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1.1

Outline

In 1912 Laue [1] was the first to suggest the use of a crystal to act as a lattice for

the diffraction of X-rays. He showed that if a beam of X-rays passed through a crystal,

diffraction would take place and a pattern would be formed on a photographic plate placed

at a right angle to the direction of the rays. The pattern would define the symmetrical

arrangements of the atoms in the crystal. Nowadays, X-ray crystallography has become a

general tool for the determination of the three-dimensional structure of proteins.

In this thesis, X-ray crystallography was used to determine the three-dimensional

structure of several proteins. Chapter 1 is an introduction to two of the proteins

investigated in this thesis (human T cell receptor - CD3 complex and bacteriophage T4).

The impact of single amino acid substitutions in CD3γ on the CD3εγ interaction

and T cell receptor - CD3 complex formation is described in chapter 2.1. The results

indicate that several amino acids in CD3γ are essential for an optimal association between

CD3γ and CD3ε and the assembly of a cell surface expressed TCR-δεγεζ2 complex. In

order to determine the three-dimensional structure of the intracellular domains of CD3δ

and CD3ε, synthetic peptides corresponding to these domains were synthesised and used

for crystallisation experiments and analysed by NMR. The results are described in

chapter 2.2.

The crystal structure of the receptor-binding domain of the bacteriophage T4 short

tail fibre is described in detail in chapter 3.1. The trimeric protein has a novel knitted

trimeric metal-binding fold and contains the receptor-binding domain. This receptor-

binding domain recognises and binds irreversibly to the core region of the host cell LPS.

We propose where the LPS-binding region is located. In chapter 3.2, preliminary results

are described obtained from a new crystal form of the short tail fibre. In these crystals the

electron density for the short tail fibre is more ordered compared to the structure

determined in chapter 3.1.

Chapter 4 describes the crystallographic studies of a dimeric double-headed potato

serine protease inhibitor of the Kunitz family. These are the first crystallisation conditions
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described for a dimeric double-headed inhibitor. To date, only monomeric single-headed

or monomeric double-headed inhibitors have been crystallised.

The protein structure of recombinant human lactoferrin produced in the milk of

transgenic cows is identical to that of natural human lactoferrin, despite a differential N-

linked glycosylation. These results confirm the validity of transgenic cows to produce

recombinant human proteins and are described in chapter 5.

This thesis is finalised with a summary and conclusions, which are described in

chapter 6.
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1.2

Human T cell receptor - CD3 complex

The T cell receptor (TCR) is present on T cells, which are a subset of lymphocytes

defined by their development in the thymus and by the expression of the T cell receptor.

The function of the T cell receptor is to sense the presence of intracellular pathogens

which is a crucial step towards the initiation of a specific immune response aimed at the

eradication of such pathogens. TCRs are heterodimeric receptors that are cell surface

expressed in association with the proteins of the CD3 complex [2]. There are various

subsets of T cells. The two major subsets are the CD8+ and CD4+ T cells. The cytotoxic

CD8 cells can kill infected target cells thereby preventing replication of intracellular

pathogens. The helper CD4 cells are crucial for the initiation and regulation of immune

responses as well as providing help for B cells which results in antibody production. After

the T cells have developed in the thymus they go into the bloodstream, from where they

migrate through the peripheral lymphoid organs e.g. the lymph nodes, spleen, and

mucosal-associated lymphoid tissue where immune responses are induced. Subsequently,

they re-enter into the blood stream, where they circulate until they encounter antigens [3].

The immune system
The human immune system has evolved to protect us from invading pathogens.

The immune system can roughly be divided in two parts: the innate or natural immune

system and the adaptive or specific immune system. The innate immune system is

inherited by birth and is non-specific. Important components of the innate immune system

are neutrophils and the complement system. Neutrophils are short-lived leucocytes that

penetrate inflamed tissues and destroy pathogens upon phagocytosis. The complement

system tags invading pathogens, facilitating receptor-mediated uptake by phagocytes, and

also works through soluble factors produced by the adaptive immune system, the

immunoglobulins. The adaptive immune system response develops and is continuously

reshaped during the lifetime of an individual. The main components of the adaptive

immune system are the B and T cells, lymphocytes with clonotypic cell-surface receptors
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for the recognition of the foreign antigens. While the B lymphocytes produce antibodies

for antigen removal from the circulation, the T lymphocytes track down and eliminate

infected cells. These lymphocytes provide the life-long immunity that develops after

exposure to a disease or vaccination [2].

T and B lymphocytes development
The central or primary lymphoid organs are the bone marrow and the thymus. Both

B and T cells originate in the bone marrow but only the B cells mature here. The T cells

migrate to the thymus for maturation. After maturation both lymphocytes enter the blood

stream. From here they migrate into the peripheral lymphoid organs. These peripheral

lymphoid organs are specialised to trap antigen and allow the initiation of adaptive

immune responses.

The T cell precursors entering the thymus express neither the T cell receptor nor

one of the two co-receptor molecules CD4 or CD8, and are called double-negative cells.

During proliferation these immature thymocytes differentiate into double-positive cells,

with low T cell receptor levels and both co-receptor molecules. The T cells developing in

the thymus randomly rearrange their T cell receptor encoding genes creating a vast array

of TCRs. However, since it is random, it generates T cells that are potentially harmful for

host tissues when their TCRs recognise combinations of MHC and self-peptides.

Rearrangement can also produce cells that are useless because their TCRs interact too

poorly with MHC molecules. To allow the survival of only the useful T cells, a two step

process called positive and negative selection is performed. During positive selection

TCRs are selected that have an affinity for MHC-peptide complexes expressed in the

thymus. Subsequently, through negative selection those thymocytes expressing a TCR

with a too high affinity for MHC-peptide are eliminated through the induction of

apoptosis. The result is a TCR repertoire with an intermediate affinity for self MHC-self

peptide which can react with self MHC-foreign peptide in the periphery. Next to

rearrangement and selection, the cells differentiate in one of the two lineages, the CD4 or

CD8 single-positive cells. As each T cell expresses a distinct TCR, a vast array of

receptors is available for recognition of foreign peptides bound to self MHC. Because of

this antigen-binding specificity, the fraction of T cells that can respond to a particular

antigen is very small. After an infection many specific effector lymphocytes are required,

and hence the activated lymphocytes are induced to proliferate before they differentiate
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into effector cells. This major feature of the adaptive immune response is called clonal

expansion [2].

The development of B cells follows a specific order of stages [2,4]. The earliest B

cell precursor is the early pro-B cell, which has no B cell antigen receptor expression on

the cell surface. These cells further develop into late pro-B cells, pre-B cells, immature B

cells and mature B cells. In these stages the immunoglobulin gene recombination occurs.

Many thousands of rearrangements are possible for both heavy- and light-chain genes.

Thus, rearrangement during the B cell development is continuously providing immature B

cells with a highly diversified repertoire of surface immunoglobulin molecules, all acting

as specific receptors for different antigens. All the processes up to the development of the

immature B cells take place in the bone marrow and are independent of antigen. Immature

B cells only express surface IgM and (like T cells) they undergo a selection. The

immature B cells are subjected to selection for self-tolerance. The B cells that recognise

self-molecules while still immature are prevented from further development. The B cells

that survive this selection bear a B cell receptor (BCR) repertoire tolerant of the self-

molecules and become mature. They are called "naive" until they encounter their specific

antigen. During this maturation the cells migrate into the secondary lymphoid organs and

the cells are induced to express IgD on their cell surface (next to IgM) through alternative

splicing of heavy-chain transcripts [2].

B cell mediated immunity or humoral immune response
B cells prevent the spread of intracellular infections by secreting antibodies. The

activation of naive B cells and their differentiation into antibody-secreting cells is

triggered by antigen and helper T cells. The B cells first internalise the antigen and then

process and degrade it. The peptides resulting from these antigen proteins are presented to

the T cells via MHC class II molecules. The helper T cells recognise the peptides derived

from the antigen and act through the binding of its CD40L (CD40 ligand) to CD40 on the

B cell and by the directed release of cytokines. This results in an activated B cell which

produces antibodies against the specific antigen. There are several ways in which these

antibodies contribute to immunity. Antibodies can bind to a bacterial antigen, which can

prevent the growth, and diminish bacterial adherence. This reduces spread from cell to

cell, thus neutralising the bacterial invasion. Binding of the antibody to an antigen in order
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to enhance phagocytosis (the internalisation of particular matter by cells e.g.

macrophages) is called opsonisation. Thirdly, when antibodies bind to the surface of the

pathogen, this can activate the complement system, enhancing opsonisation [2,3].

T cell mediated immunity
T cells identify cells that harbour pathogens or have internalised pathogens or their

products. They do so with their T cell receptor-CD3 complex. The peptide fragments of

pathogen derived proteins are recognised in the form of complexes of peptide and Major

Histocompatibility Complex (MHC) molecules on the cell surface of the antigen

presenting cell (APC). There are two types of MHC molecule, called MHC class I and

MHC class II, which are closely related in structure and function, but they have a different

subunit structure. Also, they differ in the source of the peptides they bind and express on

the cell surface. The folding motif of the two types of MHC-classes has been revealed by

X-ray crystallography and they were found to be very similar [5-8].

MHC class I

MHC class I molecules entrap peptides derived from proteins synthesised in the

cytosol. MHC class I has a transmembrane heavy chain (Hc or α-chain, 45 kDa) which is

non-covalently associated with the β2 microglobulin (β2M, 12kDa). The α-chain consists

of three immunoglobulin-like domains, the peptide binding groove is formed by the two

membrane distal domains which form two α-helical segments on top of a series of β-

sheets. The resulting groove can accommodate peptides that are usually 8-10 amino acids

in length. Binding of the peptides is mediated by interactions between side chains of

amino acids in the peptide (anchor residues) with pockets in the MHC molecule.

Moreover, binding is stabilised at the free carboxy and amino end by hydrogen bonds.

MHC class I captured peptides are recognised by cytotoxic T cells (CD8), which kill the

infected cell.

MHC class II

MHC class II molecules bind peptides derived from proteins in intracellular

membrane-bound vesicles or internalised antigen in B cells or phagocytic cells. MHC

class II molecules consist of a 32 kDa α-chain and 29 kDa β-chain which both cross the
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membrane. The peptide binding groove is very similar to that of class I molecules but is

open at both ends. As a result, the length of the peptides bound to the class II MHC

complex is not as constrained as that of class I peptides. Peptides that can bind are at least

9 amino acid residues long, but most are longer. The peptide lies in an extended

conformation along the MHC class II peptide-binding groove which allows multiple

interactions that contribute to binding. Moreover, the peptide's side-chains protrude into

shallow and deep pockets present in the groove of the MHC class II molecules.

MHC class II molecules captured peptides are recognised by TH1 or TH2 type,

CD4+ T helper cells. TH1 cells activate macrophages leading to destruction of the

intracellular bacteria, whereas TH2 activates B cells which subsequently proliferate and

differentiate into an antibody-producing plasma cell [2,3].

The T cells recognise the peptide-MHC complex via their T cell receptor CD3

complex, of which the chains have a Fab-like structure that is similar to the B cell

receptor. Contrary to the BCR, which gets excreted after antigen stimulation, the TCR

stays membrane associated for recognition of peptide-MHC complexes on antigen-

presenting cells.

The αβ TCR-CD3 complex

There are two types of T cell receptor, the αβ TCR and the γδ TCR. Here we focus

on the αβ TCR. The αβ TCR interacts with peptide antigens bound to MHC. The TCR

(Figure 1.1) consists of a disulphide-linked hetero-dimer (αβ) that is expressed on the cell

surface in association with the CD3 complex [9].

The glycosylated TCRαβ, which has a Fab-like structure, is responsible for the

recognition of a specific antigen bound to MHC-molecules. The associated CD3 complex

consists of one CD3γ-chain, one CD3δ-chain, two CD3ε-chains, and a ζ-dimer

(αβγεδεζ2). Subsequently, the CD3 components, which are in close proximity and all

have immunoreceptor tyrosine-based activation motifs (ITAM) in their intracellular

domain, through a still not completely understood process transduce and activate the

intracellular signalling pathways [10-13]. The CD3δ, ε, and γ all have a large extracellular

immunoglobulin (Ig)-like domain, a membrane proximal stalk region, a transmembrane

helix, and the intracellular ITAM containing domain. This in contrast to ζ, which has a

small extracellular domain and a large intracellular domain with three ITAMs. The CD3
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components are not only required for transduction of the signal across the cell membrane,

but also for the expression of the TCR heterodimers on the T cells. If one of the CD3

chains is absent, e.g. due to a genetic mutation, the number of T cell receptors present on

the cell surface is reduced [14-16].

Stoichiometry and assembly of TCR-CD3 complex

Several crystal structures have been elucidated for parts of the αβTCR-CD3

complex [17-20]. Garcia et al. [21] determined the structure of the complete extracellular

fragment of a glycosylated αβTCR at 2.5 Å resolution and its orientation bound to a class

I MHC-peptide complex. Garboczi et al. determined the structure of the complex between

the human T cell receptor, viral peptide, and HLA-A2 [22]. Sun et al. [23] discovered the

structure of an ectodomain fragment of the murine CD3εγ heterodimer. Recently Kjer-

Nielsen et al. elucidated the crystal-structure of the human T cell receptor CD3εγ

heterodimer complexed to the therapeutic mAb OKT3 [24]. They show that the binding

interface between CD3ε and CD3γ is mainly formed by hydrogen bonds, salt-bridges and

hydrophobic interactions. A side-to-side hydrophobic interface between the two Ig-like

domains and parallel pairing of their respective C-terminal β-strands were revealed

(Figure 1.2).

Figure 1.1. The T cell receptor is made
up of antigen-recognition proteins and
invariant signalling proteins. Picture
adapted from [2].
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Due to better techniques in crystallography and nuclear magnetic resonance

(NMR), more and more structures of the TCR-CD3 complex are being determined [25-

31], but the precise stoichiometry of the TCR-CD3 complex still is the subject of major

discussions in the field. In particular, there are still discussions going on whether α-chain

and β-chain are present as one or multiple heterodimeric pairs. Punt et al. [32] and de la

Hera [33] found that each TCR-CD3 complex contains one αTCR, one βTCR and two

CD3ε chains. This in contrast to San José [34], Fernández-Miquel [35], and Exley [36]

who all found evidence for a double TCR heterodimer model e.g. αβγεεδζζαβ. There is

even evidence for yet another stoichiometry given by Thibault and Bardos [37] who

suggest the association of two TCR heterodimers with three CD3ε chains in the TCR-CD3

complex. In one of the latest developments in determining the stoichiometry Call et al.

[38]  suggest that the αβTCR-CD3 complex assembled in the endoplasmic reticulum (ER)

is monovalent and composed of one copy of the αβTCR, CD3δε, CD3γε and ζζ-dimers.

The assembly of the TCR-CD3 complex follows discrete steps, in which the

transmembrane (TM)-region of CD3δε, CD3γε and ζζ-dimers play an important role. The

TM domains of the receptor components have a total of nine basic/acidic residues [39]

Figure 1.2. Structure of the OKT3 Fab/CD3 complex.
Ribbon representation showing the heavy and light chain
of OKT3 Fab fragment complexed to CD3. The CD3ε
monomer contains eight β-strands, whereas the CD3γ
subunit contains seven β-strands. Picture adapted from
[24].
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(Figure 1.3). Three basic residues are located in the TCR TM-region, whereas each of the

three signalling dimers has a pair of acidic residues in their transmembrane domain.

If TCR complexes are multivalent the apparent charge imbalance problem in the

TCR-CD3 complex could be overcome. If two TCR heterodimers would be present in the

complex, the number of basic residues is exactly the same as the number of acidic

residues in the TM region of the CD3 chains. Several different groups examined the

assembly of the TCR-CD3 complex. Brenner and colleagues [40] demonstrated the

interaction between βTCR and CD3γ by using crosslinking techniques and Geisler et al.

showed that the αβTCR-CD3δε intermediate was formed in jurkat cell line deficient in

expression of the CD3γ chain [41]. Call and Wucherpfennig [39,42] proposed a molecular

mechanism for the assembly of the TCR-CD3 complex. A schematic overview of the

proposed assembly mechanism is shown in Figure 1.4. They showed that each basic TCR

residue in the helical TM spanning domain is required for assembly with a particular

signalling dimer, thereby forming a three-helix. The two lysine residues (K) are located in

the middle of the TM region of αβTCR and serve as critical contact points for assembly

with CD3δε and CD3εγ dimers, respectively. The ζζ-dimer associates with the arginine

(R) residue present in the αTCR.

There is proof that the association of CD3εγ with the TCR is more efficient in the

presence of CD3δε, which indicates that the kinetically preferred order in assembly of

αβTCR is with CD3δε (1) followed by CD3εγ (2) and the final association is the ζζ-dimer

(3). However, in this proposed assembly mechanism there is a charge imbalance in the

transmembrane region as it would lead to six acidic residues and only three basic ones, as

written above. Call et al. [39] give a possible explanation why this may not be a problem.

Figure 1.3. Components of the TCR-
CD3. Picture from [39]. Basic amino
acids are arginine (R) and lysine (K) and
acidic amino acids are glutamic acid (E)
and aspartic acid (D).
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They propose that each assembly event leads to the creation of a three-helix interface at

which the basic and two acidic residues are shielded from the surrounding lipid. Partial or

complete protonation of the acidic residues reduce the average net charge for the aspartic

acid pair, and hence this rearrangement does not necessarily lead to a charge imbalance.

T cell receptor signalling

As the αβTCR chains have very short intracellular domains, they lack domains

which could be responsible for signalling. Instead the transmembrane CD3 domains,

which are in close proximity to the TCR chains, transduce the signal from the

extracellular environment into the cell [13]. The CD3δ, ε, γ, and ζ-chain all have the

intracellular sequence YXXI/L(4-6X)YXXI/L, termed the immuno tyrosine-based

activation motif (ITAM). These ITAMs play a vital role in signalling from the CD3

complex further into the cell [43,44]. Several different models have been proposed during

the last years, all describing different models of intracellular signalling events in T cells.

Boniface et al. [45] describe that the initiation of signal transduction through the T cell

receptor requires the multivalent engagement of peptide/MHC ligands for effective

activation. In 2003, Alarcón et al. [46] proposed that changes in the interaction between

CD3 subunits within the CD3 dimers and the interaction of these dimers with the TCR

heterodimer could be the triggering mechanism that initiates the first activation events.

Upon TCR triggering activation of various receptor-associated protein tyrosine

kinases (PTKs) of the Src family takes place, such as Fyn or Lck, upon recruitment of the

Figure 1.4. Organisation of the TCR-CD3 assembly. The important amino acid residues in
each chain are given in one-letter code. D = aspartic acid, E = glutamic acid, K = lysine, and R
= arginine. The assembly steps are numbered according to the order in which they occur.
Figure adapted from [39].
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CD4 or CD8 co-receptor to the TCR-CD3 complex. By recruitment of the co-receptor to

the TCR MHC-ligand complex, Lck or Fyn is brought into close proximity of the TCR-

CD3 complex. Lck and Fyn have kinase activity and are associated with the cytoplasmic

domain of the co-receptor CD4 and CD8. This recruitment results in phosphorylation of

the CD3 ITAMs [13]. After phosphorylation of the CD3-ITAMs, ZAP-70 (an ζ-associated

protein having an SH2 domain) binds to the phosphorylated ITAM of CD3ζ. Then Lck or

Fyn activates ZAP70 by phosphorylation. After activation, ZAP70 phosphorylates

components of several downstream signalling pathways [2,47].

A recent review by Abraham and Weiss [48] depicts our current understanding of

T cell receptor signalling that has evolved over the last years. Although thorough research

has led to a better understanding of T cell signalling, structural information on the

components of the signalling cascade is still largely missing. With protein production,

crystallographic and NMR techniques on their current levels of sophistication, this

problem may be overcome in the near future.
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1.3

Bacteriophage T4

The word "phage" comes from the Greek phagein, meaning "to eat" and the word

"bakterion" meaning "small staff" in Greek. A bacteriophage is a virus that infects

bacteria. Bacteriophage T4 infects Escherichia coli (E. coli), an organism well known to

most molecular biologists. It is one of the most complex viruses with a genome that

contains 274 open reading frames out of which more than 40 encode structural proteins

[49]. The phages multiply inside the bacteria by using the host's biosynthetic machinery;

phages always need a host cell, as they are not capable of living without one. T4

bacteriophage is a very efficient DNA injection machine; generally a single T4 phage

particle is enough to infect a host cell [50]. The virus consists of a double stranded DNA-

containing head, a double-tubed tail of which the outer tail-sheath is contractile, and a

baseplate to which six long tail fibres and six short tail fibres are attached (Figure 1.5).

With these tail fibres the phage attaches to its host cell, after which it penetrates the cell

membrane and subsequently releases its DNA into the host. Like several other phages, T4

DNA contains a modified base, which protects the DNA from the restriction system of the

infected host cell.

Lately, more structural details of the bacteriophage T4 became available, due to better

techniques in electron microscopy and X-ray crystallography.

