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Abstract 

 

In the behavioral sciences, many research questions pertain to a regression problem in that 

one wants to predict a criterion on the basis of a number of predictors. Although in many 

cases ordinary least squares regression will suffice, sometimes the prediction problem is more 

challenging, for three reasons: First, multiple highly collinear predictors can be available, 

making it difficult to grasp their mutual relations as well as their relations to the criterion. In 

that case, it may be very useful to reduce the predictors to a few summary variables, on which 

one regresses the criterion and which at the same time yields insight into the predictor 

structure. Second, the population under study may consist of a few unknown subgroups that 

are characterized by different regression models. Third, the obtained data are often 

hierarchically structured, with for instance, observations being nested into persons or 

participants within groups or countries. Although some methods have been developed that 

partially meet these challenges (i.e., Principal Covariates Regression –PCovR–, clusterwise 

regression –CR–, and  structural equation models), none of these methods adequately deals 

with all of them simultaneously. To fill this gap, we propose the Principal Covariates 

Clusterwise Regression (PCCR) method, which combines the key idea’s behind PCovR (de 

Jong & Kiers, 1992) and CR (Späth, 1979). The PCCR method is validated by means of a 

simulation study and by applying it to cross-cultural data regarding satisfaction with life. 

 

Keywords: clusterwise regression; component analysis; multicollinearity; population 

heterogeneity; hierarchically organized data  
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1  Introduction 

 

In the behavioral sciences, many research questions pertain to the effect of one or several 

quantitative predictor variables on a quantitative criterion. These questions are traditionally 

addressed by ordinary linear least squares regression (OLS). Although OLS will often be 

adequate, at times it will fall short, because of three kind of complications that may 

simultaneously occur: First of all, sometimes multiple (e.g., in the range 10 to 20) predictors 

are involved, some of which might be highly correlated. In that case, without further insight 

into the underlying structure of the predictors, it becomes very hard to interpret each 

individual regression weight separately, all the more because multicollinearity problems 

might render instable regression weights. Second, often the population under study is not 

homogeneous with respect to the underlying regression model, but rather consists of a few 

unknown subgroups that are characterized by different underlying regression models. Finally, 

in many studies, the obtained data have a hierarchical structure in that the observations are 

nested within higher level units (e.g., measurement occasions nested within persons, 

individuals nested in cultural groups, or students nested in classes), where one is interested in 

the regression models of these higher level units. 

 

To illustrate that these three challenges regularly occur simultaneously, let us take a look at 

three examples. As a first example, consider the paper of Stormshak et al. (1999) on the 

relationship between aggression and peer acceptance. These authors measured the extent to 

which first-grade students, that were nested into classes, exhibited five different kinds of 

aggressive behavior (predictors) and the extent to which they were socially accepted by their 

class mates (criterion). Stormshak et al. (1999) solved the interpretational problems of having 

multiple strongly collinear predictors by simply summing them. As such, all predictors 
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received equal weight in the analysis, but no insight was given into their underlying structure. 

Regarding the regression part, it was found that classes differed with respect to the relation 

between aggression and peer acceptance: If aggressive behavior was accepted in the class, 

increasingly aggressive behavior led to increased acceptance. In contrast, in classes where 

aggressive behavior was frowned upon, more aggressive students were less liked by their 

class mates. Note that in this study the subgroups were not induced from the data, because one 

expected the regression relationships to be moderated by the class norm about aggressive 

behavior (acceptable or not). This allowed to model the class differences in a straightforward 

manner. However, this does not rule out that the data might contain other interesting but 

unknown subgroups. 

 

As a second example, consider the study of DeSarbo and Edwards (1996) regarding the effect 

of several personality characteristics (e.g., perfectionism, self-esteem and avoidance coping) 

and psychiatric symptoms and disorders (e.g., depression,  compulsiveness and anxiety) on 

self-reported compulsive buying behavior. They found that two groups of persons could be 

distinguished. In the first group, compulsive buying was mainly associated with psychological 

reasons while in the latter group, compulsive buying was more related to environmental 

factors. Because multiple correlated predictors were included, DeSarbo and Edwards (1996) 

were faced with multicollinearity problems, which they dealt with by imposing a positivity 

constraint on the regression weights. However, in this way no further insight was obtained 

into the predictor structure because all predictors were simply retained without modeling their 

interrelations. 

 

As a final example, Ceulemans, Kuppens, and Van Mechelen (2012) examined the role of 

appraisals (predictors) in the elicitation of anger (criterion) and individual differences therein. 
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To this end, participants rated 24 situations with respect to 11 appraisals and with respect to 

anger. In this example, the observations are the situations, which are nested within persons. 

Using a Boolean method for binary data (CLASSI; Ceulemans & Van Mechelen, 2008), 

Ceulemans et al. (2012) simultaneously clustered the appraisals and the persons into three 

appraisal types and two person types. These two person types differed with respect to which 

appraisal types are necessary to become angry. Note that in order to apply CLASSI, 

Ceulemans and Van Mechelen (2008) had to dichotomize their data, implying a loss of 

information. 

 

In the past, a few methods have been developed that tackle one or two of the three identified 

challenges (i.e., strongly collinear predictors, categorical differences in underlying regression 

models and nested data) by combining principal component analysis (PCA) or cluster analysis 

with regression analysis (see Figure 1). To obtain insight into the predictor structure and ease 

the interpretation of the regression weights, de Jong and Kiers (1992) developed Principal 

Covariates Regression (PCovR), which simultaneously reduces the predictors to a few 

components and regresses the criterion on these components. PCovR allows to attach different 

weights to the reconstruction of the predictors and the reconstruction of the criterion, and 

therefore encompasses Principal Component Regression (Coxe, 1986) as well as Reduced 

Rank Regression (Rao, 1964) as special cases. Another related method is Partial Least 

Squares (PLS) Regression (Wold, 1966), which emphasizes prediction of the criterion, at the 

expense of reconstructing the predictors. Specifically, PLS reduces the predictors to 

components such that these components are as much related (in terms of squared covariance) 

as possible to the criterion. Thus, a difference between both methods is that, unlike PLS, 

PCCR allows the user to flexibly weigh the reconstruction of the predictors and the prediction 

of the criterion. To detect categorical differences in underlying regression models on the other 
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hand, Späth (1979, 1981) developed Clusterwise Regression (CR) that clusters observations 

on the basis of the underlying regression model. Related methods exist within the mixture and 

latent class framework (DeSarbo & Cron, 1988; Leisch, 2004; Wedel & DeSarbo, 1995). Note 

that extensions of CR exist that allow for nested data (DeSarbo, Oliver, & Rangaswamy, 

1989). 

 

 

 

 

 

 

 

 

 

Figure 1. Graphical representation of the modeling features (ellipses) that are combined in 

different regression methods (rectangles) 

 

Although all methods mentioned above can provide some useful insight into the data, none of 

them addresses all of the discussed challenges at the same time. In fact, the only methods that 

do combine dimension reduction of the predictors with detecting subgroups in the data on the 

basis of regression weights belong to the family of structural equation models and path 

models and are confirmatory in nature in that hypotheses are required about the predictor 

structure (Arminger & Stein, 1997; Hahn, Johnson, Herrmann, & Hubert, 2002; Sarstedt & 

Ringle, 2010). As in practice often no hypotheses are available about which variables are 

measuring what construct or such hypotheses prove to be incorrect, an exploratory counterpart 

Clustering Regression PCA 

Principal Covariates 
Regression (PCovR) 

Principal Covariates 
Clusterwise Regression (PCCR) 

Clusterwise 
Regression (CR) 



8 
 

of the latter methods can be a very useful tool. Therefore, we propose such a method, called 

Principal Covariates Clusterwise Regression (PCCR), which combines the key idea’s behind 

PCovR (de Jong & Kiers, 1992) and CR (Späth, 1979) into one model (see Figure 1). 

The remainder of the paper will be organized as follows: In Section 2, we discuss the data 

structure and preprocessing, the PCCR model, and the link to related models. In the third 

section, the aim of a PCCR analysis is described and an algorithm is presented for estimating 

PCCR models; we also briefly consider model selection. Section 4 reports on a simulation 

study that we conducted to evaluate the performance of the PCCR method. In Section 5 we 

apply the PCCR method to cross-cultural data. Finally, in Section 6 we discuss when to apply 

PCCR and reflect on some of the more technical choices that were made. 

 

2  The Principal Covariates Clusterwise Regression (PCCR) model 

 

2.1  Data structure and preprocessing 

 

PCCR requires 𝐼 predictor data blocks 𝑿𝑖 (𝑁𝑖 × 𝐽) and criterion data vectors 𝒚𝑖 (𝑁𝑖 × 1) that 

respectively contain scores on 𝐽 predictors and on a criterion, where the number of 

observations 𝑁𝑖 (𝑖 = 1, … , 𝐼) in the data blocks may differ. These data blocks can be 

concatenated into an 𝑁 (observations) × 𝐽 (variables) predictor data matrix 𝑿 and an 𝑁 × 1 

criterion data vector 𝒚, where 𝑁 = ∑ 𝑁𝑖𝐼
𝑖=1 . A graphical presentation of the data structure is 

given in Figure 2. It should be noted that PCCR can be used to analyze many types of nested 

data (e.g., students nested within classes and situations nested within persons). To indicate 

this, in the remainder of the manuscript, we will refer to the data blocks as the level-2 units 

and to the rows within each data block as the level-1 units. 
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Figure 2. Graphical representation of the data needed for PCCR analysis 

 

Because (1) PCCR aims at revealing the linear relationships within the predictor data set as 

well as between predictors and criterion rather than modeling individual differences in means 

and (2) Brusco, Cradit, Steinley, and Fox (2008) have conjectured that the results of CR 

methods tend to be dominated by differences in means, we center the variables per level-2 

unit. Furthermore, to remove arbitrary scale differences, one may consider to standardize (i.e., 

a variance of one) the variables across level-2 units, as is often done in PCA analysis (see also 

Section 6 for a discussion on different scaling options). 

