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1.1. O BESITY  A N D  TYPE 2 D IA BETES M ELLITU S: D EFIN ITIO N S, 

EPID EM IO LO G Y  A N D  H EA LTH  PRO BLEM S

The enormous increase in overweight and obesity, defi ned as a body mass index (BMI, calcu-

lated as weight in kilograms divided by the length in meters squared) >  25 and >  30 kg/m2 

respectively [Table 1]), has reached epidemic proportions. W orldwide 1 billion people are 

overweight and 300 million people are obese (http://www/who.int/nut/#obs, obesity and 

overweight: fact sheet). Of even greater concern is the increase of overweight and obesity in 

children: worldwide 22 million children under the age of 5 years and 155 million school-age 

children (http://www.worldheart.org/pdf/press.factsheets.children.obesity.pdf.).

The reason for this concern is that overweight and obesity are associated with increased 

morbidity and mortality (Tables 2 and 3)1-4. Relative risks for the development of type 2 diabe-

tes mellitus5,6, hypertension7, coronary heart disease8,9, stroke10,11, gallstones12, osteoarthritis 

and arthrosis13,14, infertility15 and certain types of cancer (breast, colon, endometrium)16-18 are 

substantially increased in this patient group (Table 2). Even after correction for diabetes mel-

litus, high blood pressure and other cardiovascular risk factors, overweight and obesity are 

in themselves independent risk factors for increased mortality19. The association between 

BMI and mortality has been described as a J-shaped curve with the lowest mortality for BMI 

values between 18.5 and 24.9 kg/m2; below 18.5 kg/m2 the risk is increased and above 24.9 

kg/m the risk increases, and rises steeply when the BMI gets over 40 kg/m2 20.

Insulin resistance is probably the common denominator, relating obesity with type 2 dia-

betes mellitus. Obesity somehow (visceral fat deposition?) evokes insulin resistance, a condi-

tion predisposing for type 2 diabetes mellitus21, a chronic disease characterised by impaired 

insulin secretion and insulin resistance of target organs leading to chronic hyperglycaemia22. 

In fact, in obese women who develop type 2 diabetes mellitus, in 53%  of the cases the condi-

tion (diabetes) can be ascribed to obesity (Table 2). Therefore, it is not surprising that, along 

with the increased prevalence of overweight and obesity, the prevalence of type 2 diabetes 

mellitus has also steadily increased. It is estimated that nowadays over 190 million people 

worldwide have diabetes mellitus23, more than 90-95%  of them having type 2 diabetes melli-

Table 1. Classifi cation of overweight in adults according to WHO1 criteria

Classifi cation BM I (kg/m 2) Risk of com orbidities

Normal weight 18.5-24.9 average

Overweight 25.0-29.9 increased

Obesity

Level I 30.0-34.9 moderately increased

Level II 35.0-39.9 severely increased

Level III (morbid)  40 very severely increased

1 World Health Organisazation. Obesity: preventing and m anaging the global epidem ic.

 Technical Report Series,#894,2000. 
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tus. It has been predicted that in the year 2030 366 million subjects worldwide will suff er from 

diabetes mellitus24. These are crude estimates, however, that have not taken into account the 

increase in overweight and obesity; hence, actual numbers may even be much higher.

Genetic factors are without doubt of major signifi cance in the development of obesity and 

type 2 diabetes mellitus. However, because the human genome does not change over just 

decades, genetic predisposition cannot explain the explosive increase in obesity and type 

2 diabetes mellitus of recent years. Environmental and social factors, like a lack of physical 

exercise and high caloric intake, are more likely explanations for the epidemic. A  chronic im-

balance between energy intake and energy expenditure eventually leads to obesity.

In obese and obese type 2 diabetic patients, insulin resistance is of paramount pathoge-

netic signifi cance21,25. Insulin resistance not only impairs glucose homeostasis, but is also 

associated with hypertension26-28, dyslipidaemia29-31 and abnormalities in coagulation and 

fi brinolysis32,33, conditions that are independent cardiovascular risk factors34-38, seen in both 

obesity and type 2 diabetes. In addition, insulin resistance in (severely) obese type 2 diabetic 

patients makes it often diffi  cult to achieve adequate glycaemic regulation. Sooner or later, 

insulin therapy will be instituted because normalisation of plasma glucose levels cannot be 

achieved with oral blood glucose-lowering agents alone. Insulin, however, induces weight 

gain39, which in turn aggravates insulin resistance, thus requiring higher doses of insulin: a 

Table 2. Estimated health risk for obese (BMI  30 kg/m2) adults

W omen Men

Prevalence 9.6% *  Prevalence 8.5% *

RR PAR (% ) RR PAR (% )

Type 2 diabetes 12.7 52.9 5.2 26.3

Hypertension 4.2 23.5 2.6 12.0

Myocardial infarction 3.2 17.4 1.5 4.1

Coloncarcinoma 2.7 14.0 3.0 14.5

Ischemic heart disease 1.8 7.1 1.8 6.4

Gallstones 1.8 7.1 1.8 6.4

Ovariumcarcinoma 1.7 6.3 - -

A rthrosis 1.4 3.7 1.9 7.1

Stroke 1.3 2.8 1.3 2.5

Prevalence rates concerning obesity are derived from the MORGEN-project RIVM, Int J Obes Rel Metab Dis 2002:1218. The relative risks (RR), are 

derived from “Tackling Obesity in England. Report by the comptroller and auditor general. London: National Audit Offi  ce 2001”. This table was 

derived from the Executive Summary: obesity and overweight, Health Council of the Netherlands, 2003. PAR =  population attributable risk, i.e 

part of the disease that can be attributed to obesity. 

Table 3. Body mass index and relative risk of death. 

BMI Relative risk of death

25.0-26.9 1.3

27.0-28.9 1.6

29.0-31.0 2.1
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vicious circle has arisen. Furthermore, insulin therapy can also induce or aggravate already 

existing hyperinsulinaemia, which could be an independent cardiovascular risk factor37,38,40,41, 

although the relation may be week42.

Weight reduction improves insulin resistance and its associated metabolic features (hy-

pertension, dyslipidaemia, hyperglycaemia)43,44. In obese patients this will lead to a lower risk 

for associated co-morbid conditions (Table 2). It has also been demonstrated that lifestyle 

intervention programmes (often combinations of behaviour therapy, diet therapy and exer-

cise) in overweight and obese patients reduces the number of patients that develop type 2 

diabetes mellitus45,46. In severely obese type 2 diabetic patients weight loss is, in fact, the only 

reasonable therapeutic approach. By reducing insulin resistance, glycaemic regulation can 

be restored often with much less blood glucose-lowering medication.

Calorie restriction remains the hallmark for weight loss. However, only substantial caloric 

restriction or more moderate caloric restriction for a longer period of time, will lead to the 

considerable weight loss (probably > 15 kg47) needed to restore peripheral insulin sensitivity 

in morbidly obese patients and (severely) obese type 2 diabetic patients47,48. This can either 

be achieved through a very low calorie diet (VLCD ) or bariatric surgery. The latter is very ef-

fective in improving insulin resistance and associated cardiovascular risk factors43,49-53. In ad-

dition, bariatric surgery can prevent the development of type 2 diabetes mellitus43,54 (review 

bariatric surgery:56,57). However, the procedure is invasive, costly and (also for logistic reasons) 

available for a limited number of subjects only. VLCD s are safe58, commercially available, rela-

tively cheap, and easy accessible. Given the enormous increase in incidence of obesity and 

(obese!) type 2 diabetes mellitus, VLCD s are, therefore, an interesting therapeutic option. 

Thus, the main focus of the studies described in this thesis was to investigate the short-term 

and long-term eff ects of calorie restriction per se versus weight loss per se on glucose and lipid 

metabolism, both at the whole-body and at the molecular level in obese patients with type 

2 diabetes mellitus.

