testing to confirm
dystropinopathy was not done. Abnormal dystrophin staining was also seen in 8% (8/104) of
clinically normal subjects with chronic hyperCKemia, but here molecular testing did confirm
a form of dystrophinopathy (Fernandez et al., 2006). On the other hand, 27% (28/104) of
patients with a mild X-linked muscular dystrophy phenotype who had abnormal dystrophin
in the muscle biopsy, were sub-clinical or asymptomatic (Angelini et al., 1994). There are
also a number of families/patients with X-linked myalgia and cramps (Gospe et al., 1989;
Sanchez-Arjona et al., 2005; Veerapandiyan et al., 2010; Helderman-van den Enden et al.,
2010). At least 11 families have been published with X-linked dilated cardiomyopathy
(Ferlini et al., 1999). However, only five patients with this type of dystrophinopathy were
found among > 4700 mutations in the DMD gene reported in the Leiden DMD mutation
database (Aartsma-Rus et al., 2006). No mutation was found in the DMD gene in 27 patients
with idiopathic dilated cardiomyopathy without systemic disease (Michels et al., 1993). A
recent study among 436 male patients with dilated cardiomyopathy showed a mutation in the
DMD gene in 34 males (7,8%) (Diegoli et al., 2011). In conclusion, the incidence of other
dystrophinopathies is not known as there is insufficient data, probably because many patients
have not been diagnosed.

1.1 Clinical description
1.1.1 Duchenne muscular dystrophy (DMD)

DMD is the most severe form of dystrophinopathy. In general, only males are affected due to
the X-linked inheritance. Occasionally girls are as severely affected as boys, usually because
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of a translocation between an X-chromosome and an autosome where the normal X is
preferentially inactivated. For other rare causes see Section 1.2 below: Dystropinopathy in
women.

The affected boys do not show any symptoms at birth. More than half of the boys start
walking only after 18 months, whereas 97% of normal children are already walking at this
age (Emery and Muntoni, 2003). Most patients are diagnosed around the age of five, mainly
because of delay in walking and an unsteady gait with tendency to walk on tiptoes. Some
are diagnosed because a test for unrelated indications or calf pains reveals hyperCKemia
or increased transaminases (Bushby et al.,, 1999; Emery and Muntoni, 2003). Proximal
muscle weakness should be suspected if a boy has difficulties in running and climbing stairs
and physical examination reveals hypertrophy of the calf muscles and a positive Gower’s
sign (difficulty in getting up from the floor which is solved by spreading the legs and using
the hands to climb up the thighs to get to an upright position). Serum CK concentration is
typically increased to at least ten times normal till about the age of six (Darras et al., 2008);
it then decreases with advancing age due to progressive loss of muscle mass (Zatz et al.,
1991). Most untreated DMD patients become wheelchair bound between the ages nine and
twelve (Emery and Muntoni, 2003). Long-term corticosteroid therapy prolongs ambulation
by two to five years and reduces the need for spinal stabilization surgery (Moxley et al.,
2010). Without treatment the muscle strength deteriorates and results in death around the
age of 19. The survival can be prolonged into the fourth decade with corticosteroid, cardiac,
respiratory, orthopaedic and rehabilitative interventions (Bushby et al., 2010a; Bushby et al.,
2010b; Eagle et al., 2002; Dreyer et al., 2010; Ishikawa et al., 2011). A typical clinical course
can be seen in Figure 1.
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Figure 1
Musculoskeletal course in Duchenne muscular dystrophy (Verma et al., 2010) (with
the kind permission of Professor Y Anziska).



When Duchenne de Boulogne first described these patients he noticed that, apart from
the muscular dystrophy, some boys also had mental problems (Duchenne, 1868). Mental
retardation (defined as full scale intelligence quotient below 70) has been estimated to occur
in 19-35% of DMD cases (Cotton et al., 2001; Cotton et al., 2005). Cognitive impairment
has been described also in patients with BMD although its frequency has not been studied
systematically (Bardoni et al., 2000; North et al., 1996). In DMD patients the distribution of
the 1Q is shifted downward by approximately one standard deviation (Cotton et al., 2001) in
comparison to the normal population. In contrast to the muscular dystrophy mental retardation
is non-progressive (Anderson et al., 2002). Severe mental retardation is concordant in affected
relatives (Muntoni et al., 2003), suggesting a primary role of the mutated DMD gene in mental
retardation. Several authors have found that the loss of expression of dystrophin isoforms,
especially DP140 and DP71, in the central nervous system is related to the retardation
(Bardoni et al., 2000; Moizard et al., 1998; Taylor et al., 2010; Wingeier et al., 2011). The
loss of DP71 is reported to result in a shift of two standard deviations of the Full Scale
Intelligence Quotient (Daoud et al., 2009). If the mutation in the Dp140 isoform is located in
the 5” UTR, it has less effect on full scale intelligence quotient than if it is in the promoter of
protein-coding regions of Dp140 (Taylor et al., 2010).