 

2.2  Model 

 

PCCR has a twofold aim: First, it captures the underlying structure of the predictor data block. 

Assuming that the underlying constructs or mechanisms are the same for all level-2 units, we 

reduce the predictors to 𝑅 components. Given that PCCR belongs to the family of component 

analysis methods, the components are weighted sums of the predictors. Second, regressing the 
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criterion on these components, it detects 𝐾 subgroups or clusters of level-2 units that are 

characterized by different regression models. 

 

Figure 3. Decomposition of the predictor data blocks 𝑿𝑖 in the PCCR model 

 

Regarding the first goal, the predictor data block 𝑿𝑖 of each level-2 unit 𝑖 is decomposed as 

follows (see Figure 3): 

𝑿𝑖 = 𝑿𝑖𝑾𝑷𝑿′ + 𝑬𝑿𝑖 = 𝑻𝑖𝑷𝑿′ + 𝑬𝑿𝑖  (1) 

 

In (1) 𝑻𝑖 indicates the 𝑁𝑖 by 𝑅 component score matrix for level-2 unit 𝑖. These component 

scores are a weighted combination of the predictor variables, with the weights being 

represented in the 𝐽 by 𝑅 weighting matrix 𝑾. Moreover, to avoid multicollinearity problems, 

the component scores are restricted to be orthogonal across level-2 units: 𝑻′𝑻 = 𝑰𝑁, with 𝑻 
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(𝑁 × 𝑅) comprising the concatenated 𝑻𝑖 matrices (𝑖 = 1, … , 𝐼). Given that the variables are 

centered per level-2 unit, this orthogonality constraint implies that the components are 

uncorrelated across level-2 units. 𝑷𝑿 is a 𝐽 by 𝑅 loading matrix, which contains the loadings 

of the 𝐽 variables on the 𝑅 components. Note that these loadings amount to the correlations 

between the predictor variables in 𝑿 and the component scores in 𝑻 when the predictors are 

standardized across level-2 units. As 𝑷𝑿 and 𝑾 are restricted to be identical for all level-2 

units, the interpretation of the components is the same for all level-2 units. Finally, 𝑬𝑿𝑖 

(𝑁𝑖 × 𝐽) represents the predictor residuals for level-2 unit 𝑖. 

 

Figure 4. Decomposition of the criterion data vectors 𝒚𝑖 in the PCCR model 
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Regarding the second goal, the decomposition rule for the criterion data vector 𝒚𝑖 of each 

level-2 unit 𝑖 is given by (see Figure 4): 

𝒚𝑖 = ∑ 𝒄𝑖𝑖𝑻𝑖𝒑𝒀𝑖
′ + 𝒆𝒀𝑖

𝐾
𝑖=1    (2) 

 

In (2), 𝒄𝑖𝑖 denotes the entries of the 𝐼 by 𝐾 partition matrix 𝑪, which equal one if level-2 unit 

𝑖 belongs to cluster 𝑘, and zero otherwise. Furthermore, 𝒑𝒀𝑖 indicates the 1 by 𝑅 regression 

weight vector of cluster 𝑘 (𝑘 = 1, … , 𝐾), which specifies the cluster specific regression 

model of cluster 𝑘, regressing the criterion on the components. Because the data are centered 

per level-2 unit, no intercepts are included in these regression models. Finally, 𝒆𝒀𝑖 (𝑁𝑖 × 1) 

indicates the criterion residuals of level-2 unit 𝑖. 

 

As is the case for most component analysis models, PCCR solutions have rotational freedom. 

More specifically, one can rotate either the loading matrix 𝑷𝑿, the component score matrix 𝑻 

or the regression weight vectors 𝒑𝒀𝑖 (𝑘 = 1, … ,𝐾), provided that this rotation is compensated 

for in the other two matrices. One could, for instance, apply the Varimax rotation (Kaiser, 

1958) on the loadings, which rotates them towards simple structure and makes them easier to 

interpret. Another option would be to rotate the component scores in such a way that they 

become as orthogonal as possible for each level-2 unit, rather than across level-2 units only, 

making the interpretation of the regression weights more clear. Indeed, if the components are 

orthogonal per level-2 unit, the level-2 unit specific regression weights on which the 

clustering of the level-2 units is based, only depend on the level-2 unit specific correlations 

between the components and the criterion and not on the level-2 unit specific intercorrelations 

among the components. To find the rotation matrix that makes all level-2 unit specific 

component scores as orthogonal as possible, one can use the INDORT algorithm for fitting 

constrained INDSCAL solutions (Kroonenberg, 1983, 2008; Kiers, 1989), as the rotation 
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criterion that has to be optimized can be rewritten into the INDORT criterion (see Appendix 

I). 

 

2.3  Relations to other models 

 

As stated in the introduction, the PCCR model encompasses both PCovR (de Jong & Kiers, 

1992) and CR for nested data (DeSarbo et al., 1989) as special cases. More specifically, the 

PCCR model boils down to PCovR when the number of clusters 𝐾 equals one and is 

equivalent to CR when the number of components 𝑅 equals the number of variables 𝐽. 

 

3  Data analysis 

 

3.1  Aim 

 

Given a pre-specified number of components 𝑅, number of clusters 𝐾 and weight 𝛼 (0 ≤ 𝛼 ≤

1), the aim of PCCR is to find a weighting matrix 𝑾, a partition matrix 𝑪, a loading matrix 

𝑷𝑿 and 𝐾 regression weight vectors 𝒑𝒀𝑖 (𝑘 = 1, … ,𝐾) such that the following least squares 

loss function is minimized, subject to the restriction that 𝑻′𝑻 = 𝑰𝑁: 

𝐿 =  𝛼 ‖𝑬𝑿‖2

‖𝑿‖2
+ (1 − 𝛼) ‖𝒆𝒀‖

2

‖𝒚‖2
=

𝛼
‖𝑿‖2

∑ ‖𝑿𝑖 − 𝑿𝑖𝑾𝑷𝑿′ ‖2𝐼
𝑖=1 + (1−𝛼)

‖𝒚‖2
∑ �𝒚𝑖 − ∑ 𝒄𝑖𝑖𝑿𝑖𝑾𝒑𝒀𝑖

′𝐾
𝑖=1 �

2𝐼
𝑖=1   (3) 

with ‖… ‖2 denoting the norm of a matrix/vector (i.e., sum of its squared elements). The loss 

function in (3) implies that the dimension reduction step and the clusterwise regression step 

are conducted simultaneously instead of sequentially. The weight 𝛼 indicates the importance 
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of reconstructing 𝑿 when optimizing the loss function, whereas (1 − 𝛼) denotes the 

importance of predicting 𝒚. This loss function (3) can be rewritten (up to a constant) as: 

𝐿2 = 𝛽∑ ‖𝑿𝑖 − 𝑿𝑖𝑾𝑷𝑿′ ‖2𝐼
𝑖=1 + (1 − 𝛽)∑ �𝒚𝑖 − ∑ 𝒄𝑖𝑖𝑿𝑖𝑾𝒑𝒀𝑖

′𝐾
𝑖=1 �

2𝐼
𝑖=1    (4) 

with 𝛽 = 𝛼‖𝒚‖2

𝛼‖𝒚‖2 + (1−𝛼)‖𝑿‖2
 (Vervloet, Van Deun, Van den Noortgate, & Ceulemans, 2013). 

 

3.2  Algorithm 

 

To minimize the loss function 𝐿2 in (4), subject to the constraint that 𝑻′𝑻 = 𝑰𝑁, the 

following alternating least squares algorithm was developed (MATLAB code that implements 

this algorithm is available from the authors): 

1. Initialize the partition matrix 𝑪𝑖𝑖𝑖𝑖𝑖𝑖𝑖: An initial partition is obtained by randomly 

drawing the cluster membership of each level-2 unit from a multinomial distribution 

with 𝐾 categories and probabilities equal to 1
𝐾

. Notice that this procedure does not 

necessarily yield a partition in which all clusters are non-empty. When one (or more) 

cluster(s) is empty, the whole procedure is repeated until a partition is obtained in 

which each of the 𝐾 clusters contains at least one level-2 unit. It should further be 

noted that this procedure favors an initial partition with more or less equally sized 

clusters. As a consequence, when the true clusters differ considerably in size, the 

PCCR algorithm may perform poorer. To solve this problem one can increase the 

number of runs of the algorithm and use other types of starts, like rationally obtained 

(i.e., based on some previous analysis of the data) and pseudo-random (i.e., slightly 

perturbing a rationally obtained start) initializations (for more information on different 

types of starting procedures, see Ceulemans, Van Mechelen, & Leenen, 2007). 

However, a small simulation study with unequally sized clusters shows that our 
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initialization procedure works reasonably well in that case, except for some specific 

situations (i.e., very noisy data with a large number of underlying clusters).1 These 

results are in line with simulation studies regarding other methods that also combine 

clustering and component analysis (e.g., Wilderjans & Ceulemans, 2013; Wilderjans, 

Ceulemans, & Kuppens, 2012; De Roover, Ceulemans, Timmerman, Vansteelandt, 

Stouten, & Onghena, 2012). 

2. Initialize 𝑷𝑿, 𝑻 (𝑾) and 𝒑𝒀𝑖 conditional on the initial partition matrix 𝑪𝑖𝑖𝑖𝑖𝑖𝑖𝑖: A 

singular value decomposition is conducted on 𝑿: 𝑿 = 𝑲𝑲𝑳′. Next, 𝑷𝑿 is obtained by 

multiplying the first 𝑅 columns of 𝑳 with the 𝑅 largest singular values, which can be 

found on the diagonal of 𝑲, and 𝑻 is set to the first 𝑅 columns of 𝑲. Next, in order to 

ensure 𝑻′𝑻 = 𝑰𝑁, 𝑻 is multiplied by √𝑁 and 𝑷𝑿 by �1
𝑁� . 𝑾 is computed as 

(𝑿′𝑿)−1𝑿′𝑻, with (… )−1 denoting matrix inversion. Initial estimates for the cluster 

specific regression weights 𝒑𝒀𝑖 are obtained by regressing 𝒚𝑖 on 𝑻𝑖, where 𝒚𝑖 and 𝑻𝑖 

respectively correspond to the concatenated criterion and component scores of the 

level-2 units that belong to cluster 𝑘 (𝑘 = 1, … ,𝐾). 