Figure 1.5. Schematic structure
of bacteriophage T4. Picture from
http://www.nsf.gov/od/lpa/news/
02/pr0207.htm.
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Bacteriophage T4 features
Bacteriophage T4 has a plating efficiency that approaches one, meaning that

virtually every phage particle plated on a lawn of susceptible bacteria is capable of

forming a plaque. As well as very efficient, the absorption of the phage to the host cell is

very rapid. Bacteriophage T4 uses several different mechanisms to arrest the synthesis of

nucleic acids and proteins of the infected host cell. Another feature is the burst size: 100-

500 phage particles are produced per infected cell within 15 to 30 minutes at 37 °C [51].

The T4 life cycle
Bacteriophage T4 replicates by the so-called lytic cycle [51]. A cycle is called

lytic, when new viruses are produced within the infected bacterium and the viruses lyse

the infected host bacterium in order to be released. The replication cycle exists of several

stages, starting with adsorption; the bacteriophage attaches to the receptors in the

bacterial cell wall of the host cell. Next comes the penetration; the phages make holes in

the host cell, through which they can inject their genome. Most of the phages do this by

contraction of the outer tail sheath, which drives the hollow inner tail tube into the host

cell. Penetration is followed by replication, in which T4 proteins partially shut down the

macromolecular machinery of the host cell and direct the replication of the bacteriophage

genome and structural components. For this replication, T4 uses the metabolic machinery

of the host cell to synthesise phage enzymes and structural components. Maturation

consists of the phage parts assembling around the genomes. Finally, during the reinfection

step, T4 lysozyme lyses the bacterial peptidoglycan layer causing osmotic lysis,

implicating the release of new T4 bacteriophages [52].

Bacteriophage T4 DNA
The bacteriophage contains 172 kb of linear double stranded DNA, made up of 5-

hydroxymethyl dCMP (Hm-dCMP) building blocks instead of cytosine, as well as the

normal dAMP, dGMP and dTMP nucleotides. Apart from this modification, T4 also

modifies the Hm-dCMP residues by glycosylating them, after the precursor has been

incorporated. Glucose is covalently bound to the T4 Hm-dCMP residues in 70 % of the

cases in the α-configuration and the remaining 30 % in the β-configuration (Figure 1.6).
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These modifications provide the T4 DNA with an efficient protection system against the

host restriction mechanism [51].

Molecular chaperones in T4 assembly
The assembly of the bacteriophage occurs in different, separated stages all under

the control of a number of bacteriophage encoded gene products, also called chaperones

[53]. The co-chaperone gp31 in a complex with the host chaperone GroEL, facilitates the

folding of the T4 major capsid protein gp23, of which 960 copies are necessary during

morphogenesis [54,55]. Mutations in either gp31 or GRoEL genes cause the formation of

amorphous aggregates in the cell, which are similar to inclusion bodies [56]. GRoEL

consists of monomers of approximately 60 kDa and is found in bacteria, chloroplasts, and

mitochondria [57]. Native GRoEL is composed of 14 identical subunits, each containing

548 amino acids, in two rings of seven monomers each. The overall shape is a "double

donut" with a 125-130 Å diameter and a height of 100-155 Å, with a central 30 Å-hole

[58-60]. GRoEL binds to several unfolded polypeptides in vitro, preventing their

premature aggregation and thus promoting their correct folding and oligomerisation [57].

Gp31 is a 12 kDa protein, which is similar to GRoES in size and isoelectric point

[61], but without significant homology between the amino acid sequences. Like GroES, it

is a heptamer and forms a stable complex via its mobile loop with GRoEL in the presence

of Mg-ATP [55,62,63]. Keppel and co-workers [62] demonstrated that when gp31 is

expressed in E. coli, the otherwise essential GRoES can be deleted.

Gp57A is also a chaperone in the T4 assemblage; the short tail fibre (STF) protein

gp12 and the long tail fibre (LTF) proteins gp34 and gp37 need this chaperone for

correctly folding. The exact mechanism remains unclear. Gp57A contains 79 amino acids,

Figure 1.6. Structures of glucosylated Hm-dCMP residues in T4 DNA a) α-D-glucosyl-5-hydroxy
methyl-deoxycytidine 5'-monophosphate b) β-D-glucosyl-5-hydroxymethyl-deoxycytidine 5'-
monophosphate.
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is assumed to be oligomeric and acidic (it has an excess of 9 negative charges) and its

composition is somewhat strange, as it does not contain any Phe, Trp, Tyr, His, Pro or Cys

[64,65].

Receptor recognition
The T4 bacteriophage recognises the host cell by its receptors: The long tail fibres

recognise the outer membrane protein C (OmpC) or lipo-polysaccharide (LPS) in E.coli B

and are responsible for the initial, reversible, attachment of the bacteriophage. After

change of conformation of the baseplate, the short tail fibres extend from the baseplate

and bind irreversibly to the core region of the host cell's LPS. Both LPS and OmpC are

present in the outer cell wall of all Gram negative bacteria. LPSs often called endotoxins,

are complex molecules with molecular weights of about 10 kDa and their compositions

can vary widely between different species. The general architecture of LPS is shown in

Figure 1.7 [66].

polysaccharide                                lipid

Region 1 is composed of Lipid A and is the hydrophobic, membrane-anchoring

region of LPS. This domain is responsible for the toxicity of LPS. Lipid A consists of a

phosphorylated N-acetylglucosamine (NAG) dimer with usually 6 saturated fatty acids

attached. The structure of region 1 is highly conserved among different species. Region 2

is called the core (R) antigen or R polysaccharide, it is attached to the 6 position of one

NAG and contains a short chain of sugars. Two unusual sugars are present most of the

time in the core polysaccharide; heptose and 2-keto-3-deoxyoctonic acid (KDO). Region 2

is very similar among species. Region 3, called somatic (O) antigen or O polysaccharide is

attached to the core polysaccharide, consisting of repeating oligosaccharide subunits.

Figure 1.7. General overview of lipopolysaccharide. The polysaccharide domain is responsible
for the immunogenicity of the LPS, whereas the lipid domain is responsible for the toxicity.
Picture adapted from [66].

O-specific chain outer core inner core lipid A

Region 3 Region 2 Region 1
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Region 2 and 3 together are responsible for the immunogenicity of the LPS. Region 3

contains the hydrophilic domain of the LPS molecule. There are major differences in this

region between different species and even between strains of Gram negative bacteria [66].

In B type E. coli, the distal end of the LPS has a glucose region, which is the important

residue for receptor function, whereas in the K-12 strain the corresponding glucose is

masked by additional glucose and galactose molecules [67,68].

OmpC, the alternative receptor for the bacteriophage T4, is a trimeric protein often

called porin. Its molecular weight is 40368 Da. OmpC forms pores or channels through

the outer membrane to allow passage of hydrophilic molecules. Porins allow nutrients to

pass through the membrane inwards, while excluding harmful hydrophobic compounds.

Bacteriophage T4 morphology
Assembly of the T4 bacteriophage can be divided into three independent stages:

head, tail and long tail fibre assembly. Some stages or assembly steps are dependent on

specific chaperones (see above). An overview of the assembly of bacteriophage T4, the

required stoichiometries and the necessary chaperones is given in Figure 1.8 [69].

Before the work described in this thesis, the structures of several gene products of

the bacteriophage T4 or chaperones necessary in the different assembly steps were already

elucidated by X-ray crystallography or NMR spectroscopy. In Table 1.1, the proteins of

known three-dimensional structure are given with their corresponding location in the

bacteriophage, and the resolution to which the structures were determined. As can be seen

in Table 1.1, Kostyuchenko and co-workers fitted the crystallographic data of many gene

products into a cryo-electron microscopy map of the base plate obtained to 12.0 Å

resolution [70].
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   Gene

product

location of gp PDB

code

Method resolution

(Å)

reference

gp11 base plate - STF

connector

1EL6 X-ray 2.00 [71]

1PDF EM 12.00 [70]

gp8 base plate 1N7Z X-ray 2.00 [72]

1N8O X-ray 2.45 [72]

1N8B X-ray 2.90 [72]

1PDM EM 12.00 [70]

gp12 short tail fibre 1H6W X-ray 1.90 [73]

1PDI EM 12.00 [70]

gp9 baseplate - LTF

connector

1QEX X-ray 2.30 [74]

1S2E X-ray 2.30 [74]

gp27 base plate - gp5

connector

1K28 X-ray 2.90 [75]

1PDJ EM 12.00 [70]

gp5 cell puncturing device

and tail associated

lysozyme

1K28 X-ray 2.90 [75]

1PDL EM 12.00 [70]

Wac whisker antigen control 1RFO NMR [76]

1OX3 X-ray 2.00 [77]

Table 1.1. Overview of the bacteriophage T4 gene products (gp) of which the structure has
been determined by X-ray crystallography and EM. Denoted are their corresponding location
in bacteriophage T4, PDB-code, method of structure determination, and the resolution to
which the structures are determined, respectively.
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The different constituents of the bacteriophage T4 are described below.

Figure 1.8. Morphogenesis of bacteriophage T4. The overall assembly can be divided into three
independent stages: head, tail, and long tail fibre assembly. The chaperones and catalytic proteins
are indicated in brackets near the protein, or assembly step, that requires the chaperone. Known
stoichiometries are given in the subscript. Crystal structures of structural proteins are shown as
ribbon diagrams. (Picture kindly supplied by P. Leiman [69]).
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The double stranded-DNA containing head

The T4 head structure was determined by cryo-electron microscopy [78,79]

(Figure 1.9). The head is composed of 160 hexamers of gp23* (According to phage

genetics usage, gpX* signifies the product of maturation by the cleavage of gpX to gpX*)

and 11 pentamers of gp24* together with hoc (highly antigenic outer capsid protein) and

soc (small outer capsid protein). Together they form a shell of about 30 Å thickness

encapsulating the double stranded DNA [78,80]. Whereas the soc protein helps to stabilise

the capsid against extremes in pH, hoc only has a marginal effect on head stability

[80,81]. Both proteins are not absolutely necessary for head morphogenesis and phage

infection. The mature T4 head is elongated along the five-fold axis (Figure 1.9). The

diameter was found to vary from around 973 Å along the five-fold axes to about 879 Å

along the three-fold and two-fold axes. The length of the mature T4 head is around 1150

Å. The surface of the prolate icosahedron is composed of two end-caps each made of five

equilateral triangular facets and connected by an elongated midsection, made of ten

triangular facets. The facets of the T4 head are composed of gp23* [78,79]. The eleven

vertices are occupied by pentamers of gp24*, whereas the 12th vertex is a special portal

for DNA packing, tail attachment, and DNA exit. The portal protein, gp20, assembles as a

dodecamer and is often called the "connector" [82,83].

Bacteriophage T4 tail

The tail of T4 consists of two concentric cylinders. The contractile outer sheath and

the tube consist of gp18 and gp19, respectively. The inner cylinder, called the tail tube, is

built of 144 copies of gp19 [84-86]. The outer diameter of the tail tube is 90 Å, with a 40

Å-diameter inner channel, through which the DNA passes from the T4 head to the host

cell [87]. The outer cylinder is called the tail sheath, has an outer width of about 210 Å

and is thought to be composed of 144 copies of gp18 [84]. However, Leiman et al. [88]

recently determined that only 138 copies of gp18 and gp19 are present in the T4 tail. The

top end of the tail tube contains gp3, which probably acts as a "paste" protein between the

tail sheath and tail tube. It stabilises the tail sheath and prepares the tail for the addition of

the terminal capping protein, gp15. Vianelli [50] and co-workers concluded that gp3 is an

integral part of the tail, localised at the tip of the tube and capable of preventing abnormal

extension of the tail tube during assembly.
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Figure 1.9. Structure of the bacteriophage T4 head. The facet triangles are shown in blue and
the basic triangles are shown in black. A) Shaded surface representation of the cryo-EM
reconstruction viewed perpendicular to the five-fold axis. Gp23* is shown in blue, gp24* is
in magenta, soc is in white, and hoc is in yellow and the tail is in green. B) Model of the
previously proposed T4 head structure. C) View of the reconstruction along the five-fold axis
at the portal vertex towards the observer; the tail has been cut away at the level of the black
arrow in A. Proteins are coloured as described in A. D, Left) Schematic representation of
distribution of proteins in the elongated midsection facet. D, Right) Schematic representation
of an end-cap facet. Proteins are coloured as in A, except for the soc molecules, which are
shown as grey rectangles. (Picture from [79]). For colour picture see Appendix A.
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Baseplate

The three-dimensional structure of the bacteriophage T4 baseplate was determined

to a resolution of 12 Å by cryo-electron microscopy [70]. The baseplate contains

approximately 150 sub-units of at least 16 different proteins ranging from 14 kDa to 140

kDa in size (Figure 1.10). It is a dome-like structure with down-facing pins at the vertex

and has a diameter of 520 Å [70]. The baseplate is built out of six identical wedges which

surround a central hub [89]. The wedges are built by the sequential assemblage of gp11,

gp10, gp7, gp8, gp6, gp53 and gp25 [70].

The central hub contains gp5 and gp27 [75] (Figure 1.11). Gp27 serves as an

interface (symmetry-adjuster) between the six wedges and the threefold-symmetry of the

hub [90]. Two β-barrel domains of gp27 in the trimer are related by quasi-sixfold and

exact three-fold symmetry [75]. Gp5 has several domains of which one is the so-called

"tail lysozyme" [91]. Gp5 is the only baseplate protein that undergoes processing by

proteolysis and the only one that has enzymatic activity. Its lysozyme domains digest the

intermembrane peptidoglycan layer of the host's cell wall during penetration.

Figure 1.10. Structure of the baseplate tail tube complex. a-c) The baseplate and proximal
part of the tail tube. Colours identify proteins labelled with their corresponding gene number.
Unidentified protein X at the tip of gp5. a) Side view. b) End-on view. c) Cross-section.
Picture adapted from [70]. For colour picture see Appendix A.
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The C-terminal domain of gp5 acts as a membrane-puncturing needle and the N-terminal

domain of gp5 is inserted into a cylinder formed by three gp27 monomers, which may

serve as a channel for DNA ejection after cell wall penetration and dissociation of the

needle part of gp5 [75] (Figure 1.11).

Long and short tail fibres

Long and short tail fibres are connected to the baseplate via gp9 (long-tail fibre

connecting protein) and gp11 (short-tail fibre connecting protein), respectively. The long

tail fibres are composed of gp34, gp35, gp36 and gp37. These fibres are approximately

1450 Å long and up to 40 Å in diameter. They recognise the OmpC or LPS of E. coli by

their C-terminal domain and are responsible for the initial, reversible attachment of the

bacteriophage. After at least three long tail fibres have bound, the baseplate changes

conformation from the "hexagon" form to the "star" form [88,92] (Figure 1.12). In the

hexagon form the short tail fibres, trimers of gp12, are incorporated into the baseplate in

bent fashion, as can be seen in Figure 1.10 [75]. Upon conversion of the baseplate to the

star form, STFs extend from the base plate and bind irreversible with their C-terminal

domain to the core region of the host cell LPS [93]. Here they form inextensible stays,

Figure 1.11. Structure of the gp5-gp27 trimeric
complex, shown with its threefold axis in the
plane of the paper. Picture from [75].
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allowing penetration of the cell envelope by the base plate hub and tail tube upon

contraction of the outer tail-sheath [75].

The DNA injection machinery

After the C-terminal domain of the STFs have irreversibly bound to the core region

of the host cell LPS [93], the tail sheath contracts, driving the rigid tail tube through the

outer cell membrane, using the needle that is located at the end of the tube. The

puncturing needle is formed by the gp5 C-terminal β-helix. When the β-helix comes into

contact with the periplasmic peptidoglycan layer, it is thought to dissociate, activating the

three lysozyme domains of gp5 (Figure 1.11). These lysozyme domains digest the

peptidoglycan layer, enabling the tail tube to reach the cytoplasmic membrane of the host

cell. Finally, the viral DNA is injected into the host cell cytoplasm, after which the

replication, maturation and re-infection can take place.

Figure 1.12. Image analysis of a) normal/hexagonal-form and b) contracted/star-form of T4
baseplate. Different colours identify different proteins as in figure 1.10; gp7 (red), gp8 (blue), gp9
(green), gp10 (yellow), gp11 (cyan), and gp12 (magenta). Directions of the long tail fibers are
indicated with gray rods. Picture adapted from [88]. For colour picture see Appendix A.
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1.4

Scope and aim of this thesis

The initial aim of my thesis research was to determine the 3D structure of the

components of the human T cell receptor-CD3 complex by X-ray crystallography. I

focussed on the intra- and extracellular domains of the CD3δ and CD3ε subunits. The

intracellular domains of the CD3δ and CD3ε chains were synthesised to overcome

problems inherent to the method of overexpression and the related problem of obtaining

unfolded proteins. Subsequent NMR experiments showed these synthetic peptides to be

primarily random coiled, explaining why crystallisation experiments did not (and could

not) result in crystals. Next, the external parts of the CD3δ and CD3ε chain were

overexpressed in different E. coli strains using different plasmids. Overexpression of both

components succeeded, but they could not be refolded in their active conformation.

Periplasmic overproduction of the CD3ε extracellular domain resulted in ~ 0.5 mg of

purified protein per litre of medium. At that time others published the NMR structure [23]

of the ectodomains of the CD3εγ heterodimer. Hence I shifted the focus of my research to

the interaction between CD3γ and CD3ε and the cell surface expression of the TCR-CD3

complex in human T cells, in response to mutations in CD3γ. The reported NMR structure

was used to decide which mutations in the CD3γ extracellular domain would influence the

CD3εγ binding interface and consequently the heterodimer formation. By inserting CD3γ

containing different mutations into a CD3γ-deficient T cell line three phenotypes were

obtained. One of these phenotypes was not able to express a CD3δεεγζζ complex due to a

deleterious mutation in the CD3γ-chain and therefore probably expressed a CD3δεδεζζ

complex on the cell surface. Other mutations present in the CD3γ-chain inserted into the

CD3γ-deficient T cell line resulted in a restored cell surface expression of the CD3δεεγζζ

complex, although some mutations with an impaired interaction between CD3ε and CD3γ.

A different but related subject of research was solving crystal structures of the T4

proteins in order to understand the mechanism of the adsorption of bacteriophage T4 prior

to infection by DNA injection. Understanding the host cell recognition of T4 also has

implications for development of bacteria-detection systems. This was done in
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collaboration with Stefan Miller of PROFOS AG (Regensburg, Germany). A potential

application of this research is the capture of bacteria or bacterial components e.g. LPS

(endotoxin) using columns containing tails of bacteriophage T4. Endotoxin removal is

important in avoiding artefacts and misinterpretation caused by endotoxin contamination

in highly sensitive stimulation experiments in cell culture or animal models. An important

step in this host cell recognition of the T4 bacteriophage is the attachment of the short tail

fibres to the host. These short tail fibres form inextensible stays during infection and

therewith they allow penetration of the host's cell envelope. Short tail fibres are formed by

a single protein, gp12, which form a parallel, in-register, homotrimer of 527 residues per

subunit. To investigate the host cell recognition of the bacteriophage T4, crystals were

made of proteolytic fragments of the short tail fibres containing the receptor-binding

domain. These structures revealed a surprising new fold, a knitted trimeric metal-binding

fold. Despite crystals containing LPS remaining elusive, we mapped the LPS binding site

according to the surface potential and the aromatic side-chains present on the surface of

the receptor-binding domain.

In a side project with the biotech company Pharming in Leiden, I determined the

structure of transgenically expressed human lactoferrin. Pharming reported the production

of recombinant hLF (rhLF) in the milk of transgenic cows [94] and in comparative studies

between rhLF and hLF from human milk (natural hLF) demonstrated equal biological

activities. These studies revealed identical iron-binding and release properties, and despite

differences in N-linked glycosylation, equal effectiveness in various infection models

[94]. In spite of the presence of polymorphic sides and differences in the N-linked

glycosylation, I demonstrated the three-dimensional structure of rhLF to be otherwise

identical to the structure of the human milk-derived lactoferrin.       

In collaboration with researchers at the University of Wageningen, I crystallised a

potato serine protease inhibitor (PSPI). Protease inhibitors have regained interest because

of their potent activity in preventing carcinogenesis in a wide variety of in vivo and in

vitro model systems. The PSPI is a dimeric double-headed Kunitz type inhibitor of which

no high-resolution structural data are available. The PSPI crystals diffracted to 1.8 Å and a

native data set and several derivatives could be collected. Unfortunately, molecular

replacement using different model proteins could not solve the structure. The derivatives

were found to contain insufficient number of heavy atoms. The project is therefore

ongoing.
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Summary
The human T cell receptor-CD3 complex consists of at least eight polypeptide chains:

CD3γε- and δε-dimers associate with the disulphide linked αβ- and ζζ-dimers to form a

functional receptor complex. The exact structure of this complex is still unknown. We

have now examined the interaction between CD3γ and CD3ε in human T cells. For this

purpose we have generated site directed mutants of CD3γ that were introduced in human

T cells defective in CD3γ-expression. Intracellular as well as cell surface expression of the

introduced CD3γ chains was determined as well as the association with CD3δ, CD3ε and

the T cell receptor. Three phenotypes were observed: i) the introduction of wild type

CD3γ and CD3γ(78Y-F) fully restored the T cell receptor assembly and expression; ii) the

introduction of CD3γ(82C-S), CD3γ(85C-S), and CD3γ(76Q-E) all resulted in an impaired

association between CD3γ and CD3ε and a lack of cell surface expressed CD3γ; iii) the

introduction of CD3γ(76Q-L) and CD3γ(78Y-A) restored the expression of TCR-

CD3δεγεζ2 complexes although the association between CD3γ and CD3ε was impaired.

