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Chapter 1

Streptomyces are Gram-positive, soil dwelling bacteria that raised interest in the 

last 50 years for their high potential in antibiotic (Hopwood 2007) and protein 

production (Vrancken and Anné 2009; Anné et al. 2012). The work presented in 

this thesis is part of a project funded by the European Research Area for Industrial 

Biotechnology (ERA-IB) under the acronym EPOS (Enzyme Production in Optimized 

Streptomyces). According to the ERA-IB, the definition of Industrial Biotechnology 

is “the application of biotechnology for the environmentally-friendly production 

and processing of chemicals, pharmaceuticals, materials and bio-energy”, thus using 

biological catalysts (enzymes) instead of the classical chemical processes. It therefore 

aims at sustainable production of goods, with less dependency on non-renewable 

fossil resources.

The number and amount of enzymes needed for industrial applications has 

been increasing steadily in the last years. The preferred production platforms are 

fungi and bacteria, with a predominant role of Escherichia coli and Bacillus spp. in the 

second category. The aim of this project is to extend the currently available range of 

enzyme production platforms by optimizing Streptomyces and, in particular, the best 

protein producer Streptomyces lividans. 

Thanks to their saprophytic nature, streptomycetes secrete a massive amount 

of industrial enzymes. They have a relatively low level of endogenous extracellular 

proteolytic activity when compared to other expression hosts (e.g. Bacillus), they are 

generally more suited to produce proteins encoded by high G+C actinomycete genes 

in their native form, coupled to efficient secretion so as to avoid that the proteins 

end up in inclusion bodies (often a problem when using e.g. E. coli) and making 

downstream processes easier. Despite their attractive potential, Streptomyces present 

several constraints which so far limit their application in industry. The first constraint 

is morphology: by growing as a network of hyphae, they produce dense pellets in 

liquid cultures that hold Streptomyces back from being one of the first choice cell 

factories in large scale fermentations. In addition, the limited availability of efficient 

expression systems for high-level transcription/translation and subsequent secretion 

is a further bottleneck. A review on recent developments in strain improvement from 
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the perspective of a host-vector optimization is presented in Chapter 2.

A rational morphological engineering by addressing proteins involved in 

growth and morphology had proven successful in the past. The overexpression of 

SsgA, an activator of cell division, led to a fragmenting phenotype with higher growth 

rate and protein secretion when compared to the wild type (van Wezel et al. 2006). 

Following this idea, genes involved in growth and development where identified and 

the related mutant strains analyzed. In particular, a cellulose-like protein CslA and a 

copper oxidase GlxA were shown to be functional partners in the process of synthesis 

and accumulation of an extracellular, chitin-like glycan at hyphal tips, whose 

absence leads to disruption of pellet aggregation in liquid cultures. These findings, 

presented in Chapter 3, allowed identifying new potentially interesting strains for 

protein production and expanding further our understanding of the processes and 

contributors in bacterial morphogenesis. 

To further analyze the morphology and physiology of these strains, we 

took advantage of the next generation sequencing technologies applied to the 

transcriptome, such as RNA-Seq. Chapter 4 presents an overview of the expression 

state at mRNA level of the glxA and cslA mutants compared to wild type, providing 

potential novel hints for future engineering.

In addition to strain improvement, the design of an efficient expression 

vector remains to be solved. We addressed this issue by identifying new strong 

promoters to drive high levels of transcription in our system. In Chapter 5 a new 

pipeline is described, starting from the identification of strong constitutive promoters 

from RNA-Seq and microarray data, screening via a newly optimized Lux system 

and validation with the production of a small laccase (SLAC) from S. coelicolor. This 

allowed us to expand the list of available strong promoters and optimizing/developing 

new reporter systems.

The success of SsgA for morphological engineering and strain design also 

prompted analysis of the SsgA-like proteins (SALPs) in S. lividans, as a primer 

towards future rational strain engineering approaches. Genes for SALPs other than 

SsgA were deleted and the effect on S. lividans tested in terms of phenotype and 
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enzyme production. The results are presented in Chapter 6. 