3. Consecutively update the cluster memberships of the level-2 units, conditional upon 

the clustering of the other level-2 units, until convergence. In each iteration, all level-2 

unit memberships are updated and the resulting loss function value is computed. This 

                                                           
1 We generated 360 data sets by manipulating the number of clusters (at three levels: two, three and four 
clusters), the cluster sizes (at two levels: one small cluster with 20% of the level-2 units and one large cluster 
with 80% of the level-2 units; the other level-2 units were equally spread across the other clusters) and the 𝛼-
level (at six levels: . 001, . 01, . 05, . 15, . 25 and . 35); all other factors were held constant (i.e., 50 level 2-units 
with 25 level-1 units each, 20 predictors, two relevant and six irrelevant components, the same cluster specific 
regression weights 𝒑𝒀𝑖

𝒕𝒕𝒕𝒆
 as in Table 2 and 20% noise in 𝑿 and in 𝒚); we used ten replications for each cell of 

the design. The recovery of the underlying clustering, quantified by the Adjusted Rand Index (ARI; see section 
4.3.2), can be considered reasonable as the mean ARI value equals . 93, whereas the mean ARI for the 
comparable conditions in the simulation study with equal sized underlying clusters amounts to . 96. Recovery, 
however, drops when the number of clusters increases (i.e., mean ARI of . 94, . 95 and . 89 for two, three and 
four clusters, respectively) and/or when there is one large cluster next to multiple small ones (i.e., mean ARI of 
. 99 and . 87 for the first and second level of the cluster size factor, respectively). 
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procedure is repeated until the improvement in the loss function value is smaller than a 

tolerance value (e.g., . 0000001)2. To update the cluster membership of level-2 unit 𝑖, 

the level-2 unit in question is assigned to each of the 𝐾 clusters and the associated 

conditionally optimal 𝑾, 𝑷𝑿 and 𝒑𝒀𝑖 are computed by repeating the following three 

steps until convergence3: 

3.1. Update 𝑾 conditionally upon 𝑪, 𝑷𝑿 and 𝒑𝒀𝑖 under the constraint that 𝑻′𝑻 = 𝑰 =

∑ 𝑾′𝑿𝑖′ 𝑿𝑖𝑾𝐾
𝑖=1  (with 𝑿𝑖 being obtained by vertically concatenating all data 

matrices 𝑿𝑖 of level-2 units 𝑖 belonging to cluster 𝑘). Because of the orthogonality 

constraint on 𝑾, no closed form solution for this constrained problem is available. 

A way out consists of first solving the unconstrained problem4, yielding 𝑾𝑢𝑖𝑢𝑢𝑖, 

and next enforcing the constraint by means of a nonsingular transformation of 

𝑾𝑢𝑖𝑢𝑢𝑖. The solution to the unconstrained minimization problem equals (see 

Appendix II): 

𝑾𝑢𝑖𝑢𝑢𝑖 = (𝒁′𝒁)−1𝒁′𝒚 

where  

𝒁′𝒁 = �� � 𝛽𝑷𝑿′ 𝑷𝑿 + (1 − 𝛽)𝒑𝒀𝑖
′𝒑𝒀𝑖  �  ⊗  𝑿𝑖′ 𝑿𝑖  �

𝐾

𝑖=1

 

                                                           
2 Note that taking . 0000001 as convergence criterion might be too strict, resulting in a considerable lengthening 
of the computation time. A possible solution is to use . 0000001 ‖𝑿‖2 instead (i.e., to look at the proportional 
decrease instead of the absolute decrease in fit). 
 
3 Note that step three of the PCCR algorithm consists of a double (nested) iterative procedure of which the outer 
iterations pertain to updating the level-2 unit memberships and the inner iterations to updating 𝑾, 𝑷𝑿 and 𝒑𝒀𝑖, 
conditional on 𝑪. 
 
4 Another option is to directly solve the constrained problem (instead of the unconstrained one) by means of an 
iterative majorization approach (Kiers & ten Berge, 1992). The technical details of this approach are available 
upon request from the authors. The results of a pilot simulation study showed that both algorithms in most cases 
lead to the same final solution, but that the majorization approach consumes more time. Therefore, the 
majorization approach is not further discussed in this manuscript. 
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𝒁′𝒚 = 𝑣𝑣𝑣 �𝛽 ��𝑿𝑖′ 𝑿𝑖

𝐾

𝑖=1

�𝑷𝑿 + (1 − 𝛽)�𝑿𝑖′ 𝒚𝑖

𝐾

𝑖=1

𝒑𝒀𝑖� 

and ⊗ denotes the Kronecker product of two matrices and 𝑣𝑣𝑣 the vectorization-

operator for matrices (Schott, 2005). To enforce the orthogonality constraint, an 

eigenvalue decomposition is performed on 𝒁𝑾 = 𝑾𝑢𝑖𝑢𝑢𝑖
′ 𝑿′𝑿𝑾𝑢𝑖𝑢𝑢𝑖, resulting 

in a diagonal matrix 𝑷 that contains the eigenvalues and a matrix 𝑨 that holds the 

associated normalized eigenvectors. Next, 𝑾 can be computed as 𝑾 =

𝑾𝑢𝑖𝑢𝑢𝑖𝑨�√𝑷�
−1

. 

3.2. Update 𝑷𝑿 and the 𝒑𝒀𝑖 (𝑘 = 1, … ,𝐾) vectors conditionally upon 𝑪 and 𝑾 as 

follows: 

𝑷𝑿 = (𝑿′𝑿𝑾)(𝑾′𝑿′𝑿𝑾)−1 

𝒑𝒀𝑖 = 𝒚𝑖′ 𝑿𝑖𝑾(𝑾′𝑿𝑖′ 𝑿𝑖𝑾)−1 

3.3. Check the loss function value for improvement. When the resulting decrease in 

loss function value is larger than a pre-specified tolerance value, continue by 

returning to step 3.1; otherwise, stop. 

Next, level-2 unit 𝑖 is assigned to the cluster 𝑘 for which the resulting loss function 𝐿2 

is lowest and the corresponding 𝑾, 𝑷𝑿 and 𝒑𝒀𝑖 are retained. If the 𝑪 that is obtained at 

the end of an iteration contains empty clusters, the level-2 unit that fits its cluster the 

worst is assigned to (one of) the empty cluster(s) and the resulting 𝑾, 𝑷𝑿 and 𝒑𝒀𝑖 are 

recomputed (as in steps 3.1 and 3.2)5; this procedure is repeated until all clusters are 

non-empty. 

4. Rescale the obtained solution such that 𝑻′𝑻 = 𝑰𝑁. To this end, 𝑻 and 𝑾 are 

multiplied by √𝑁 and 𝑷𝑿 and 𝒑𝒀𝑖 (𝑘 = 1, … ,𝐾) are divided by √𝑁. 

                                                           
5 When the worst fitting level 2-unit is the only level-2 unit in his/her cluster, we move on to the level-2 unit with 
the second worst fit, etcetera. 
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In order to minimize the risk that the PCCR algorithm ends in a suboptimal solution (i.e., a 

local minimum), a multi-start procedure is performed. This procedure consists of running the 

algorithm many times (e.g., 50 or 100), each time using a different initial partition matrix 

𝑪𝑖𝑖𝑖𝑖𝑖𝑖𝑖. The solution that has the lowest loss function value 𝐿2 is retained as the final 

solution. 

 

3.3  Model selection 

 

As described above, the PCCR algorithm requires the number of components 𝑅, the number 

of clusters 𝐾 and the value of 𝛼 to be specified. Sometimes, 𝑅, 𝐾 and 𝛼 can be chosen on the 

basis of substantive arguments. However, often no strong a priori information is available. In 

such cases, one may adopt the following strategy: First, estimate PCCR solutions using 

several values for 𝑅, 𝐾 and 𝛼. Next, select a model that fits well, is not too complex and that 

generalizes well to other data from the same population. To this end, one may use k-fold 

cross-validation with k, for example, being equal to ten. In this procedure, ten new cross-

validation samples are created from the original data set by removing each time ten percent of 

the level-1 units within each level-2 unit (such that each level-1 unit is removed exactly once). 

On each of these cross-validation samples, PCCR analyses are performed with all the 

different values of 𝑅, 𝐾 and 𝛼 and the criterion values of the deleted level-1 units are 

predicted based on the estimated parameters. Finally, the cross-validation error for each 

(𝑅,𝐾,𝛼)-combination is computed by summing the squared prediction errors for the deleted 

level-1 units across the ten samples. The (𝑅,𝐾,𝛼)-combinations with the lowest cross-

validation errors are to be preferred. The use of this model selection strategy will be 

illustrated in the application section (see Section 5). 
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4  Simulation study 

  

4.1  Aim 

 

The aim of this simulation study is twofold. First, we want to evaluate the performance of the 

PCCR algorithm with regard to sensitivity to local minima, on the one hand, and the recovery 

of the underlying clustering, components and regression models, on the other hand. Second, 

we will compare the performance of PCCR, which simultaneously extracts components and 

predicts the criterion, and a sequential strategy (i.e., first extract components from 𝑿; next, 

predict 𝒚 based on these components). 