These results indicate that several amino acids in CD3γ are essential for an optimal

association between CD3γ and CD3ε and for the assembly of a cell surface expressed

TCR-CD3δεγεζ2 complex.



46

Introduction
The majority of human T cells expresses a clonotypic αβTCR heterodimer. For the

full function of the receptor, the disulphide-linked αβ-chains associate with CD3δ, CD3ε,

CD3γ and ζ. These latter form non-covalently linked δε and εγ heterodimers and

disulphide-linked ζ-ζ homodimers. While each TCR-CD3 complex thus consists of a

minimum of eight polypeptides, the exact stoichiometry of the complex is still under

discussion [1-4]. The TCRαβ, which has a Fab-like structure (Fragment antigen binding),

is responsible for the recognition of a specific antigen bound to MHC-molecules.

Subsequently, the CD3 and ζ-components mediate signal transduction and intracellular

activation [5-8]. The CD3δ, ε, and γ all have a large extracellular immunoglobulin (Ig)-

like domain, a membrane proximal stalk region, a transmembrane helix, and an

intracellular immunoreceptor tyrosine-based activation motif (ITAM) containing domain.

This is in contrast to ζ, which has a small extracellular domain and a large intracellular

domain with three ITAMs. The CD3 components are not only required for transduction of

the signal across the cell membrane, but also for the expression of the TCR heterodimers

on the surface of T cells. In the absence of one of the CD3 chains, e.g. due to a deleterious

mutation in one of them, a reduced number of T cell receptors is present on the cell

surface [9-11].

CD3 deficiencies in man are very rare autosomal disorders. In 1986, Regueiro et al

[12] reported a human CD3γ deficiency [13]. This was the first primary T cell receptor

immunodeficiency in human for which the genetic basis could be elucidated, MIM

(Mendelian Inheritance in Man) number 186740. In 1990 another deficiency (MIM

186830) followed, reported by Thoenes et al., which was later described as a CD3ε

deficiency [14-16]. Recently Dadi et al. [17] studied three cases of CD3δ deficiency. In

total three cases of human CD3γ deficiency have been published in the mutation database,

of which two are Spanish siblings, while the third patient is a Turkish male with an A to T

mutation at position 242 in his CD3γ DNA, which changes a lysine codon (AAA) to an

early stop codon (TAA) (not shown & [18]).

In 2001, Sun et al. described mechanisms contributing to T cell receptor signalling

and assembly, as revealed by the structure of the ectodomain of the murine CD3εγ

heterodimer [19]. Mutational analysis of CD3ε, focusing on the binding interface between
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CD3ε and γ, implicated several amino acids in CD3ε and γ as being important for the

domain-domain interaction. In this analysis combinations of mutations in CD3ε were

found to be required for strong effects on the association between CD3ε and CD3γ. More

recently, the structure of the human CD3εγ heterodimer complexed to the OKT3 mAb was

elucidated [20]. Small differences were observed between the human and the murine

structure, but whether these are caused by the different origins of the heterodimers (human

CD3ε and CD3γ share 41% and 43% sequence homology to their murine counterparts,

respectively) or by the different methods employed (crystallography versus NMR (nuclear

magnetic resonance)) is unknown.

In the present study we further analysed the binding interface of the CD3εγ dimer

in human T cells, by introducing mutations in CD3γ and determining the ability of such

mutated CD3γ chains to form CD3γε dimers and participate in the formation of cell

surface expressed T cell receptor-CD3 complexes. The results demonstrate that single

amino acid alterations in CD3γ can have a significant effect on the cell surface expression

of the TCR-CD3 complex and provide further evidence that αβTCRδεδεζζ complexes

can be formed even when the association of CD3εγ-dimers is impaired.

Results

Characterisation of TCR-CD3 expression on T cells of a patient with a CD3γ

deficiency

A male patient with a CD3γ deficiency is a child of parents that are first cousins.

At the age of 4 he was diagnosed with CD3γ deficiency [21]. An AAA to TAA mutation

at position 242 of CD3γ leads to an early stop codon (not shown & [18]). Because of this

mutation, the remaining transcript would encode a 46 amino acid long protein lacking

both the transmembrane region and cytoplasmic domain. PBMCs of this patient and his

healthy brother were subjected to FACS analysis (Figure 2.1A). A CD3-PE/CD4-FITC

and CD3-PE/CD8-FITC analysis indicated that the patient had diminished levels of CD3

expression on the cell surface of both T cell populations. Next, T cell lines were

established from the PBMCs of the patient, his brother and parents. At day 14 of the T cell

establishment a CD3-PE/αβ TCR-FITC analysis demonstrated that more than 96 % of the



48

T cells of the healthy brother expressed an αβTCR on the cell surface, while only about 2

% of the patient' cells were αβTCR+ (Figure 2.1B).

Figure 2.1. A) The FACS analysis of double stained PBMCs of the patient (right panel) and
healthy brother (left panel). The upper panel shows the CD3/CD4 staining for patient and healthy
brother. The lower panel shows the CD3/CD8 staining. It is clearly visible that the patient had
diminished levels of CD3 expression on the cell surface of both T cell populations. B) The FACS
analysis at day 14 of the T cell establishment from PBMCs. The left panel shows the CD3/αβ-
TCR staining of the brother and the right panel shows the CD3/αβ-TCR analysis for the CD3γ
deficient patient. Only 2% of the patient's cells were αβTCR+, in contrast to 96% for the healthy
brother.
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To investigate the cell surface expression of the individual CD3γ-, δ-, and ε-chains,

the cell lines were labelled with 125I and lysed in NP40 lysis buffer. Subsequently

immunoprecipitations were carried out with CD3δ, ε and γ-specific antibodies followed

by 1-dimensional SDS-PAGE analysis (Figure 2.2). In NP40 lysisbuffer the TCR-CD3

complex dissociates into TCRαβ-, ζζ-, CD3γε- and CD3δε-dimers [22]. Consequently,

CD3γ and ε are present in CD3γ-immunoprecipitates, CD3δ and ε in CD3δ

immunoprecipitates and all three CD3 chains in CD3ε immunoprecipitates. While in the

lysates of the cell lines from the healthy brother and his parents CD3δ, ε and γ were

present and associated as expected, the lysate of the cell line of the CD3γ deficient patient

contained very little CD3δ and -ε while CD3γ was undetectable (Figure 2.2).

To verify the presence of TCR-CD3 components intracellularly, the T cell lines

were labelled with 35S-methionine/cysteine and after lysis in NP40 lysis buffer specific

immunoprecipitations were carried out with CD3γ, - δ, - ε and ζ-specific antibodies

followed by SDS-PAGE analysis. This demonstrated (Figure 2.3) that the CD3γ, δ, ε and

ζ chains were present intracellularly in the T-cell lines obtained from the parents and the

healthy brother, while the T cells of the patient contained CD3δ, ε and ζ chains at levels

comparable to the healthy controls but no CD3γ. A two-dimensional non-reducing/

reducing SDS-PAGE analysis of the ζ immunoprecipitate confirmed the normal

Figure 2.2. SDS-PAGE analyses of immunoprecipitates obtained from NP40 lysates after cell
surface iodination of T cell lines of patient, brother, father, and mother. Antisera used were
normal rabbit serum as negative control (N), anti-CD3δ (δ), anti-CD3ε (ε), and anti-CD3γ (γ),
and as reference (C) anti-HLA class I (only heavy chain is shown here, 44 kDa). The positions of
the different chains are indicated in the middle. It can be seen that the patient's cells contained
very little CD3δ and CD3ε, while CD3γ is undetectable.
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expression of a ζ-dimer (Figure2.4). To determine the expression of the covalently linked

TCRαβ chains, immunoprecipitations were obtained with the anti-CD3ε antibody from

digitonin lysates of the metabolically labelled cells from the patient and his healthy

brother (digitonin is known to preserve the subunit interactions between the TCR and

CD3 complexes [23]). These immunoprecipitates were subjected to two-dimensional non-

reducing/reducing SDS-PAGE analysis which revealed normal intracellular expression of

the disulfide linked TCRαβ dimers in the T cells of the healthy brother and the patient

(Figure 2.4). Thus, the patient synthesises all TCR-CD3 chains except CD3γ.

Figure 2.3. SDS-PAGE analysis of immunoprecipitates obtained from NP40 lysates after
metabolic labelling of T cell lines of patient, brother, father and mother. Antisera used were
normal rabbit serum as negative control (N), anti-CD3δ (δ), anti-CD3ε (ε), anti-CD3ζ (ζ), and
anti-CD3γ (γ), and as reference (C) anti-HLA class I (only β2M is shown here, 12 kDa). The
positions of the different chains are indicated on the right. This shows that the parents and healthy
brother contain all the CD3 chains, in contrast to the patient which lacks the CD3γ chain.
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Influence of amino acid substitutions in CD3γ on assembly and cell surface

expression of the TCR-CD3 complex

Several amino acids in the binding interface between CD3γ and CD3ε have been

implicated to be important for the specific interaction between these two chains (Figure

2.5, adapted from [19]). In particular, the amino acids at position 76, 78, 82 and 85 in

CD3γ are thought to interact with amino acids in CD3ε. Mutational analysis of CD3ε has

demonstrated that multiple replacements in the binding interface are required for

abolishment of the CD3γε interactions. Such an analysis has not been performed for

CD3γ. We have now taken advantage of the availability of the T cell line of the CD3γ

deficient patient to investigate this in detail. For this purpose site directed mutants of

CD3γ cDNA were generated encoding CD3γ-chains in which the amino acids thought to

Figure 2.4. 2D (first dimension non-reducing, second reducing) SDS-PAGE analysis of anti-
CD3ε and anti-ζ immunoprecipitates. The T cells of patient (left panel) and the healthy brother
(right panel) were metabolically 35S labelled and lysates were prepared with digitonin (upper
panel) or NP40 (lower panel) lysis buffer. Antisera used were anti-CD3ε (upper panel), anti-
CD3ζ (lower panel). This demonstrates the normal expression of the ζ-dimer and αβTCR for the
patient compared to the healthy brother.
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be important for the interaction with CD3ε are substituted by either homologous or non-

homologous amino acids (see Table 2.1). These CD3 constructs, as well as wild type

CD3γ, were stably introduced into the patient's T cell line together with the reporter gene

GFP as described [24,25] and GFP+ cells were selected by FACS-sorting. These GFP+ T

cell lines and the control patient T cells were analysed for expression of the TCR-CD3

complex by FACS analysis using a CD3ε specific antibody. Moreover, the intracellular-

and cell surface expression of the CD3γ, δ, ε-chain and the interaction between these

chains were determined by SDS-PAGE analysis of CD3δ, CD3ε and CD3γ

immunoprecipitates carried out with 35S-labeled and 125I-labeled cell lysates of the cell

lines, respectively.

Three phenotypes were observed. First, the introduction of wild type CD3γ fully

restored the CD3γε interaction and TCR-CD3 expression (Figure 2.6, and Table 2.1 for

summary). Similarly, the introduction of CD3γ in which the tyrosine at position 78 is

replaced for a phenylalanine (78 Y-F) resulted in restoration of CD3γ protein expression,

CD3γε interaction and TCR-CD3 expression. We therefore conclude that the 78 Y-F

mutation allows the expression of a TCR-CD3δεγεζ2 complex on the cell surface. In

contrast, the 82 C-S (Figure 2.6, see Table 2.1 for summary), 85 C-S and 76 Q-E

mutations (not shown, see Table 2.1 for summary) gave rise to a different phenotype. In

Figure 2.5. Schematic overview of the CD3εγ binding interface. The important residues are
represented by their one-letter amino acid code and their corresponding residue number,
followed by the specific monomer. The right figure, which is a zoom-in of the left picture, is
adapted from [12]. The figures were prepared with MOLSCRIPT  [26] and Raster3D [27].
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all these cases apparent normal cell surface expression of the TCR-CD3 complex was

observed but no CD3γ was observed on the cell surface and, consequently, no interaction

between CD3γ and CD3ε was detectable (Figure 2.6). To determine if the mutated CD3γ-

chain is synthesised, immunoprecipitation with the CD3γ specific antibody were carried

out using 35S-labeled lysates of the transfectants. The results indicate that CD3γ is

synthesised (Figure 2.7) but that it can not associate with CD3ε since the αβTCR and

CD3ε could not be detected in the CD3γ specific immunoprecipitates carried out with

DIG lysates. These results show that CD3γ is expressed intracellularly, but is not capable

to associate with the CD3ε chain in order to form a cell-surface αβTCR-CD3δεγεζ2

complex. Finally, the 76 Q-L and 78 Y-A mutations gave rise to a third phenotype: while

CD3γ protein was present in the cell surface expressed complex (Figure 2.6, see Table 2.1

for summary), the association with CD3ε was impaired since no CD3γ could be detected

in the CD3ε immunoprecipitate. Longer exposures also failed to show the presence of

CD3γ (not shown). The presence of CD3γ on the cell surface, however, indicates that

these cells do express TCR-CD3δεγεζ2 complexes.

Table 2.1. Analysis of CD3γ expression, heterodimer formation and subsequent TCR-CD3 complex
cell surface expression of the different mutations, wild type and the patient.

mutation 76Q-E 76Q-L 78 Y-F 78 Y-A 82 C-S 85 C-S wt patient

phenotype 2 3 1 3 2 2 1

γ intra n/a n/a n/a + n/a + + (b) -

γ cell surface - * + ++ + - - ++ -

εγ cell surface - +/- ++ +/- - - ++ -

εδ cell surface + + ++ + + + ++ +
complex cell

surface εδεδ εγεδ εγεδ εγεδ εδεδ εδεδ εγεδ εδεδ

* If the level of CD3γ or CD3εγ is denoted as “-“, it is possible that undetectable amounts are
present at the cell surface, n/a = not analysed, wt = wild type, full CD3γ inserted, b = brother was
used as reference for a healthy person. Phenotype 1 = fully restored TCR assembly and expression,
2 = impaired association between CD3γ and CD3ε and lack of cell surface expressed TCR-
CD3δεγεζζ complex, and 3 = restored CD3δεγεζζ complexes although impaired association
between CD3γ and CD3ε.
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Figure 2.6. A) SDS-PAGE analysis of immunoprecipitates obtained from NP40 lysates after cell
surface iodination of patient and the cells contain the CD3γ with different mutations. Antisera
used were, anti-CD3δ (δ), anti-CD3ε (ε), and anti-CD3γ (γ) and anti HLA class I (c, only heavy
chain is shown). Analysis of the WT was done in a different experiment causing differences in
autoradiography time and radioactivity of 125I. To show that the 78Y-F mutation has the same
expression levels compared to the WT, the 78Y-F is shown twice, once with the WT (lower
panel) and once with all phenotypes (upper panel). B) Histograms of patient and mutant GFP+ T
cells. Unstained cells are represented by a white histogram, and cells after staining with anti-
CD3-PE are represented by a black histogram. The abscissa gives the fluorescence intensity in a
logarithmic scale, the ordinate gives the relative cell number.
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Discussion

The interaction of the T cell receptor with its MHC-peptide ligand is a crucial step

towards the initiation of adaptive immune responses. Due to the short cytoplasmic tails of

the T cell receptor α- and β-chains, however, these can not transduce the signal over the

cell membrane. This is accomplished by the T cell receptor associated CD3γ, -δ, -ε and ζ-

chains. The mechanism by which this is performed is still an ill understood process.

Although several studies have indicated that the minimal T cell receptor-CD3 complex

contains 8 chains, αβTCR-CD3δεγεζζ, the exact stoichiometry of the complex is still not

clear, nor is the way in which all the individual components are arranged in the complex.

A NMR study has for the first time provided information on the structure of part of the

extracellular domains of a murine CD3γε-complex [19]. In this study several amino acids

located in the interface between CD3ε and CD3γ were implicated as being important for

the association. Mutational analysis of residues in the stalk region of CD3ε indicated that

combinations of mutations were required for disturbing the interaction of CD3ε with

CD3γ. We have now generated mutants of CD3γ and stably introduced these in T cells

from a patient with a deleterious mutation in the CD3γ gene, resulting in aberrant TCR-

Figure 2.7. SDS-PAGE analysis of immunoprecipitates obtained from NP40 and DIG lysates
after 35S metabolic labelling of CD3γ mutants. Antisera used were, anti-CD3δ (δ), anti-CD3ε
(ε), and anti-CD3γ (γ). The positions of the different chains are indicated on the right. This
shows that CD3γ is expressed intracellularly even in mutants that lack cell surface CD3γ
expression (85 C-S).
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CD3 expression. TCR-CD3 complexes in such a patient are most likely composed of

TCR-CD3δεδεζζ complexes instead of TCR-CD3δεγεζζ as has been previously

suggested by Geisler [28] and Pérez-Aciego et al. [10]. In agreement with previous

studies we find that the reconstitution with wt CD3γ completely restores the cell surface

expression levels of the TCR, CD3δ, CD3ε, and CD3γ [9,29]. In contrast, replacement of

either one of the two cysteine residues in the proximal stalk region of CD3γ to serine

abrogates the interaction between CD3ε and CD3γ. This is in disagreement with Sun et al.

[19] who suggested that these conserved cysteines in the stalk region facilitate the CD3εγ

pairing but are not required for the association of these CD3 chains.

The CD3γ (78 Y-F) mutation did not effect the CD3γε association and thus led to

the cell-surface expression of the TCR-CD3δεγεζζ complex comparable to that observed

with wt CD3γ. A striking result is that 3 mutations, 82 C-S, 76 Q-E, and 85 C-S all

resulted in cell surface expression of the TCR-CD3 complex equivalent to the cells

expressing wt CD3γ but in the apparent absence of detectable amounts of CD3γ itself as

evidenced by a lack of (co)immunoprecipitation with the CD3ε and the CD3γ specific

antibody. Intracellularly, however, the expression of these mutated CD3γ chains could be

detected as shown for mutant 85 C-S. It is known that the large majority of intracellularly

synthesised TCR and CD3 chains are degraded before they can be assembled in a

functional TCR-CD3 complex [30]. Possibly a weak interaction of mutant CD3γ with

CD3ε limits the rate of degradation of CD3ε and leads to a higher cell surface expression

of a TCR-CD3δεδεζζ complex compared to the CD3γ deficient patient, as has been seen

by FACS analysis. Alternatively, the culture conditions may have selected transfectants

expressing a higher number of receptors on their cell surface. Irrespective of this, our

results demonstrate the importance of the two cysteine residues in the proximal stalk

region for the association between CD3γ and CD3ε.

Finally, the CD3γ (76Q-L) and CD3γ (78Y-A) mutations led to intracellular

expression and transport of CD3γ to the cell surface, presumably in a TCR-CD3δεγεζζ

complex, in spite of an undetectable association with CD3ε. This result indicates that a

tight association between CD3γ and CD3ε is not required for normal expression of an

intact TCR-CD3 complex.



57

From the crystal structure of the CD3εγ heterodimer complexed with the mAb

OKT3 [20] we can make two assumptions about the impact of the CD3γ mutations. First,

the 76Q to E mutation excludes the possibility of hydrogen-bond formation at position Q

76Oε1. However, since all the other interactions, including main-chain hydrogen bonding

(see Table 3 of [20]) at the interface will be maintained, it can be concluded that the

hydrogen bond formation at Q 76Oε1 is very important for the heterodimer formation.

Second, the 78Y to F mutation has little impact on the hydrogen bond pattern and the Van

der Waals interactions, resulting in a normal association of the heterodimer. This in

contrast to the replacement of 78Y to A mutation, which does change the Van der Waals

interactions with Leu90Cδ1, Leu92Cδ1 and Val16Cβ, Cγ1, Cγ2 of CD3ε (see Table 3 of [20]).

This loss of Van der Waals interactions explains the observed loose interaction of CD3εγ.

In conclusion, our results have identified amino acids in the extracellular domain

of CD3γ to play a key role in the association between CD3γ and CD3ε which is a

prerequisite for the cell surface expression of TCR-CD3δεγεζζ complexes.

Materials and Methods
PBMC isolation and establishment of T cell lines

PBMC were isolated from heparinised blood obtained from patient, his parents and

a healthy older brother, by Ficoll density gradient centrifugation. For the generation of T

cell lines, PBMC (5 x 106) were cultured in the presence of allogeneic, irradiated (3000

rad) PBMC (10 x 106), 50 U/ml rIL2 (Chiron, Amsterdam, The Netherlands) and 5 µg/ml

PHA (Murex Diagnostics, Dartford, UK) in RPMI 1640 (Gibco) supplemented with 2 mM

glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin and 10 % FCS (Gibco). Twice

weekly half of the supernatant was replaced by fresh medium containing 50 U/ml rIL2

and once in a period of three weeks allogeneic, irradiated PMBC were added. After a

culture period of 2 months the doses of rIL2 was enhanced to 100 U/ml and cells were

harvested a month later.