A general discussion is presented in Chapter 7, with reflections on how the 

experiments presented in this thesis – combined with the current state of the art – 

can provide insight on how to obtain better Streptomyces production hosts.



Manuscript in preparation

Giulia Mangiameli and Erik Vijgenboom

Host-vector optimization in Streptomyces lividans for heterologous 
protein production 

Chapter 2
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Chapter 2

ABSTRACT

The growing demand for sustainable production of goods has led to an increased 

need for enzymes and production hosts in the last decades. Bacteria are usually the 

preferred hosts because of their easy genetic manipulation and fast growth. Among 

them, Streptomyces is recognized as a highly attractive enzyme production host with 

several advantages over other bacterial hosts but also with some constraints that 

require improvement. In this review, the efforts made in the last years to remove the 

disadvantages related to its mycelial growth and to widen the selection of expression 

vectors and consequently improve Streptomyces for heterologous protein production, 

will be presented. 
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INTRODUCTION

Streptomyces spp. belong to the family of Actinomycetaceae and are Gram positive, 

soil dwelling bacteria with a filamentous structure and a complex morphological 

development which has a strong resemblance with that of filamentous fungi. They 

are primarily known as important producers of secondary metabolites including 

antibacterial, anticancer, immunosuppressive, antihelmintic and antifungal agents 

(Hopwood 2007). In fact, 60% of the currently used antibiotics are produced by this 

organism. In addition, Streptomyces is a producer of commercially valuable proteins 

naturally secreted to adapt to a changing environment and to different nutritional 

sources (Chater et al. 2010). In particular, it produces enzymes for the degradation 

of many organic polymers such as cellulose, chitin and lignin, which are very much 

needed for the production of second generation biofuels (Jing 2010; Amore et al. 

2012; Noda et al. 2013). 

The application of recombinant proteins in industrial and pharmaceutical 

processes has grown steadily in the last decades and has become an indispensable part 

of the manufacturing of many products. While in the past these proteins were isolated 

from classical sources like plants and animals, at present they are mainly expressed 

in heterologous hosts, which allows a faster and safer production with improved 

quality and stability. More than 200 peptides and recombinant proteins have been 

approved so far by the FDA and they have a large variety of applications, such as in the 

production or modification of biofuels, textiles, leather, paper, detergents, polymers 

and plastics, human and animal health, medicine, diagnostics, food and nutrition. 

The total market of industrial enzymes, such as laccases, amylases, cellulases and 

proteases, was estimated in 2012 at € 2,8 billion p.a. (Novozyme report 2012). 

For the production of industrial relevant proteins, yeasts and filamentous 

fungi are used for more than 50% of the proteins while bacteria for 30% and animals 

and plants are preferred in the remaining cases. Bacterial hosts include Escherichia 

coli, the most used because of its fast growth and high level of protein expression, 

Bacillus species such as Bacillus subtilis and Bacillus licheniformis and the less 
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frequently used Ralstonia eutropha and Pseudomonas fluorescens (Demain and 

Vaishnav 2009). Nevertheless, none of these systems proved to be an optimal and 

universal production platform. Within academic and industrial research, the design 

of alternative and efficient hosts continues to be a theme of interest.

Streptomyces and in particular Streptomyces lividans have been successfully 

tested for the production of proteins including human therapeutics and industrially 

relevant enzymes (Vrancken and Anné 2009; Anné et al. 2012). The highest 

production yields are assessed to be over 500 mg/L, including proteins with low or 

zero expression in other traditional bacterial systems (Sianidis et al. 2006). The latter 

makes Streptomyces a valuable if not the only alternative. Despite the encouraging 

perspectives, there are several constraints against the utilization of this organism on 

a larger industrial scale. From a host point of view, the main bottleneck is its mycelial 

growth, which results in rather dense clumps of mycelium in liquid cultures. This 

morphology strongly influences the overall efficiency of the fermentation, and the 

secretion and integrity of the desired final product. Furthermore, the very limited 

choice of stable vectors with strong promoters for expression of heterologous proteins 

is often a drawback for the selection of Streptomyces as host.