In this introduction, fi rstly the main actions of the “master” hormone in glucoregulation, 

insulin, will be discussed. Secondly, the normal regulation of blood glucose levels will be 

considered, both at the whole-body level as well as at the molecular level. Thirdly, the patho-

physiology of type 2 diabetes mellitus is discussed, with specifi c focus on insulin resistance, 

both at the whole-body and the molecular level, and potential mechanisms of insulin resis-

tance will be stressed. Fourthly, the reason and goals of therapeutic interventions will be 

attended, along with possible therapies. Fifthly, our research aims will be formulated and the 

outline of this thesis will be presented.
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1.2. INSULIN

1.2.1 Hormone production

Insulin is a hormone produced by the β-cells of the Islets of Langerhans in the pancreas. At 

birth about 3x10-5 islets are present, increasing to 1x10-6 islets during the fi rst years of life. The 

islets contain various cell types which each produce diff erent hormones. The β-cell produces 

insulin. Other important hormones are somatostatin, produced in the δ-cell, and glucagon, 

produced in the α-cell. The latter counteracts the eff ect of insulin in many ways. The β-cell is 

situated central in the islet of Langerhans whereas the other cells are located peripherally.

The human insulin gene is located on the short arm of chromosome 11. Via DNA/RNA re-

synthesis, a precursor molecule known as pre-pro-insulin (98 amino acids, molecular weight 

[MW] 11.500) is produced in the endoplasmatic reticulum of the pancreatic β-cells. It is 

cleaved to proinsulin (86 amino acids, MW approximately 9000) directly after the molecule 

has left the ribosome. The proinsulin is transported to the Golgi apparatus, where packaging 

into clathrin-coated secretory granules takes place. Maturation of the secretory granule is 

associated with the loss of the clathrin coating. In addition, the proinsulin is converted into 

insulin and C-peptide (MW 3000) by proteolytic cleavage at two sites. Normal granules shed 

insulin and C-peptide in equimolar amounts, along with some proinsulin and so-called split-

products (only partially cleaved proinsulin). Insulin (MW 5808) itself consists of an A-chain 

of 21 amino acids and a B-chain of 30 amino acids, which are connected by two disulfi de 

bonds. The secreted insulin fi rst passes the liver where a proportion of insulin is cleared via 

a receptor-mediated process after exerting its action59-61 The proportion of insulin cleared 

during fi rst-pass through the liver has been estimated to be about 50% in dogs60 and approxi-

mately 40 to 80% in humans62-65. The plasma half-life time (t
½
) of insulin is only 5-10 minutes. 

C-peptide, the 31 amino acid residue, has no known biological function. Since C-peptide is 

produced in equimolar amounts with insulin it can be used as a marker for insulin secretory 

capacity, because it is not cleared by the liver but by the kidney and has a longer t
½
 than 

insulin66,67.

1.2.2. Hormone secretion

The main trigger for insulin release is an increase in the plasma glucose concentration in the 

portal circulation. Plasma glucose is sensed and taken up by the β-cell via facilitated diff u-

sion by the specifi c glucose transporter (GLU T)-2. Subsequently, glucose is metabolised by 

the cell, which sets free energy in the form of adenosine tri-phosphate (ATP). The increase 

in intracellular ATP induces a closure of the ATP-dependent potassium channel at the cell 

membrane of the β-cell. This causes a depolarisation of the cell membrane, which leads to 

an opening of the voltage-dependent calcium channels and an infl ow of calcium ions into 

the cell. The increase in intracellular calcium concentration eventually leads to the release of 

insulin from the granulae via exocytosis (Fig. 1)66,67
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Several phases of insulin secretion can be identifi ed: (i) basal insulin secretion is the way insulin 

is released in the post-absorptive state; (ii) the cephalic phase of insulin secretion is evoked by 

the sight, smell, and taste of food (before any nutrient is absorbed by the gut), and is mediated 

by pancreatic innervation; (iii) fi rst-phase insulin secretion is defi ned as the initial burst of insulin, 

which is released in the fi rst 5–10 min after the β-cells are exposed to a rapid increase in glucose 

(or other secretagogues); (iv) after the acute response, there is a second-phase insulin secretion, 

which rises more gradually and is directly related to the degree and duration of the stimulus; (v) 

fi nally, a third phase of insulin secretion has been described, albeit only in vitro. During all these 

stages, like many other hormones, insulin is secreted in a pulsatile fashion, resulting in oscilla-

tory concentrations in peripheral blood. Oscillations include rapid pulses (recurring every 8-15 

min) superimposed on slower, ultradian oscillations (recurring every 80-120 min) that are closely 

related to fl uctuations in the glucose concentration68-71. This pulsatile pattern of insulin delivery to 

the liver is regulated mainly by modulation of insulin pulse mass in response to stimuli. The mass 

of insulin pulses through the liver is the predominant determinant of hepatic insulin clearance65.

Figure 1.

See text for explanation (section 1.2.2 insulin secretion, page 18).
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Table 4. Metabolic actions of insulin at the whole-body level.

Stimulation of Inhibition of

Liver glycogen synthesis gluconeogenesis

protein synthesis glycogenolysis

lipogenesis ketogenesis

Muscle glucose transport

glycogen synthesis

protein synthesis proteolysis

Adipose tissue glucose transport

lipogenesis lipolysis
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1.2.3 Hormone action

Insulin is an anabolic hormone, which means that insulin facilitates the storage of energy 

sources, such as fat and glycogen, and stimulates protein synthesis. Because, physiologically, 

insulin is secreted following energy intake, insulin not only directs these energy sources to-

wards storage, but simultaneously prevents endogenous release of energy sources (free fatty 

acids through lipolysis, proteolysis, de novo glucose production by the liver and ketogenesis), 

because these substrates are redundant in times of plenty. The eff ects of insulin on the vari-

ous tissues are depicted in Table 466,67.

1.3 NORMAL GLUCOSE REGULATION

1.3.1. Glucose homeostasis at the whole-body level

Blood glucose levels are usually tightly regulated between 4-8 mmol/L. Low blood glucose 

levels are dangerous because brain function depends on glucose, and lack of glucose in the 

brain can cause seizures, loss off  consciousness and death. On the other hand, elevated blood 

glucose levels can lead to either ketoacidosis or hyperglycaemic hyperosmolar dehydration 

in the acute situation, which can both eventually result in a coma. Furthermore, prolonged 

elevation of blood glucose levels can result in micro- (retinopathy, nefropathy, neuropathy) 

and macrovascular long-term complications.

The tight regulation of plasma glucose levels is achieved by the fi nely tuned hormonal 

regulation of glucose uptake by the tissues (rate of disappearance, R
d
) on the one hand and 

glucose production on the other hand (rate of appearance, R
a
)72.

Glucose uptake by peripheral tissues is either insulin-independent (in the brain) or insulin-

dependent (in muscle and adipose tissue). The brain cannot store glucose and, as mentioned 

before, is critically dependent on glucose for its function. Therefore, in the non-fed (=  post-

absorptive) state a certain level of endogenous glucose production is necessary. Glucose ap-

pearing in the post-absorptive state is mainly derived from the liver73, although the kidney is 

also capable of glucose production. The amount of glucose produced by the kidney has been 

reported to be less than 5% after an overnight fast to 20% after a 60-h fast73. However, higher 

estimates of the contribution of the kidney to total post-absorptive gluconeogenesis have 

been reported. These diff erences depend on the techniques used to quantify renal glucose 

production. A signifi cant role for the kidney in carbohydrate metabolism in type 2 diabetes 

has recently been proposed74,75. In healthy individuals the amount of endogenous glucose 

production (EGP, both liver and kidney) in the post-absorptive state averages 1.8-2.3 mg.kg-

1.min-1 73,76-78, which is about 10.0-12.8 µmol.kg-1.min-1.

Endogenous glucose production comprises 2 pathways: glycogenolysis, which is the break-

down of glucose stored as glycogen, and gluconeogenesis, which is the synthesis of new glucose 

molecules from precursor molecules like amino acids (mainly alanine), glycerol and lactate.
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Endogenous glucose production is mainly regulated by fl uctuations in the insulin/glucagon 

ratio in the portal vein79,80. Following a meal, insulin secretion is stimulated and the increase 

in portal vein insulin concentration inhibits endogenous glucose production via inhibition 

of glycogenolysis and gluconeogenesis. When the meal has been absorbed, plasma glucose 

levels decrease, even to a level a little below normal post-absorptive levels. This relative hy-

poglycaemia leads to increased secretion of glucagon. The subsequent elevation in portal 

vein glucagon concentration stimulates glycogenolysis and hepatic glucose production81. 