 

Regarding the second aim, it is useful to make a distinction between relevant and irrelevant 

components in 𝑿,  with irrelevant components having zero regression weights. We 

hypothesize that when the strongest components in 𝑿 (in terms of explained variance) are all 

relevant, PCCR and the sequential strategy will perform equally well6. However, clear 

performance differences are expected when 𝑿 contains a weak but relevant component and 

one or more irrelevant components, of which some are strong (Vervloet et al., 2013). In these 

situations, we predict that the sequential strategy will extract a strong but irrelevant 

component rather than the weak but relevant one, because the criterion variable is not taken 

into account and because most model selection procedures focus on strong components only 

(Ceulemans & Kiers, 2009). In contrast, we hypothesize that PCCR will ignore the irrelevant 

components and will retain the relevant ones, because it takes both the information in 𝑿 and 𝒚 

into account. Herewith, we expect that PCCR will perform best when 𝛼 is small (Vervloet et 

                                                           
6 The results of a pilot study in which the number of components and clusters (i.e., two and four), the amount of 
noise in 𝑿 and 𝒚 (i.e., 10% and 40%) and the cluster sizes (see Brusco & Cradit, 2001; Steinley, 2003) have been 
manipulated, indeed reveal that PCCR and a sequential approach perform equally well, when all components are 
strong and relevant. 
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al., 2013). To test this hypothesis, we conducted a simulation study in which we added a 

number of irrelevant components and varied their strength. 

 

4.2  Design and procedure 

 

We kept the following data characteristics fixed: (1) 50 level-2 units and 25 level-1 units per 

level-2 unit, (2) 20 predictors, (3) two relevant components, (4) the cluster specific 

regression weights 𝒑𝒀𝑖
𝒕𝒕𝒕𝒆

 of these relevant components (see Table 2), (5) the amount of noise 

on 𝒚 is set to 20%, and (6) equal cluster sizes. We manipulated the following three 

characteristics: 

1) Number of irrelevant components, at two levels: four and six irrelevant components. 

The amount of variance explained by each relevant and irrelevant component is 

displayed in Table 1. For all data sets, the first relevant component explains 38% of 

the variance and the weak but relevant second component only 2%. Half of the 

irrelevant components (i.e., two or three in case of four and six irrelevant components, 

respectively) are weak too and explain about the same amount of variance as the weak 

relevant component, whereas the other half of the irrelevant components are strong 

and thus explain a sizeable amount of variance in 𝑿. 

2) The amount of noise in 𝑿, at three levels: 10%, 20% and 40%. 

3) The number of clusters, at three levels: two, three and four clusters. 
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Table 1 

Percentage of explained variance per relevant and irrelevant component  

 relevant components  irrelevant components 

𝑁𝑢𝑢𝑐𝑐 1 2  3 4 5 6 7 8 

4 38% 2%  30% 25.7% 2.2% 2.1% --- --- 

6 38% 2%  25% 15% 13.4% 2.3% 2.2% 2.1% 

 𝑁𝑢𝑢𝑐𝑐: number of irrelevant components 

 

Each data set was created as follows: The true partition matrix 𝑪𝒕𝒕𝒕𝒆 was obtained by 

randomly assigning level-2 units to a cluster taking into account the desired number of 

clusters and cluster size. The true component scores on both the relevant and irrelevant 

components, stored in the matrix 𝑻𝒕𝒕𝒕𝒆, were drawn from a multivariate normal distribution 

with the 𝟎 vector as mean vector and the identity matrix as variance-covariance matrix. Next, 

these component scores were centered per level-2 unit and orthogonalized (i.e., 𝑻𝒕𝒕𝒕𝒆′𝑻𝒕𝒕𝒕𝒆 =

𝑰) and standardized across level-2 units7. True relevant and irrelevant component loadings 

𝑷𝑿𝒕𝒕𝒕𝒆 were obtained by first randomly generating numbers between -1 and 1 from a uniform 

distribution and next rescaling these numbers in order to get the desired percentages of 

explained variance (see Table 1). The true regression weights 𝒑𝒀𝑖
𝒕𝒕𝒕𝒆

 that have been used are 

presented in Table 28. Finally, data matrices 𝑿 and 𝒚 were obtained by adding error matrices 

                                                           
7 𝑾𝒕𝒕𝒕𝒆 can be computed from 𝑻𝒕𝒕𝒕𝒆 as follows: 𝑾𝒕𝒕𝒕𝒆 = �𝑿𝒕𝒕𝒕𝒆′𝑿𝒕𝒕𝒕𝒆�

−1
𝑿𝒕𝒕𝒕𝒆′𝑻𝒕𝒕𝒕𝒆, with 𝑿𝒕𝒕𝒕𝒆 =

𝑻𝒕𝒕𝒕𝒆𝑷𝑿𝒕𝒕𝒕𝒆
′ . 

 

8 This choice of cluster-specific regression weights implies that the clusters are clearly separated in terms of their 
underlying cluster specific regression models. To quantify the degree of cluster separation, we computed the 

ratio 𝑧 =
∑ �𝑐𝒀𝑟

𝑘𝒕𝒕𝒕𝒆−𝑐𝒀𝑟
𝑘′

′𝒕𝒕𝒕𝒆

�𝑅
𝑟=1

∑ �𝑐𝒀𝑟
𝑘𝒕𝒕𝒕𝒆�𝑅

𝑟=1
 for each pair of clusters, with 𝑧 > .50 implying that clusters are well separated 
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𝑬𝑿 and 𝒆𝒀 to 𝑿𝒕𝒕𝒕𝒆 and 𝒚𝒕𝒕𝒕𝒆, respectively, with 𝑿𝒕𝒕𝒕𝒆 and 𝒚𝒕𝒕𝒕𝒆 resulting from combining 

the true partitioning, component scores, loadings, and regression weights by the 

decomposition rules (1) and (2). The elements of 𝑬𝑿 and 𝒆𝒀 were independently sampled 

from a standard normal distribution and rescaled so as to obtain the desired amount of noise. 

At the end, the data per level-2 unit (both 𝑿 and 𝒚) were centered. 

Table 2 

Cluster-specific regression weight 𝒑𝒀𝑖
𝒕𝒕𝒕𝒆

 for each manipulated number of clusters 

 Regression weights 𝒑𝒀𝑖
𝒕𝒕𝒕𝒆

 for cluster 𝑘 

 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 

2 clusters √. 01 and √. 99 √. 80 and √. 20   

3 clusters √. 01 and √. 99 √. 80 and √. 20 √. 01 and −√. 99  

4 clusters √. 01 and √. 99 √. 80 and √. 20 √. 01 and −√. 99 −√. 80 and √. 20 

 Note: all cluster-specific regression weights 𝒑𝒀𝑖
𝒕𝒕𝒕𝒆

 are chosen such that �𝒑𝒀𝑖
𝒕𝒕𝒕𝒆� = 1 

 

The design has 2 (number of irrelevant components) × 3 (amount of noise in 𝑿) × 3 (number 

of clusters) = 18 conditions and 10 data sets were generated per condition, resulting in 180 

data sets. To investigate how 𝛼 influences the performance of PCCR, each of these data sets 

will be analyzed with the following six 𝛼 values: .35, .25, .15, .05, .01 and .001. We selected 

relatively low 𝛼 values, because based on results of the pilot simulation study, both PCCR 

and the sequential strategy are predicted to perform equally well when 𝛼 increases (i.e., when 
                                                                                                                                                                                     

(Kiers & Smilde, 2007) and 𝑝𝒀𝑟
𝑖𝒕𝒕𝒕𝒆  �𝑝𝒀𝑟

𝑖′
′𝒕𝒕𝒕𝒆

� indicating the rth true regression weight for cluster 𝑘 (𝑘′). For the 

generated datasets with two clusters the 𝑧-ratio equals 1.23, whereas the mean 𝑧-ratio (computed over all 
possible cluster pairs) for the three- and four-cluster datasets equals 1.57 (with separate values of 1.23, 1.82 and 
1.67) and 4.47 (with separate values of 1.23, 2.64, 8.76, 1.15, 7.33 and 5.71), respectively. Note that for 
generated datasets in the three- and four-cluster conditions, the clusters are more clearly separated than in the 
two-cluster conditions. Notice further that the larger mean 𝑧-ratio for the solutions with four clusters is mainly 
due to the fourth cluster being clearly separated from the other three clusters (with the 𝑧-ratios for the other three 
clusters being in the range of the 𝑧-ratios for the generated datasets with two and three clusters). 
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𝛼 increases, PCCR approaches the sequential strategy, with both strategies being equivalent 

when 𝛼 = 1). During the analysis, the true number of clusters and two components were 

extracted. We used a tolerance value of . 0000001 and a multi-start procedure with 100 runs 

(see Section 3.2). Each run started from a different randomly generated initial clustering 

𝑪𝑖𝑖𝑖𝑖𝑖𝑖𝑖 in which each level-2 unit had a probability of 1
𝐾

 to be assigned to each cluster and in 

which empty clusters were avoided. From these 100 runs, the solution with the lowest loss 

function value (4) was retained, yielding the reconstructed data matrix 𝑿� and data vector 𝒚�. 

To obtain results for the sequential strategy, standard PCA was applied to each data set 𝑿 

retaining R components, which yields 𝑾, 𝑻 and 𝑷𝑿. Next a clusterwise regression analysis 

with 𝐾 clusters was conducted in which 𝒚 was regressed on 𝑻, subject to the constraint that all 

participants of specific level-2 units are assigned to the same cluster; this step yields the 𝑪 and 

𝒑𝒀𝑖 matrices. The computations were run in MATLAB (version 2013b and 2014a) on a cluster 

of computers from the Flemish Supercomputer Center (VSC, https://vscentrum.be/nl/en). 

Averaged over all simulated data sets, the computation time of a single PCCR run equals 38.7 

seconds (1 hour and a few minutes for 100 runs), whereas a run of the sequential strategy 

takes 1.4 seconds on average (about 2.5 minutes for 100 runs). The computation time of a 

PCCR run is mostly influenced by the number of clusters (i.e., mean computation time of 

20.3, 36.6 and 59.1 seconds for two, three, and four clusters, respectively) and the 𝛼–level 

(i.e., mean computation time of 23.6, 51.0 and 73.5 seconds for 𝛼 equaling . 001, . 25 and 

. 35, respectively). 