The classical method for strain improvement was represented in the past 

by random mutagenesis. For example, cycles of UV mutagenesis and screening led 

to remarkable yield improvements in the case of the industrial penicillin producer 

Penicillium chrysogenum, with an improvement of 100,000 fold compared to the 

original Fleming strain (Rokem et al. 2007). However, the labor intensity and the 

accumulation of unknown or unwanted mutations called for a different approach. 

The improved genetic tools for targeted mutation and the overall increase in 

understanding the morphology and physiology of bacterial and fungal production 

platforms contributed to the development of a rational genetic approach.

Although directed mutagenesis can be applied to improve morphology to 

increase the protein secretion capacity and/or modify metabolic pathways, at least 

one more issue needs to be resolved. To obtain high yields of heterologous proteins, 

optimized expression vectors are required that combine strong transcriptional and 
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translational elements with good secretion signals. This review will focus on the 

recent developments in the application of Streptomyces as a platform for heterologous 

protein production from the perspective of host-vector optimization.

HOST OPTIMIZATION
From the host perspective, optimization can take place at different levels. At the 

morphology level, the best phenotype for the production of the desired product can 

be selected through directed genetics. Improving secretion together with controlling 

proteolysis are also efficient tools to increase the total yield of protein produced. 

Finally, the control of fermentation parameters and medium composition can further 

boost protein production.

Morphology

Mycelial growth 
The mycelial behavior of Streptomyces presents a serious challenge for the wider use 

in fermentation and protein production. 

In the soil, Streptomyces develops from a spore to a dense branched network 

of vegetative mycelium, a syncytial network in which cell division is not essential 

and cross walls are occasionally observed. In contrast to other bacteria which grow 

through binary fission, Streptomyces shows an apical polarized growth, with extension 

and cell wall synthesis at the hyphal tips. The hyphal tip is a hub for the recruitment 

of proteins involved in growth and has been recently renamed  as TIP Organizing 

Center (TIPOC) (Holmes et al. 2013). The molecular assembler Scy acts as a protein 

scaffold by recruiting, among others, DivIVA, which directs apical growth (Flärdh et 

al. 2012). DivIVA has a preference for negatively curved membranes (Lenarcic et al. 

2009) and accumulates in multiprotein foci called polarisomes at the tips (Hempel 

et al. 2012). It is active through a splitting mechanisms (Richards et al. 2012), in 

which an existing polarisome breaks off, leaving behind a smaller aggregate that 

marks the site for branching along the hyphae. The disassembly of the foci seems to 
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be dependent on a phosphorylation mechanism via the protein kinase AfsK (Hempel 

et al. 2012). These studies show that TIPOC is not only required for apical growth but 

also establishes the branching points including new tips in the hyphae.

Figure 1. A schematic summary of proteins present in the tip that are required for tip growth, sep-
tum formation, aerial growth and attachment/penetration of solids such as agar. 
The Tip Organizing Center TIPOC is made by the protein scaffold Scy and the polar growth determinant 
DivIVA, whose regulation is modulated by AfsK. CslA interacts with DivIVA at the very front of the tip 
and is responsible for the synthesis of a chitin-like glycan, together with its functional patner GlxA. The 
glycan is responsible of aerial development and attachment to solid substrates. Other matrix components 
such as chaplins, rodlins and SapB take part in the formation of the matrix during development and 
erection of the aerial mycelium. The proteins belonging to the cell division machinery, SsgA, SsgB and 
FtsZ, are also shown in the picture, although their interaction with the TIPOC remains to be elucidated.