1.1.2 Becker muscular dystrophy (BMD)

BMD is the second best known dystrophinopathy. The phenotype is less severe than DMD.
As DMD, BMD is characterized by progressive symmetrical muscle weakness and atrophy,
proximal greater than distal, often with calf hypertrophy. Preservation of the strength of
the neck flexor muscle differentiates BMD from DMD. Wheelchair dependency, if present,
occurs after the age of 16 in the natural course of the disease. However, as the corticosteroid
therapy induces prolongation of the ambulation of DMD patients, the criterion of wheelchair
dependency after the age of 16 does not always point to BMD. Occasional features of BMD
are weakness of quadriceps femoris (sometimes the only sign), activity-induced cramping
and late in the course flexion contractures of the elbows (Darras et al., 2008). Onset is
usually between the ages of 5 and 15, however, it may occur later in life. The most frequent
presenting symptom is calf pains, typically experienced in early teenage years, provoked
by exercise and relieved by rest. Frequent falling and being slower than peers, can also be
the presenting symptom (Bushby and Gardner-Medwin, 1993). Serum CK concentration is
typically increased to more than five times the normal value, reaching the maximum on
average between the ages of 10 and 15 (Zatz et al., 1991). The mean age of death is in the
mid-40s with a large range (23-89 years) (Bushby and Gardner-Medwin, 1993) but many
BMD patients with a mild phenotype who are still self supporting in their 60’s or 70’s have
been described (Ferreiro et al., 2009; Helderman-van den Enden et al., 2010; Lesca et al.,
2007; Saengpattrachai et al., 2006; Yazaki et al., 1999).
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1.2 Dystrophinopathy in women

1.2.1 Carriers

Most female carriers have no symptoms of dystrophinopathy because the inheritance of DMD
is X-linked. Serum CK level is significantly raised in two-thirds of the carrier women (Emery
and Muntoni, 2003) but without any symptoms. In two studies 2.5 to 7.8% of the female
carriers developed symptoms varying from mild muscle weakness to a rapidly progressive
DMD-like muscular dystrophy (Moser and Emery, 1974; Norman and Harper, 1989).

A Dutch study of 129 female carriers reported frequent myalgia/cramps in 5% and muscle
weakness in 17% (Hoogerwaard et al., 1999a). Dilated cardiomyopathy was present in
5% and left ventricle dilatation in 18% (Hoogerwaard et al., 1999b). A recent follow-up
study after nine years has shown that cardiac abnormalities in these carrier women are as
progressive as in DMD patients (van Westrum et al., 2011). Carrier women are advised to
start cardiac examination at the age of 16 or later, at diagnosis, with follow-up examinations
every five years (Bushby et al., 2003). In the United States of America only 62.9% of the
carriers appeared to be aware of their risk for cardiomyopathy (Bobo et al., 2009). In Scotland
the benefit of routine cardiac surveillance of all carriers was questioned after the finding that
there was no significant reduced life expectancy or higher risk of cardiac death in 94 deceased
carriers compared to the general population (Holloway et al., 2008). Nevertheless, there is
world-wide consensus that carrier women should be tested for cardiac disease.

Symptoms in female carriers could be explained by non-random X-inactivation where the
normal X-chromosome is preferentially inactivated (Azofeifa et al., 1995). It was suggested
that it is useful to study the pattern of X-inactivation in carriers of DMD because women
with skewed X-inactivation may show slower, yet progressive, myopathy with advancing
age (Yoshioka et al., 1998). Sumita et al. have shown that a high proportion of asymptomatic
carrier women (19%, 19/102) as well as normal female controls (24%, 28/117) show skewed
inactivation in DNA isolated from lymphocytes (Sumita et al., 1998). They suggest that
highly skewed X-inactivation pattern in blood is not enough to predict that a young DMD
carrier will develop muscular weakness. X-inactivation was recently studied in 15 carriers
with symptoms of DMD. Eight had exonic deletions or duplications, six had small mutations
and one patient had two mutations. The X-inactivation result from one patient with a deletion
was uninformative. Four of the seven with a deletion or duplication and one of the six with
a small mutation showed skewed inactivation. All the rest showed a random pattern of X-
inactivation. The significance of these findings depends on the definition of skewed (a value
that is larger than 80:20). The authors concluded that they were not able to demonstrate a
significant association between the X-inactivation pattern and progressive myopathy and that
future studies with a larger number of subjects are required (Soltanzadeh et al., 2010).