Derivatisation of mutants and construction of retroviral vectors

A bicistronic vector, LZRSpBMN-linker-IRES-GFP, was used as described in

Heemskerk et al.  [24] with the gene of interest linked to a downstream internal ribosomal
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entry site (IRES) and a marker gene (Green fluorescent protein, GFP) that allows

independent translation of the products of both genes in the transduced cells. The vector

was adapted for the gateway cloning system (Invitrogen, Breda, The Netherlands). Site

directed mutagenesis was performed using the polymerase chain reaction according to

Landt [31] using a CD3γ cDNA clone [32] as template with custom-made primers. The

mutations were made at AA-position 78, tyrosine (TAT) was changed to a phenylalanine

(TTT) and an alanine (GCT), at AA-position 76 where the glutamine (CAA) was mutated

to a glutamate (GAA) or a leucine (CTA), and at AA-position 82 and 85 where the

cysteines (TGT) where mutated to serines (TCT). The resulting PCR products were

cloned into the vector and clones were confirmed by automated fluorescent sequencing.

Generation of retroviral supernatant and retroviral transduction

Phoenix cells, a 293T-based amphotropic retroviral packaging cell line [25] were

transfected via the calcium phosphate precipitation method (Life Technologies,

Gaithersburg, MD, USA), after 2 days 2 µg/ml puromycin (Clontech, Palo Alto, CA,

USA) was added. At 10-14 days after transfection, 6 x 106 cells per 10 cm2 petridish were

plated (Beckton Dickinson, Meylan, France) in 10 ml IMDM supplemented with 10 %

FBS without puromycin. After 24 hours the medium was refreshed and at the following

day retroviral supernatant was harvested, which was frozen at –70 °C. Non-tissue culture

treated plates (Beckton Dickinson, Meylan, France) were coated with retronectin (Takara,

Shiga, Japan) for two hours at room temperature. Then, the coated wells were blocked

with 2 % human serum albumin (CLB, Amsterdam, the Netherlands). T cells were added,

and after 30 minutes culture medium was removed, and thawed retroviral supernatant was

supplemented. Viral supernatant together with cells were incubated overnight, followed

by washing, and finally transferred to cell culture bottles in normal tissue culture medium.

After 3 days, transduced cells were sorted by fluorescence-activated cell sorting on a

FACSVantage (Becton Dickinson, Mountain View, CA, USA) on basis of high level GFP

expression. After several weeks of culture, the GFP+ populations of the several mutant T

cells were used for the experiments.
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Cell culturing

Patient cells and the mutant cells were cultured in Iscove's modified Dulbecco's medium

(IMDM, Gibco BRL) supplemented with 3 mM glutamine, 10 % normal human serum

(NHS) and 100 U rIL2/ml. Medium was refreshed every three days and the cells were

restimulated every 10-14 days with 100 U rIL2, 1 µg/ml PHA and 10 x 106/ml irradiated

(2500 rad) PMBC, as feeder cells.

Antibodies

The antibodies against CD3δ, CD3ε, and CD3γ were all rabbit antibodies and

directed against peptides corresponding to the Carboxy termini of the human CD3 chains,

The anti-CD3ζ serum was raised against the predicted N-terminus of the human ζ chain as

has been described before [33]. The anti-HLA class I antibody (W6/32) [34], which was

used as a control, is a mouse monoclonal antibody.

Cell surface iodination and metabolic labelling

For cell surface iodination 10 x 106 cells were washed three times in PBS and

resuspended in 30 µl lactoperoxidase (250 U/ml, Sigma-Aldrich) solution. 1 mCi Na125I

(NEN) was added to the cells followed by the addition of 10 µl 0.05 % H2O2/PBS (Sigma-

Aldrich) with 5 minutes intervals. After the labelling was stopped and the free iodine was

removed by washing the cells three times with 500 µl 2 mM KI/PBS, the cells were

solubilised in 750 µl lysisbuffer containing 0.5 % NP40 (Sigma-Aldrich) and protease

inhibitors (Complete, EDTA-free tablets, Roche Diagnostics). After 30 minutes

incubation on ice, the lysates were centrifuged 15 minutes (13000 x g) at 4 °C. For 35S

metabolic labelling, 7 x 106 vital cells were washed with 10 ml RPMI without methionine

and cysteine, centrifuged and resuspended in 10 ml of the same medium. Cells were

incubated for 30 minutes at 37 °C / 5% CO2, centrifuged and the resulting pellets were

resuspended in 10 ml RPMI without Met/Cys, 100 U/ml IL2 and 1 mCi 35S Met/Cys.

After 4 hours incubation at 37 °C / 5% CO2 cells were centrifuged and washed twice with

PBS. The cells were solubilised in 750 µl lysisbuffer containing 0.5 % NP40 or 1 %

digitonine, and protease inhibitors. After 30 minutes incubation on ice, the lysates were

centrifuged 15 minutes (13000 x g) at 4 °C.
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Immunoprecipitation and SDS-PAGE analysis

The lysates, after labelling with 125I or 35S, were precleared by adding 100 µl

protein A sepharose CL4B (PAS beads, Amersham Pharmacia Biotech) gently shaking at

room temperature followed by the addition of 75 µl normal rabbit serum, and shaken at

room temperature for one hour. After the removal of the beads, specific

immunoprecipitations with CD3δ, CD3ε, CD3ζ, CD3γ antibodies, normal rabbit serum

(NRS) or anti-HLA class I were performed by adding 5 µl antiserum (2 µl for anti-HLA

class I) to 100 µl precleared lysate (1D SDS-PAGE) or 200 µl precleared lysate (2D SDS-

PAGE) for 60 minutes at room temperature. The PAS beads were washed four times with

500 µl lysis buffer and resuspended in 100 µl 1x sample loading buffer (20 mM Tris-HCl,

pH 6.8, 0.01% bromophenol blue, 1% SDS, 10% glycerol, 1% β-mercaptoethanol) and

analysed on a reducing 12 % SDS-PAGE. For 2 dimensional SDS-PAGE, the PAS beads

were resuspended in loading buffer without 2-mercaptoethanol, and loaded onto the first

non-reducing 12% cylindrical-gel. After the first dimension, the gel was incubated for 10

minutes in Laemmli buffer with β-mercaptoethanol and placed on top of the reducing

second dimension 12 % SDS-PAGE gel. After drying of the gels autoradiography was

performed at –80 °C using Kodax or Fuji scientific imaging films.

Fluorescence activated cell sorter (FACS) analysis

For single stained cells, the cells were washed with PBS/0.5 % BSA and labelled

with mouse anti-human anti-CD3-PE (Becton/Dickinson) at 4 °C for one hour. Followed

by washing with PBS/0.5 % BSA and fixating with 0.5 % paraformaldehyde. In the case

of CD3/CD4 and CD3/CD8 double staining, the cells were stained with anti-human anti-

CD3-PE and washed with PBS/0.5 % BSA and labelled with mouse anti-human anti-

CD4-FITC or anti-CD8-FITC antibody. For CD3/αβ-TCR double staining cells were

stained with anti-human anti-CD3-PE and washed with PBS/0.5 % BSA, followed by

labelling with non-directly conjugated anti-αβ-TCR antibody for one hour at 4 °C. After

washing the cells were stained with GAM-FITC antibody, washed and fixated.
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2.2

Analysis of intracellular CD3δ and CD3ε synthetic

peptides

Summary
The T cell receptor-CD3 complex contains at least eight chains, the disulphide- linked αβ

TCR, and the associating CD3γε, CD3δε and ζ2 dimers. The structural information on

these components is limited. This is not due to problems with crystallography or NMR,

these techniques got better over the years, but to problems of expressing and isolating the

different chains, heterodimers or the whole TCR-CD3 as such. To overcome these

problems, synthetic peptides corresponding to the intracellular domains of CD3δ and

CD3ε were synthesised. Crystallisation and NMR studies were performed in order to

determine the three-dimensional structures. Unfortunately, crystallisation experiments for

CD3δ only produced "sea urchin" type of crystals of poor quality and micro- or macro

seeding did not give diffracting crystals. Folding experiments using NMR show that the

synthetic peptides are primarily random coiled.
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Introduction
Synthetic peptides were synthesised corresponding to the cytoplasmic domains of

the CD3δ and CD3ε. The CD3δ is 44-mer, with a molecular weight and a calculated pI of

4995.38 Da and 6.93, respectively. The CD3ε is a 55-mer, with a molecular weight and a

pI of 6179.03 Da and 11.52, respectively. These intracellular domains are quite distinctive

in their charge. It is thought that the intracellular domains bind to form a heterodimer in

the TCR-CD3 complex.

Results
Crystallisation

In order to determine the three-dimensional structure of the intracellular domains

of CD3δ and CD3ε crystallisation experiments were performed. The peptides were

dissolved in water at various concentrations (2.5-25 mg ml-1). Different Hampton screens

were set up by mixing equal volumes of 1µl reservoir solution and protein solution.

Unfortunately, none of these conditions resulted in the formation of suitable crystals.

After several rounds of macro- and micro seeding for the CD3δ peptide, the best that was

obtained were "sea urchins" (Figure 2.8).

No set up for CD3ε peptide resulted in any crystal or sea urchin formation. The

CD3ε peptide has a high pI and Hampton screens are not available in the higher pH range

(around 11) so a screen was made in this pH range. Unfortunately this did also not initiate

any crystal formation. A possible explanation for the lack of crystal formation is that both

the peptides are (partially) unfolded.

Figure 2.8. Sea urchins of CD3δ intracellular
peptide (25mg/ml) in a hanging drop-vapour
experiment. The reservoir solution contains
1.2M ammonium sulphate at pH 5.5.
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Folding and binding studies on CD3δ and CD3ε peptides using NMR

In order to determine whether the synthetic peptides used in the crystallisation

experiments are folded, NMR experiments were performed. The synthetic peptides were

dissolved in water, at a concentration of approximately 1mM. The pH was adjusted to 5.6

and 6.2 for CD3δ and CD3ε, respectively. Of both intracellular peptides a 1D proton

NMR spectrum (Figure 2.9) was recorded at 298 K on a Bruker DMX-600. The spectra of

the single peptides show poor dispersion and narrow line width. Therefore it was

concluded that the peptides are primarily random coil.

After these experiments, the peptides were mixed and left for 30 minutes at room

temperature. A 1D proton NMR was recorded (Figure 2.9), the spectrum of the combined

peptides was a superimposition of the two spectra of the single peptides, leading to the

conclusion that no interaction or folding could by measured in this NMR experiment.

Therefore further experiments on these domains were abandoned.

Discussion and conclusion
Both the CD3δ and CD3ε synthetic peptides have no internal structure shown by

1D proton NMR and are therefore unable to form crystals. Mixing the two synthetic

peptides did not change the delta-positions of the peaks in the 1D proton NMR spectrum.

The combined spectrum is a superimposition of the two spectra of the single peptides,

therefore it was concluded that the peptides did not interact at the given experimental

conditions. Mixing the peptides does not result in folding of the individual peptides,

prohibiting significant interaction between the intracellular domains. Whether the lack of

folding and binding of the two peptides after mixing is caused by the absence of the

transmembrane and/or extracellular domains or by the fact that the single peptides were

primarily unfolded is unknown.
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Figure 2.9. 1D proton NMR of CD3δ and CD3ε intracellular synthetic peptides and the CD3δε
mix at 298K. Poor dispersion and narrow line width leading us to conclude that no interaction or
folding could by measured in this NMR experiment.
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The structure of the receptor-binding domain of the

bacteriophage T4 short tail fibre reveals a knitted trimeric

metal-binding fold
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Summary
Adsorption of T4 bacteriophage to the Escherichia coli host cell is mediated by six long

and six short tail fibres. After at least three long tail fibres have bound, short tail fibres

extend and bind irreversibly to the core region of the host cell lipo-polysaccharide (LPS),

serving as inextensible stays during penetration of the cell envelope by the tail tube. The

short tail fibres consist of a parallel, in-register, trimer of gene product 12 (gp12). X-ray

crystallography at 1.5 Å resolution of a protease-stable fragment of gp12 generated in the

presence of zinc chloride reveals the structure of the C-terminal receptor-binding domain.

It has a novel "knitted" fold, consisting of three extensively intertwined monomers. It

reveals a metal-binding site, containing a zinc ion coordinated by six histidine residues in

an octahedral conformation. We also suggest an LPS-binding region.
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Introduction
Bacteriophage T4 is a very efficient DNA injection machine [1], consisting of a

DNA-containing head, a double-tubed tail of which the outer tail-sheath is contractile, and

a base-plate to which six long tail fibres and six short tail fibres are attached. The long tail

fibres recognise the outer membrane protein C (OmpC) protein or LPS of E. coli B and

are responsible for the initial, reversible, attachment of the virion. After at least three long

tail fibres have bound, the baseplate changes conformation from the "hexagon" form to

the "star" form [2]. In the hexagon form, the short tail fibres are incorporated in the

baseplate in bent fashion, as shown by cryo-electron microscopy [3]. Upon conversion of

the baseplate to the star form, the short tail fibres extend and bind irreversibly to the core

region of the host cell LPS [4]. Here they form inextensible stays, allowing penetration of

the cell envelope by the baseplate "hub" and tail tube upon contraction of the outer tail-

sheath [3]. When gene product (gp12) is absent, baseplates spontaneously convert to the

star form [5] and 12- phages have the unusual property of contracting without releasing

their DNA upon reversibly adsorbing to cells [6].

Short tail fibres are composed of a single protein, gp12 [7] forming a parallel, in-

register, homo-trimer of 527 residues per subunit. They are attached to the baseplate via

their N-termini, while the C-terminal globular domain has been proposed to bind to the

bacterial host cell [8], although to our knowledge no mutation or deletion experiments

have been reported to prove this. Correct folding into trimers of gp12 requires the

chaperone protein gp57 [9]; gp12 trimers are incorporated into the baseplate as one of the

last steps, together with gp9 [10]. Gp12 resists dissociation by sodium dodecylsulphate

(SDS) at room temperature and monomerisation requires heating of the polypeptide

chains [11].

Previous structural studies by electron microscopy [8] show gp12 to form an

elongated trimeric complex with a slender shaft (24 nm x 4 nm) capped by an arrow-

shaped, more globular domain (11 nm x 6 nm). Estimates of its mass by scanning

transmission electron microscopy confirmed the trimeric nature of the protein. These

studies also show that the gp12 trimer is frequently bent roughly halfway its length, a

feature consistent with its folded-away state in the baseplate.

Previously a 33 kDa proteolytic fragment generated in the presence of EDTA [12]

was crystallised. This fragment consisted of residues 85-396 and 518-527. However, in

the crystal structure [13] residues 85-245 were invisible due to static disorder. The ordered
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residues, 246-396 and 518-527, revealed three new folding motifs. Residues 246-289 form

an N-terminal region, held together by intertwined strands and a central, mainly

hydrophobic core. Residues 290-327 form a central right-handed triple-stranded β-helix,

which is connected to the "collar" domain by three short α-helices (residues 333-341).

The collar is formed by three small globular domains, each containing amino acid residues

343-396 and 518-527 and consisting of six β-strands and an α-helix in a hitherto unseen

topology.

By omitting EDTA and adding divalent zinc ions during proteolysis we could

ensure that amino acids 397-517 remained part of the complex upon limited proteolysis,

resulting in a 45 kDa fragment. Here, we report the structure of this C-terminal domain at

1.5 Å resolution and show that it is the receptor-binding domain.

Results and Discussion

Preparation of a proteolytic 45 kDa fragment of the bacteriophage T4 short

tail fibre
The gp12 full-length protein was co-expressed with its chaperone gp57 [9] and

purified. The purified protein was incubated at 56 °C and subsequently treated with

proteases in the presence of divalent zinc ions. SDS-PAGE (not shown) revealed that a

fragment of around 45 kDa was obtained, instead of a 33 kDa fragment that is generated

in the presence of EDTA [12].  N-terminal sequence analysis (results not shown) showed

that both the 45 kDa and 33 kDa fragment start at residue Leu85. The 33 kDa fragment,

however, lacks amino acid residues 397-517. Inclusion of these residues leads to a

predicted mass of 47072 Da; therefore, we assumed that the 45 kDa fragment contains

amino acid residues 85-527 of native gp12, without the internal deletion of residues 397-

517 of the 33 kDa fragment.

Crystallisation and structure determination
Crystals of the 45 kDa fragment of gp12 with unit cell dimensions of 50.78 x 50.78

x 435.6 Å, grew under the same conditions as those of the 33 kDa fragment [12]. Both

proteins crystallised in space group P321 with similar short a and b cell axes. However,

the long c cell axis of the 45 kDa fragment is substantially larger, the crystal contacts are
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different and the crystals are not isomorphous. The crystals contain one molecule in the

asymmetric unit (i.e. one-third of a trimer), have a solvent content of 64 % (v/v) and a

Wilson temperature factor of 14 Å2.

Molecular replacement trials using the known structure of residues 246-396 plus

518-527 of the 33 kDa fragment (PDB-code 1H6W [13]) were not successful, so two

datasets of a single-site mercury derivative were collected and the structure was

determined by single isomorphous replacement using the anomalous signal. Both

derivative crystals had virtually identical mercury content, and although the structure

could most likely have been elucidated with just one derivative dataset, we decided to

include both as they were of similar quality (see Table 3.1). The resulting map showed

good electron density for residues 330-527 (see Figure 3.1), but not for residues 85-329.

Nevertheless, we confirmed residues 85-329 to be present in the crystal by SDS-PAGE of

crystals washed in mother liquor (results not shown). As we knew the structure of residues

246-334 from the crystal structure of the 33 kDa fragment of gp12, we included these in

the model in a refinement trial. However, even adding just five extra residues to the N-

terminus of the model led to lower agreement with the measured data. As none of the

residues 85-329 could be refined satisfactorily, they were probably not well ordered in the

crystal.

The Hg-derivatised amino acid was found to be Cys372. In the 33 kDa fragment

both Cys362 and Cys372 were derivatised, but in the 45 kDa fragment solvent access to

Cys362 appeared to be prevented by the extra domain consisting of residues 397-517.

Having solved the structure, we repeated molecular replacement trials using just residues

330-397 and 518-527 from the 33 kDa fragment structure [13]. This led to the correct

solution, so with hindsight the structure could also have been determined by molecular

replacement, had we guessed that in crystals of the 45 kDa fragment residues up to 329

were disordered.  The final model of the monomer contains 198 residues of 443 present in

the asymmetric unit. The final model had good stereochemistry and low R-factors (Table

3.1) and contains 1560 protein atoms, a zinc ion on the threefold axis, two sulphate ions,

one citric acid molecule and 512 water molecules in the asymmetric unit (Table 3.1).
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Figure 3.1. Structure of the ordered region of the proteolytic fragment of gp12 generated in the
presence of zinc ions. (a) Stereo-view of part of the crystallographic electron density. Amino
acids Gly397 (top), Leu398, Phe399, Val400, Arg401, Gly402, Ser403 and Gly404 (bottom) are
shown in ball-and-stick representation surrounded by the final 2Fo - Fc electron density map
contoured at 1.5σ. (b) Stereo-view of the structure. In the blue monomer, every 20th residue is
labelled. The other monomers are coloured red en green. The N-terminal "neck" is at the bottom,
the "collar" domain in the middle and the C-terminal receptor-binding domain at the top. Figures
1, 2, 4 and 6 were prepared with BOBSCRIPT [14], which is based on MOLSCRIPT [15]. For a
colour picture see appendix A.
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Table 3.1. Crystallographic data and refinement statistics

                                         Native                           Derivative set1                 Derivative set2
A. Data collection
Beam-line ESRF ID29 ESRF BM14 ESRF BM14
Wavelength (Å) 0.946 0.867 0.867
Detector ADSC Q4R 130 mm MAR CCD 130 mm MAR CCD
Resolution range (Å) 15.0-1.5 99-2.74 99-2.73

(1.58-1.50)a (2.83-2.74) (2.83-2.73)
Multiplicity 6.6 (3.1) 5.6 (3.3) 6.1 (2.2)
Completeness (%) 89.8 (53.3)b 98.0 (90.4) 96.6 (78.0)
Rsymc (%) 10.6 (28.4) 8.6 (13.1) 9.9 (18.9)

B. Phasing
Number of Hg-sites 1 1
Phasing powerd,f (centric/acentric) 2.70 / 1.61 2.61 / 1.57
Rcullise,f (centric/acentric) 0.53 / 0.57 0.54 / 0.59

C. Refinement
Resolution range (Å) 15.0-1.50 (1.58-1.50)
No. of reflections used in refinement 94341 (6339)
No. of reflections used for R-free 1922 (116)
R-factorg 0.143 (0.20)
R-free 0.152 (0.22)
No. of protein / water atoms 1560 / 512
Average B-value protein / solvent (Å2) 16.8 / 42.7
Ramachandran statisticsh (%) 84.9 / 15.1 / 0.0 / 0.0
R.m.s. deviationsi (bonds, Å / angles, °) 0.018 / 1.6

a Values in parentheses are for the highest resolution bin, where applicable.
b Data in the higher resolution shell are less complete because of data collection on a square
detector.
c Rsym = Σh Σi |Ihi - <Ih>| / Σh Σi | Ihi |, where Ihi is the intensity of the ith measurement of the same
reflection and <Ih> is the mean observed intensity for that reflection.
d Phasing power = ( |FH| / ||FPH| - |FP + FH|| ), where FH, FPH and FP are the heavy atom, derivative
and native structure factors, respectively.
e Rcullis = ( ||FPH| - |FP + FH|| ) / ( ||FPH| - |FP|| ).
f Phasing statistics were produced with MLPHARE [16].
g R = Σ||Fobs(hkl) | - |Fcalc(hkl) || / Σ|Fobs(hkl) |.
h According to the program PROCHECK [17]. The percentages are indicated of residues in the most
favoured, additionally allowed, generously allowed and disallowed regions of the Ramachandran
plot, respectively.
i Estimates provided by the program REFMAC [18].   
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Electron microscopy of the 45 kDa fragment of gp12
To further characterise the crystallised 45 kDa fragment, we performed electron

microscopy and three-dimensional reconstruction on negatively stained protein from

dissolved crystals (see Figure 3.2(a)) and compared the resulting three-dimensional maps

to those of full-length protein and the 33 kDa fragment obtained before [12]. This showed

that, compared with the full-length protein, the 45 kDa fragment only misses an N-

terminal region, while the 33 kDa fragment misses an additional C-terminal domain

(Figure 3.2). We did not attempt a very precise and high-resolution reconstruction as we

already had the crystal structure. However, the reconstruction was of sufficient quality to

assign the polarity of the fibre without ambiguity and to place the atomic model in the

electron microscopy map, even if some pseudo-symmetrisation may have taken place

along the long axis of the fibre.