Endogenous glucose production is also infl uenced by other hormones (cortisol, growth 

hormone), free fatty acids (FFA), gluconeogenic precursors, paracrine substances (cytokines, 

prostaglandins) and the autonomic nervous system. All these factors keep endogenous glu-

cose production relatively constant, a process called hepatic autoregulation82-84.

Insulin-stimulated glucose uptake primarily takes place in skeletal muscle and amounts 

about 0.5 mg.kg-1.min-1 (the remainder of the average basal glucose uptake of 2.0-2.2 mg.kg-

1.min-1 being utilised by the brain [1.0-1.2 mg.kg-1.min-1] and red blood cells)85,86. Glucose taken 

up in the muscle can either be oxidised to pyruvate (aerobic glycolysis) or lactate (anaerobic 

glycolysis) or stored as glycogen (non-oxidative glucose metabolism). Insulin-stimulated glu-

cose oxidation seems to be bound to a maximum, making non-oxidative glucose disposal 

quantitatively the most important87.

Of the three, for diabetes mellitus pathogenetically important, insulin-sensitive tissues, 

adipose tissue is the most sensitive for insulin. The EC
50
 value (i.e., the molar concentration of 

insulin that produces 50% of the maximum possible response that insulin is capable of ) for 

suppression of lipolysis by insulin is between 7 and 16 µU/mL76,88-92, whereas the EC
50 

values 

Figure 2.

The sight, smell and taste of food already stimulate insulin secretion. However, the rise of serum glucose levels following the consumption of 

a meal elicits a much more pronounced response (see text on page 19). Subsequently, insulin suppresses endogenous glucose production and 

lipolysis and stimulates whole-body glucose uptake. The duration of the increased insulin secretion following a meal is related to the degree and 

duration of hyperglycaemia.
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for suppression of EGP of the liver and stimulation of glucose uptake in skeletal muscle, in 

normal subjects, are 26 µU/mL and 58 µU/mL, respectively93.

The diff erences in the insulin dose-response curve between the various tissues are neces-

sary for normal glucose and lipid metabolism. During an overnight fast, serum insulin levels 

are suffi  ciently low as to not to inhibit lipolysis (which provides free fatty acids and hence 

ketone bodies for the brain and glycerol for gluconeogenesis) and endogenous glucose 

production (providing glucose for the brain), but, on the other hand, are not high enough 

for maximum stimulation of (skeletal muscle) glucose uptake. After a meal, serum insulin 

levels rise, which stimulates glucose uptake and inhibits lipolysis and glucose production. 

The latter is achieved directly, by inhibition of gluconeogenesis and glycogenolysis, as well 

as indirectly, via inhibition of lipolysis, which diminishes the supply of glycerol and free fatty 

acids to the liver66,67. Fig. 2 shows what happens when a meal has been consumed.

1.3.2. Insulin signalling, molecular mechanisms regulating glucose uptake

Glucose transport and metabolism, protein synthesis and gene expression are all regulated 

by activation of the insulin-signalling pathway. Insulin signalling aimed at increasing the rate 

of glucose transport will be discussed below.

Glucose cannot pass the lipid bilayers of the cell membrane and needs a transporter to en-

ter the cell. GLUT-4 is the main insulin-responsive glucose transporter and is located primarily 

in skeletal muscle cells and adipocytes. In unstimulated fat or muscle cells, 3-10% of GLUT-4 

is located at the cell surface and more than 90% is located inside the cell in distinct vesicles94. 

In response to insulin, exercise and contraction, GLUT-4- containing vesicles move to and 

fuse with the plasma membrane, thereby increasing the number of GLUT-4 molecules in the 

membrane and, hence, increasing the rate of glucose transport into the cell94. Insulin elevates 

the exocytic rate of GLUT-4 and reduces its endocytotic rate only minimally. A review95 on 

the diff erent intracellular compartments containing GLUT-4 and the proteins that form the 

cytoskeleton along which GLUT-4 travels is beyond the scope of this thesis; it has not been 

investigated here.

Insulin is an important mediator of insulin-stimulated glucose transport that begins with 

binding of insulin at its receptor leading to a signalling cascade that eventually leads to the 

translocation of GLUT-4 to the cell membrane.

The heterotetrameric insulin receptor consists of 2 extracellular, ligand binding α-subunits 

and 2 transmembrane β-subunits containing tyrosine kinase domains96,97. When insulin binds 

to specifi c regions of the α-subunit, a rapid conformational change results in phosphorylation 

of the intracellular tyrosine residues on one half of the receptor dimer by the kinase domain 

of the other half, a process called autophosphorylation98-100. The phosphotyrosines on the 

insulin receptor can now serve as docking sites for phosphotyrosine binding (PTB)-domains 

on other proteins, such as insulin receptor substrates (IRS-1 to 4), Shc and Gab-1101.
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IRS-1 and -2 appear to be the important mediators of insulin signalling in humans. IRS-

1 is specifi cally involved in skeletal muscle and IRS-2 in adipose tissue insulin signalling102. 

Tyrosine phosphorylated IRS recruits and activates signalling molecules with src2-homology 

(SH2) domains, including phosphatidylinositol 3-kinase (PI3K)103.

The IRS-PI3K complex catalyses the formation of 3’-phosphoinositides (phosphatidyl-ino-

sitol-3,4-biphosphate [PIP2] and phosphatidyl-inositol-3,4,5-triphosphate [PI3P]). PI3P serves 

as an allosteric regulator of phosphoinositide-dependent kinase (PDK), attracting PDK-1 to 

the cell membrane. There, PDK-1 activates (by phosphorylation) downstream mediators, such 

as protein kinase B (PKB/Akt) and atypical protein kinase C (aPKC, PKCζ/λ).

PKB/Akt is a serine/threonine kinase with 3 diff erent isoforms, Akt 1, 2 and 3. Akt 2 is es-

sential for normal glucose homeostasis104,105. After co-localisation with PDK-1106, PKB/Akt 

is activated by phosphorylation of its two principal regulatory sites, Thr308 and Ser473107. 

Phosphorylation of both sites is essential for activation of PKB/Akt. Following activation, 

PKB/Akt dissociates from the cell membrane to aff ect metabolic processes108,109. Parts of the 

activated PKB/Akt also translocate to the nucleus to aff ect gene expression (see Fig. 3). The 

metabolic processes aff ected by PKB/Akt are glucose transport (via a stimulatory eff ect on 

GLUT-4 translocation) and glycogen synthesis. By inactivating glycogen synthase kinase-3 

(GSK-3) the inhibitory action of GSK-3 on glycogen synthase110 is abrogated and glycogen 

synthesis is stimulated111.

Figure 3.