1.2.2 Female dystrophinopathy patients

The following mechanisms that explain the phenotype of females with full blown
dystrophinopathy have been described. All these mechanisms lead to absent or non-functional
dystrophin.



¢ Women with translocations involving an X-chromosome with the breakpoint in Xp21
and an autosome show preferential inactivation of the normal X with the normal DMD
allele (Greenstein et al., 1980; Jacobs et al., 1981; Lindenbaum et al., 1979; Verellen-
Dumoulin et al., 1984; Zatz et al., 1981; Boyd et al., 1986).

* A mutation in the DMD gene in the only X-chromosome of girls with Turner syndrome
results in a phenotype similar to that of affected males (Chelly et al., 1986; Ferrier et al.,
1965; Sano et al., 1987).

* Uniparental disomy for the X-chromosome with a mutation in the DMD gene has been
described once (Quan et al., 1997).

*  Women with a 46,XY karyotype and DMD caused by the co-occurrence of mutations in
both the dystrophin and the androgen-receptor genes have been described (Katayama et
al., 20006).

* Finally, two women have been described with a normal karyotype and mutations in
both DMD genes. One, a 14 year old girl with consanguineous parents, is homozygous
for the mutation (Fujii et al., 2009). The other is a 15 year old girl with compound
heterozygous mutations. DNA analysis of the mother was normal and DNA analysis of
the phenotypically normal father was not possible (Soltanzadeh et al., 2010).

1.3 Diagnosing dystrophinopathies

In the absence of a family history, DMD may be suspected in a boy if he is not walking at the
age of 16-18 months or if there is an unexplained increase in transaminases and certainly if
he has a positive Gower’s sign. If there is a positive family history, any suspicion of abnormal
muscle function should lead to a diagnostic investigation (Bushby et al., 2010a). The
flowchart in Figure 2 shows how the diagnosis of DMD can be confirmed. In the Netherlands,
blood from almost all boys with a suspicion of dystrophinopathy is sent to the Laboratory of
Diagnostic Genome Analysis at the Leiden University Medical Center. If a mutation is found
in the DMD gene the clinical diagnosis is confirmed. If no deletion or duplication (MLPA
test) is found and dystrophin in the muscle biopsy is absent, High Resolution Melting Curve
Analysis (HR-MCA) is done followed by sequencing of the amplicons with abnormal melting
curves (Almomani et al., 2009). cDNA sequencing (obtained from RNA) is performed in
rare cases where the above mentioned tests have not revealed a DNA mutation. Once the
diagnosis has been confirmed, referral to a specialized multidisciplinary team as well as
genetic counselling of the patient and his family members is recommended. The patient and
his family should be offered support and contact with patient organizations.
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Figure 2

Confirmation of diagnosis in a patient suspected of having Duchenne muscular dystrophy.

DMD is suspected when serum CK is increased by at least 10 times the normal value. It is recommended
to start with MLPA analysis of DNA from blood because this is easy to obtain and in about 60% of
the patients a deletion or duplication is found. Some physicians start with a muscle biopsy. *Absence
of dystrophin in the muscle biopsy is in principle enough to confirm the diagnosis. However, genetic
testing to detect a mutation is a part of standard care in the Netherlands since this is indispensable for
reliable carrier testing of the mother and if applicable of other female family members. Also, with the
development of personalized medicine the mutation should be identified. In rare cases, genetic testing
does not reveal a mutation even though dystrophin is absent in the muscle biopsy. If the diagnosis of
dystrophinopathy is not confirmed by either the muscle biopsy or by genetic testing, the diagnosis
of alternative muscular dystrophies, which is complex and requires specialized input, should be
undertaken (Bushby et al., 2010a). However, this is outside the scope of this thesis and will not be
discussed further.