 

 

 

 

 

https://vscentrum.be/nl/en
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4.3  Results 

 

4.3.1  Local minima 

 

To assess how often PCCR yields a local minimum, we computed the following 𝐿2𝑑𝑖𝑑𝑑 

measure: 

𝐿2𝑑𝑖𝑑𝑑 =  �𝛽�𝑿 − 𝑿��
2

+ (1 − 𝛽)‖𝒚 − 𝒚�‖2� − �𝛽�𝑿 − 𝑿�𝒑𝒕𝒑𝒑𝒚�
2

+ (1 − 𝛽)‖𝒚 − 𝒚�𝒑𝒕𝒑𝒑𝒚‖2�, 

which compares the loss function value (4) of the estimated PCCR solution with the loss 

function value of the PCCR solution with 𝑿�𝒑𝒕𝒑𝒑𝒚 and 𝒚�𝒑𝒕𝒑𝒑𝒚, which is obtained by seeding 

the PCCR algorithm with the true clustering 𝑪𝒕𝒕𝒕𝒆. When the computed 𝐿2𝑑𝑖𝑑𝑑-value is 

positive, the algorithm ended in a local minimum for sure, in that at least one other solution 

exists (i.e., 𝑿�𝒑𝒕𝒑𝒑𝒚 and 𝒚�𝒑𝒕𝒑𝒑𝒚) that fits the data better. Note that a negative 𝐿2𝑑𝑖𝑑𝑑-value does 

not necessarily mean that the global optimum of the loss function is reached, as �𝛽�𝑿 −

𝑿�𝒑𝒕𝒑𝒑𝒚�
2

+ (1 − 𝛽)‖𝒚 − 𝒚�𝒑𝒕𝒑𝒑𝒚‖2� is only a proxy (i.e., estimate) of the global minimum, 

which is always unknown when the data contain noise. In general, PCCR appears not to have 

any problems with local minima (i.e., all 𝐿2𝑑𝑖𝑑𝑑-values are negative). 

A second way to get some idea whether or not the PCCR algorithm has a large 

problem with locally optimal solutions, is to check the number of runs of the algorithm that 

yielded the optimal loss function value. Indeed, when most of the runs end in the retained 

solution, it can be assumed that the algorithm does not suffer too much from local optima. On 

average, 96.8 (72.9 for the sequential strategy) of the 100 PCCR runs per simulated data set 

resulted in the same optimal loss function value. 
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Table 3 

Mean recovery results for PCCR (with 𝛼 = .001, 𝛼 = .35 and across all six 𝛼 levels) and the 

sequential approach 

Recovery PCCR with 

𝜶 =.𝟎𝟎𝟎 

PCCR with 

𝜶 =.𝟑𝟑 

PCCR across 

all six 𝜶 levels 

Sequential 

approach 

Clustering (ARI) .97 .97 .97 .62 

Perfect clustering (ARI = 1) 132 / 180 

(73.33%) 

126 / 180  

(70%) 

785 / 1080 

(72.69%) 

8 / 180   

(4.44%) 

Loadings (Φ𝑷𝑿) .99 .97 .98 .59 

Regression weights (𝑀𝑀𝑀𝒑𝒀) .20 .20 .20 .64 

 

4.3.2  Goodness-of-recovery 

 

Recovery of the clustering. To assess the recovery of the clustering of the level-2 units, we 

made use of the Adjusted Rand Index (ARI; Hubert & Arabie, 1985; Steinley, 2004). An ARI 

value of one indicates perfect recovery and an ARI value of zero indicates that the obtained 

clustering does not resemble the true clustering more than can be expected by chance. One 

can see in Table 3 that, on average (i.e., across all levels of 𝛼), PCCR clearly outperforms the 

sequential strategy in terms of recovering the true clustering (i.e., a difference in 𝑀𝑅𝐼 of . 35 

and in percentage perfect recovery of 68.25%). In Figure 5, one can see that, in general, the 

PCCR recovery of the clustering somewhat deteriorates when the amount of noise in the data 

increases. However, in the worst case recovery stays acceptable with mean 𝑀𝑅𝐼 > .88. The 

effects of the other factors (and their interactions) are even smaller and not univocal. 
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Figure 5. Mean 𝑀𝑅𝐼 for PCCR solutions as a function of the number of irrelevant components 

(top part: four irrelevant components; bottom part: six irrelevant components), the number of 

clusters (left panels: two clusters; middle panels: three clusters; right panels: four clusters), 

the amount of noise in the data and 𝛼. 

 

Recovery of the loadings. To check to what extent PCCR is able to recover the relevant 

components, the recovery of the corresponding loadings in 𝑷𝑿 was evaluated by calculating 

the Tucker Phi coefficient (Φ; Tucker, 1951; Korth & Tucker, 1975) between the true and 

estimated loadings per relevant component and averaging (the absolute value of) this 

coefficient over the components. Before calculating Φ𝑷𝑿, the estimated loadings 𝑷�𝑿 were 

orthogonally rotated (ten Berge, 1977) towards the true loadings 𝑷𝑿𝒕𝒕𝒕𝒆. A Φ𝑷𝑿 value of one 

indicates perfect recovery, whereas a Φ𝑷𝑿 value of zero implies no recovery at all. Across all 

360 analyses (i.e., 60 data sets analyzed with six levels of 𝛼), the average difference in Φ𝑷𝑿 

between PCCR and the sequential strategy equals . 39 (see Table 3). In Figure 6, one can see 

that PCCR recovers the loadings a bit better when 𝛼 becomes smaller (i.e., less influence of 𝑿 
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when extracting the components) and slightly better when the data contain less noise, whereas 

there is almost no effect of the number of irrelevant components. 

 

 

Figure 6. Mean Φ𝑷𝑿 for PCCR solutions as a function of the number of irrelevant components 

(top part: four irrelevant components; bottom part: six irrelevant components), the number of 

clusters (left panels: two clusters; middle panels: three clusters; right panels: four clusters), 

the amount of noise in the data and 𝛼. 

 

Recovery of the regression weights. To investigate the recovery of the regression weights 𝒑𝒀𝑖 

of the relevant components, the 𝑀𝑀𝑀𝒑𝒀 measure was used (Kiers & Smilde, 2007): 

𝑀𝑀𝑀𝒑𝒀 =
∑ ∑ �𝑝𝒀𝑟

𝑖𝒕𝒕𝒕𝒆 − �̂�𝒀𝑟
𝑖 �𝑅

𝑟=1
𝐾
𝑖=1

∑ ∑ �𝑝𝒀𝑟
𝑖𝒕𝒕𝒕𝒆�𝑅

𝑟=1
𝐾
𝑖=1

. 

𝑀𝑀𝑀𝒑𝒀 is zero in case of perfect recovery (i.e., 𝒑�𝒀𝑖 equaling 𝒑𝒀𝑖
𝒕𝒕𝒕𝒆

 for all 𝑘 = 1, … ,𝐾) and 

higher values indicate worse recovery. Note that the cluster specific regression weights were 

rotated adopting the same rotation matrix that was used in the orthogonal target rotation of the 

loadings 𝑷𝑿 (see earlier). Moreover, we matched the true and estimated clusters so as to 
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obtain the lowest 𝑀𝑀𝑀𝒑𝒀-value. On average, PCCR recovers the true regression weights 

clearly better than the sequential strategy. In particular, as can be seen in Table 3, PCCR has a 

good 𝑀𝑀𝑀𝒑𝒀 of . 20, whereas the 𝑀𝑀𝑀𝒑𝒀 of . 64 for the sequential strategy is terrible. As one 

can see in Figure 7, PCCR better recovers the cluster specific regression weights when there 

is less noise in the data. There is hardly any effect of the number of irrelevant components and 

recovery seems to deteriorate a little when 𝛼 becomes larger than . 25. 

 

 

Figure 7. Mean 𝑀𝑀𝑀𝒑𝒀 for PCCR solutions as a function of the number of irrelevant 

components (top part: four irrelevant components; bottom part: six irrelevant components), 

number of clusters (left panels: two clusters; middle panels: three clusters; right panels: four 

clusters), the amount of noise in the data and 𝛼. Note that larger values on the Y-axis imply a 

worse recovery. 

 

Analyses with more components. When performing analyses with three/four components (i.e., 

the number of strong components in the four and six irrelevant components conditions) and 

the true number of clusters, PCCR still clearly outperforms the sequential strategy (i.e., a 

mean ARI value of .98 versus .56). 
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Conclusion. It can be concluded that, for our settings, PCCR with 100 runs recovers the 

underlying clustering, loadings and cluster specific regression weights excellently. Moreover, 

when the data contain one or more strong but irrelevant components as well as a weak but 

relevant one, PCCR clearly outperforms the sequential approach in terms of recovering the 

underlying clustering, component loadings and cluster specific regression weights. Extracting 

as many components as there are strong ones is not a solution as PCCR still clearly 

outperforms the sequential strategy in that case. 

 

5  Application 

 

To illustrate the usefulness of PCCR, we will analyze cross-cultural data on satisfaction with 

life. Specifically, we will look for linear combinations of values, personality characteristics 

and beliefs about happiness that have a differential predictive value for satisfaction with life. 

The differences are assumed to be categorical in that we will look for clusters of countries 

(i.e., the level-2 units in this application refer to countries) that are characterized by different 

regression models. 

 

The data that will be analyzed are part of the International College Survey (ICS) 2001 

(Kuppens, Ceulemans, Timmerman, Diener, & Kim-Prieto, 2006), a large-scale paper-and-

pencil questionnaire-based study regarding subjective wellbeing and its determinants, in 

which 10,018 inhabitants from 48 different countries (see Table 6) took part. We used the 

satisfaction with life score of each participant as the criterion variable and a set of 34 

variables (see Table 4 for more details) regarding which characteristics people value, people’s 

personality and their beliefs on happiness as the predictors. The satisfaction with life scores 

were obtained by summing participants’ answers (rated on a seven-point Likert scale) on five 
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items (i.e., “In most ways my life is close to my ideal”, “the conditions of my life are 

excellent”, “I am satisfied with my life”, “so far I have gotten the important things I want in 

life” and “if I could live my life over, I would change almost nothing”). We list-wise deleted 

the participants with missing data, resulting in a final sample of 9054 respondents. 