Binding of insulin at the insulin receptor leads to phosphorylation of the receptor and insulin receptor substrates (IRS). Activated IRS-1 

and -2 form a complex with phosphatidylinositol 3-kinase (PI3K) and this IRS/PI3K complex subsequently catalyses the formation of 

3’-phosphoinositides (phosphatidyl-inositol-3,4-biphosphate [PIP2] and phosphatidyl-inositol-3,4,5-triphosphate [PI3P]). PIP3 attracts 

phosphoinositide-dependent kinase-1 (PDK-1) to the cell membrane and the complex subsequently activates protein kinase C (PKC) or 

protein kinase B (PKB/Akt), which are both involved in GLUT-4 traffi  cking to the cell membrane. The PKB/Akt substrate AS160 has recently 

been discovered as an intermediate in this process. Insulin-independent pathways involved in GLUT-4 translocation involve adenosine 

monophosphate-activated kinase (AMPK)-dependent (contraction, hypoxia) and -independent pathways.
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With respect to the stimulatory eff ect of activated PKB/Akt on the translocation of GLUT-4 

to the cell membrane, numerous studies have linked PKB/Akt to the regulation of glucose 

metabolism but the endogenous substrates regulating these responses are only beginning 

to be identifi ed. Recent evidence suggests that the protein Akt substrate of 160 kDa (AS160) is 

involved as an intermediary in this process. AS160 is a protein containing a GTPase-activating 

domain (GAP) for Rab proteins, which are small G-proteins required for membrane traffi  ck-

ing112,113. Phosphorylation of AS160 is required for the insulin-induced translocation of GLUT4 

to the plasma membrane in 3T3-L1 adipocytes114. Another recently discovered PKB/Akt sub-

strate, proline-rich Akt-substrate 40 (PRAS40, also known as Akt1 substrate 1(Akt1S1))115,116, 

is ubiquitously expressed and appears to be localised in the nucleus116,117. In response to 

growth factors, PRAS40 is phosphorylated on Thr246 via a PI3K- and PKB/Akt-dependent 

mechanism115,117. Phosphorylation of PRAS40 facilitates the binding of 14-3-3-proteins in 

vitro, and this protein complex has been implicated in nerve growth factor (NGF) mediated 

neuroprotection from ischaemia117. Although, PRAS40 is phosphorylated in response to insu-

lin-treatment of cultured cell lines115,118, it is as yet unknown whether this protein is involved 

in physiological insulin action.

As mentioned earlier, GLUT-4 translocation and, hence, glucose uptake can also be mediat-

ed via insulin-independent pathways, involving AMP-activated protein kinase (AMPK)119 and 

other intermediates120. Interestingly, AS160 contains motifs similar to sequences of proteins 

that are phosphorylated by protein kinase C (PKC)121 and AMPK122. In fact, muscle contraction 

phosphorylated AMPK, Akt and AS160 in isolated rodent muscle and chemical activation of 

AS160 caused AS160 phosphorylation123. Possibly, AS160 may act as a common eff ector of 

insulin and exercise signalling to recruit GLUT-4 to the plasma membrane.

Another PDK-1 substrate (via PI3-kinase) is atypical protein kinase C. In the liver aPKC regu-

lates the expression of sterol regulatory element binding protein-1c (SREBP-1c), a transcrip-

tion factor that activates numerous genes, including fatty acid synthase (FAS) and acetyl-

coenzyme A carboxylase, that control lipid synthesis in the liver124.

The insulin signal also has to be terminated in order to maintain metabolic control; this is 

established via specifi c phosphatases. Protein tyrosine phosphatase-1B (PTP1B) is a physi-

ologic negative inhibitor of insulin signalling. By dephoshorylating the activated insulin 

receptor it terminates the insulin signal transduction125. In addition, SH2-domain-contain-

ing inositol phosphatases SHIP1 and SHIP 2 terminate PI3K signalling via dephosphoryla-

tion of the 5-position of the inositol ring of PIP3, to produce PI(3,4)P
2
. The phosphatase PTEN 

(phosphatase and tensin homologue) dephosphorylates the 3-position on PIP3, producing 

PI(4,5)P
2 

126. All three phosphatases can be regarded as potential therapeutic targets for type 

2 diabetes mellitus.
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1.4. TYPE 2 DIABETES MELLITUS

Type 2 diabetes mellitus is a chronic, multifactorial disease characterised by a combination 

of impaired insulin secretion by the pancreatic β-cells and insulin resistance of target organs, 

leading to hyperglycaemia. A diagnosis of diabetes mellitus is made when at least one of 

these three criteria is met: (i) symptoms of diabetes (polyuria, polydipsia, unexplained weight 

loss) with a casual blood glucose concentration > 11.1 mmol/L, (ii) fasting plasma glucose 

(FPG) level over 7.0 mmol/L, (iii) 2-h plasma glucose level > 11.1 mmol/L during an oral glu-

cose tolerance test (OGTT)127,128. If no symptoms are present, one of these criteria must be 

present on a subsequent day.

Both conditions, i.e., defi cient insulin secretion and insulin resistance, are necessary for 

diabetes mellitus to occur. Insulin resistance and a disturbed fi rst-phase insulin response oc-

cur at an early stage in the development of type 2 diabetes mellitus. There seems to be a 

continuum from normal glucose tolerance to diabetes mellitus. Insulin resistance leads to 

increased insulin secretion by the pancreatic β-cell. This increase in insulin secretion is suf-

fi cient to off set hepatic insulin resistance (thereby maintaining a normal rate of basal hepatic 

glucose production) and to overcome the defect in muscle glucose uptake. At this moment, 

normal glucose levels are achieved at the expense of elevated serum insulin levels. In the 

second phase, the β-cells fail to compensate for the insulin resistance during glucose loads 

(as occurs during meals), leading to a condition known as impaired glucose tolerance (IGT). 

The cause is a disturbed fi rst-phase insulin response, which normally suppresses endogenous 

glucose production. Over the years, the β-cell function deteriorates and when insulin secre-

tion is no longer able to compensate for the insulin resistance hyperglycaemia ensues and a 

diagnosis of type 2 diabetes mellitus is made22,129,130. The relation between insulin secretion 

and insulin sensitivity is shown in Fig. 4 and the time-course of type 2 diabetes mellitus in 

Fig. 5.

Figure 4.

In people with normal glucose tolerance (NGT), the relation between insulin sensitivity and β-cell function is curvilinear. See text for 

explanation (page 25).
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1.4.1. Insulin resistance at the whole-body level

Insulin resistance at target organs leads to decreased glucose uptake, increased glucose pro-

duction and increased whole-body lipolysis. Therefore, in patients with type 2 diabetes mel-

litus, basal glucose production is signifi cantly elevated, leading to fasting hyperglycaemia. 

In addition, following a meal, insulin resistance leads to inadequate stimulation of (skeletal 

muscle) glucose uptake and insuffi  cient suppression of endogenous glucose production and 

lipolysis. The result is postprandial hyperglycaemia.

The incapability to suppress whole-body lipolysis substantially contributes to the increased 

endogenous glucose production and diminished glucose uptake. Firstly, NEFAs increase en-

dogenous glucose production by stimulating key enzymes involved in gluconeogenesis and 

by providing the energy needed for glucose production22. Secondly, the glycerol formed by 

triglyceride hydrolysis serves as a gluconeogenic substrate. Thirdly, free fatty acids impair 

insulin stimulated glucose uptake. Besides substrate competition (Randle eff ect)131, impair-

ment of insulin signalling appears to be responsible for this eff ect132 (see next section).

1.4.2  M olecular mechanisms of insulin resistance

Skeletal muscle

Over 80% of insulin-stimulated glucose disposal takes place in skeletal muscle86. The main 

defect in patients with type 2 diabetes mellitus seems to reside in non-oxidative glucose 

disposal (NOGD), i.e., glycogen synthesis133, the major pathway for overall glucose metabo-

lism. With increasing obesity and insulin resistance, insulin-stimulated NOGD becomes more 

Figure 5.

Time course of type 2 diabetes mellitus. See text (page 25) for explanation.
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impaired134,135. In patients with overt diabetes mellitus, the rate of glycogen formation was 

60% that of normal subjects133.

Possible mechanisms involved in decreased glycogen synthesis could either be decreased 

hexokinase activity, diminished glycogen synthase activity or impaired GLUT-4 translocation. 

Shulman et al. using 31P-and 13-C-nuclear magnetic resonance (NMR) spectroscopy showed 

that the defects were not at the level of hexokinase136 or glycogen synthase137 activity, but 

that impaired glucose transport appears to be the prime defect in insulin-stimulated glyco-

gen synthesis in type 2 diabetic patients. The defects in glucose transport can either be due to 

defects in the glucose transporter itself or in translocation of GLUT-4 to the cell membrane.

Polymorphisms of the gene encoding GLUT-4 are very rare138-140 in patients with type 2 

diabetes and have the same prevalence in non-diabetic subjects. In addition, GLUT-4 protein 

and mRNA expression are equal141,142 or even higher143 as compared with normal subjects. 