In patients suspected of dystrophinopathy a muscle biopsy should be taken if genetic testing
does not reveal a deletion or duplication. If it is BMD, immunohistochemistry of the muscle
tissue may show reduced intensity with or without patchy staining (Hoffman et al., 1988).
Western blot analysis should also be performed and if this shows an abnormal molecular
weight and/or reduced quantity of the dystrophin, BMD is highly likely. In that case HR-MCA
should be carried out. Less common dystrophinopathies may be suspected in the absence of
a mutation but the presence of hyperCKemia and other symptoms such as cramps, myalgia,
flexion contractures of elbows, wheelchair dependency after the age of 16, unexplained dilated
cardiomyopathy and/or an X-linked family history with similarly affected family members.
According to recent guidelines proposed for patients with unexplained hyperCKemia, a
muscle biopsy should be taken if one or more of the following features are present: the level
of serum CK is >3 times normal, the electromyogram is myopathic or the patient is younger
than 25. In addition, DNA testing should be offered to women even if the level of serum
CK<3 times normal. This should be done prior to a muscle biopsy because of the possibility
that there is a mutation in the dystrophin gene (Kyriakides et al., 2010). As the symptoms are
sometimes very mild it is possible that many patients with dystrophinopathy do not consult a
doctor and are therefore not diagnosed.

1.4 Genetic counselling and prenatal testing

The family is referred for genetic counselling following the identification of a mutation in
the index patient. The family members are informed that the dystrophinopathy could have
occurred as the result of a de novo mutation or that the disease may have been inherited from the
mother. In case of a de novo mutation the mother should be offered prenatal testing in the next
pregnancy because of the risk of germ line mosaicism (see Section 1.5 below). The sisters of
the patient may also request molecular testing of the familial mutation. If the dystrophinopathy
is found to be inherited, further testing of first degree female family members of the mother by
cascade screening is recommended. Options for having healthy offspring should be discussed
with the identified carriers and cardiological surveillance should be offered (see Section 1.2:
Dystrophinopathy in women).

It has been recommended that prenatal diagnosis for dystrophinopathies should be carried
out only for male pregnancies. At present, it is not possible to predict whether a female
heterozygote for a DMD mutation will manifest any signs of the disorder or not, and it is,
therefore, considered to be inappropriate to offer prenatal testing for a female foetus (Abbs
et al., 2010). The sex of the foetus can be determined by examining the foetal cells in the
maternal serum (Lo et al., 1997). Prenatal testing for dystrophinopathy is usually performed
in the 11" week of the pregnancy. A sample of chorionic villi from the developing placenta is
taken either by means of a needle inserted through the abdomen of the woman or via a tube
inserted through the vagina and cervix. The cells of the chorionic villi have the same genetic
information as the foetus and can be used in a male foetus to test if the familial mutation has
been inherited. If the foetus is affected, the parents may choose to terminate the pregnancy.
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1.5 Mosaicism

Most DMD patients inherit an X-chromosome with the mutation, which is present in all
cells. One in three patients has DMD as a result of a de novo mutation (Haldane, 1935). If
a new mutation occurs during meiosis in one of the parents, the egg or the sperm will carry
the mutation and will pass it on to the child who will have the mutation in all cells. If, on the
other hand, a new mutation occurs during mitosis in the embryo a proportion of somatic and/
or germ line cells, will carry the mutation. Such a person is a mosaic with a mixture of cells,
some with and some without the mutation (Erickson, 2010). Mosaicism refers to the presence
of two (or more) cell lines with different genotypes in one individual who has developed
from a single fertilized egg. Somatic mosaicism has been described in several patients with
dystrophinopathy (Bakker et al., 1989; Bunyan et al., 1994; Bunyan et al., 1995; Helderman-
van den Enden et al., 2003; Lebo et al., 1990; Saito et al., 1995; Smith et al., 1999; van Essen
et al., 2003; Voit et al., 1992; Kesari et al., 2009; Rajakulendran et al., 2010; Uchino et al.,
1995). A mutation can also occur in a germ line cell in the gonad, in which case mosaicism
is confined to the germ cells and a proportion of eggs or sperm carry the mutation. Such a
person with germ line mosaicism, also called gonadal mosaicism, does not have the disease
but can pass on the mutation to more than one child. Germ line mosaicism was reported in a
number of families with dystrophinopathy in the late 80s (Bakker et al., 1987; Bech-Hansen
et al., 1987; Darras and Francke, 1987). The recurrence risk due to germ line mosaicism for
non-carrier females was estimated to be 7% (Bakker et al., 1989) and 10% (van Essen et
al., 1992a). A recent and more reliable figure, as it is based on many more families, is 4.3%
(Chapter 2.1 of this thesis) (Helderman-van den Enden AT et al., 2009).