 

Table 4 

34 predictors and their keywords for the cross-cultural data regarding satisfaction with life 

Keyword Item 

 

How much do you value (from 1 “do not value it at all” to 9 “value it extremely”) 

Happiness Happiness 

Intelligence and knowledge Intelligence and knowledge 

Material wealth Material wealth 

Physical attractiveness Physical attractiveness 

Physical comforts Physical comforts 

Excitement and arousal Excitement and arousal 

Competition Competition 

Getting to heaven Getting to heaven, achieving a happy afterlife 

Self-sacrifice Self-sacrifice 

Success Success 

Fun Fun (personal enjoyment) 

  

Describe yourself (from 1 “very inaccurate” to 5 “very accurate”) 

Partylife Am the life of the party 

No talk Don’t talk a lot 
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Background Keep in the background 

Start conversation Start conversations 

Talk people Talk to a lot of different people at parties 

Quiet strangers Am quiet around strangers 

  

How much do you agree (from 1 “strongly disagree” to 9 “strongly agree”) 

Harmony It is important for me to maintain harmony within my group 

Outperforming It is important for me that I do my job better than others 

Aging parents We should keep our aging parents with us at home 

Unique I am a unique individual 

Competition Without competition it is not possible to have a good society 

Competition friends I often feel like I am competing with my friends 

Competition family I often feel like I am competing with my family members 

Family success The success of my family is more important than my own 

pleasure 

Enjoy present I would rather enjoy the present and not worry about the future 

Work hard It is better to work hard now because happiness can be saved 

up and enjoyed later 

Family pessimism When I think about my friends and family, I think more about 

what might go wrong than I think about rewards 

School pessimism When I think about my school work, I think more about what 

might go wrong than I think about rewards 

Cycle Happiness and unhappiness are like night and day – one 

follows the other in a regular cycle 

Misfortune Talking about personal happiness will turn my fate to 
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misfortune 

Born happy Happiness is something you are born with – you are either 

happy or unhappy and that can’t be changed 

Resent happy If you talk about how happy you are, people will resent you 

Create happiness A person has to create happiness for himself or herself 

 

Before the analysis, the data were preprocessed as follows: First, between-country differences 

in variable means were removed by centering the variables (criterion and predictors) per 

country. Next, in order to remove arbitrary scale differences and give each variable the same 

weight in the analysis, all variables were standardized (i.e., a variance of one) per country. As 

such, it is ensured that the PCCR clustering is influenced only by between-country differences 

in the correlations between the 34 predictors and the criterion (i.e., satisfaction with life). On 

the thus standardized data, PCCR analyses were performed with the number of components 

(𝑅) and the number of clusters (𝐾) going from two to four9. For each (𝑅,𝐾) combination, the 

analysis was performed using . 050, . 010 and . 001 as 𝛼–values. Note that these low 𝛼–

values were chosen as the simulation study demonstrated that low 𝛼–values yield the best 

results (see Section 4). For each (𝑅,𝐾,𝛼) combination, the PCCR algorithm was run 100 

times to avoid local minima and the solution with the best fit was retained. 

 

 

 

 

                                                           
9 We believe that models with more than four clusters and/or four components are too complex for our data (i.e., 
48 countries and 34 variables). In particular, the fit of these complex models is not substantially larger than the 
fit of less complex models. Furthermore, we did not consider solutions with one cluster and/or one component as 
such models are too simplistic. 
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Table 5 

Cross-validation (CV) prediction error for the PCCR and the sequential solution for each 

considered model for the cross-cultural data regarding satisfaction with life 

Number of 

components 

Number of 

clusters 

𝜶-value CV error 

PCCR 

CV error 

sequential 

3 2 .050 7986.5 8265.8 

3 3 .050 7992.0 8287.9 

4 2 .050 7992.3 8135.6 

2 2 .050 7992.3 8261.1 

3 2 .001 8000.7 8265.8 

2 2 .010 8001.1 8263.1 

4 2 .010 8001.2 8139.2 

2 2 .001 8001.7 8262.6 

4 2 .001 8001.7 8135.6 

3 4 .050 8006.0 8230.9 

3 4 .010 8007.2 8230.6 

3 2 .010 8007.3 8265.8 

2 3 .050 8008.4 8246.3 

3 4 .001 8008.6 8230.6 

2 3 .010 8009.8 8246.3 

2 3 .001 8010.0 8246.3 

4 3 .050 8022.8 8147.6 

3 3 .010 8041.7 8283.6 

4 4 .050 8042.0 8114.7 

4 3 .001 8044.3 8147.6 
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3 3 .001 8044.4 8287.3 

4 3 .010 8044.7 8150.5 

2 4 .010 8054.3 8276.4 

2 4 .050 8057.7 8276.4 

2 4 .001 8064.7 8276.4 

4 4 .001 8075.5 8114.7 

4 4 .010 8078.1 8114.7 

 

Performing ten-fold cross-validation (see Section 3.3) revealed, as can be seen in Table 5, that 

for each considered (𝑅,𝐾,𝛼) combination, the PCCR solution had a clearly smaller cross-

validation error than the associated sequential solution and that both solutions yielded a very 

different clustering (as measured by means of the Adjusted Rand Index; Hubert & Arabie, 

1985). We decided to retain the PCCR solution with three components, three clusters and an 

𝛼-value of . 05. Although this solution only has the second lowest cross-validation error (see 

Table 5), compared to the best solution, this solution yields cluster specific regression weights 

that differ in a more pronounced way and as such allows us to better illustrate the richness of 

the obtained results. For the selected number of clusters and components and 𝛼-value, the 

computation time for an average PCCR run equaled 209.5 seconds (and, hence, a little bit less 

than six hours for 100 runs10), whereas an average run of the sequential strategy took 1.5 

seconds (and, hence, about two minutes and a half for 100 runs); 14 of the 100 PCCR runs 

resulted in the same optimal solution (with the same being true for the sequential strategy). 

 

 

 

                                                           
10 These computations are based on the use of a single core at the same time. Modern computers, however, are 
able to use up to four cores simultaneously, reducing the computation time to two hours. 
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Table 6 

Clustering of the countries in the PCCR solution (𝛼 = .05) with three components and three 

clusters for the cross-cultural data regarding satisfaction with life 

Cluster 1 Cluster 2 Cluster 3 

Nigeria Thailand United States 

Uganda Philippines Canada 

Ghana Indonesia Australia 

Cameroon Hong Kong Singapore 

Malaysia China Japan 

Bangladesh Nepal Korea Republic 

Greece India Chile 

Bulgaria Switzerland Brazil 

 Turkey Mexico 

 Cyprus Colombia 

 Georgia Venezuela 

 Russia Germany 

 South Africa Belgium 

 Zimbabwe Netherlands 

 Egypt Austria 

  Portugal 

  Spain 

  Italy 

  Slovenia 

  Slovakia 

  Poland 
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  Croatia 

  Hungary 

  Iran 

  Kuwait 

 

The obtained clustering of the countries is presented in Table 6. To validate and interpret this 

clustering, the clusters were related to a set of nation-level variables, including wealth and 

development measures (e.g., GDP, human development index, life expectancy), power 

distance, egalitarianism, etc. For each variable separately, we computed the ratio of the 

between cluster variance to the total variance (i.e., the amount of explained variance). In 

Table 7, the cluster specific means are presented for all variables that yielded a ratio larger 

than .13 (Cohen, 1992). It can be concluded that the countries in the first cluster have more 

power distance (i.e., a more hierarchical society), less individualism, a smaller IQ, smaller 

gender egalitarianism, lower health expenditure, lower life expectancy, lower GDP, lower 

human development and a lower health life expectancy than the countries in the third cluster. 

The countries in the second cluster take an intermediate position as their variable means are in 

between the means of the other two groups. In sum, the first cluster mainly groups less 

developed countries and the third cluster mainly well-developed countries, whereas the 

countries in the second cluster are situated somewhere in between. 
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Table 7 

Cluster specific means on several nation-level variables for the three obtained clusters for the 

cross-cultural values data regarding satisfaction with life 

Variable Cluster 1 Cluster 2 Cluster 3 Ratio 

Power distance 78.00 71.18 58.45 .16 

Individualism 25.16 33.70 49.37 .16 

Gender egalitarianism 4.24 4.20 4.72 .29 

IQ 79.87 87.33 95.80 .28 

Health expenditure (% of GDP; 2002) 2.32 2.58 5.03 .36 

Health expenditure per capita (US$; 2002) 372 561 1559 .23 

GDP per capita (US$; 2003) 3067 6626 16723 .23 

Life expectancy at birth (in years; 1998) 60.75 67.26 74.88 .37 

Life Expectancy Index (1998) .60 .72 .83 .38 

Human Development Index (1998) .60 .70 .86 .41 

Length of life (in years) 62.88 60.91 74.50 .22 

Health life expectancy 50.86 55.31 68.04 .30 

 

In Table 8, the Varimax rotated loadings 𝑷𝑿 and cluster specific regression weights 𝒑𝒀𝑖 for the 

PCCR (𝛼 = .05) and sequential solution with three components and three clusters for the 

cross-cultural data set are displayed. From this table one can see that the first PCCR 

component pertains to valuing external appearances (i.e., being rich and beautiful and 

outperforming others) along with the notion that one has to create happiness for him/herself. 

The second component is characterized by being extravert, living in the present and not 

focusing on what can go wrong but on possible rewards instead. The third component, finally, 
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values intelligence and knowledge and not hiding yourself (i.e., extraversion) along with 

focusing on rewards in the future and believing that happiness is one’s own responsibility. 