However, GLUT-4 does have an abnormal subcellular distribution in insulin-resistant subjects 

with or without diabetes144. This indicates that translocation of GLUT-4 from intracellular 

compartments to the plasma membrane is the prime defect. Hence, defects in the signal-

ling cascade leading to GLUT-4 translocation have been extensively investigated. It appeared 

that exercise (i.e., non-insulin dependent)-induced GLUT-4 translocation is normal in type 2 

diabetic patients145, but that insulin-stimulated GLUT-4 translocation is impaired146. Several 

defects in the insulin-signalling pathway have already been found and will be discussed be-

low.

Insulin binding at the insulin receptor and protein expression of the insulin receptor are 

normal in skeletal muscle of patients with type 2 diabetes147-149. Both impaired147,150,151 and 

normal149,152,153 receptor tyrosine kinase phosphorylation and/or activity have been reported 

in subjects with diabetes. However, it is widely believed that the disturbance in GLUT-4 trans-

location in type 2 diabetes mellitus is due to a post-receptor defect.

IRS-1 is the fi rst molecule downstream in the insulin-signalling cascade and plays a key role 

in skeletal muscle insulin signalling. In humans, IRS-1 polymorphisms are signifi cantly more 

common in type 2 diabetic patients than in controls154,155, but their role in the development 

of insulin resistance and type 2 diabetes is unclear103. Furthermore, in obese insulin- resistant 

subjects156,157 and moderately overweight type 2 diabetic patients149,156,158-160, insulin-stimu-

lated IRS-1 phosphorylation in skeletal muscle is decreased as compared to control subjects, 

whereas protein expression is not altered149,156,159. This defect can already be found in nor-

moglycaemic relatives of type 2 diabetic patients161. The cause seems to be serine/threonine 

phosphorylation of IRS-1, which thereby loses its ability to act as a substrate for the tyro-

sine kinase activity of the insulin receptor and inhibits its capacity to bind to and activate 

downstream eff ector molecules such as PI3K162,163. Here, a link with adipocyte biology (and 

obesity) can be made, since circulating FFAs and TNF-α have been found to increase serine 

phosphorylation of IRS-1132.
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PI3-kinase is central in the insulin-signalling cascade; however, its activation is necessary 

but not suffi  cient for the metabolic actions of insulin. A common polymorphism of the p85-α 

subunit of PI3K (Met326Ile) was found in two percent of a Caucasian study population in 

homozygous form, leading to a 32% reduction in insulin sensitivity during an intravenous 

glucose tolerance test as compared to wild type and heterozygous carriers. The frequency 

of the polymorphism is not increased in diabetes however164, but insulin-stimulated PI3K 

activity is impaired in obese subjects 156, as well as in moderately overweight type 2 diabetic 

patients156,158,159,165.

Little is known about the physiological regulation of PDK-1, but thus far insulin action on 

PDK-1 appears to be normal in insulin-resistant skeletal muscle158. With respect to PKB/Akt, 

unravelling its role in insulin resistance has been complicated by the existence of three iso-

forms. It appears that Akt 2 is essential in glucose homeostasis, Akt 2 knockout mice having 

insulin resistance and a diabetes mellitus-like syndrome104. In humans, recent studies have 

detected a missense mutation in the kinase domain of PKB-β (Akt2) in a family of severely 

insulin-resistant patients that was preserved over three generations166. Not only was the mu-

tant Akt unable to phosphorylate downstream eff ectors in the insulin-signalling pathway, 

but it also inhibited phosphoenolpyruvate carboxykinase (PEPCK), a gluconeogenic enzyme. 

In humans with type 2 diabetes mellitus, basal PKB/Akt activity was similar to controls. Two 

in vivo studies showed normal insulin-stimulated activation of PKB/Akt165,167 in patients with 

type 2 diabetes mellitus, although one study used supraphysiological concentrations of insu-

lin165. In contrast, in vitro experiments showed decreased insulin-stimulated PKB/Akt activity 

at high levels and normal activity at low insulin levels168 in human muscle strips of type 2 dia-

betic patients. The defect seems to be isoform specifi c169 and a defect in one isoform might 

be masked by increased activity of the other.

With respect to the recently discovered Akt substrate AS160, Karlsson et al. showed that 

AS160 phosphorylation is impaired in skeletal muscle from type 2 diabetic patients170.

Liver

Insulin signalling in the liver diff ers from that in skeletal muscle (and adipose tissue). In mus-

cle, IRS-1 (via PI3K) controls both activation of aPKC and PKB/Akt, whereas in the liver aPKC 

is controlled (again via PI3K) by IRS-2 and PKB/Akt by IRS-1. In muscle and adipocytes, aPKC 

and PKB/Akt stimulate the transportation of GLUT-4 to the cell membrane. In the liver, aPKC 

regulates the expression of SREBP-1c, a transcription factor that activates numerous genes, 

including FAS and acetyl-coenzyme A carboxylase, that control lipid synthesis in the liver. 

PKB/Akt in the liver is involved in the control of glucose production124.

When insulin activates PKB/Akt (via IRS-1), this results in the phosphorylation of Foxo-fam-

ily transcription factors (Foxo-1a,-3a and -4). These Foxo-transcription factors can bind to 

so-called insulin response elements (IRE) on the promotor regions of (among others) two key 

gluconeogenic enzymes: PEPCK and the glucose-6-phosphatase catalytic subunit (G6Pase), 
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thereby inhibiting their expression171,172. Defective IRS-1 signalling to PKB/Akt leads to lack of 

inhibition of these two enzymes and increased glucose production124,173.

IRS-2-mediated signalling to aPKC in the liver of diabetic rodents is largely intact or el-

evated. This might explain the increased very-low-density lipoprotein (VLDL)-triglyceride 

synthesis in type 2 diabetes124.

Hepatocyte nuclear factor (HNF) may also play a role in insulin-mediated glucose metabo-

lism in the liver. HNF-1 enhances the eff ect of insulin on the promoter of the gene encoding 

G6Pase via interaction with an IRE174. Knockout mice that are homozygous for a null muta-

tion in the HNF-3 gene have a complex impairment of glucose metabolism with persistent 

hypoglycaemia175. Finally, HNF-4 is involved in the PI3K/PKB/Akt-dependent stimulation of 

glucokinase gene expression by insulin, a mechanism involved in increasing glycolysis176. 

On the molecular level HNF-4 seems to interact with Foxo-1177. However, although genetic 

defects of some of the HNF transcription factors play a role in some forms of maturity-onset 

diabetes of the young (MODY), thus far no evidence exists that HNF-transcription factors are 

involved in type 2 diabetes mellitus.

GSK-3, an enzyme regulating glycogen synthesis, is a substrate of PKB/Akt. Normally, GSK-3 

is constitutively active, phosphorylating glycogen synthase (GS), which becomes inactive and 

thus glycogen synthesis is inhibited. Insulin promotes glycogen synthesis via PKB-mediated 

inhibition of GSK-3. Defective glycogen synthesis is not only evident in skeletal muscle of 

patients with insulin resistance but also in the liver. Polymorphisms in the glycogen synthase 

gene have been described in insulin-resistant patients, the most frequent being the XbaI and 

Met416Val mutations within intron 14 and exon 10, respectively178.

In conclusion, in the liver impaired insulin signalling from IRS-1 to PKB/Akt leads to in-

creased glucose production via inhibition of gluconeogenic enzymes. In addition, glycogen 

synthesis is inhibited and, at least in rodents, impaired IRS-2 signalling to aPKC leads to in-

creased VLDL synthesis. Unfortunately, ethical considerations do not permit liver biopsies in 

humans to study the pathogenetic abnormalities in patients with type 2 diabetes mellitus.

Adipose tissue

About 10% of whole-body glucose uptake occurs in adipose tissue. This might suggest that 

adipose tissue is of minor importance in insulin-stimulated glucose disposal and in insulin re-

sistance. However, in mice, adipose-tissue-specifi c GLUT-4 knockout leads to a similar degree 

of insulin resistance in muscle and liver as muscle-specifi c GLUT-4 ablation179,180. In addition, 

muscle GLUT-4 depletion is associated with a markedly enhanced glucose uptake in adipose 

tissue181. Hence, there seems to be cross-talk between adipose tissue and skeletal muscle, 

and adipose tissue seems to be of major importance in the development of insulin resistance. 