Following an external signal such as nutrient depletion, the vegetative 

mycelium is broken down in concert with the erection of new hyphae, the so-called 

aerial mycelium. During this process, an important role is played by proteins which 

lower the surface tension at the air-water interface: the lantibiotic-like peptide SapB 

(de Jong et al. 2012), the rodlin proteins RdlA and RdlB (Claessen et al. 2002), together 

with the eight chaplins ChpA-H (Claessen et al. 2003; Elliot et al. 2003). They coat 

the hyphae providing a hydrophobic sheat known as the rodlin layer that is essential 

for aerial growth (Claessen et al. 2004). Recently, the extracellular matrix was also 

shown to be essential for attachment to solid substrates. A chitin-like extracellular 

polysaccharide synthesized by the concerted action of the glycosyl transferase CslA 

and the radical copper oxidase GlxA, both present at the hyphal tips, is required for 

attachment to and growth into substances as agar (Chapter 3).
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After the erection of the aerial mycelium, multiple processes such as septation 

and chromosome segregation occur, giving rise to spore formation. Th e family of 

SsgA-like proteins (SALPs) plays an important role in the process of cell division 

prior to sporulation (Noens et al. 2005; Traag and van Wezel 2008), including the 

recruitment of FtsZ and the formation of the cell divisome (Willemse et al. 2011). 

SsgA in particular seems to have a central role in septum formation (van Wezel et al. 

2000a; van Wezel et al. 2006).

In submerged cultures, many  Streptomycetes grow vegetatively and only a 

small number had been recognised as forming submerged spores, with Streptomyces 

griseus and Streptomyces venezuelae as well known examples (Kendrick and 

Ensign 1983; Glazebrook et al. 1990). However, a recent investigation showed that 

morphological development in submerged culture is much more common than 

originally anticipated, with half of a collection of randomly selected streptomycetes 

producing submerged spores (Girard et al. 2013). A specific signature consisting 

of six amino acids in the SsgA protein allowed prediction of the ability to produce 

submerged spores, thus dividing the phylogenetic tree of streptomycetes into an LSp 

(liquid sporulation) branch and an NSLp (no liquid sporulation) branch. The signature 

also correlates to a single amino acid residue in SsgB, with Thr128 corresponding to 

the LSp phenotype, and Gln128 to NLSp phenotype. 

The mycelia of streptomycetes form aggregates of various sizes that can 

be categorized according to their diameter into pellets (950 µm), clumps (600 

µm), branching and not branching hyphae (Pamboukian et al. 2002) (Fig 2A). No 

differentiation in liquid cultures was reported until two different growth phases were 

detected in S. coelicolor submerged cultures (Manteca et al. 2008). A first phase starts 

with the germination of the spores, followed by radial growth of the pellet and growth 

arrest due to cell death in the inner part, after which a second phase starts with new 

growth from the inside and ends when the maximum diameter of the pellet is reached. 

A link between development and metabolite production was also demonstrated, 

with exclusive production of the antibiotics undecylprodigiosin and actinorhodin 

during the second growth phase. The exact process behind pellet aggregation is still 
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largely obscure. Two mechanisms have been proposed: a coagulating one, with the 

agglomeration of multiple germinating spores, and a non-coagulating one, with the 

independent germination of separate single spores (Metz and Kossen 1977). Pellets 

can also arise from hyphal aggregates and fragments of broken down mycelium 

(Whitaker 1992). 

Recently, two populations of pellets differing in size have been described in 

Streptomyces liquid cultures (van Veluw et al. 2012), in line with the heterogeneity 

observed in other microbial strains. The large size population is dependent on the 

strain and parameters such as medium composition and age of the culture, while 

the small size population is strain and medium independent and remains constant 

through time. Moreover, the deletion of the chaplins and CslA affects the size of the 

larger pellets, demonstrating the involvement of the cell surface proteins and matrix 

components in the aggregation process. The smaller pellets are not affected by these 

deletions and therefore seem to be an intrinsic property of Streptomyces growth, 

independent of the extracellular matrix components.