Previously, the C-terminal domain was shown to have an arrow-shaped form [8],

but in our electron microscopy reconstruction it has a more bi-lobed peanut shape. The bi-

lobed shape is also observed in our previous reconstruction of full-length gp12 and is

probably due to some internal flexibility, which smeared out the density at both ends of

the particles. A space-filling representation of our current crystal structure shows a shape

in between these two extremes: a bi-lobed shape in which the extreme lobe is more

slender. The flexibility of the 45 kDa fragment appears to be more pronounced than that

of the 33 kDa fragment and full-length protein, also leading to the disappearance of some

ordered density at the N-terminal side compared to the 33 kDa fragment.

Bacterial cell binding of the 45 kDa and 33 kDa fragment
As it is generally assumed that the C-terminal domain is involved in LPS-binding,

we investigated whether the 33 kDa and 45 kDa fragments behaved differently in binding

to bacterial cells. To measure cell-binding activity, proteins were immobilised in micro-

plate wells and were allowed to bind to bacteria. Unbound bacteria were washed off and

bound bacteria were detected by their intrinsic beta-galactosidase activity (Figure 3.3).

Full length gp12 and the 45 kDa fragment were both capable of binding to bacteria, while

the 33 kDa fragment did not bind, showing that the receptor-binding domain was absent

from the 33 kDa fragment but present in the 45 kDa fragment. Full-length gp12 appeared

more active than the 45 kDa fragment in binding, which may be explained by the

hydrophobic virus-binding N-terminus of full length gp12. The hydrophobic parts having
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a higher affinity for the micro-plate wells may have led to more C-terminal domains being

exposed to the solution.

In summary, the activity data indicated that the most important receptor-binding

residues are contained in the C-terminal region removed upon proteolysis in the presence

of EDTA but are retained upon proteolysis in the presence of zinc. This region, containing

residues 397-517, are therefore referred to as the receptor-binding domain.

Figure 3.2. Crystal structures fitted into their corresponding electron microscopy maps. (a) Part of
a field of negatively stained 45 kDa fragment fibres from a dissolved crystal. The size of the field is
75 x 75 nm. (b) Averaged three-dimensional negative stain electron microscopy map of the 33 kDa
fragment with the structure of ordered region of the 33 kDa fragment fitted into it [9]. (c) Averaged
three-dimensional negative stain electron microscopy map of the 45 kDa fragment with the
structure of ordered region fitted into it (this work). (d) Averaged three-dimensional negative stain
electron microscopy map of full-length gp12 with a composite structure of the ordered regions of
the 33 and 45 kDa fragments fitted into it. The composite structure was constructed by
superimposing residues 340-395 and 520-527, present in both the 33 kDa and 45 kDa fragments.
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Overview of the structure
The structure can be divided into two parts, the part already present in the

previously reported structure of the 33 kDa fragment [13], and the previously unresolved

receptor-binding domain (Figures 3.2(c) and 3.4). The first can be further sub-divided into

a "neck" and "collar", while the latter can be further sub-divided into a "head" and

"bonnet" (see below). We refer to the triple alpha-helix of residues 333-341 as the neck,

connecting the body of the fibre (unresolved in this structure) to its C-terminal collar and

receptor-binding domains. Amino acid residues 342-396 plus 518-527 form the collar,

whilst residues 397-517 form the extensively intertwined receptor-binding domain (Figure

3.4).

The surface area of the monomer in our structure is 16800 Å2, of which 9900 Å2

(58 %) is buried in the trimer. This large proportion of buried surface explained the

extraordinary stability of the trimer, which does not dissociate into monomers in SDS-

PAGE  without boiling (for more information on the stability of gp12 see ref. 14).

The collar domain
The collar domain is a small globular domain containing six beta-strands and an

alpha-helix (bottom of Figure 3.4(b)) with a weak structural homology with bacteriophage

T4 gp11 [19] as described before [13]. The six beta-strands form a sandwich of two three-

Figure 3.3. Assay of bacterial cell-binding of gp12 and its proteolytic fragments. Shown is
fluorescence caused by hydrolysis of methylumbelliferyl-beta-galactoside due to E. coli
bacteria bound to immobilised gp12 at the concentrations indicated on the x-axis. See Materials
and Methods for further details. Circles, full-length gp12; triangles, 33 kDa fragment missing
N-terminal and C-terminal domains and squares, 45 kDa fragments missing only N-terminal
domains.
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stranded anti-parallel beta-sheets (bottom of Figure 3.4(c)). When the main-chain atoms

of the collar domain (residues 342-395 and 520-527) from the current structure were

superimposed on those of the smaller 33 kDa fragment, they overlapped very well with a

root-mean-square displacement of 0.5 Å for the monomer and 0.7 Å for the trimer.

Differences of more than one Å were limited to a few residues at the top of the collar.

Presumably, the absence of the receptor-binding domain in the smaller fragment was the

cause of these differences. Of each monomer in the collar domain, a relatively modest

1200 Å2 (27%) of its surface area is buried. The collar domain is the only domain in

which the three monomers are not intertwined. This observation suggests that folding of

the T4 short tail fibre may start with this domain (see below).

Legend to Figure 3.4 which is on the next page
Figure 3.4. Structure of the ordered region of the 45 kDa fragment. (a) Space-filling model of the
structure illustrating the extensive intertwining in the receptor-binding domain. (b) Ribbon
diagram in the same orientation as (a). At the bottom the neck region (the alpha-helical residues
336-339), in the middle the collar region (residues 340-396 plus 518-527) and at the top the
metal-containing receptor-binding domain (residues 397-517), divided into head and bonnet as
described in the text. (c) Topology diagram. Alpha-helices are marked I, II and III, beta-strands A
to Q (excluding I) and Z. Begin and end residues of the secondary structure elements are
numbered in one of the monomers (not always the same one to avoid overlaps). Grey boxes
surround the six-stranded beta-barrel domain and the other, smaller beta-sheets. In the three-
dimensional structure, the blue loops marked with a * connect, as do those marked **. With a
small thought experiment the reader can convince him- or herself that the structure is knitted
rather than knotted: move the green JKL-strands to the left under the red OP-strands, then lift to
the right over the red OP-strands. Do this for all three monomers and the "knit" is resolved. For
colour picture see appendix A.
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The receptor-binding domain: head and bonnet
The receptor-binding domain as a whole can be compared to a flower bud with 12

petals in 3-fold symmetry. At the bottom, residues 406-432 form the first petal, just above

that residues 489-504 form a second petal, above that residues 450-470 a third and at the

top a fourth petal consisting of residues 470-480 is present. The three JQF beta-sheets

(Figure 3.4(b) and (c)) form a base and the rest of the amino acids are all in more or less

extended conformation at the centre of the trimer (Figure 3.4). In the receptor-binding

domain, the strands are knitted together in a highly complex fashion and 7400 Å2 (60%)

of the surface area of the monomer is buried in the trimer. The receptor-binding domain

can be sub-divided into "head" (residues 397-446 and 487-517) and "bonnet" sub-domains

(residues 447-486), with a metal-binding site on the border between the two.

The receptor-binding domain has hardly any regular secondary structure elements

like alpha-helices or beta-stands, despite 90% of its main chain torsion angles being in

most favoured regions of the Ramachandran plot and none being in the generously

allowed or disallowed regions (according to PROCHECK [17]). Many inter-domain

hydrogen bonds (main-chain - main-chain, main-chain - side-chain and side-chain - side-

chain) stabilise the trimeric protein structure. At the top of the head domain, in the central

region of the trimer, a metal ion, presumably zinc, is octahedrally coordinated by Nε2 of

six histidine residues (His445 and His447 from each monomer).

Residues 397-403 form an extended strand transverse to the fibre axis, contributing

Leu398, Phe399 and Val400 to the hydrophobic core and Arg401 and Ser403 to the

outside of the molecule. The strand is followed by a long "loop" (404-432), buffeting

against the core of the molecule (the first petal of the flower bud). In some respects the

loop resembles a beta-hairpin, but regular beta-strand contacts are rare and there are

deviations and inserted structures, like a distorted helix (amino acids 406-414). N404 and

O404 form hydrogen bonds with O432 and N431, respectively, while hydrogen bonds are

also present between O414 and N426, O416 and N424 and N418 and O422. Residues 418

to 421 form a non-classical reverse turn. At the end of this petal is another reverse turn,

with Gly435 at position i + 3. This turn is followed by an extended region going upwards,

consisting of residues 436-450 and containing the metal-binding histidine residues 445

and 447 (see below).

Just above the metal-binding site, residues 447-450 together with 482-486 form a

highly distorted anti-parallel beta-barrel-like structure (the OPOPOP-sheet) in the trimer;
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and together with the connecting regions (451-481) they form the bonnet. Main-chain -

main-chain hydrogen bonds are found between the main-chain oxygen of residue 447 and

the main-chain nitrogen of residue 484 of a second subunit, between N449 and O482 of

the same second subunit and between O448 and N485 of a third subunit and between

N450 and O483 of the same third subunit. The residues above this structure are knotted

together, but because they are de-knotted again in the domain underneath, overall the

trimer is knitted rather than knotted (see Figure 3.4(c)). Residues 450-470 form a loop

capped by a reverse turn (458-461), encircling residues 478-484 of a neighbouring

monomer.

Residues 470-472 form a small two-stranded beta-sheet with residues 474-476 of a

neighbouring monomer. Inter-chain hydrogen bonds are present between N470 and O476,

O470 and N474 and N472 and O474. The residues in between, Arg472 and Lys473, form

short loops at the top of the molecule, making the top positively charged (see below).

Residues 480-488 form an extended strand downwards at an angle of around 45°,

traversing near the centre of the trimer (Thr484), culminating in the second petal, a loop

of residues 489-504. Residues 492-496 form a small distorted helix in this loop. The

following residues (506-517) meander downwards towards the collar domain, encircling

amino acids 439-443 of a neighbouring monomer.

The central trimer axis is mainly hydrophobic, in the collar domain with

contributions from Val331, Val332, Ile341, Met347 and Met348 (from bottom to top). In

the receptor-binding domain amino acids projecting side chains towards the central trimer

axis are Phe399, Pro514, Thr512, His445, His447 (the latter two forming the metal-

binding site), Thr484, Phe451, Thr471 and Lys472, again from bottom to top.
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The LPS-binding site
The binding site for the LPS core region is currently unknown, although our

proteolysis experiments show that it is contained in the domain consisting of residues 397-

517. Based on the chemical nature of LPS core, we can make some suggestions. Figure

3.5(a) shows the primary structure of the LPS core region, consisting of sugar residues

with attached phosphate groups. We can assume phosphate groups bind to positive

charges on the protein surface while the sugars bind to aromatic side-chains [20-23].

Figure 3.5(b) shows the electronic surface potential of the protein, while in 5(c) the

aromatic side-chains are mapped on the surface. The trimer in general, and its top in

particular, is positively charged, which could contribute to its affinity for the negatively

charged E. coli membrane. Symmetrically along the sides of the trimer there are three

grooves which are flanked by, or contain positively charged residues and aromatic amino

acids. Two solvent molecules, a citric acid and sulphate ion, form salt bridges with

Arg465 and Arg464, respectively, perhaps mimicking LPS core phosphate groups. We

suggest that each of these grooves may bind an LPS molecule, analogous to the

adenovirus fibre binding to three receptor molecules at once [24]. This would lead to very

tight binding and a very low off-rate, especially if we consider that six short fibres can

bind simultaneously to the E. coli membrane, each through three receptor binding sites.

This also would fit to the observation that binding of the short fibres to the bacterial cell in

the second host recognition step renders the modus from a reversible to an irreversible (or

at least quasi-irreversible) attachment of the phage [1]. The sequence of the homologous

bacteriophage T4-like strain AR1 [25] has 64 % overall and 63 % receptor-binding

domain identity and provides additional clues. Assuming the short tail fibre of this phage

also binds to the same LPS core molecule, we could eliminate some residues from

consideration, as their basic or aromatic character is not conserved in AR1 gp12. This

would leave the basic putative LPS-binding residues Lys446, Lys422, Arg504, Arg424,

Arg513 and the aromatics Tyr454, Phe451, Trp477, Phe468, Phe460, Phe420, Tyr488,

Tyr444, His408 and Tyr433. The basic residues cluster in a region behind the bottom

petal, suggesting it may function as a kind of LPS clamp. The putative aromatic receptor-

binding residues are more scattered (Figure 3.5(b) and (c)).
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Of course, we cannot rule out other amino acids being important for binding, a

conformational change taking place upon LPS core binding or an alternate mode of

receptor binding by the short tail fibre of strain AR1. Nevertheless, the suggested residues

are a starting point for site-directed mutagenesis and / or other biochemical experiments to

elucidate the location of the receptor-binding site. We are pursuing crystal soaking and co-

crystallisation experiments with LPS core analogues to obtain structural information, but

so far these have not yielded useful data (Chapter 3.2).

Figure 3.5. Possible LPS binding residues. (a) Primary structure of the LPS of E. coli B core
region plus lipid A. Glc stands for glucose, GlcN for glucosamine, Hep for heptose, P for ortho-
phosphate and KDO for 2-keto-3-deoxyoctonate. (b) Electronic surface potential diagram of the
trimer. Positive charges are marked in blue, negative in red. Putative receptor binding basic amino
acids (see text) are labelled. Please note that although the five labelled residues appear to cluster in
two groups, they are in fact all five very close to each other due to the 3-fold symmetry. (c) Surface
diagram showing in green aromatic side-chains that may be involved in LPS binding. Labels
identify the amino acids. Figures 5 (b) and (c) were made with the program GRASP [26] with the
protein in the same orientation for both. The protein is shown tilted forwards to afford a better view
of the top of the trimer. Residues are labelled by their one-letter amino acid code. For colour
picture see appendix A.
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The metal
In the centre of the receptor-binding domain, on the 3-fold axis, we found a metal

ion, octahedrally coordinated by the Nε2 of His445 and His447 from each monomer

(Figure 3.6). An X-ray fluorescence scan of the crystal used for data collection at beam-

line ID29 of the ESRF confirmed the metal ion to be zinc, which was anticipated, as zinc

chloride was used in the preparation of the 45 kDa proteolytic fragment (see Material and

Methods). The zinc ion inside the gp12 trimer confirms data of Zorzopulos & Kozloff

[27], indicating gp12 to be a zinc metallo-protein. They estimated gp12 to contain one

zinc atom per monomer. In our structure, we found one zinc atom per trimer (although we

cannot exclude other zinc binding sites in the parts of gp12 missing from our structure).

Further experiments are required to determine the gp12-zinc stoichiometry and to show

whether other metals can substitute for zinc in the protein. Preliminary results suggested

that divalent calcium, manganese and copper ions can substitute for zinc ions in the

proteolysis experiments to obtain the 45 kDa fragment, while magnesium ions led to a 33

kDa fragment similar to the one obtained with EDTA (Thomassen et al., unpublished

results).

The Zn ion is well-ordered with a temperature factor of 7 Å2 and also the

coordinating residues are present in well-defined conformations with temperature factors

of between 6 and 8 Å2. The refined distances of the zinc ion to the Nε2 of His445 and

His447 are 2.22 and 2.25 Å, respectively. These distances are larger than found normally

for zinc coordination by histidine [28]. A possible explanation lies in the octahedral

coordination of the zinc in our structure. In protein structures solved so far, zinc is

coordinated tetrahedrally [28]. The His445 Nε2 - zinc - His445 Nε2 angles are around

90.5°, while His447 Nε2 - zinc - His447 Nε2 angles are around 89°. The His445 Nε2 -

zinc - His445 Nε2 angles are around 87, 94 and 175°, i.e. very close to perfect octahedral

coordination. There is no evidence for alternate conformations of the zinc ion or its

ligands in the electron density.

As the bacteriophage T4 short tail fibre does not appear to have enzymatic activity,

unlike the P22 tailspike [29], the role of the zinc ion is probably purely structural. Zinc

clearly increases the stability of the C-terminal part of gp12 against proteases, but may

also increase the stability of the C terminus in general.
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Comparison with known protein structures
A search of the protein structure database using the program DALI [30] with the

structure of amino acids 397-517 did not show up any related structure, while the collar

domain has some limited structural homology with the central domain of T4 gp11 [13].

There are, however, some proteins of unknown structure which show limited sequence

similarity. A BLAST search [31] using residues 330-527 found the collar region to be a

putative conserved domain in a microcystin dependent protein (mdpB), of which the

function is not known [32].  We also discovered similarities with several lambda prophage

side tail fibre protein homologues from the E. coli genome [33] and the Rhizobium protein

RhiB, a protein proposed to be involved in interactions of Rhizobium with its plant host

[34]. In all cases most homology was with the collar domain, although in the case of RhiB

a putative His-Xaa-His (His-Ala-His in this case) metal-binding "motif" could be

identified C-terminal to the homologous region. As the functions of these proteins remain

to be fully elucidated, the possibility that they are just inserted phage genes cannot be

ruled out.

Homology was also detected with the bacteriophage long tail fibre protein gp37

[35], which, apart from binding to OmpC, also binds to E. coli B LPS [1]. Again, most

homology was found within the collar domain, with several His-Xaa-His motifs C-

terminal to the homologous sequence. Further homologues that turned up were fibre

Figure 3.6. The zinc ion in the centre of the receptor-binding domain. Shown are the main chains
of the three monomers (residues 443-448 in each case) in yellow, red and green and the side-
chains of the ligating histidine residues. The coordination is octahedral with a Zn-His445 Nε2
distance of 2.22 Å and a Zn-His447 Nε2 distance of 2.25 Å. For angles see the text. (a) Side
view. (b) View from the top down the three-fold axis. (c) View down one of the four-fold axes of
the octahedron formed by the Nε2 atoms of the six ligating histidine residues. For colour picture
see Appendix A.
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proteins from other bacteriophages; some of these proteins also contained His-Xaa-His

sequences C-terminal to their putative collar domains. Further biochemical and structural

experiments will reveal whether these homologues also contain metal ions.

The disordered region
The inability to visualise residues 85-329 remained puzzling, but was also

observed for the smaller 33 kDa fragment [13], in which residues 85-245 are invisible.

Furthermore, adding the known structure of residues 246-329 to the model led to a worse

model, indicating the region was really disordered, or, but this we consider unlikely, has a

different structure in the larger fragment. The nature of the disorder is unknown, but the 3-

fold symmetry of the protein suggests that perhaps crystal contacts with the next layer

may be made in three different, symmetrically equivalent, ways. As the disordered,

fibrous region of the structure is thinner than the globular C-terminal collar and receptor-

binding domains (see Figure 3.2), there may be enough space within the crystal lattice for

these contacts to be distributed randomly around the three possibilities, smearing out

crystallographic electron density. To visualise the fibrous domains at high resolution, it

may be necessary to crystallise artificial constructs in which the globular domains are

replaced by a smaller trimerisation domain like the bacteriophage T4 fibritin "foldon"

[36].

Folding of the C-terminal domain of gp12
From the structure, it seems probable that the collar domain may act as a folding

nucleus, as it is the only domain in which the three monomers do not intertwine. Upon

trimerisation of this domain, the remaining C-terminal receptor-binding domain and the

N-terminal domains can then intertwine. As the zinc ion occupies a central position in the

receptor-binding domain, it seems likely zinc (or other metal) ions play a role in its

folding, although successful refolding experiments were also done in presence of 1 mM

EDTA [9]. Perhaps gp12 competed effectively with EDTA for zinc. In vivo, the molecular

chaperone gp57 is necessary for folding of gp12 (as well as for the long tail fibre proteins

gp34 and gp37), although the mechanism for this chaperone action is not known. Data

from refolding experiments suggests that addition of gp57 suppresses unproductive side-

reactions of refolding gp12. Based on the structural data presented here, we would suggest
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gp57 may act in keeping the unfolded gp12 monomers apart until the collar domains

trimerise, preventing aggregation.