This will be discussed in Chapter 2.

Insulin-stimulated glucose uptake in adipose tissue takes place via the same mechanism 

as in skeletal muscle: insulin signalling leading to GLUT-4 translocation. However, discrepan-
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cies have been found as to the defects in the insulin-signalling cascade in type 2 diabetic 

patients, between adipose tissue and skeletal muscle cells. In adipose tissue defects are re-

lated to decreased protein expression, whereas this is normal in skeletal muscle. Hence, IRS-1 

phosphorylation in adipose tissue of patients with type 2 diabetes is decreased because of 

a decreased IRS-1 protein expression (by 70%) and PI3K activity is decreased to the same 

extent by decreased protein expression182. In addition, in adipose tissue IRS-2 is capable to 

compensate for changes in IRS-1182, a phenomenon that does not seem to occur in skeletal 

muscle149.

PKB/Akt activation is also impaired in adipose tissue of type 2 diabetic subjects, primarily 

via a reduction in insulin-stimulated serine phosphorylation183. GLUT-4 protein and mRNA 

expression are also substantially reduced in adipose tissue of type 2 diabetic patients184, in 

contrast to the normal expression in skeletal muscle141,142,185.

The main interest in the role of adipose tissue in whole-body insulin resistance has been on 

so called adipocytokines (or even better, adipokines, since not all proteins secreted by adipo-

cytes are cytokines), proteins secreted by the adipocyte that might induce insulin resistance. 

This will be discussed shortly below and more extensively in Chapter 2.

1.4.3 How are changes in skeletal muscle insulin resistance induced?

Both FFAs and several adipokines derived from adipose tissue can infl uence insulin sensitiv-

ity.

It has been recognised for some time that insulin sensitivity is inversely related to fasting 

plasma FFA levels186-188. Furthermore, a strong inverse relationship has been demonstrated 

between intramyocellular lipid (IMCL) levels and skeletal muscle insulin sensitivity189-192. En-

durance-trained athletes also have high levels of IMCLs, but they have a high insulin sensitiv-

ity193. It seems that the capacity to oxidise these IMCL is of prime importance in inducing 

insulin resistance. This has also been called metabolic fl exibility194,195. It appears that meta-

bolically-fl exible persons (lean, aerobically fi t, healthy individuals) have a preference for fat 

oxidation in muscle during fasting and that during insulin stimulation this fat oxidation is 

suppressed and glucose oxidation is stimulated196. In metabolically-infl exible people there 

is both a blunted preference for fat oxidation in the fasted state and a blunted suppression 

of fat oxidation upon insulin stimulation197-199. Hence, athletes appear to have a high IMCL 

content because they prefer to oxidise fat, with the intramyocellular triglycerides (present in 

high concentration) serving as an energy reservoir. Whereas in obese and/or type 2 diabetic 

patients, elevated IMCL seem to be secondary to a structural imbalance between plasma FFA 

availability, fatty acid re-esterifi cation and oxidation. The defect in fat oxidation seems to 

reside in the mitochondria200.

Apart from defects in intracellular fatty acid oxidation and or re-esterifi cation, another 

mechanism leading to increased IMCL might be via increased fatty acid uptake. Long-chain 

fatty acids (LCFA) enter cells mainly by protein-mediated membrane transport, along with 
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passive diff usional uptake201. One of these proteins is the fatty acid transporter (FAT)/CD36. 

FAT/CD 36, like GLUT-4, is usually located in the cytoplasm and can be acutely translocated 

to the sarcolemma by stimuli such as contraction and insulin202-206. Both in animal models207 

of insulin resistance, as well as in obese non-diabetic and non-obese diabetic humans202, 

FAT/CD36 membrane expression was increased as compared to lean controls. Moreover, this 

increased sarcolemmal FAT/CD36 expression was associated with an increase in LCFA up-

take202,208. In the human study, the increase in LCFA transport led to a 3-fold increase in fatty 

acid esterifi cation, whereas fatty acid oxidation remained the same, again indicating that the 

core defect is in mitochondrial fatty acid oxidation202. 

Hence, any perturbation that leads to a defect in mitochondrial fatty acid oxidation (aging, 

potential type 2 diabetes genes) and/or increased delivery of fatty acids (increased caloric 

intake, obesity, increase in FAT/CD36) can lead to intramyocellular lipid accumulation.

ICML, in turn, can impair insulin signal transduction. It has been proposed that fatty acid 

metabolites induce a sustained activation of serine/threonine kinases, like protein kinase C 

isoforms209-211, IκB kinase-β212,213 and Jun N-terminal kinase163,214, which phosphorylate IRS-1 

and IRS-2 on serine and threonine sites. Serine-phosphorylated forms of IRS-1 and-2 can-

not associate with and activate PI3K, resulting in a decreased activation of GLUT4-regulated 

glucose transport.

Another adipocyte product, TNF-α, also induces insulin resistance via serine/threonine 

phosphorylation of IRS-1, thereby inhibiting insulin signalling215-217.

An extensive review of adipokines and their potential impact on insulin sensitivity is pre-

sented in Chapter 2.

1.4.4. Visceral obesity and insulin resistance

A chronic imbalance between energy intake and energy expenditure will eventually lead 

to obesity. Epidemiological studies have shown an association between severe obesity and 

increased mortality20,218,219. In more moderate obesity, regional distribution of fat seems to 

play an important role in the risk for (cardiovascular) morbidity and mortality220-224. As early 

as 1947 Vague put forward that “android or male-type obesity”, is more often associated with 

increased mortality and risk for diabetes, hypertension, hyperlipidaemia and atherosclero-

sis than the “gynoid” (lower body or gluteofemoral) female-type of fat distribution225. Later, 

studies using imaging techniques (computer tomography [CT] and magnetic resonance 

imaging [MRI]) showed that the detrimental infl uence of abdominal obesity on metabolic 

processes is related to the intra-abdominal, i.e., visceral, fat depot and not to subcutaneous 

fat deposition226-230. However, other investigators have challenged a primary role for visceral 

adipose tissue in insulin resistance and showed that truncal subcutaneous adipose tissue is 

also strongly and inversely related to insulin-stimulated glucose disposal (reviewed by Garg 

et al.231). Moreover, given the fact that visceral adipose tissue contributes only 10-15% of the 

total systemic free fatty acid fl ux (the majority of FFAs being derived from non-splanchnic 
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adipose tissue from the rest of the body)232,233, they questioned the impact of excess visceral 

adipose tissue on peripheral insulin sensitivity. However, liposuction of subcutaneous ab-

dominal adipose tissue does not improve insulin sensitivity152. Moreover, although only 10-

15% of fatty acids are derived from visceral adipose tissue, their drainage via the portal vein 

directly to the liver could imply another, more deleterious mechanism of action than delivery 

of FFAs (and adipokines) to the liver via the hepatic artery. Hence, it is not clear yet whether 

visceral adipose tissue is the culprit or whether the combination of truncal subcutaneous 

adipose tissue with visceral adipose tissue are involved in insulin resistance. Finally, it is also 

unclear whether abdominal obesity causes insulin resistance or is merely the refl ection of the 

pathologic state.

Notwithstanding these uncertainties, available evidence does support an important role 

for adipose tissue in, possibly, generating and, at least, maintaining whole-body insulin resis-

tance. Several theories have been put forward to explain the link between obesity and insu-

lin resistance. The portal/visceral hypothesis234 states that visceral fat cells are metabolically 

more active (especially lipolytic activity) and are less responsive to the antilipolytic eff ects of 

insulin as compared to other adipose tissue depots. Subsequently, the high fl ux of FFAs and 

glycerol derived from these visceral fat cells, through their unique drainage directly into the 

liver via the vena portae, would induce hepatic insulin resistance, increase hepatic glucose 

production and increase VLDL-triglyceride production. However, as mentioned in the pre-

vious paragraph, the portal/visceral hypothesis cannot link visceral adiposity to peripheral 

insulin resistance given the fact that only 10-15% of the total FFA fl ux is derived from visceral 

adipose tissue, unless some other factor released by visceral adipose tissue induces periph-

eral insulin resistance and/or visceral fat cells have impaired functioning in insulin-resistant 

states leading to decreased triglyceride storage and partitioning of fat storage into other 

organs. This is where 2 new theories emerge: (i) the adipocyte as an endocrine organ and (ii) 

the ectopic fat storage theory235.