 

Table 8 

Loadings and cluster specific regression weights (after Varimax rotation) of the PCCR 

(𝛼 = .05) and sequential solution with three components and three clusters for the cross-

cultural values data regarding satisfaction with life* 

 PCCR Sequential strategy 

 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3 

Happiness .24 .04 .38 .43 .17 -.02 

Intelligence and knowledge -.03 -.03 .34 .15 .19 .15 

Material wealth .31 -.05 -.04 .69 -.02 .00 

Physical attractiveness .53 .04 -.15 .75 -.02 -.02 

Physical comforts .28 .07 -.04 .73 -.05 -.02 

Excitement and arousal .54 -.02 .02 .66 .08 -.06 

Competition .45 .04 .11 .69 .05 .09 

Getting to heaven .38 .16 .03 .57 -.01 .01 

Self-sacrifice .50 .11 -.00 .54 .00 .09 

Success .23 .02 .25 .45 .21 .22 

Fun -.10 .09 .38 .07 .24 .14 

Partylife -.05 .53 .20 .03 .62 .01 

No talk .07 -.23 -.34 .01 -.64 .09 

Background .11 -.43 -.32 -.03 -.64 .15 

Start conversation .10 .46 .11 .04 .67 -.02 

Talk people .05 .48 .07 .01 .69 .01 
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Quiet strangers -.06 -.36 -.07 .01 -.57 .15 

Harmony .10 .27 .09 .23 .21 .12 

Outperforming .35 -.19 .06 .25 .18 .40 

Aging parents .19 .11 .01 .11 .07 .19 

Unique .27 .16 .16 .15 .22 -.01 

Competition .10 -.02 .12 .16 .20 .38 

Competition friends .00 -.17 .00 .12 .12 .55 

Competition family .12 -.19 -.18 .01 .05 .43 

Family success .29 .01 .07 .09 .03 .30 

Enjoy present .07 .54 -.37 -.04 .05 -.05 

Work hard .29 -.17 .08 .12 .02 .43 

Family pessimism -.21 -.33 -.44 -.08 -.19 .55 

School pessimism -.13 -.26 -.41 -.03 -.19 .51 

Cycle -.06 -.04 -.28 .01 -.03 .43 

Misfortune -.12 -.12 -.28 -.10 -.09 .49 

Born happy -.06 -.00 -.46 -.12 -.10 .39 

Resent happy .10 -.15 -.22 -.06 -.08 .44 

Create happiness .32 .01 .12 .19 .15 .08 

 Regression weights 

 PCCR Sequential strategy 

Cluster 1 .28 .05 -.03 .09 .20 -.19 

Cluster 2 .03 .38 .08 .08 .17 .04 

Cluster 3 .15 .23 .31 .16 .35 -.14 

* loadings (in absolute value) ≥ .30 are indicated in bold 
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Table 8 also shows the regression weights for the three country clusters and reveals that the 

relevance of the predictor components clearly differs across the clusters. In the cluster of least 

developed countries (cluster 1), satisfaction with life is related to keeping up appearances, 

doing it yourself and doing better than others (component 1). In the cluster of well-developed 

countries (i.e., third cluster) the third component (valuing intelligence, extraversion) has the 

strongest unique contribution. Finally, in the moderately developed countries (cluster 2), 

satisfaction with life is predicted by extraversion and by focusing more on immediate instead 

of anticipated rewards (component 2). 

 

When comparing the PCCR results with those of the sequential strategy, the advantages of 

PCCR are nicely illustrated. First, whereas the components from the sequential solution 

correspond with the three sets of variables included in the study (i.e., values, personality and 

beliefs regarding happiness), the PCCR components better reveal the links between these 

variable sets and disclose the more subtle differences between them. Second, the PCCR 

solution shows larger differences in cluster specific regression weights than the sequential 

solution. Moreover, in the latter solution the same component has the largest regression 

weight in each cluster. Third, PCCR yields a more insightful clustering of the countries than 

the sequential strategy. In particular, when relating the sequential clustering to the nation-

level variables, the clusters only differ on a subset of them, whereas the PCCR clusters show 

clear differences on all these variables. Finally, when performing ten-fold cross-validation, 

the PCCR solution better generalizes to other data from the same population as the PCCR 

solution has a clearly lower cross-validation error than the sequential one (i.e., 7990.9 versus 

8283.1). 
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6  Discussion 

 

In this discussion, we will reflect on technical choices that may influence the kind of solutions 

that are obtained and, therefore, the conclusions that can be drawn. These choices are situated 

on the level of the data (preprocessing), on the level of the model (which constraints are 

imposed) and on the level of the data analysis (choice of the 𝛼 weight in the loss function). 

 

On the level of the data, let us consider the preprocessing options available to the user. In the 

literature, preprocessing mostly refers to centering and scaling. Regarding centering, we opt to 

center the data per level-2 unit. This choice was made because studies on clusterwise 

regression have revealed that this method often yields a clustering that is dominated by 

differences in intercepts rather than slopes (Brusco et al., 2008). Centering per level-2 unit is a 

straightforward remedy, because it implies that the cluster specific intercepts equal zero and 

can thus be omitted from the model. Regarding scaling, we will discuss the pros and cons of 

three options: no scaling, standardizing across level-2 units, or standardizing per level-2 unit. 

Of course, other scaling options exist (see, e.g., van den Berg, Hoefsloot, Westerhuis, Smilde, 

& van der Werf, 2006), but they are almost never used in behavioral research. Which option 

one selects should depend among other reasons on the expected source of the (level-2 unit 

specific) differences in variance between variables. If differences in variance are real and 

important, one should not rescale, implying that variables with a larger variance will have 

more weight in the analysis. However, if differences in variance (partly) reflect arbitrary 

differences in measurement scale, it might be better to standardize, implying that each 

variable has the same weight in the analysis and with the additional advantage that the 

obtained loadings can be interpreted as correlations between the variables and the 

components. 
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In case one chooses to standardize, one must decide whether it is better to standardize per 

level-2 unit or across level-2 units. The advantage of standardizing across level-2 units is that 

differences in variance between level-2 units, which may often be of interest, are retained in 

the analysis. However, the disadvantage is that the clustering of the level-2 units is not only 

determined by the correlations between the components and the criterion, but also by the 

level-2 unit specific variance of the component scores and the criterion, as the regression 

weights depend on both the correlations and the variances. As large inter-level-2 unit 

differences in the variance of the predictors will imply large inter-level-2 unit differences in 

the variances of the component scores, standardizing across level-2 units may thus yield a 

different clustering than standardizing per level-2 unit. It can be concluded that researchers 

should carefully consider which aspects of the data should influence the obtained clustering: 

is only the correlation structure between the predictors and the criterion of interest or should 

variance differences also be taken into account. 

 

On the model level, we imposed two constraints that influence the interpretation of PCCR 

solutions. First, the PCCR model requires the dimensional reduction of the predictors to be 

the same across clusters. In other words, the obtained clusters only differ with respect to the 

underlying regression models, which makes it relatively easy to compare the clusters. 

However, for some data sets one could argue that it would make sense to also allow the 

components to be different across clusters, which implies that one would fit a separate PCovR 

model to each cluster. Although such a model would be more general, the interpretation 

would be more difficult, as the regression models of different clusters are not comparable 

anymore, since they are based on different components. 
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Second, we imposed an orthogonality constraint on the component scores in order to avoid 

multicollinearity issues. However, for now, we only managed to impose it across level-2 units 

instead of for each level-2 unit separately, that is, we imposed 𝑻′𝑻 = 𝑰𝑁 rather than 𝑻𝑖′𝑻𝑖 =

𝑰𝑁𝑖. Note that the latter constraint would completely rule out multicollinearity problems, 

whereas the former constraint does not completely guarantee that none of the components are 

strongly correlated within a level-2 unit. By means of the INDORT rotation (Kiers, 1989), 

orthogonality per level-2 unit can be approximated but not imposed (see Section 2.2). Note, 

however, that rotating towards orthogonality per level-2 unit may imply that the loadings 

become harder to interpret, because one no longer aims for simple structure. 

 

Regarding the data analysis, the PCCR loss function (𝐿2) is a weighted sum of two other loss 

functions, one for the predictor data and one for the criterion data. By means of the 𝛼 weight, 

the user may manipulate which part of the data is emphasized more. Yet, although several 

methods have been proposed that imply such a weighted loss function in the context of 

clustering and dimension reduction (Brusco, Cradit, & Tashchian, 2003; Van Deun, Smilde, 

van der Werf, Kiers, & Van Mechelen, 2009), choosing an optimal weight is still an issue that 

has not been fully resolved, with different ways of weighting sometimes leading to very 

different results (Van Deun et al., 2009; Wilderjans, Ceulemans, & Van Mechelen, 2009; 

Wilderjans, Ceulemans, Van Mechelen, & van den Berg, 2011; van den Berg, Van Mechelen, 

Wilderjans, Van Deun, Kiers, & Smilde, 2009). We propose to use cross-validation to 

determine the optimal 𝛼 weight for a data set at hand (see Section 3.3). 