Domain swapping in the receptor-binding domain?
The intertwining or knitting of the receptor-binding domain (residues 397-517)

could also be considered as a particular case of three-dimensional "domain swapping"

(reviewed by Rousseau et al. [37] and Liu et al. [38]), in which residues 399-472,

containing beta-strands F-M and alpha-helix III have been "swapped" to the neighbouring

monomer (or, which is equivalent, where residues 474-519, containing beta-strands N-Q,

have swapped to the neighbour on the other side), leading to cyclic trimerisation.

However, we do not know of a homologous protein where the receptor-binding

domain is a monomer, or of a homologous bacteriophage short tail fibre where the

receptor-binding domain is not intertwined. Also, the extent of inter-monomer contacts in

the receptor-binding domain and in the N-terminal and triple-stranded beta-helix domains

makes it unlikely that the monomer exists other than as a very unstable folding

intermediate. Therefore, we do not know if the domain evolved as an intertwined domain

from its origins or whether at some time during its evolution three-dimensional domain

swapping took place. In this respect it is interesting to note that the collar domain shows

some limited structural homology to a domain of gp11 [19] (explained by van Raaij et al.

[13]), the protein to which it binds in the baseplate, raising the possibility that gp12

evolved from gp11, which does not show domain swapping.

Perspectives
The structure presented in this thesis is an important step towards understanding

the molecular details of receptor-binding of bacteriophage T4 and suggests experiments to

determine the receptor-binding site and mechanism. It also reveals a surprising new fold.

The as yet unsolved structures of the bacteriophage T4 long tail fibre proteins and fibres

of other viruses may turn up more surprises.
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Material and Methods

Expression and purification of gp12
For expression of full length gp12, the plasmid pT4g57g12  was transformed into

E. coli strain JM109(DE3) (Promega) and cultures (total volume 4 litre) were grown to

A600 nm = 0.6-1.0. Cultures were cooled to 22 °C or below, expression was induced by

addition of 1 mM IPTG and carried out overnight at 16 °C. Cells were harvested by

centrifugation, resuspended in 100 ml of cold TE-buffer (40 mM Tris-HCl pH 8.0, 10 mM

EDTA) containing 0.2 M ammonium sulphate and lysed using a French press. After

centrifugation, ammonium sulphate was added to the soluble fraction to 0.8 M and some

impurities were pelleted by centrifugation.

The supernatant was brought to 1.4 M ammonium sulphate, precipitating gp12.

After centrifugation, the gp12 precipitate was re-dissolved in 50 ml of TE-buffer

containing 0.8 M ammonium sulphate and loaded onto a 75 ml high substitution phenyl

Sepharose column (Pharmacia), which was equilibrated with the same buffer. The protein

was eluted with a gradient of 0.8 M to 0 M ammonium sulphate in TE-buffer, gp12 elutes

at around 200 mM ammonium sulphate. The gp12 containing fractions were pooled (total

volume 120 ml), ammonium sulphate was added to a final concentration of 1.8 M,

precipitating gp12. The precipitated gp12 was stored as a suspension at 4 °C.

Proteolysis experiments
The precipitated gp12 in 1.8 M ammonium sulphate was pelleted by centrifugation

and re-dissolved in 20 ml of HN-buffer [10 mM N-(2-hydroxyethyl)piperazine-N’-(2-

ethane) sulphonic acid-sodium hydroxide, 150 mM sodium chloride, pH 7.4] containing

10 mM zinc chloride. The sample was incubated for 30 minutes at 56 °C and cooled to 37

°C, 10 mg trypsin and 10 mg chymotrypsin powder (Sigma) were added and the sample

was incubated for 20 minutes at 37 °C. The heat and trypsin/chymotrypsin treatment was

then repeated. The sample was purified by gel-filtration on a Pharmacia Sephacryl S200

column which was equilibrated with TE-buffer containing 200 mM sodium chloride, the

fractions that contained the 45 kDa fragment were pooled (total volume 37 ml),

precipitated with ammonium sulphate (final concentration 1.8 M) and stored at 4 °C.
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Electron microscopy
Electron microscopy of the 33 kDa fragment and full-length gp12 has been

described [12]. Micrographs of 45 kDa fragment from crystals dissolved in HN-buffer

were taken the same way; the protein at a concentration of about 0.1 mg/ml was

negatively stained with sodium silicotungstate at pH 7.0. The bending of the 45 kDa fibre

showed more variation than for the 33 kDa fragment or the full-length gp12. The three

best images of the sample were digitised on Zeiss scanner (Photoscan TD) with a pixel

size of 14 µm (3.5 Å at the sample scale). Six hundred particles were manually selected

from the corresponding images and boxed into 128 x 128 pixels square boxes using

Ximdisp [16]. All particles were band-pass filtered between 200 and 25 Å without

contrast transfer function correction and then normalised to the same mean and standard

deviation. Processing was done using the SPIDER image-processing package [39]. We

generated a starting model by back-projecting one fibre and by applying the known three-

fold symmetry along the axis of the fibre. This model was re-projected along the axis

perpendicular to the three-fold axis every 15 degrees covering the asymmetric unit (120°).

The raw images were aligned against the re-projections by cross-correlation and then

averaged inside their corresponding image classes. The eight class averages were then

used to calculate a new three-dimensional reconstruction of the fibre by back projection.

After 20 cycles of this procedure, the reconstruction parameters were stable. The

resolution of the final reconstruction was estimated by Fourier shell correlation to be

around 45 Å.

Crystal structures were fitted into the averaged electron microscopy maps using the

fast Fourier transform accelerated six-dimensional exhaustive search module (COLORES)

of the program SITUS [40]; default values for all parameters were used.

Bacterial cell binding assay
To generate the 33 kDa fragment for cell-binding analysis, limited proteolysis of

gp12 (1 ml) was performed in the presence of 10 mM EDTA as described [12] at 37 °C

after partial unfolding at 56 °C by adding trypsin (80 µl of a 10 mg/ml solution). After a

second trypsin addition to achieve homogenous proteolysis, a sample of the reaction

mixture was analysed using SDS-PAGE. The 45 kDa fragment was generated the same

way, but in presence of 10 mM zinc chloride and absence of EDTA.
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The 33 kDa and 45 kDa fragments were subsequently purified by gel filtration

chromatography on a Superdex 75 preparation grade matrix (Amersham Biosciences,

Uppsala, Sweden) using PBS-buffer (10 mM sodium phosphate pH 7.4; 150 mM sodium

chloride). Fractions containing the 33 kDa and 45 kDa fragments were analysed using

SDS-PAGE, pooled and concentrated by ammonium sulphate precipitation as described

above.

To analyse the bacteria-binding capabilities of the 33 kDa and 45 kDa fragments in

comparison to native gp12, a cell binding assay was performed. Various amounts of the

proteins in 100 µl PBS-buffer were immobilised in wells of micro-plates (Nunc Maxisorb

Fluorescence, Nunc, Roskilde, Denmark) by passive adsorption for 12 h at 37 °C. Excess

material was removed by washing the wells three times with 200 µl of PBS. Bound

protein was measured by anti-p12 rabbit antibody (kindly provided by York-Dieter

Stierhof and Ulf Henning, Max-Planck-Institut für Biologie, Tübingen) and anti-rabbit

IgG-alkaline phosphatase conjugate (Sigma, St. Louis MO, USA). For cell-binding

assays, wells were incubated with 100 µl of a tenfold diluted, IPTG-induced stationary

culture of E. coli D21. After incubation for one hour at 25 °C unbound bacteria were

removed by washing three times with 200 µl PBS supplemented with 0.5 % Tween 20

(Sigma, St. Louis MO, USA). Bound bacteria were detected by measuring their intrinsic

beta-galactosidase activity with the fluorescence substrate methylumbelliferyl-beta-

galacoside (Sigma, St. Louis MO, USA) as described by Davies et al. [41].

Crystallisation
The ammonium sulphate-precipitated 45 kDa fragment was re-dissolved in HN-

buffer to a final concentration of 10-20 mg/ml. Protein concentrations were determined

using UV absorption measurements at 280 nm; the absorption of a 1 mg/ml solution of

gp12 or its proteolytic 45 kDa fragment was assumed to be 1.0 at a path-length of 1 cm.

Crystals of the fragment were obtained by vapour diffusion against reservoirs containing

15-35 % (v/v) tertiary butanol buffered with 100 mM sodium citrate at pH 5.6 and in the

presence of 0-10 % (v/v) glycerol. Single crystals of up to 0.1 x 0.1 x 0.5 mm were

obtained. Crystals were transferred to 10 % (v/v) glycerol in crystallisation buffer for data

collection if necessary.
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Crystallographic data collection and processing.
Native data were collected on beam-line ID29 at a wavelength of 0.946 Å at the

European Synchrotron Radiation Facility (ESRF). The crystal was flash-frozen and kept at

100 K during data collection. The crystal had a mosaic spread of 0.255°. The total rotation

angle was 180° (360 images of 0.5°). Reflections were integrated with the programme

MOSFLM [42] and processed using programs of the CCP4 suite [43]. Measurements

differing more than 6 standard deviations from the weighted mean were rejected (180 of

629124 measurements or 0.03 %). For data statistics see Table 3.1. For collection of

derivative data, crystals were soaked overnight in methylmercury acetate. Datasets to 2.8

Å resolution of two crystals soaked in methylmercury chloride were measured at the

BM14-UK MAD beam-line at the ESRF at a wavelength of 0.867 Å (Table 3.1). Data of

the derivative data was processed using HKL2000 [44]; the statistics can also be found in

Table 3.1.

Structure solution and refinement
One mercury site was identified by the SOLVE programme [45], using data

between 20 and 2.8 Å. The position, occupancy and temperature factor of the sites were

refined and phasing was done also using SOLVE. Solvent flattening and automated

building of a partial model proceeded using RESOLVE [46] and data between 20 Å and

2.2 Å. When input into the ARP-WARP auto-trace mode [47] using data to 1.5 Å

resolution, a model resulted containing residues 335 to 526. Rebuilding of the model and

addition of extra amino acid residues (330-334 and 527) was done with O [48].

Refinement was done using the REFMAC programme [18]. Water molecules were built

using ARP [49].

Coordinates. Coordinates and structure factors have been deposited in the Protein Data

Bank (accession codes 1OCY and R1OCYSF, respectively).
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3.2

Crystallisation and preliminary crystallographic studies of a

new crystal form of the bacteriophage T4 short tail fibre

Summary
Six long and six short tail fibres mediate adsorption of T4 bacteriophage to the

Escherichia coli host cell. After at least three long tail fibres have bound, short tail fibres

extend and bind irreversibly to the core region of the host cell lipo-polysaccharide (LPS),

serving as inextensible stays during penetration of the cell envelope by the tail tube. The

short tail fibre consists of a parallel, in-register, trimer of gene product 12 (gp12). Parts of

the structure of the short tail fibre were determined before, the so-called 33 kDa and 45

kDa fragments, of which the latter contains the receptor-binding domain (see chapter 3.1

of this thesis). None of these structures had ordered electron density for about half of the

amino acid residues, although we did confirm their presence in both crystals by N-

terminal sequencing. Here we present a partial structure of a new crystal form of the 45

kDa fragment, which contains all the residues present in the 33 kDa and 45 kDa fragment

(amino acids 246 to 527), and also shows low resolution electron density for the residues

invisible in the structure described in chapter 3.1 (some or all of the amino acids 85-245).

The structure presented here confirms the hypothesis of the composite structure of the

ordered regions of the 33kDa and 45kDa given in chapter 3.1 Figure 3.2d.
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Introduction
Previously, a 33 kDa proteolytic fragment was generated in the presence of EDTA

(ethylenediaminetetra-acetic acid) and crystallised [1]. This fragment consisted of residues

85-396 and 518-527, however in the crystal structure [2] residues 85-245 were invisible

due to static disorder. By omitting EDTA and adding divalent zinc ions during proteolysis

we could ensure that amino acids 397-517 are included in the so-called 45 kDa fragment

[3]. The 45 kDa fragment contains the C-terminal receptor-binding domain however,

residues 85-329 are absent. The amino acids 330-396 and 518-527 were the only residues

visible in both the 33 kDa and 45 kDa fragments. See Figure 3.7 for an overview of both

structures.

Here we report a new crystal form of a proteolytic fragment of gp12. This crystal

form was obtained in experiments performed to determine the binding location of the LPS

to the short tail fibre receptor-binding domain (for further details on the receptor-binding

domain see Chapter 3.1). Unfortunately no LPS did bind to the receptor-binding domain,

however, a different crystal form was obtained. This crystal form has a larger part of the

electron density ordered, amino acid residues 246-527 have clear electron density. For

amino acid residues 85-245 that were not visible at all in the earlier determined structures,

low resolution electron density is now present. The N-terminal domain of full length gp12

contains six times the same 17-residues sequence repeat [2]. One of these repeats (amino

Figure 3.7. The crystal structures of the
33 kDa (PDB 1HW6) and 45 kDa (PDB
1OCY) fragments. The corresponding
amino acids and domains are depicted on
the right.
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acids 255-271) is present in the well ordered part of the 33 kDa structure so we searched

for the other remaining repeats in the less ordered electron density via molecular

replacement. Three possible repeats were found but did not really improve the density or

Rfactors. Unfortunately the low resolution electron density is not ordered enough to

enable building of any of the amino acids 85 to 245.

Results

Protein purification

The gp12 full-length protein was co-expressed with its chaperone gp57 and

purified as has been described before, see chapter 3.1 of this thesis and ref. 3. The purified

protein was incubated at 56 °C and treated with proteases in de presence of divalent zinc

ions. SDS-PAGE revealed that a fragment of around 45 kDa was obtained. The protein

(further referred to as the 45kDa fragment) was precipitated with ammonium sulphate and

stored at 4 °C until further use.

Crystallisation and structure determination
The ammonium sulphate precipitated 45 kDa fragment was re-dissolved in HN-

buffer (10 mM N-(2-hydroxyethyl)piperazine-N"-(2-ethane) sulphonic acid-sodium

hydroxide, 150 mM sodium chloride, pH 7.4) to a concentration of 10-20 mg/ml. Protein

concentrations were determined using UV absorption measurements at 280 nm; the

absorption of a 1 mg/ml solution of the 45kDa fragment was assumed to be 1.0 at a path-

length of 1 cm. In order to determine where the lipo-polysaccharide binds on the short tail

fibre receptor-binding domain, crystallisation trials were set up in the presence of LPS.

The LPS from E.coli mutant D21f1 was isolated and purified according to Boman &

Monner and Prehm et al. [4,5]. Crystals of the 45 kDa fragment were obtained by vapour

diffusion (at 295 K) against a reservoir solution containing 35 % (v/v) tertiary butanol

buffered with 100 mM sodium citrate pH 5.6, 10 % (v/v) glycerol, and LPS (see Figure

3.8). The exact LPS concentration was difficult to determine due to the presence of

impurities. The crystallisation conditions are the same as described in chapter 3.1 [3].

However, the protein crystallised in a different space group, R32, with single crystals

growing as hexagon-shaped plates (Figure 3.8).
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Data collection and processing
Native data were collected on beam-line ID29 at a wavelength of 0.9756 Å at the

European Synchrotron Radiation Facility (ESRF). The crystal was flash-frozen and kept at

100 K during data collection. The total rotation angle was 269° (538 images of 0.5°).

Reflections were integrated with the program MOSFLM [6] and processed using

programs of the CCP4 suite [7]. The 45 kDa fragment crystallised in the rhombohedral

space group R32 with unit cell parameters a = b = 45.49, c = 1376.97 Å (hexagonal

setting). The overall completeness of this data set was 79.0 %, with a completeness of

54.1 % in the highest resolution bin (2.42 - 2.30 Å). Data in the higher resolution shell are

less complete because of the data collection on a square detector. The overall

completeness is rather low, because the long axis was parallel to the beam, causing many

overlaps. The overall redundancy and Rsym were 10.4 and 0.080, respectively. The crystals

contain 1 molecule in the asymmetric unit (i.e. one-third of a trimer), have a solvent

content of 57.5 % (v/v) and a Wilson temperature factor of 36 Å2. Data collection and

processing details are summarised in Table 3.2.

Structure solution and refinement

Molecular replacement trials using the known structure of residues 246-396 plus

518-527 of the 33 kDa fragment (PDB-code 1H6W [2]) and the residues 330-527 of the

45 kDa fragment (PDB-code 1OCY [3]) gave a solution with an Rfactor of 0.58 and a

correlation coefficient of 0.237. Rigid body refinement by REFMAC [8] using 19833

reflections resulted in an Rfactor of 0.443 and an Rfree of 0.447, for the resolution range

of 40 to 2.3 Å. Amino acids 246-284 were removed from the refinement because these

were not well ordered. Restrained refinement was carried out using REFMAC [8]. The top

of the molecule appears to be somewhat rearranged and the amino acid residues 469-476

Figure 3.8. Crystals of the short tail fibre
protein in the presence of LPS. The protein
crystallised in space-group R32.
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were rebuilt manually using O [9]. Several restrained refinement runs including amino

acid residues 280-284, and manually rebuilding amino acid residues 246-279, resulted in

an R-factor and Rfree of 0.31 and 0.36, respectively. An overview of the partial structure

is shown in Figure 3.9. A mask was built using SOLOMON [10] and density modification

was performed using SOLOMON and DM [11]. Despite the fact that a well-defined mask

was obtained, the density modification was ineffective. At 4 Å resolution there is density

visible for the remaining N-terminal residues 85-245, but it is not straightforward to build

them.

Table 3.2. Data collection and processing statistics. Data statistics of the outer resolution shell (2.42

- 2.30 Å) are given in parentheses, where applicable

Data collection 45kDa fragment in space group R32

Crystal dimensions (mm) 0.2 x 0.2 x 0.05

Wavelength (Å) 0.9756

Resolution range (Å) 76.70 - 2.30

Crystal system Rhombohedral

Space group R32

Unit cell parameters (Å) a = b = 45.49, c = 1376.97

Total No. reflections 215985

No. unique reflections 21737

Multiplicity 10.4 (5.1)

Rsyma 0.080 (0.26)

Completeness (%) 79.0 (54.1)

Average I/σ(I) 5.9 (2.7)

Solvent content (%) 57.5

VM (Å3 / Da) 2.9
a Rsym = Σh Σi |Ihi - <Ih>| / Σh Σi |Ihi| , where Ihi is the intensity of the ith measurement of the same
reflection and <Ih> is the mean observed intensity for that reflection

In an attempt to build extra residues, a two-dimensional search was done with the

program AMORE maintaining residues 279-527 (the most well-ordered amino acids)

fixed, and translating and rotating residues 255-271 (one sequence repeat) in small

intervals (0.001 x cell-axis c and 3º, respectively) along z, which is the three-fold axis of
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the crystal and of the trimeric structure. This way, apart from the original 255-271 repeat,

three more possible repeats were found which looked to fit reasonably into the density.

However, incorporating the respective amino acid changes followed by refinement did not

really improve the density or the Rfactors (the minimum Rfactor obtained was 0.31 with

an Rfree of 0.35).

Discussion and future prospects

The short tail fibre (gp12) of bacteriophage T4 crystallised into an other space

group (R32) as before (P321), having more of the density ordered in the crystals

compared to the two partial structures determined earlier [2,3]. A view of the partial

crystal structure is shown in Figure 3.9. This structure contains amino acid residues 246-

527, which can be divided in the "body" (246-332), "neck" (333-341), "collar" (342-396

and 518-527), "head" (397-446 and 487-517), and "bonnet" (447-486). The metal binding

site, which has a zinc-ion on the 3-fold axis, is between the "head" and the "bonnet" as

before [3]. We could not identify extra electron density located near to the receptor-

binding domain; therefore it appears no LPS has bound.

Amino acid residues 330-527 of the 1OCY structure were superimposed with the

residues 330-527 of the structure described here, using LSQKAB from the CCP4 program

suite [7]. This showed that the top region of the receptor-binding domain, the "bonnet",

has minor differences in the main-chain positions for the residues 469-476 (Figure 3.10).

Whether the differences in main-chain position of residues 469-476 are caused by the

difference in crystal contacts or by the LPS present in the crystallisation conditions, is not

known.

Figure 3.9. Crystal structure of short tail fibre (gp12) of bacteriophage T4, amino acid residues
246-527. The head and bonnet form the receptor-binding domain. A grey sphere represents the
zinc ion present on the 3-fold axis. The picture was prepared with MOLSCRIPT [12].
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The Rfactors suggest that there is still improvement possible in the missing

unsolved domain of residues 85-245. Because we were not able to build these residues

into the electron density map, and solvent flattening did not improve the electron density

map, a possibility would be to improve the phases using data collection on heavy atom-

derivatised crystals. From the structure determined before [2,3], we know that the 45 kDa

fragment of gp12 has at least one residue (Cys372), which can react with methylmercury

acetate, this residue is solvent accessible in the crystals as well. Hg-derivatisation as done

for the 45 kDa fragment may therefore be a good strategy to try to improve the phases.