1.6 Genetics and proteomics of the dystrophinopathies

1.6.1 The DMD gene

The inheritance of the dystrophinopathies is X-linked recessive. In 1983 Duchenne muscular
dystrophy was found to be linked to two markers on the short arm of the X-chromosome
(Davies et al., 1983). Subsequently the DMD gene was mapped on band Xp21 in 1985 (Ray
et al., 1985) and cloned in 1987 (Koenig et al., 1987). With a size of ~2.4 Mb, it is the largest
known human gene (den Dunnen et al., 1992). The DMD gene occupies about 1/1000 of the
total human genome (Koenig et al., 1987). It has 79 exons which account for only 0.6% of
the gene. The remaining part consists of large introns (Aartsma-Rus et al., 2006). The gene
has seven promoters: three of them, the brain, muscle and Purkinje promoters, lead to a full
length dystrophin which consists of unique first exons spliced to a common set of 78 exons
(Sadoulet-Puccio and Kunkel, 1996). The size of the mRNA in the muscle is 14 kb. Four
promoters (retina, brain3, schwann cells and general) lead to shorter dystrophin proteins
which lack the actin binding terminus but retain the cystein rich and carboxy-terminus
domains (Muntoni et al., 2003). The different promoters are named after the predominant,
but not exclusive, site of expression as can be seen in Table 1.



Isoform | Isoform Name Location of Protein Tissue Expression Pattern Reference
Symbol promoter/unique | Molecular
first exon Mass
Dp427c | Brain/Cortical- 5’ of Dp427m 427 kDa Cortical neurones, skeletal and (Nudel et
dystrophin cardiac muscle al., 1989)
Low levels in retina
Dp427m | Muscle- 5’ of Dp427m 427 kDa Skeletal and cardiac muscle and (Koenig
dystrophin exon 1 glial cells etal.,
Low levels in retina 1987)
Dp427p | Purkinje- Dp427m intron1 | 427 kDa Purkinje cerebellar neurons (Gorecki
dystrophin Low levels in skeletal muscle et al.,
1992)
Dp260 Retinal intron 29 260 kDa High in retina (D'Souza
dystrophin Low levels in brain and cardiac etal.,
muscle 1995)
Dp140 B3-dystrophin intron 44 140 kDa Brain, retina and kidney (Lidov et
al., 1995)
Dp116 Schwann cell- intron 55 116 kDa Peripheral nerves (Schwann cells) (Byers et
dystrophin exclusively al., 1993)
Dp71 General- intron 62 71 kDa In most tissues — brain, kidney, liver, | (Lederfein
dystrophin lung, cardiac muscle et al.,
Not expressed in skeletal muscle
Table 1

Overview of the tissue expression of the different isoforms of dystrophin (with the kind permission of
P.J. Taylor, thesis 2008 (Taylor, 2008)).

1.6.2 Mutation types in the DMD gene

Mutations reported in the Leiden DMD mutation database (www.dmd.nl) include deletions
(72%) and duplications (7%) of one or more exons; the remaining ~ 20% of the patients have
small deletions, insertions or point mutations (Aartsma-Rus et al., 2006).

In 1988 it was postulated that DNA mutations that disrupt the reading frame result in DMD
while mutations that maintain the reading frame result in BMD (Malhotra et al., 1988;
Monaco et al., 1988). The disrupted reading frame generates an out-of-frame messenger
RNA transcript that results in a premature truncation of translation. The truncated protein
that is formed lacks the cystein rich and C-terminal domains and has no or little bridge
function. In BMD the reading frame remains intact; the protein is partly functional and its
presence can be demonstrated in the muscles of the patients. In the more than 4700 mutations
reported in the DMD gene in the Leiden DMD database, the reading-frame rule holds true
at the DNA level in 91% of the patients; at the RNA level this percentage probably goes up
to 99.5% (Aartsma-Rus et al., 2006). Non-sense mutations normally result in DMD because
of the premature stop in protein translation. In rare cases a non-sense mutation is found in a
BMD patient. The most likely explanation for the unexpected non-DMD phenotype is that
the mutation is located in the exonic motive that is needed for the recognition of the exon by
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the splicing machinery, and thus leads to exon skipping resulting in a restored reading frame
(Flanigan et al., 2010; Ginjaar et al., 2000).

1.6.3 Dystrophin protein

Dystrophin is the protein encoded by the DMD gene; its molecular weight is 427 kDa and
the number of amino acid (AA) residues, as deduced from the nucleotide sequence, is 3,685
(Hoffman et al., 1987). The dystrophin protein is absent in most muscle fibers of DMD patients.
In about 50% of the DMD patients there may be some dystrophin positive fibers. The most likely
explanation of these so-called revertant fibers is spontaneous in-frame splicing, for example
after a second mutation (Klein et al., 1992; Mendell et al., 2010).