To begin with the fi rst theory, adipose tissue not merely stores triglycerides but actively se-

cretes lipid moieties such as FFAs and proteins that are called adipokines236,237. Q uantitatively, 

FFAs are the most important. Moreover, elevated FFAs play a major role in inducing whole-

body insulin resistance. Chronically elevated FFA levels stimulate hepatic glucose production 

and VLDL-triglyceride synthesis, leading to hyperglycaemia and dyslipidaemia22. Furthermore, 

chronically elevated FFA concentrations impair insulin signalling via serine/threonine phos-

phorylation of IRS-1, thereby decreasing insulin-stimulated glucose transport132. In addition, 

chronic exposure to high FFA levels to the pancreas can impair insulin secretion238-240. Several 

of the adipokines produced by adipose tissue (adiponectin, leptin, TNF-α) can also induce 

insulin resistance, this will be discussed in Chapter 2.

The theory of ectopic fat storage states that a diminished capacity of fat cells to store fat 

as triglycerides leads to lipid storage in other organs, such as the liver, pancreas and muscle 

(overfl ow hypothesis241/ectopic fat storage235). This causes steatosis hepatis with hepatic in-
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sulin resistance, impaired insulin secretion and skeletal muscle insulin resistance (via IMCL 

and impaired insulin signalling, see previous section)242. The cause of ectopic fat storage is 

unclear but an association with enlarged adipocytes has been found243. This might be the 

result of impaired proliferation or diff erentiation of adipocytes. On the other hand, impaired 

whole-body fat oxidation might account for the ectopic accumulation of fat244.

Hence, adipose tissue plays an important role in generating and maintaining insulin re-

sistance via the excessive production of FFAs and insulin-resistance-provoking adipokines 

(TNF-α, IL-6, resistin, leptin and many others), possibly related to specifi c fat depots (visceral 

fat mass) and/or malfunctioning of adipocytes (in these specifi c depots?). Moreover, a dimin-

ished capacity to store fat leads to ectopic fat storage with lipotoxicity-induced impairments 

in function of insulin-responsive tissues such as the liver, muscle and pancreas.

1.5. OBESITY AND TYPE 2 DIABETES; TREATMENT REASONS, GOALS AND 

OPTIONS

Both obesity associated with insulin resistance (Table 1) and type 2 diabetes mellitus impose 

a major health risk. Patients with type 2 diabetes mellitus have an increased morbidity and 

mortality due to long-term micro- (retinopathy, neuropathy, nefropathy) and macrovascu-

lar complications. Patients with type 2 diabetes have a 2-4 fold increased relative risk (RR) 

for the development of myocardial infarction (MI), peripheral arterial disease and stroke220 

and approximately 65% of patients with type 2 diabetes die as a result of a cardiovascular 

event245. This increased risk is associated with chronic hyperglycaemia and an increase in 

cardiovascular risk factors such as hyperglycaemia, dyslipidaemia and hypertension. Hyper-

tension occurs in up to 60% of patients with diabetes246, and if diabetes and hypertension 

co-exist they exert a multiplicative eff ect on the absolute risk of a cardiovascular event247. 

Small dense LDL-cholesterol, high serum triglycerides and low HDL-cholesterol characterise 

diabetic dyslipidaemia. Hence, treatment of patients with type 2 diabetes should not only 

focus on glucoregulation but also on hypertension and dyslipidaemia.

Mainly based on two large prospective randomised studies investigating the eff ect of in-

tensive blood glucose-lowering therapy on glycaemic control and occurrence of micro-and 

macrovascular complications in type 1 and type 2 diabetic patients248,249, the treatment goals 

for glucoregulation in patients with type 2 diabetes as set by the ADA are: fasting plasma 

glucose level <  7.0 mmol/L, postprandial glucose level <  10 mmol/L and HbA
1c
 <  7%. In ad-

dition, systolic blood pressure should be lower than 130 mmHg and diastolic blood pressure 

under 80 mmHg. LDL-cholesterol should be <  2.6 mmol/L, triglycerides <  1.7 mmol/L and 

HDL-cholesterol > 1.1 mmol/L250.

Theoretically, treatment of hyperglycaemia in patients with type 2 diabetes can consist 

of decreasing the need for insulin and/or increasing available insulin. The need for insulin 
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can be diminished either by decreasing postprandial glucose levels (diet, acarbose251) or 

improving insulin sensitivity. The latter can be achieved via restriction of caloric intake252, 

weight loss252, exercise253, or with drugs: metformin254,255 or thiazolidinediones256,257 (perhaps 

also rimonabant258 and sibutramine259, because of their weight-loss-inducing properties, 

their anorexic eff ects and possibly via a direct benefi cial eff ect on insulin sensitivity). Increas-

ing available insulin can be achieved with insulin secretagogues (sulfonylureaderivatives254, 

meglitinides260) or by giving exogenous insulin.

Weight loss improves multiple aspects of insulin resistance: glucoregulation, dyslipidae-

mia, hypertension and others. In addition, it decreases the risk for arthrosis, low back pain, 

gallstones, cancer, etc. So ideally, weight loss should always be a component of the treatment 

regimen in obese patients.

Weight loss also improves insulin resistance in obese non-diabetic patients. A benefi cial 

eff ect of even 5-10% loss of overweight has been shown on dyslipidaemia, hypertension, hy-

perinsulinaemia and glucose values261-263. To date, no eff ect on incidence rates of myocardial 

infarction, stroke, cancer and mortality has been demonstrated, however.

Weight loss regimens have been proven diffi  cult to adhere to. In addition, weight loss 

achieved through diet is often followed by weight regain. Regimens combining a hypocaloric 

diet (500 to 600 kCal less than needed per day) with behaviour therapy and exercise have 

been proven the most benefi cial with respect to outcomes after 1 year264. However, hypoca-

loric diets often lead to only modest weight loss, whereas morbidly obese patients and obese 

type 2 diabetic patients need larger weight losses to restore peripheral insulin sensitivity47,48. 

VLCDs and bariatric surgery have been advocated for this purpose.

1.5.1 Bariatric surgery

Surgical procedures to treat obesity have been performed since the 1950s265 and include 

truncal vagotomy266, jaw wiring267, intragastric balloons and liposuction. Bariatric (weight 

loss) surgery can be divided into purely restrictive procedures (vertical banded gastroplasty 

[VBG], laparoscopic adjustable silicone gastric banding [LASBG]) and combined restrictive 

and malabsorptive procedures (Roux-en-Y gastric bypass [GBP], biliopancreatic diversion 

[BPD])57,268. The latter induce larger weight losses and, hence, greater improvements in hy-

pertension, dyslipidaemia, glucose metabolism and hyperinsulinaemia as compared to the 

purely restrictive techniques50,56. However, they are irreversible, sometimes leading to greater 

weight losses than necessary and also to nutritional defi ciencies. Patients have to take vitamin 

supplements for the rest of their lives. LASBG is the most popular form of bariatric surgery 

in the Netherlands (and the rest of Europe), because it can be performed laparoscopic and 

therefore has fewer perioperative complications and it is reversible. In addition, some infl u-

ence as to the amount of food intake can be exerted via infl ation/defl ation of the saline-fi lled 

gastric ring57,268. This procedure also has disadvantages however, an estimated 7-17% of the 
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patients has to be re-operated because of band erosion, dislocation or leakage or because of 

esophageal dilatation269,270.

Bariatric surgery can induce large weight losses (20-50% of body weight) with a higher 

likelihood of maintaining weight loss (especially the combined restrictive and malabsorptive 

procedures) as compared to other weight loss interventions55,271.