Collecting a native data set with the long axis of the crystal almost parallel to the rotation

axis would improve the completeness of the native data set.
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Figure 3.10. Superposition of the Cα atoms (amino acid 468-477) of a part of the "bonnet"
for the two gp12 trimers in different space groups. a) Top view on the bonnet along the three-
fold axis. Both gp12 trimers in different colours, R32 (blue) and P321 (green). b) Rotated
90°, same colours as in a. It shows clearly that the top region of the receptor-binding domain,
the "bonnet", has differences in the main-chain positions for the residues 469-476. Picture
was made with PyMOL [13]. For colour picture see Appendix A.
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Summary
Interest in protease inhibitors has been renewed because of their potent activity in

preventing carcinogenesis in a wide variety of in vivo and in vitro model systems. Potato

tubers contain a wide range of such protease inhibitors. In cv. Elkana potato tubers,

protease inhibitors represent about 50 % of the total amount of soluble protein. Potato

Serine Protease Inhibitor (PSPI), one of the isoforms of the most abundant group of

protease inhibitors, is a dimeric double-headed Kunitz-type inhibitor. No high-resolution

structural information on this type of inhibitor has so far been obtained, as all structures

currently known are of the monomeric single-headed or monomeric double-headed types.

Crystals were grown in 0.1M HEPES pH 7.5, 10 % PEG8000 and 8 % ethyleneglycol

complemented with 9 mM 1-s-octyl-β-D-thioglucoside or 0.1 M glycine. Data were

collected from a single crystal under cryo-conditions to 1.8 Å resolution. The protein

crystallises in space-group P21, unit cell parameters a = 54.82, b = 93.92, c = 55.44 Å and

β  = 100.7°; the scaling Rsym
 is 0.044 for 45456 unique reflections.
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Introduction
The majority of known and characterised protease inhibitors are serine protease

inhibitors, they have been classified in at least 13 different families according to their

sequence homology [1]. Protease inhibitors are denoted Kunitz-type inhibitor when

particular conserved amino acids are present in their primary structures, such as four

cysteinyl residues forming two disulphide bridges [1]. The Kunitz-type inhibitors are

relatively small (approximately 20 kDa) and are mostly monomeric and single-headed,

containing one reactive site that inhibits the protease. Kunitz-type inhibitors are pseudo-

substrates that bind directly to the binding site of the protease. To date, only monomeric

single-headed (e.g. winged bean chymotrypsin inhibitor) or monomeric double-headed

inhibitors (e.g. soybean trypsin inhibitor) have been crystallised. PSPI is a dimeric double-

headed Kunitz-type inhibitor with two subunits that differ in size (15 kDa for the larger

subunit and 6 kDa for the smaller one [2]). The subunits share about 22 % sequence

homology with the soybean trypsin inhibitor, the reference inhibitor for the Kunitz-type

[3]. Here, we describe the crystallisation conditions of a dimeric Kunitz-type inhibitor,

which inhibits trypsin, chymotrypsin and human leukocyte elastase [4].

Material and Methods

Purification
Potatoes of cv. Elkana (Avebe B.A., Veendam, The Netherlands) were stored at

277 K in the dark at a relative humidity of 95-100 % for a maximum period of six months.

The potatoes were chopped into large pieces and mixed in the presence of sodium

bisulphite (0.5 g/kg potatoes) to prevent oxidation of phenolic compounds. Potato juice

was prepared as described previously [4]. PSPI 6.1 (the number representing the

isoelectric point), one of the isoforms of PSPI group, was purified as described previously

[4]. PSPI 6.1 is a dimeric protein of 20 273 Da [2], in which the 2 sub-units are disulphide

linked; it shows approximately 22 % sequence homology with the Kunitz soybean trypsin

inhibitor. An additional chromatofocusing step was included, using a Poly-buffer

Exchanger 74 column (60 x 1.6 cm). The fraction containing PSPI 6.1 was loaded onto the

column, which had been pre-equilibrated with 0.025 M imidazole-HCl buffer (pH 7.4)

and the protein was eluted using a Polybuffer 74-HCl (pH 5.0) (dilution factor 1:8)
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(Amersham Biosciences, Uppsala, Sweden). The polybuffer was removed using a HP

phenyl sepharose column (10 x 2.6 cm). The chromatofocusing step resulted in the

removal of minor contaminants. After purification, PSPI 6.1 was dialysed at 277 K against

10 mM Tris-HCl buffer (pH 8.0) and subsequently stored (253 K) at a concentration of 1

mg ml-1.

Crystallisation
The purified PSPI 6.1 was concentrated to 10 mg ml-1 in 10 mM Tris-HCl buffer

(pH 8.0), using a centripep 10 kDa ultracentrifugation device (Millipore, Bedford, MA,

USA).

Crystallisation experiments were performed by the sitting-drop vapour-diffusion

method at 295 K. Each drop was formed by mixing equal volumes (1 µl) of 10 mg ml-1

PSPI 6.1 solution and reservoir solution. Crystals were grown (Figure 4.1) in 0.1 M

HEPES pH 7.5, 10 % PEG8000 and 8 % ethyleneglycol complemented with 9 mM 1-s-

octyl-β-D-thioglucoside (Hampton Detergent screen 1) or 0.1 M glycine (Hampton

Additive screen 2).

X-ray data collection and processing
A single crystal was soaked in reservoir solution containing 25 % glycerol for 10 s

and mounted on a nylon-fibre loop (Hampton), after which it was flash frozen in a liquid

nitrogen stream at 100 K. The data were collected at beamline ID29 of the European

Synchrotron Radiation Facility (ESRF) on an ADSC Q4R detector. The crystal-to-

Figure 4.1. Crystals of Potato Serine Protease Inhibitor (PSPI 6.1) in 0.1 M HEPES pH 7.5,
10 % PEG8000 and 8 % ethyleneglycol with detergent or additive. a) 9 mM 1-s-octyl-β-D-
thioglucoside b) 0.1 M glycine
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detector distance was 200 mm and 100° of 1° oscillation images (3 passes of 0.5 s per

frame) were collected (λ = 0.9464 Å) (Figure 4.2). The intensities were indexed with

MOSFLM [5] and scaled using SCALA [6]. Molecular replacement was performed using

AMORE [7], MOLREP [8] and BEAST [9], which are all available in the CCP4 program

suite [10].

Results
PSPI 6.1 was purified and crystallised as shown in Figure 4.1 a data set of a single

crystal was collected to 1.8 Å; because of the use of a square detector the completeness in

the highest resolution shell (1.90-1.80 Å) is only 52.1 %. In Figure 4.2 an X-ray

diffraction pattern of a PSPI 6.1 crystal is shown. The data was processed in space-group

P21, with unit cell parameters of a = 54.82, b = 93.92, c = 55.44 Å and β  = 100.7°. See

Table 4.1 for data-collection and processing parameters. The exact Matthews coefficient

(VM) and solvent content of the crystals could not be determined. Neither a self-rotation

function nor a native patterson indicated clear rotational or translational symmetry

between molecules in the asymmetric unit (A.U.). If there are 2 molecules in the A.U., VM

= 3.5 Å3 Da-1, corresponding to a solvent content of 64.2 %, whilst 3 molecules in the

A.U. gives a VM = 2.3 Å3 Da-1 and a solvent content of 46.2 %. According to the

Figure 4.2. X-ray diffraction pattern of a Potato Serine Protease Inhibitor (PSPI 6.1) crystal.
The resolution circles are given in Å.
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Matthews coefficient probabilities [11] the latter seems the more likely. We were not able

to solve the structure by molecular replacement using the winged bean chymotrypsin

inhibitor [12], which has a 32 % sequence homology or the Kunitz-type soybean trypsin

inhibitor as a model. Structure solution by heavy atom methods is in progress.

Table 4.1. Data-collection and processing parameters. Data statistics of the outer resolution shell

(1.90-1.80 Å) are given in parentheses, where applicable.

Native crystal  PSPI 6.1

Crystal dimensions (mm) 0.4 x 0.025 x 0.025

Temperature (K) 100

Wavelength (Å) 0.94644

Resolution range (Å) 54.23 - 1.80

Crystal system Monoclinic

Space-group P21

Unit cell parameters (Å) a = 54.82, b = 93.92, c = 55.44 and β  = 100.7°

Total No. reflections 89852

No. unique reflections 45456

Rsyma 0.044 (0.13)

Completeness (%) 88.7 (52.1)b

Average I/σ(I) 4.4 (5.6)
a Rsym = Σh Σi |Ihi - <Ih>| / Σh Σi |Ihi| , where Ihi is the intensity of the ith measurement of the same
reflection and <Ih> is the mean observed intensity for that reflection
b data in the higher-resolution shell are less complete because of data collection on a square detector
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Summary
Human lactoferrin (hLF) is an iron-binding glycoprotein involved in the host defence

against infection and excessive inflammation. As the availability of (human milk-derived)

natural hLF is limited, alternative means of production of this biopharmaceutical are

extensively researched. Here we report the crystal structure of recombinant hLF (rhLF) at

a resolution of 2.4 Å as it is expressed in the milk of transgenic cows. To our knowledge,

this is the first reported structure of a recombinant protein produced in milk of transgenic

livestock. Even though rhLF contains oligomannose- and hybrid-type N-linked glycans

next to complex-type glycans, which are the only glycans found on natural hLF, the

structures are identical within the experimental error (r.m.s. deviation of only 0.28 Å for

the main-chain atoms). Of the differences in polymorphic amino acids between the natural

and recombinant hLF variant used, only the side-chain of Asp561 could be modelled into

the rhLF electron density map. Taken together, the results confirm the structural integrity

of the rhLF variant used in this study. It also confirms the validity of the transgenic cow

mammary gland as a vehicle to produce recombinant human proteins.
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Introduction
Lactoferrin (LF) is a metal-binding glycoprotein of 77 kDa belonging to the

transferrin family [1]. The molecule is found in milk, tears, saliva, bronchial, intestinal

and other secretions, but also in the secondary granules of neutrophils [2]. Based on the

many reports of its antimicrobial and anti-inflammatory activity in vitro, LF is thought to

be involved in the host defence against infection and excessive inflammation, most

notably at mucosal surfaces [2]. Antimicrobial activities of LF include bacteriostasis by

the sequestration of free iron [3] and bactericidal activity by destabilisation of the cell-

wall [4,5]. Anti-inflammatory actions of LF include inhibition of hydroxyl-radical

formation [6], of complement activation [7] and of cytokine production [8] as well as

neutralisation of lipopolysaccharide (LPS) [9]. Because of these biological activities, a

wide variety of applications of LF in human health care has been proposed, such as the

treatment of infectious and inflammatory diseases. As a nutraceutical application, the

molecule may be used as a component of clinical nutrition products aimed at the

prevention and treatment of gastro-intestinal tract infections and inflammations.

The DNA and amino acid sequences of human lactoferrin (hLF) have been

determined [10,11]. Human LF consists of a polypeptide chain of 692 amino acids, which

is folded into two globular lobes [1]. These lobes, designated the N- and C-lobe, share an

internal amino acid homology of about 40% [11], they are connected by a three-turn α-

helix. Each lobe folds into α-helix and β-sheet arrays to form domains I and II,

respectively, which are connected by a hinge region, creating a deep iron-binding cleft

within each lobe. Each cleft binds a single ferric ion with high affinity while

simultaneously incorporating a bicarbonate ion [1]. Crystallographic studies of hLF have

showed that upon binding of iron, domain I of the N- and C-lobe rotates relative to

domain II by ~54° and ~20°, respectively, resulting in a more globular closed, and stable

conformation of the entire molecule [12]. Next to the high affinity metal binding in the

iron-binding cleft, LF also binds other metals albeit with much lower affinity [13]. This

occurs at least in part via surface-exposed histidyl residues [14]. Whereas some of the

biological activities of hLF relate to high or low affinity iron-binding, others are mediated

by a positively charged domain located in the N-terminus. This domain binds to

negatively charged ligands such as the lipid A portion of LPS [15], DNA [16], heparin

[17] as well as other proteins such as lysozyme [18] and specific receptors [19,20].
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Human LF contains three possible N-glycosylation sites, Asn138 in the N-lobe and

Asn479 as well as Asn624 in the C-lobe [10], which are utilised in about 94%, 100% and 9%

of the molecules, respectively [21].

Recently, we reported the production of recombinant hLF (rhLF) in the milk of

transgenic cows [22]. Comparative studies between rhLF and hLF from human milk

(natural hLF) revealed identical iron-binding and release properties, and despite

differences in N-linked glycosylation, equal effectiveness in various infection models

[22]. Here, we report the crystallographic structure of rhLF in its iron-saturated

conformation. The structure appeared to be identical to the structure reported for iron-

saturated natural hLF [23].

Material and Methods
Expression and purification of rhLF

The production and purification of rhLF from the milk of transgenic cows has been

described previously [22]. Briefly, a genomic hLF sequence with polymorphic amino

acids at position 4 (insertion of Arg), 11 (Ala), 29 (Arg) and 561 (Asp) [24] under control

of regulatory elements from the bovine αS1 casein gene, was introduced into the bovine

germline. The resulting transgenic cattle lines showed rhLF expression levels between 0.4

and 2.5 g/L. Purified rhLF was saturated with iron as described [18].

Crystallisation
Crystals were grown by micro-dialysis of rhLF (54 mg ml-1 in 0.9 % NaCl) in a

100 µl dialysis button against 5 mM sodium phosphate pH 8.5 with 10 % (v/v) ethanol at

4  °C. Deep red crystals appeared after 4 weeks and grew to dimensions of approximately

3 x 2 x 1 mm. The protein crystallised in the orthorhombic space-group P212121, with cell

dimensions a = 55.94, b = 97.38, and c = 156.30 Å with 1 molecule in the asymmetric

unit.

Data collection
The dialysis button was transferred to 5 mM sodium phosphate pH 8.5

complemented with 20% (v/v) 2-methyl-2,4-pentanediol (MPD) for a week at 4 °C to

stabilise the crystals, as described [1]. Part of a crystal was broken off and mounted in a
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quartz capillary. X-ray data were collected at room temperature on a FR591 rotating-

anode generator equipped with a MAR345 image-plate detector, using Cu Kα radiation (λ

= 1.5418 Å). The crystal-to-detector distance was 220 mm and a 0.5° oscillation angle

was used per image for a total of 369 images. The intensities were indexed with

MOSFLM [25] and scaled using SCALA [26]. During the scaling process it was observed

that a number of the images were not useful, which is most likely caused by a non-

uniform quality of the crystal in different directions. These images were left out of the

scaling process and not used any further. The resulting data set contained 154 images

(77°) and 104905 reflections of which 33492 were unique. The overall completeness of

the data set was 96.2 %, with a completeness of 97.9 % in the highest resolution bin (2.53

- 2.40 Å). The overall redundancy and Rsym were 3.3 and 0.057, respectively. Data

collection and processing details are summarised in Table 5.1.

Table 5.1. Data-collection and processing parameters

 Data collection rhLF expressed in bovine milk

Crystal dimensions (mm) 3 x 2 x 1

Wavelength (Å) 1.5418

Resolution range (Å) 81.65 - 2.40

Crystal system Orthorhombic

Space group P212121

Unit cell parameters (Å) a = 55.94, b = 97.38, c = 156.30

Total No. reflections 104905

No. unique reflections 33492

multiplicity 3.3 (3.3)a

Rsymb 0.057 (0.33)

Completeness (%) 96.2 (97.9)

Average I/σ(I) 8.9 (2.2)

solvent content (%) 55.51

VM (Å3 / Da) 2.8
a Data statistics of the outer resolution shell (2.53 - 2.40 Å) are given in parentheses, where
applicable. b Rsym = Σh Σi |Ihi - <Ih>| / Σh Σi |Ihi| , where Ihi is the intensity of the ith measurement of
the same reflection and <Ih> is the mean observed intensity for that reflection
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Structure elucidation and refinement
The structure was determined by molecular replacement, using MOLREP [27] and

the structure of iron-saturated natural hLF [23] as the search model. The search model

included two Fe3+ and two CO3
2- ions, but all waters and carbohydrates were omitted in

the model. The rotation and translation functions were determined, the best solution had

an R factor of 0.294 and a correlation coefficient of 0.814. Instead of a full molecular

replacement, a rigid body refinement could have been performed, after applying an anti-

clockwise rotation parallel to the b-axis on the search model, changing a into c and c into -

a, which would have given the same result. The model was refined using restrained

refinement using REFMAC [28] using 30833 reflections in the resolution range 19.63-

2.40 Å (for the refinement statistics see Table 5.2). Water molecules were built using ARP

[29]. Electron density maps were calculated and carbohydrates were fitted into the 2Fo - Fc

electron density. The final model was checked using PROCHECK [30] and WHATIF

[31].

Table 5.2. Refinement statistics

Refinement rhLF expressed in bovine milk

Resolution range (Å) 19.63 - 2.40

number of reflections 30833 (1640)a

Rfactorb 0.18 (0.23)

protein atoms / water molecules 5365 / 54

r.m.s. deviations bonds (Å) 0.013

r.m.s. deviations angles (°) 1.40

Average B value protein / solvent (Å2) 50.24 / 39.60

Average B value sugar / Fe3+/ CO3
2- (Å2) 86.29 / 31.90 / 26.43

Ramachandran statisticsc (%) 86.4 / 13.0 / 0.3 / 0.3
aData statistics of Rfree are given in parentheses, where applicable
bR = �||Fobs (hkl)| - |Fcalc(hkl)|| / � |Fobs(hkl)|
cAccording to the program PROCHECK [30]. The percentages are indicated of residues in the most
favoured, additionally allowed, generously allowed and disallowed regions of the Ramachandran
plot, respectively
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Structural comparisons

The structure of rhLF isolated from transgenic bovine milk was compared to the

structure of iron-saturated natural hLF (PDB-code 1LFG, [23]), using LSQKAB from the

CCP4 program suite [32]. The amino acid residues 1-4 and 1-5 from natural hLF and

rhLF, respectively, were disordered and therefore left out of the calculations.

Results and discussion

rhLF model

The final model for iron-saturated rhLF from transgenic bovine milk consists of

692 amino acid residues, 54 water molecules, two Fe3+ ions, two CO3
2- ions, and two N-

acetylglucosamine residues that are N-linked to Asn138 and Asn479 (numbering according

to [10]). The model has an R-factor of 0.18 and an Rfree of 0.23. The Ramachandran

statistics (Table 5.2) show 86.4 % of the residues to be in the "most favoured" regions and

13.3 % in the "allowed" regions; only 0.3 % is in the "disallowed" region, which are

residues Leu300 and Leu643. As was described before [23], both residues are located in a γ-

turn, which seems to be a conserved property of all transferrin structures determined. The

N-terminal amino acid stretch (Gly1-Arg2-Arg3-Arg4-Arg5-) was disordered and could not

be modelled, which is consistent with the experiences of other authors [23,33]. The

flexible surface loop at residues 418-424 showed no ordered density at 1σ, but at 0.7σ the

main-chain and most of the side-chain atoms became visible. Many of the amino acid

residues that are exposed to solvent have disordered side-chains, especially the long side-

chains of arginine and lysine residues, showing high B factors.

Protein structure

The structure of rhLF isolated from the milk of transgenic cows was determined in

its closed conformation. The folding of rhLF is the same as that of natural hLF isolated

from human milk (PDB code 1LFG). The structure of rhLF was superimposed on natural

hLF, the r.m.s. deviation in the atomic positions of the main-chain atoms is 0.28 Å,

diregarding the disordered N-terminus. The superimposed structures are shown in Figure

5.1, only the flexible loop of amino acid residues 418-424 and the N-terminus show

differences between the Cα atoms of the differently expressed hLF proteins, indicating

these residues may adopt alternative conformations.
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Previously, we reported polymorphic sites in the hLF coding sequence at amino

acid position 4 (deletion of Arg), position 11 (Ala or Thr), position 29 (Arg or Lys) and

position 561 (Asp or Glu) [24]. Recombinant hLF differs from the natural hLF variant

described by Haridas et al. [23] at position 4 (- → Arg), 29 (Lys → Arg) and 561 (Glu →

Asp). The Arg4 residue of rhLF could not be modelled, the N-terminal stretch Gly1-Arg2-

Arg3-Arg4-Arg5 may however be modelled upon binding of heparin, as Arg2-Arg3-Arg4-

Arg5 is part of the positively charged domain responsible for binding of the ligand [17].

The side chain of the solvent-exposed Arg29 residue was disordered and could not be

modelled. Figure 5.2a shows the polymorphic site Asp561 in the 2Fo - Fc density map. The

polymorphic sites did neither change the structure of rhLF nor its biochemical activity,

compared to natural hLF [22].

Glycosylation

Human lactoferrin contains three possible N-glycosylation sites, Asn138 in the N-

lobe and Asn479 as well as Asn624 in the C-lobe [10], which are utilised in about 94%,

100% and 9% of the molecules, respectively [21]. The glycans of natural hLF are of the

Figure 5.1. Cα superposition of rhLF and natural hLF. rhLF expressed in bovine milk is shown
in yellow and natural hLF isolated from human milk in blue. Grey spheres show the iron atoms.
The figure was prepared with PyMOL [34]. For colour picture see Appendix A.
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sialyl-N-acetyllactosaminic type [35].  Previously, we reported that rhLF from transgenic

bovine milk also contains oligomannose and/or hybrid-type glycans [22].