The full length muscle dystrophin is composed of the following four domains (Figure 3):

* The actin-binding domain is so called because the N-terminal portion is highly
homologous to the N-terminal portion of a-actinin. It consists of between 232 and 240
amino acids, depending on the isoform, and has three actin binding sites (Jarrett and
Foster, 1995; Koenig et al., 1987; Koenig and Kunkel, 1990).

* The central rod domain is the largest part of the protein and is composed of approximately
3000 amino acids. It is formed by a succession of 24 triple helical repeats similar to
spectrin. In addition, and in contrast to the spectrin molecules, four predicted hinges
separate the rod region into three sub-regions which are thought to impart flexibility to
the protein (Koenig and Kunkel, 1990). A fourth actin-binding site was found between the
spectrin-like repeat units 11-17 (Amann et al., 1998; Rybakova et al., 1996). The multiple
spectrin-like repeats had long been thought to be largely redundant because patients with
a missing part in the central rod usually had only mild symptoms (England et al., 1990).
However, recent studies have shown that the spectrin-like repeats harbour sites that bind to
membrane phospholipids, intermediate filaments, microtubules and neuronal nitric oxide
synthase. This suggests that the central rod domain is more of a scaffolding region, rather
than simply a passive link between the N-and C-terminal ends (Lai et al., 2009; Le et al.,
2010).

e The cystein-rich domain has 15 cysteine residues and consists of 280 amino acids
(Koenig et al., 1988). This part of the protein interacts with B-dystroglycan and has
the following components: the WW domain, two EF hands and ZZ domains. The WW
domain contains two conserved tryptophan (W) residues 20-23 amino-acids apart (Bork
and Sudol, 1994) and is the primary site of interaction between dystrophin and the last
15 C-terminal amino acids of $-dystroglycan (James et al., 2000; Jung et al., 1995). The
EF hands are putative calcium-binding sites that stabilize the WW domain and have
affinity for B-dystroglycan (Chung and Campanelli, 1999; Huang et al., 2000). Finally,
the ZZ domains are highly conserved widespread zinc-binding motifs that stabilize the
overall complex by interacting with -dystroglycan (James et al., 2000; Rentschler et
al., 1999). The part of the ZZ domain formed by the amino acids 3326-3332, is crucial
for binding to the B-dystroglycan (Hnia et al., 2007).

e The C-terminal domain consists of 420 highly conserved amino acids, with only one



cystein residue. It forms an a-helical dimeric coiled-coil structure that interacts with
syntrophin (Ahn and Kunkel, 1995; Koenig et al., 1988) and dystrobrevin (Sadoulet-
Puccio et al., 1997).

A
Actin-binding domain Central rod domain teine-rich domain C domain
Figure 3

Schematic drawing of the dystrophin protein adapted from (Aartsma-Rus et al., 2006). The location of
the different exons is shown underneath the protein (with the kind permission of Aartsma-Rus).

As mentioned above more isoforms are known in addition to the muscle dystrophin. The
eight dystrophin isoforms and utrophin, a homologue of dystrophin, are depicted in Figure
4; the uppermost is the muscle isoform. The full-length dystrophins Dp427m, Dp427¢c and
Dp427p consist of N-terminal, central rod, cysteine-rich and C-terminal domains, but each
isoform has its own unique N-terminal part (which is coded by a unique first exon, depicted
with)). The shorter isoforms lack some, or most of the N-terminal and/or central rod domains,
and also have their own unique first exon (except for Dp140). Dp71 is usually alternatively
spliced, which gives rise to an alternative C-terminal part. Dp40 derives from an alternative
poly-adenylation signal in intron 70. The dystrophin homologue utrophin is very similar to
the full-length dystrophin isoforms.

N-terminal actin Cysteine rich  C-terminal Tyrosine rich
binding domain Central rod domain domain domain domain

Dp427m
Dp427c

Dp427p

Dp140

Dp116

Figure 4
Dp71 _ Schematic ~ drawing of
the different dystrophin
Dp40 _ isoforms and homologues
(Aartsma-Rus, 2005) (with

P Aartsma-Rus).
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1.6.4 Dystrophin and the dystrophin glycoprotein complex

Dystrophin is part of the dystrophin glycoprotein complex. This complex consists of the
cytoplasmic dystrophin-containing complex, the dystroglycan complex, the sarcoglycan
complex and the sarcospan as can be seen in Figure 5.