The Swedish Obese Subjects (SOS) study showed that surgically-treated obese subjects had 

about 25% percent greater weight loss at 10 years follow-up, along with a greater number of 

persons who no longer had diabetes (if present), hypertriglyceridaemia, low HDL-cholesterol 

concentrations, hypertension and hyperurikaemia as compared with conventionally treated 

obese subjects. The surgery group also had lower 2- and 10-year incidence rates of diabetes 

and hypertriglyceridaemia, but not hypercholesterolaemia43. Others have reported similar 

benefi cial metabolic eff ects of bariatric surgery.

Bariatric surgery has also been performed in patients with type 2 diabetes. Although in 

some studies the number of patients with diabetes were small52,55, the impressive results 

found were confi rmed in larger studies51,53. A recent meta-analysis by Buchwald et al. showed 

that 1417 out of 1846 patients (76.8%) completely recovered from their diabetes following 

bariatric surgery (in the studies that mentioned complete resolution). The mean reduction in 

BMI was 14 kg/m2 and a graded response with respect to diabetes resolution was noted with 

the greatest eff ect with BPD, whereas gastric banding was the least eff ective56. A recently 

published, retrospective chart review of 312 obese patients with type 2 diabetes that under-

went biliopancreatic surgery (gastric bypass with biliopancreatic diversion), showed that the 

benefi cial eff ects on glucose metabolism, dyslipidaemia and hypertension were maintained 

in most patients even after 10 years follow-up53.

With respect to the underlying metabolic processes leading to the improvement in glucose 

metabolism following bariatric surgery, studies in morbidly obese patients have shown an 

improvement in insulin-stimulated glucose disposal, as assessed with the hyperinsulinaemic 

euglycaemic clamp technique47,50,272,273. Data on endogenous glucose production and whole-

body lipolysis are not available. Moreover, in obese type 2 diabetic patients no studies using 

either of these sophisticated techniques have been performed to date.

1.5.2 Very low calorie diets

VLCDs typically provide less than 800 kCal/day. This can be achieved via adjustments of “nor-

mal” food intake or via commercially available packages. The advantage of the latter is that 

these products contain all the necessary vitamins, minerals and trace elements, so patients 

need not to fi gure out what to eat and what not.

VLCDs are safe58 and can be used for several weeks to months or even up to one year(274 and 

own observations). VLCDs can also induce large weight losses275. Maintenance of weight loss 

is usually a problem, necessitating the need for regular dietary counselling and preferably 

also behaviour therapy.
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Both in obese patients and in obese patients with type 2 diabetes mellitus, VLCDs lead to 

substantial weight loss and improvements in hyperglycaemia, hyperinsulinaemia, dyslipidae-

mia and hypertension58,275-280.

In obese type 2 diabetic patients hyperglycaemia improves already within 4-10 days after 

the beginning of an energy restricted diet277,278,281,282. This appears to be due primarily via a de-

crease in endogenous glucose production. These studies have been performed when some 

(4-5 kg) weight loss had already occurred, with varying degrees of calorie restriction or in 

mild type 2 diabetic patients. Surprisingly, there are no studies documenting to what extent 

carbohydrate and lipid metabolism improve in obese, insulin-treated type 2 diabetic patients 

after substantial weight loss using a sophisticated method such as the hyperinsulinaemic 

euglycaemic clamp technique with [6,6-2H
2]
-glucose and [2H

5
]-glycerol.

1.6. AIMS OF THE STUDIES AND OUTLINE OF THE THESIS

Most patients with type 2 diabetes mellitus are obese and both obesity and type 2 diabetes 

mellitus are associated with insulin resistance. Therefore our fi rst aim was to evaluate the 

role of adipose tissue (which indeed is present in excess in obese and obese diabetic patients) 

in insulin resistance. For this purpose we reviewed the literature and present a hypothesis 

which links adipose tissue to insulin resistance (Chapter 2).

In Chapter 3, we present an example of a hormone produced by adipose tissue (leptin) 

that is associated with insulin resistance. The relation between serum insulin and leptin is 

well established in obese patients and patients with diabetes, but not in very obese, largely 

insulin-treated patients with diabetes. Our second aim was to evaluate the relation between 

fasting serum leptin and fasting serum insulin levels, as well as between fasting serum leptin 

levels and insulin secretion in a group severely obese type 2 diabetic patients at various mo-

ments of energy restriction and weight loss.

Insulin resistance in very obese type 2 diabetic patients makes it often diffi  cult to achieve 

adequate glycaemic regulation. Energy restriction and weight loss improve insulin resistance 

and its associated metabolic abnormalities. VLCDs can induce large weight losses but most 

type 2 diabetic patients are afraid to use these diets along with their blood glucose-lowering 

medication for fear of hyperglycaemia. Therefore, we wanted to stop all blood glucose-lower-

ing agents at the start of the VLCD. This would also facilitate weight loss and enable us to 

study glucose metabolism without interfering medication. However, we did not want to in-

duce severe hyperglycaemia or other metabolic derangements. Therefore, our third aim was 

to evaluate whether it is safe to treat very obese, insulin-treated type 2 diabetic patients with 

a VLCD (Modifast , 450 kCal/day) and simultaneously discontinue all blood glucose-lowering 

medication, including insulin (Chapter 4).
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Other studies mentioned a decline in blood glucose levels before weight loss occurred, 

even as early as 7 days after the initiation of a VLCD. Our own clinical observations suggested 

that blood glucose levels decrease already within 2 days after starting a VLCD. Because we 

wanted to diff erentiate later on between the eff ects of energy restriction per se and weight 

loss per se on glucose metabolism, our fourth aim was to establish whether blood glucose 

levels indeed decline as early as 2 days after the initiation of a VLCD and the discontinuation 

of all blood glucose-lowering agents, including insulin (Chapter 4).

Because we wanted to study the eff ect of calorie restriction and weight loss on lowering 

blood glucose levels, the patients entering our later studies should preferentially react to the 

VLCD with a decline in blood glucose levels. Therefore, our fi fth aim was to fi nd out whether 

there are discriminating factors that will tell in advance which patients will show a decline 

in blood glucose levels during weight loss with a VLCD and which patients will not (Chap-

ter 4).

Subsequently, our sixth aim was to investigate, using the hyperinsulinaemic euglycaemic 

clamp technique with stable isotopes, at the whole-body level, the mechanisms by which 

calorie restriction per se (2-day VLCD) decreases blood glucose levels in obese insulin-treated 

type 2 diabetic patients in whom all blood glucose-lowering medication was discontinued 

at the start of the VLCD (Chapter 5). In this same study, our seventh aim was to unravel the 

blood glucose-lowering eff ect of a 2-day VLCD at the molecular level. To this end, we studied 

components of the insulin-signalling cascade, GLUT-4 and FAT-CD36 translocation and in-

tramyocellular triglycerides in skeletal muscle biopsies taken on day 0 and day 2 of the diet, 

both in the basal as well as in the insulin-stimulated situation (Chapter 6).

In addition, our eighth aim was to diff erentiate between the eff ects of calorie restriction 

per se (day 2 of a VLCD) and those of weight loss per se (until 50% of overweight was lost), on 

whole-body glucose and lipid metabolism in obese insulin-treated type 2 diabetic patients 

in whom again all blood glucose-lowering medication was discontinued at the start of the 

VLCD (day 0) (Chapter 7). Our ninth aim, carried out in the same study, was to investigate 

whether calorie restriction per se and weight loss have diff erential eff ects on insulin signal-

ling, GLUT-4 and FAT/CD36 translocation and the amount of intramyocellular triglycerides in 

skeletal muscle biopsies obtained on day 2 of a VLCD and again when 50% of overweight was 

lost, in the basal situation and during hyperinsulinaemia (Chapter 8).

Our tenth aim was to investigate whether the weight loss and benefi cial metabolic ef-

fects of a once-only 30-day VLCD in obese type 2 diabetic patients, who were taken off  all 

blood glucose-lowering therapy during that diet and who received standard outpatient care 

thereafter (blood glucose-lowering therapy was restarted if deemed necessary by their own 

doctor), were sustained at 18 months regular outpatient follow-up (Chapter 9).

In chapter 10 the results of our studies are discussed and integrated.
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