In the rhLF structure described here, interpretable density for single carbohydrates

was present at glycosylation sites Asn138 and Asn479. The two N-acetylglucosamine

residues were built into the 2Fo - Fc density map contoured at 0.9σ. The N-

acetylglucosamine at position Asn479 is shown in Figure 5.2b. Further carbohydrates were

insufficiently ordered to extend the model.

Conclusions
The application of rhLF from bovine milk in human health care requires a

thorough comparison of the physico-chemical and biological characteristics of the

recombinant with the natural form. Here we report that despite the presence of

polymorphic sites and differences in N-linked glycosylation, the three-dimensional

structure of recombinant hLF closely matches the structure of natural hLF. This

Figure 5.2. a) Crystallographic electron density surrounding Asp561. rhLF amino acid residues
Asn560, Asp561, Ala562, and Trp563 are shown in ball-and-stick representation with main chain
carbon atoms in light grey, surrounded by the final 2Fo - Fc electron density map contoured at
1σ. At the polymorphic position 561(numbering according to rhLF) the glutamatic acid (E) is
shown with main chain carbon atoms in dark grey. b) Crystallographic electron density
surrounding Asn479.  Amino acid residues Phe478, Asn479, and Gln480 and N-acetylglucosamine
(NAG) are shown in ball-and-stick representation surrounded by the final 2Fo - Fc electron
density map contoured at 0.9σ. Picture was prepared with BOBSCRIPT [36], which is based on
MOLSCRIPT [37].
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observation confirms earlier findings of identical biochemical activity of hLF from both

sources, paving the way for safe usage of rhLF in humans. In addition, the results

illustrate the potential of transgenic cows to produce recombinant human proteins with a

virtually identical structure compared to their human counterparts.

Coordinates. Coordinates and structure factors have been deposited in the Protein Data

Bank (accession code 2BJJ).
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6

Summary and Conclusions

The three-dimensional structure of proteins is important for understanding the

molecular basis for their specific activity. Several methods exist for investigating the

three-dimensional structure, each with its own advantages and disadvantages; nuclear

magnetic resonance (NMR) which has a restriction in the size of the protein, cryo-electron

microscopy (cryo-EM) which produces structures of limited resolution, and X-ray

crystallography. The main problem to overcome in X-ray crystallography is the

requirement of three-dimensional, well diffracting crystals. The determination of the

crystallisation conditions is still a daunting task for most proteins and essentially a trial

and error procedure. As this is a very time- and protein-consuming task, many groups are

developing or using robots to perform crystallisation trials in the nano-litre volume range.

After obtaining crystals, the resolution that can be achieved in X-ray crystallography

depends on the quality of the crystals. Through the application of synchrotron beam-lines,

however, a resolution of 1.5 Å or even better is not an unrealistic goal anymore.

This thesis describes the purification of several different proteins as well as

crystallisation experiments, in order to determine their structure. Unfortunately, problems

in obtaining correctly folded protein and diffracting crystals in two cases prevented the

elucidation of the full 3D atomic structure. Therefore other methods had to be used to get

a glimpse of the structural basis of some of these proteins.

The human T cell receptor-CD3 complex consists of at least eight polypeptide

chains: CD3γε- and δε-dimers associate with the disulphide linked αβ- and ζζ-dimers to

form a functional receptor complex. The exact interactions within this complex are still

unknown, therefore the impact of single amino acid mutations in the CD3γ chain on the

CD3γε heterodimer interaction was investigated. Four amino acid residues were mutated

in the CD3γ chain to different conserved or non-conserved residues and introduced in

human T cells defective in CD3γ-expression. Intracellular as well as cell surface

expression of the introduced CD3γ chains was determined as well as the association with

CD3δ, CD3ε and the T cell receptor. Because cells from a CD3γ deficient patient were
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available, a comparison to this negative control could be made. The results of these

experiments are described in chapter 2.1, showing the three phenotypes that were

observed: i) the introduction of wild type CD3γ and CD3γ(78Y-F) fully restored the T cell

receptor assembly and expression; ii) the introduction of CD3γ(82C-S), CD3γ(85C-S),

and CD3γ(76Q-E) all resulted in an impaired association between CD3γ and CD3ε and a

lack of cell surface expressed CD3γ; iii) the introduction of CD3γ(76Q-L) and CD3γ(78Y-

A) restored the expression of TCR-δεγεζ2 complexes although the association between

CD3γ and CD3ε was impaired. These results show that particular amino acids in the CD3γ

chain are very important for optimal association between CD3γ and CD3ε and the

assembly of a cell surface expressed αβTCR-δεγεζ2 complex.

In order to determine the structure of the intracellular domains of the human CD3δ

and CD3ε that are thought to be important for the intracellular dimer formation, synthetic

peptides corresponding to these domains have been synthesised. CD3δ is a 44-mer,

molecular weight and calculated pI of 4995.38 Da and 6.93, respectively. CD3ε is a 55-

mer, with molecular weight and pI of 6179.03 Da and 11.52, respectively. Many different

crystallisation trials were performed, but for CD3ε this did not result in even the

formation of micro-crystals. The crystallisation trials for CD3δ resulted in "sea urchin"

type crystals of poor quality. Several rounds of micro-seeding the needles of the "sea

urchin" did not result in better crystals. NMR spectra of the peptides showed poor

dispersion and narrow line width, therefore it was concluded that the peptides are

primarily random coil. After mixing of the peptides a 1D proton NMR was recorded, the

spectrum of the combined peptides was a superimposition of the 2 spectra of the single

peptides, leading to the conclusion that no interaction or folding is indicated by this NMR

experiment. These experiments are described in chapter 2.2.

The bacteriophage T4, a bacterial virus which infects Escherichia coli, looks like a

sort of moon-lander. It has a DNA containing head with a contractile tail and short and

long tail fibres attached to a so-called baseplate. It adsorbs to the host’s cell receptor via

its long tail fibres and next the short tail fibres fold out from under the baseplate and also

bind to the host’s cell receptor. With a needle-like puncturing device, a hole is drilled into

the host cell, providing the entry for DNA injection. After the phage particles are formed

in the host cell, the host will burst and the new phages are released.
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In chapter 3.1, the structure of the receptor-binding domain of the short tail fibre is

described based on a 1.5 Å resolution X-ray structure determination. The short tail fibres

are formed by trimers of the gene product 12 (gp12) and are attached to the baseplate via

gp11. They contain 527 amino acids and are very stable, the protein needs to be heated to

56 °C before partial unfolding occurs. It was known that the full-length gp12 could not be

crystallised due to aggregation. To overcome this problem, the protein was mildly

proteolysed after partially unfolding in the hope of getting a shorter fragment of gp12 that

would be able to crystallise. In the presence of zinc during the proteolysis, a 45 kDa

fragment of gp12 was obtained, containing amino acids 85-527 according to N-terminal

sequencing. The electron density map, however, only showed good electron-density for

residues 330-527. The residues 85-329 seemed to be disordered in the crystal. Bacterial

cell binding experiments showed that the 45 kDa fragment contains the receptor-binding

domain, which was lacking in an earlier elucidated structure. The structure of the

receptor-binding domain reveals a knitted trimeric metal-binding fold, containing one zinc

ion octahedrally coordinated by the Nε2 of six histidine residues. It was reported earlier

that gp12 was a zinc metallo-protein, assumed to contain one zinc atom per monomer. In

the structure described in chapter 3.1, one zinc atom per trimer was found (although it was

not possible to rule out that their are other zinc binding sites in the parts missing in the

structure). The structure looked as if the protein was knotted, but after having a closer

look the protein turned out to be knitted, i.e. it does not produce a topological knot upon

"pulling at the ends". The three strands, with hardly any regular secondary structure

elements, are intensively intertwined and together with the octahedrally coordinated zinc

ion this gives the trimeric protein a very stable conformation. No related structure in the

protein structure database could be found. The collar domain has some limited structural

homology with the central domain of gp11, which is the connector protein between the

baseplate and the short tail fibre (gp12).

Some suggestions have been made for binding of the LPS to the receptor-binding

domain, based on the nature of the LPS core. It was assumed that phosphate groups bind

to positive charges on the protein surface while the sugars bind to the aromatic side-

chains. The trimer in general, and its top in particular, is positively charged, which could

contribute to its affinity for the negatively charged E.coli membrane. Along the sides of

the trimer there are three groves which are flanked by or contain positively charged

residues and aromatic amino acids. Each of these grooves may bind an LPS molecule.
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This means that there is very tight binding between T4 and the host cell, if it is considered

that the bacteriophage T4 has six short tail fibres which can bind simultaneously to the

E.coli membrane, each through three receptor-binding sides.

In order to determine were the receptor-binding domain is capable of binding to the

host cell’s lipopolysaccharides (LPS), crystallisation experiments were performed with the

45 kDa fragment in the presence of LPS. The results described in chapter 3.2 show that

the fragment did not crystallise with LPS bound to it, but surprisingly the crystals had a

different space-group and showed more ordered density. Electron density was now present

for amino acid residues 246-527. The overall structures of the visible parts for the two

gp12 trimers in space group R32 and P321 are the same. After superposition of the two

trimers, amino acid residues 465-479 in the "bonnet" (the top of the trimeric protein

containing the receptor-binding domain) show differences in the main-chain positions.

Whether these changes are caused by differences in crystal contacts or by the LPS present

in the crystallisation trials is unknown. Low-resolution density was present for some of

the residues between 85-245. Attemps to improve the map by density modification using a

solvent mask were unsuccessful. Also searching for repeats in the N-terminal electron

density knowing that the N-terminal domain contains six repeats of which one is visible in

the 45 kDa structure, did not result in better maps and Rfactors. Regrettably, it was not

possible to interpret the low-resolution density.

In collaboration with the university of Wageningen a potato serine protease

inhibitor (PSPI) was crystallised. Serine protease inhibitors are important due to their

potent activity in preventing carcinogenesis in a wide variety of in vivo and in vitro model

systems. Potato tubers contain a wide range of such protease inhibitors. In cv. Elkana

potato tubers, protease inhibitors represent about 50 % of the total amount of soluble

protein. One of the isoforms of the most abundant protease inhibitor, a dimeric double-

headed Kunitz-type inhibitor, was crystallised. No high-resolution structural information

on this type of inhibitors had so far been obtained, as all structures known at that time

were of the monomeric single-headed or monomeric double-headed types. Crystals were

grown and a native data set was collected to 1.8 Å resolution. Due to the lack of a dimeric

double-headed inhibitor model in the PDB, so far the structure could not be solved by

molecular replacement. Using monomeric double-headed and dimeric single-headed

models did not result in the elucidation of the structure. Unfortunately these models were

not homologous enough and therefore did not result in a solution. Heavy atom derivative
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trials were performed, but resulted in the disruption of the crystal lattice or to low

occupancies for the heavy metal positions. The crystallisation conditions are described in

chapter 4. As soon as a suitable model for molecular replacement becomes available, the

structure will be determined.

Human lactoferrin (hLF) is an iron-binding glycoprotein involved in the host

defence against infection and excessive inflammation. Together with Pharming in Leiden

the crystal structure of recombinant human lactoferrin (rhLF) expressed in the milk of

transgenic cows was reported at a resolution of 2.4 Å. As far as is known the first

structure of a recombinant protein produced in milk of transgenic livestock. The results

described in chapter 5 show that the structures of rhLF and natural hLF (derived from

human milk) are identical despite differences in N-linked glycosylation, confirming the

validity of the transgenic cow mammary gland as a vehicle to produce recombinant

human proteins.
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Nederlandse samenvatting

De kristalstructuurbepaling van eiwitten door middel van Röntgen-diffractie is

één manier waarmee de driedimensionale structuur van een eiwit bepaald kan worden.

Aan de hand van de verkregen informatie kan vaak iets gezegd worden over de functie en

de werking van het eiwit. Röntgen-diffractie wordt ook gebruikt in de ontwikkeling van

medicijnen. Om te beginnen wordt de structuur van het ziekteverwekkende eiwit, het

zogenaamde “target eiwit”, bepaald. De kennis van deze structuur wordt vervolgens

gebruikt om geschikte medicijnen te ontwikkelen. Deze medicijnen moeten in staat zijn

het aktief gedeelte van het “target eiwit” te binden, om daardoor de activiteit van het eiwit

uit te schakelen. Aan de hand van de kristalstructuur van “target eiwit” met het daaraan

gebonden medicijn kan gekeken worden of het mogelijk is de eigenschappen van het

medicijn te verbeteren. Dit kan door bijvoorbeeld het medicijn zo te veranderen dat de

binding van het medicijn aan het “target eiwit” versterkt wordt waardoor een lagere

dosering van het desbetreffende medicijn mogelijk is. De eiwitkristallografie is in de

laatste jaren enorm verbeterd, door o.a. sterkere Röntgenbronnen, waardoor een resolutie

van 1.5 Å of hoger niet langer een onrealistisch doel is. In de eiwitkristallografie wordt

gewerkt met de eenheid Angstrom (Å), 1 Å = 1.0 x 10-10 m, en komt ongeveer overeen

met de afstand tussen twee atomen in de materie.

Dit proefschrift beschrijft de zuivering en kristallisatie van verschillende

eiwitten. In hoofdstuk 1 worden twee van de bestudeerde eiwitten besproken. Een van

deze eiwitten betreft het menselijk T cel receptor CD3 complex (TCR-CD3), dat

tenminste uit acht eiwitketens bestaat, namelijk de αβ-keten, het δε- en εγ-dimeer en het

ζζ-dimeer. Er zijn nog steeds discussies gaande of dit werkelijk de samenstelling is van

het TCR-CD3 complex. In hoofdstuk 1 wordt verder een introductie gegeven over de

bacteriofaag T4, een virus dat in staat is bacteriën te infecteren. Het virus heeft de

uiterlijke kenmerken van een maanlander. Het virus heeft 6 lange en 6 korte pootjes die

aan de gastheercel binden voor en tijdens de infectie. Deze pootjes zorgen ervoor dat

tijdens de infectie de bacteriofaag zijn DNA via een zogenaamde injectiespuit kan

injecteren in de gastheercel. Er was nog weinig structurele informatie beschikbaar over

deze pootjes. Na infectie vermenigvuldigt de bacteriofaag zich in de gastheer totdat deze

openscheurt en de nieuwe bacteriofagen vrij komen.
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De overproductie en zuivering van verschillende CD3 ketens leverde geen

gevouwen eiwitten op, wat de poging tot kristallisatie deed mislukken. In diezelfde

periode werd de NMR structuur beschreven van het CD3εγ heterodimeer, dit deed mij

besluiten de hoofdlijn in het onderzoek te verschuiven. In plaats van op de kristallisatie

werd het onderzoek gericht op de associatie tussen de verschillende heterodimeren in vivo.

In hoofdstuk 2 is de invloed beschreven van mutaties in de CD3γ keten op de associatie

in vivo van het CD3εγ dimeer en de daaropvolgende T cel receptor CD3 complexvorming.

De resultaten laten zien dat bepaalde aminozuren in de CD3γ keten erg belangrijk zijn

voor een goede associatie van het CD3εγ heterodimeer. Sommige mutaties verhinderen

een goede vorming van het αβδεεγζζ complex op het celmembraan, ondanks het feit dat

FACS analyse aantoonde dat de cellen CD3 positief zijn. Mogelijkerwijs is in deze cellen

de samenstelling van het TCR-CD3 complex op het cel-oppervlak veranderd in

αβδεδεγζζ. Aangezien de CD3δ keten grote overeenkomsten vertoont met de CD3γ keten

zou dit een mogelijkheid kunnen zijn. Tevens werden gesynthetiseerde peptiden van de

intracellulaire domeinen van CD3δ en CD3ε gebruikt voor kristallisatie en NMR

experimenten. Uit deze experimenten blijkt dat de beide peptiden onder de heersende

omstandigheden zich niet in een gevouwen conformatie bevinden en daardoor

structuurbepaling uitgesloten is.

In hoofdstuk 3 is de kristalstructuur van het receptorbindende domein van de

korte pootjes van de bacteriofaag T4 beschreven. De structuur bestaat uit drie identieke

ketens die als in een knotje in elkaar geweven zijn. In het midden van deze drie ketens is

een zink ion aanwezig. Alle drie de ketens binden aan dit ion door middel van twee

histidine aminozuren. Dit zink-ion blijkt voor een grote stabilisatie van het trimeer te

zorgen, want wanneer het verwijderd wordt door middel van EDTA blijkt het receptor

bindende domein bij verhitting uit elkaar te vallen. Terwijl bij aanwezigheid van zink het

receptorbindende domein bij verhitting niet ontvouwt. Tevens worden in hoofdstuk 3

resultaten beschreven betreffende hetzelfde eiwit maar dan gekristalliseerd in een andere

ruimtegroep. In deze kristalvorm blijkt een groter deel van de elektronendichtheid

geordend te zijn in vergelijking met de eerder verkregen kristallen. In deze extra

elektronendichtheid kon de structuur van een fragment van de korte pootjes (het 33 kDa

fragment) worden ingebouwd. Echter tot op heden was het niet mogelijk om overal in

deze extra elektronendichtheid aminozuren te bouwen.
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In samenwerking met de universiteit van Wageningen kristalliseerde ik een

serine protease inhibitor (PSPI, potato serine protease inhibitor) uit aardappel en kon ik

een natieve dataset tot 1.8 Å meten. Deze resultaten staan beschreven in hoofdstuk 4.

Deze protease inhibitors zijn onlangs in de belangstelling gekomen vanwege hun

mogelijke anti-kanker activiteit. De PSPI is het eerste “double-headed” dimeer waarvan

de kristallisatiecondities zijn beschreven. Andere protease inhibitors waarvan de

driedimensionale structuur bekend is, zijn of een “double-headed” monomeer dan wel een

“single-headed” dimeer. Helaas was geen van de aanwezige structuren in de PDB geschikt

als zoekmodel in de Molecular Replacement. De gemaakte derivaten vertoonden een te

lage bezetting van de zware atomen of verstoorden het kristalrooster, waardoor de

structuur nog niet bepaald kon worden.

 In hoofdstuk 5 worden de resultaten beschreven van de structuurbepaling van

menselijk lactoferrine (hLF) geproduceerd in melk van transgene koeien. Dit onderzoek

werd uitgevoerd in samenwerking met Pharming te Leiden. De resultaten laten zien dat

ondanks de verschillen in N-linked glycosylatie, de kristalstructuur van hLF uit transgene

koeienmelk overeenkomt met die van hLF geïsoleerd uit menselijke melk. Er was door

Pharming aangetoond dat er geen verschil is in beide lactoferrines, getest in diverse

biochemische experimenten en deze structuurbepaling bevestigt de mogelijkheid

transgene koeien te gebruiken voor de productie van menselijke recombinante eiwitten in

melk.

Hoofdstuk 6 is een samenvatting met de daarbijbehorende conclusies.
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List of abbreviations

APC: antigen-presenting cell

BCR: B cell receptor

BLAST: basic local alignment search tool

BSA: bovine serum albumin

CD: clusters of differentiation

cv: cultivar

dCTP: deoxycytidine 5'-triphosphate

DNA: deoxyribonucleic acid

DOC: sodium deoxycholate

E. coli: Escherichia coli

EDTA: ethylenediaminetetra-acetic acid

ER: endoplasmic reticulum

FACS: fluorescence activated cell sorter

FBS: fetal bovine serum

FCS: fetal calf serum

FITC: fluorescein isothiocyanate

GAM-FITC: goat anti-mouse - fluorescein isothiocyanate

GFP: green fluorescent protein

gp: gene product

h: hour

HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

hLF: human LF

Hm-dCTP: 5-hydroxymethyl dCTP

hoc: highly antigenic outer capsid

HSA: human serum albumin

Ig: immunoglobulin

IMDM: Iscove's modified Dulbecco's medium

IPTG: Isopropyl β-D-thiogalactoside

iron-saturated rhLF: rhLF that has completely been saturated with iron in vitro

ITAM: immunoreceptor tyrosine-based activation motif



139

kDa: kilodalton

KDO: 2-keto-3-deoxyoctonic acid

LF: lactoferrin

LPS: lipo-polysaccharide

LTF: long tail fibre

mAb: monoclonal antibody

mCi: milli-currie

MHC: major histocompatiblity complex

min: minute(s)

natural hLF: hLF purified from human milk

NHS: normal human serum

nm: nano-meter

NMR: nuclear magnetic resonance

NP40: Nonident-40

NRS: normal rabbit serum

OmpC: outer membrane protein C

PAGE: poly-acrylamide gel electrophoresis

PAS: protein A sepharose

PBMC: Peripheral blood mononuclear cells

PBS: phosphate-buffered saline

PE: phycoerythrin

PEG: polyethylene glycol

PHA: phytohemagglutinin

pI: iso-electric point

PSPI: potato serine protease inhibitor

PTK: protein tyrosine kinases

rhLF: recombinant hLF

rIL: recombinant interleukin

SDS: sodium dodecylsulphate

soc: small outer capsid

STF: short tail fibre

TCR: T cell receptor

TM: transmembrane
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