Muscular Dystrophies and Dystrophin-Glycoprotein Complex
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Figure 5
The dystrophin glycoprotein complex as it is located in the sarcolemma, the cell membrane of

the muscle cell (with the kind permission © QIAGEN, all rights reserved).



Dystroglycan is composed of 2 subunits, a and B, both produced from the same gene.
Dystrophin binds to the tail of 3-dystroglycan. Dystroglycan binds to the extracellular matrix
laminin-a2. The sarcoglycan complex is composed of multiple subunits. Mutations in the
genes encoding o-, 3-, y-, and d-sarcoglycan lead to a phenotype similar to the one produced
by mutations in the DMD gene and include cardiomyopathy and muscular dystrophy in
humans and mice (Lapidos et al., 2004).

The dystrophin glycoprotein complex forms a mechanically strong link between the
sarcolemma and actin (Rybakova et al., 2000). The muscle isoform of dystrophin serves
as bolts throughout the sarcolemma stitching the sarcolemma with the intracellular actin
filaments. The dystrophin bolts are more densely located at the costameres. A costamere is
a protein complex located at the Z disc of the sarcomere and forms the transverse fixation
system (TFS) of the intracellular desmin-vimentin intermediate filaments (DVIF) with the
basal lamina (Figure 6). These dystrophin bolts protect the lipid bilayer from injury which
might occur upon contraction of the muscle (Ozawa, 2010). The fact that no symptoms are
present at birth in dystrophinopathy patients can be explained by the presence of utrophin,
a protein with a function similar to that of dystrophin. The less densely distributed utrophin
bolts appear first in the myotube stage and are later replaced by dystrophin bolts. Only when
the patient starts to walk the utrophin bolts appear to be insufficiently strong to bear the
muscle contractions and the lipid bilayer gets damaged (microtears) leading to a gradual
atrophy and weakness of the muscle (Ozawa, 2010). Atrophy results from, on the one hand,
leakage of soluble cytoplasmic enzymes and other proteins through the microtears and, on the
other hand, from increased digestion of proteins through activated calpain due to leakage of
Ca++ into the cytoplasm (Imahori, 1980). However, it is not known why only DMD muscles
athrophy whereas also healthy muscles contain calpain and free Ca++ waxes and wanes
during the contraction-relaxation cycle of the muscle (Ozawa, 2010).

a basal lamina
E lipid bilayer costamere
P r 5

Z Z

Figure 6

Transverse fixation system (TFS) (Ozawa, 2010). Adapted with kind permission of Professor E.
Ozawa.

Desmin Vimentin Intermediate Filaments (DVIF) are wound around myofibrils (mf) at the level of the
Z-band and connected with actin in the subsarcolemmal cytoskeleton. The small vertical bars below the
lipid bilayer of the sarcolemma indicate the dystrophin bolts.
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1.7 Therapy

Therapy for DMD and BMD is at present only symptomatic and should be administered by a
multidisciplinary team (Bushby et al., 2010a; Bushby et al., 2010b). For optimal management,
care is recommended in the following areas: pharmacology, psychosocial, rehabilitation,
orthopedic, respiratory, cardiovascular, gastroenterology/nutrition, pain issues and general
surgical and emergency-room precautions. The life expectancy has increased from 14.4 years
in the 1960s to 25.3 in the 1990s just by treating the symptoms (Eagle et al., 2002). Some
patients even reach the age of 40 or older (Rahbek et al., 2005).

Experimental therapy with the aim of restoring the absent dystrophin in the muscle has
recently been focused on two treatments: antisense-mediated exon skipping and drug-induced
read-through of premature stop codons (Aartsma-Rus et al., 2010). Both treatments fall under
so-called personalized medicine because they depend on the specific mutation. The exon
skipping treatments seem particularly promising (Goemans et al., 2011; Van Deutekom et al.,
2007); a phase 111 trial with skipping of exon 51 has been recently started and includes 180
patients from 18 different countries (http://www.gsk.com/media/pressreleases/2011/2011
pressrelease 10016.htm). Exon skipping treatment is based on manipulating the splicing
machinery with antisense oligonucleotides (AON) in a manner that one or more exons are
skipped with the aim of restoring the reading frame, finally resulting in the production of
BMD-like dystrophin and a milder phenotype (Figure 7).

Duchenne: Open reading frame disrupted
Truncated, non-functional dystrophin

—E—COk——Hk—E€»)—
% Premature stop codon

(46<47 ®51<52 4

AON treatment: Exon skipped from pre-mRNA
Reading frame restored
Internally deleted, partly functional dystrophin
Becker-like phenotype

I =0T ———

Exon 51 skipped by splicing machinery

mmm Reading frame restored

Figure 7

Exon skipping treatment (adapted with the kind permission from www.dmd.nl/gt).