 

To conclude, we presented a new regression method that simultaneously handles three 

challenges: nested data, many predictors of which the underlying structure is unclear, and 

categorical differences in underlying regression models. As the regression data that are 
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gathered by behavioral scientists become increasingly complex, we believe this tool might be 

of great value.  
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Appendix I INDORT rotation towards orthogonality per level-2 unit 

 

The aim of the INDORT rotation is to find the orthonormal rotation matrix 𝑼 (𝑼′𝑼 = 𝑼𝑼′ =

𝑰) that minimizes the following loss function: 

𝑓 = �‖𝑼′𝑾′𝑿𝑖′𝑿𝑖𝑾𝑼 − 𝑫𝑖‖2
𝐼

𝑖=1

=  �‖𝑼′𝑻𝑖′𝑻𝑖𝑼 − 𝑫𝑖‖2
𝐼

𝑖=1

, 

where 𝑫𝑖 is a diagonal matrix containing the variances of the component scores for level-2 

unit 𝑖. This loss function equals zero when the component scores are at the same time 

orthogonal across level-2 units (i.e., 𝑻′𝑻 = 𝑰𝑁), which will always be the case since we 

imposed 𝑻 to be orthogonal (see Section 2.2), and orthogonal within each level-2 unit 𝑖 (i.e., 

𝑻𝑖′𝑻𝑖 = 𝑰𝑁𝑖). This function can be rewritten as: 

�‖𝑼′𝑻𝑖′𝑻𝑖𝑼 − 𝑫𝑖‖2
𝐼

𝑖=1

= �𝒕𝒕[(𝑼′𝑻𝑖′𝑻𝑖𝑼 − 𝑫𝑖)(𝑼′𝑻𝑖′𝑻𝑖𝑼 − 𝑫𝑖)′]
𝐼

𝑖=1

 

= �𝒕𝒕[(𝑼′𝑻𝑖′𝑻𝑖𝑼 − 𝑫𝑖)𝑼′𝑼(𝑼′𝑻𝑖′𝑻𝑖𝑼 − 𝑫𝑖)′𝑼′𝑼]
𝐼

𝑖=1

 

= �𝒕𝒕[𝑼(𝑼′𝑻𝑖′𝑻𝑖𝑼 − 𝑫𝑖)𝑼′𝑼(𝑼′𝑻𝑖′𝑻𝑖𝑼 − 𝑫𝑖)′𝑼′]
𝐼

𝑖=1

 

= �𝒕𝒕[(𝑼𝑼′𝑻𝑖′𝑻𝑖𝑼𝑼′ − 𝑼𝑫𝑖𝑼′)(𝑼𝑼′𝑻𝑖′𝑻𝑖𝑼𝑼′ − 𝑼𝑫𝑖
′𝑼′)]

𝐼

𝑖=1

 

= �𝒕𝒕[(𝑻𝑖′𝑻𝑖 − 𝑼𝑫𝑖𝑼′)(𝑻𝑖′𝑻𝑖 − 𝑼𝑫𝑖
′𝑼′)]

𝐼

𝑖=1

 

yielding the INDORT loss function, for which an alternating least squares estimation approach 

exists (Kroonenberg, 1983; Kiers, 1989).  
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Appendix II Unconstrained minimization of 𝑾 

 

To update 𝑾 (without any constraint), the loss function in (4) can be rewritten as follows: 

𝐿2(𝑾) = 𝛽�‖𝑿𝑖 − 𝑿𝑖𝑾𝑷𝑿′ ‖2
𝐼

𝑖=1

+ (1 − 𝛽)��𝒚𝑖 −�𝒄𝑖𝑖𝑿𝑖𝑾𝒑𝒀𝑖
′

𝐾

𝑖=1

�

2𝐼

𝑖=1

= ���𝛽𝑿𝑖 − �𝛽𝑿𝑖𝑾𝑷𝑿′ �
2

𝐾

𝑖=1

+ ���1 − 𝛽𝒚𝑖 − �1 − 𝛽𝑿𝑖𝑾𝒑𝒀𝑖
′�
2

𝐾

𝑖=1

= ��𝑣𝑣𝑣��𝛽𝑿𝑖� − �𝛽(𝑷𝑿 ⊗𝑿𝑖)𝑣𝑣𝑣(𝑾)�
2

𝐾

𝑖=1

+ ��𝑣𝑣𝑣��1 − 𝛽𝒚𝑖� − �1 − 𝛽�𝒑𝒀𝑖 ⊗ 𝑿𝑖�𝑣𝑣𝑣(𝑾)�
2

𝐾

𝑖=1

=��
𝑣𝑣𝑣��𝛽𝑿1�

…
𝑣𝑣𝑣��𝛽𝑿𝐾�

� − �
�𝛽(𝑷𝑿 ⊗ 𝑿1)

…
�𝛽(𝑷𝑿 ⊗ 𝑿𝐾)

� 𝑣𝑣𝑣(𝑾)�

2

+ ��
𝑣𝑣𝑣��1 − 𝛽𝒚1�

…
𝑣𝑣𝑣��1 − 𝛽𝒚𝐾�

� − �
�1 − 𝛽(𝒑𝒀1 ⊗ 𝑿1)

…
�1 − 𝛽(𝒑𝒀𝐾 ⊗ 𝑿𝐾)

� 𝑣𝑣𝑣(𝑾)�

2

=
�

�

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑣𝑣𝑣��𝛽𝑿1�

…
𝑣𝑣𝑣��𝛽𝑿𝐾�

𝑣𝑣𝑣��1 − 𝛽𝒚1�
…

𝑣𝑣𝑣��1 − 𝛽𝒚𝐾�⎦
⎥
⎥
⎥
⎥
⎥
⎤

−

⎣
⎢
⎢
⎢
⎢
⎢
⎡ �𝛽(𝑷𝑿 ⊗ 𝑿1)

…
�𝛽(𝑷𝑿 ⊗ 𝑿𝐾)

�1 − 𝛽(𝒑𝒀1 ⊗ 𝑿1)
…

�1 − 𝛽(𝒑𝒀𝐾 ⊗ 𝑿𝐾)⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝑣𝑣𝑣(𝑾)
�

�

2

= ‖𝒚∗ − 𝒁∗𝑣𝑣𝑣(𝑾)‖2 

It appears that updating this loss function over 𝑾 conditional on 𝑷𝑿, 𝒑𝒀𝑖 and 𝑪 boils down to 

solving a multivariate multiple linear regression problem, for which the following closed-

form solution exists: 

𝑣𝑣𝑣(𝑾) = �𝒁∗′𝒁∗�
−1
𝒁∗′𝒚∗ 
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The matrix 𝑾 can be obtained by devectorizing 𝑣𝑣𝑣(𝑾) into a matrix. Note that 𝒁∗′𝒁∗ and 

𝒁∗′𝒚∗ can be simplified as follows: 

𝒁∗′𝒁∗ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ �𝛽(𝑷𝑿 ⊗ 𝑿1)

…
�𝛽(𝑷𝑿 ⊗𝑿𝐾)

�1 − 𝛽(𝒑𝒀1 ⊗ 𝑿1)
…

�1 − 𝛽(𝒑𝒀𝐾 ⊗𝑿𝐾)⎦
⎥
⎥
⎥
⎥
⎥
⎤
′

⎣
⎢
⎢
⎢
⎢
⎢
⎡ �𝛽(𝑷𝑿 ⊗ 𝑿1)

…
�𝛽(𝑷𝑿 ⊗ 𝑿𝐾)

�1 − 𝛽(𝒑𝒀1 ⊗ 𝑿1)
…

�1 − 𝛽(𝒑𝒀𝐾 ⊗ 𝑿𝐾)⎦
⎥
⎥
⎥
⎥
⎥
⎤

= ��𝛽𝑷𝑿′ �𝛽𝑷𝑿 ⊗ 𝑿1′ 𝑿1� + ⋯+ ��𝛽𝑷𝑿′ �𝛽𝑷𝑿 ⊗ 𝑿𝐾′ 𝑿𝐾�

+ ��1 − 𝛽𝒑𝒀1
′
�1 − 𝛽𝒑𝒀1 ⊗ 𝑿1′ 𝑿1� + ⋯+ ��1 − 𝛽𝒑𝒀𝐾

′
�1 − 𝛽𝒑𝒀𝐾 ⊗ 𝑿𝐾′ 𝑿𝐾�

= ����𝛽𝑷𝑿′ �𝛽𝑷𝑿 ⊗ 𝑿𝑖′ 𝑿𝑖� + ��1 − 𝛽𝒑𝒀𝑖
′
�1 − 𝛽𝒑𝒀𝑖 ⊗ 𝑿𝑖′ 𝑿𝑖��

𝐾

𝑖=1

= ����𝛽𝑷𝑿′ �𝛽𝑷𝑿 + �1 − 𝛽𝒑𝒀𝑖
′
�1 − 𝛽𝒑𝒀𝑖�⊗ 𝑿𝑖′ 𝑿𝑖�

𝐾

𝑖=1

= ���𝛽𝑷𝑿′ 𝑷𝑿 + (1 − 𝛽)𝒑𝒀𝑖
′𝒑𝒀𝑖� ⊗ 𝑿𝑖′ 𝑿𝑖�

𝐾

𝑖=1

 

 

𝒁∗′𝒚∗ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ �𝛽(𝑷𝑿 ⊗𝑿1)

…
�𝛽(𝑷𝑿 ⊗ 𝑿𝐾)

�1 − 𝛽(𝒑𝒀1 ⊗ 𝑿1)
…

�1 − 𝛽(𝒑𝒀𝐾 ⊗ 𝑿𝐾)⎦
⎥
⎥
⎥
⎥
⎥
⎤
′

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑣𝑣𝑣��𝛽𝑿1�

…
𝑣𝑣𝑣��𝛽𝑿𝐾�

𝑣𝑣𝑣��1 − 𝛽𝒚1�
…

𝑣𝑣𝑣��1 − 𝛽𝒚𝐾�⎦
⎥
⎥
⎥
⎥
⎥
⎤

= ��𝛽𝑷𝑿′ ⊗ 𝑿1′ �𝑣𝑣𝑣��𝛽𝑿1� + ⋯+

��𝛽𝑷𝑿′ ⊗ 𝑿𝐾′ �𝑣𝑣𝑣��𝛽𝑿𝐾� + ��1 − 𝛽𝒑𝒀1
′ ⊗ 𝑿1′ �𝑣𝑣𝑣��1 − 𝛽𝒚1� + ⋯+ ��1 − 𝛽𝒑𝒀𝐾

′ ⊗

𝑿𝐾′ �𝑣𝑣𝑣��1 − 𝛽𝒚𝐾� = 𝑣𝑣𝑣[𝛽𝑿1′ 𝑿1𝑷𝑿 + ⋯+ 𝛽𝑿𝐾′ 𝑿𝐾𝑷𝑿 + (1 − 𝛽)𝑿1′ 𝒚1𝒑𝒀1 + ⋯+

(1 − 𝛽)𝑿𝐾′ 𝒚𝐾𝒑𝒀𝐾] = 𝑣𝑣𝑣�𝛽(∑ 𝑿𝑖′ 𝑿𝑖𝐾
𝑖=1 )𝑷𝑿 + (1 − 𝛽)∑ �𝑿𝑖′ 𝒚𝑖𝒑𝒀𝑖�𝐾

𝑖=1 �.  
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