An out-of-frame product is generated in which exon 47 is spliced to exon 51 in a patient with DMD
with a deletion of exons 48-50. As a result, a stop codon is generated in exon 51, which prematurely
aborts dystrophin synthesis. The sequence-specific binding of the antisense oligonucleotide PRO051
interferes with the correct inclusion of exon 51 during splicing so that the exon is actually skipped. This
restores the open reading frame of the transcript and allows the synthesis of dystrophin similar to that
in BMD patients (Van Deutekom et al., 2007).



The other treatment, the drug-induced read-through of premature stop codons is based on
the finding that certain antibiotics (aminoglycosides) suppress stop codons during protein
translation. In 1999 dystrophin was shown to appear at the cell membrane in mdx myotubes
after in vitro exposure to gentamycin (Barton-Davis et al., 1999). A decade of further testing
followed until recently when a phase 2B study during 48 weeks with Ataluren (formerly
known as PTC124) was completed in 174 DMD patients. There was no measurable difference
between the effect of a high dose of Ataluren and a placebo in the 6-min walk test; also the
effect of a low dose of Ataluren as compared to the placebo was not significant. These results
have led to a suspension of further trials http://www.duchenne.nl/976_resultsataluren.pdf.

1.8 Aims of this thesis
The focus of this thesis is on the clinical genetic aspects of dystrophinopathies.
We have investigated the following topics:

Mosaicism:

Germ line mosaicism was described by several authors in the late 80s (Bakker et al., 1987;
Bech-Hansen et al., 1987; Darras and Francke, 1987). Since then the number of families in
which this phenomenon has been encountered in Leiden, has increased. We were therefore
able to calculate a more reliable figure for the recurrence risk (Chapter 2.1). We performed this
study also because it was suggested that the published recurrence risks may be overestimates
(Castagni et al., 2004).

A reliable recurrence risk is important for genetic counselling of women who have a son with
dystrophinopathy as a result of a de novo mutation. As a part of this study we reviewed the
literature on other known diseases with germ line mosaicism.

If a de novo mutation occurs in the DMD gene in one of the later divisions of the zygote, it
can result in mosaicism in somatic tissues as well as in the germ line. Chapter 2.2 describes
a male patient with somatic mosaicism.

Cascade screening in known families with dystrophinopathy

The study presented in Chapter 3 was prompted by the fact that women from several DMD
families appeared to be unaware of their risk of being a carrier and had given birth to an
affected boy. In this chapter we examine whether females at risk for being a carrier of a DMD
mutation have been tested and counseled after the causative mutation was identified in an
index case. Since DMD is a devastating disease for which there is no curative therapy so far,
much emphasis has been put on prevention. Prevention is only possible if women are aware
of this disease in their family. These women need to be informed about their risk of being a
carrier, the recurrence risks, their reproductive options, the available tests and the health risks
for carriers.

What has been the impact of prenatal testing for Duchenne and Becker Muscular
Dystrophy in the Netherlands?
First trimester prenatal diagnosis for dystrophinopathy has been available in the Netherlands
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since 1984 (Bakker et al., 1985). In Chapter 4 we show the impact of genetic counselling,
the use of prenatal testing and pre-implantation genetic diagnosis on the occurrence of DMD
and BMD in the Netherlands. The incidence of DMD in the birth cohort 1993-2002 was
compared with the incidence in the birth cohort 1961-1974 (van Essen et al., 1992b). In order
to test effectiveness of genetic studies in DMD families with regard to preventing the birth
of affected boys we have also compared the proportion of first affected boys in the family
between the two cohorts. A need for a change in policy has emerged.

Predicting the phenotype of DMD patients who have been treated with exon skipping
therapy

Currently, new therapeutic strategies, such as antisense-mediated exon skipping, are in an
early phase of clinical trials and have the potential of dramatically changing the course of
the DMD disease (Goemans et al., 2011; Van Deutekom et al., 2007). Clinical trials with
systemic administration of antisense oligonucleotides (AON) are taking place. If successful,
therapeutic skipping using an AON that targets exon 51 can stop further muscle wasting,
resulting in a less severe clinical phenotype resembling BMD. 1t is, therefore, useful to study
the phenotype of BMD patients as it can provide information for DMD patients eligible for
this new therapy. In Chapter 5 we have described the clinical phenotype in two Dutch BMD
pedigrees with deletions that include exon 51 and we have reviewed the literature on this
topic.
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