In other microorganisms, different substances have been described to 

be involved in cell aggregation. Surface polysaccharides are involved in spores 

aggregation of Phanerochaete chrysosporium in liquid cultures (Gerin et al. 1993). 

They are also implicated in biofilm formation, cell aggregation and pathogenicity in 

various bacteria (Zogaj et al. 2003; White et al. 2003; Latgé 2007; Saldaña et al. 2009; 

Lenardon et al. 2010). Hyaluronic acid is an example of a polysaccharide responsible 

for biofilm formation and virulence as shown in Streptococcus pyogenes (Cho and 

Caparon 2005), while extracellular DNA is a main component of the extracellular 

matrix in Pseudomonas aeruginosa (Whitchurch et al. 2002). Other cell aggregation 

processes require specific molecular recognition mediated through outer membrane 

proteins like shown for the TraA protein of Myxobacteria (reviewed in Wall 2013).

In Streptomyces, pellet aggregation seems to be affected by different factors. 

An amine oxidase (HyaS) associated to the vegetative mycelium has been identified 

as an enzyme required for aggregation in liquid cultures (Koebsch et al. 2009). 

Deletion of hyaS led to fluffy clumps with protruding hyphae (Fig 2B). Moreover, 
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overexpressing SsgA led to a highly fragmenting phenotype in liquid cultures (Fig 

2C). The independent deletion of the synthase and the oxidase responsible for the 

synthesis of a chitin-like polysaccharide associated to the cell wall resulted in the 

formation of nonpelleting mycelium in various liquid media (Chapter 3 and Fig 2D). 

Other studies related Streptomyces pelletting behavior to biofilm formation, with a 

crucial role for substances such as DNA, hyaluronic acid and calcium (Kim and Kim 

2004). 

Figure 2. Different morphologies of S. lividans 1326 in liquid cultures: pellets (A), pellets with 
branching hyphae (B), fragmenting mycelium (C), open mycelium (D). Scale bar: 100 µm.

The mycelial nature of these organisms strongly affects fermentation. On 

the one hand, large pellets suffer from transfer limitation of oxygen and nutrients 

as they are made of distinct layers, with actively growing hyphae in the outer part 

and progressively less active cells towards the center (Celler et al. 2012). On the 

other hand, a dispersed mycelium causes high viscosity of the medium, presenting 

problems in maintaining a homogeneous and well mixed culture, with the formation 

of stagnant zones and nutrient gradients, requiring high stirring speeds and expensive 

downstream processes. Different approaches to overcome filamentous growth, 

including physical or genetic methods, will be presented in the next section.

Controlled growth and  morphology during fermentation
Different strategies have been established to enhance protein production through the 

control of growth and morphology during industrial fermentation. However, with 

the production of enzymes and antibiotics by Streptomyces as an example (discussed 

in more detail below), the preferred morphological behavior depends very much on 

the combination between production host and product of interest. 

The first studies focused mainly on antibiotic production. In Penicillium 
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chrysogenum, only pellets with diameters less than 400 µm were considered as actively 

metabolizing (Schügerl et al. 1983). In Saccharopolyspora erythraea, there is a  critical 

pellet diameter (80–90 μm) below which production of erythromycin was abolished 

(Martin & Bushell, 1996). The correlation between morphology and antibiotic 

productivity in this organism was further investigated, with the best production 

obtained in variants with enhanced strength and reduced branching rates (Wardell et 

al. 2002). In Streptomyces,  an alteration from long to short hyphae corresponded to 

a block in antibiotic production (Kuznetsov et al. 1992). It is generally believed that 

pellet and clump formation is fundamental to obtain good production of secondary 

metabolites (Vecht-Lifshitz et al. 1992; Sarrà et al. 1997), supporting the hypothesis 

that antibiotics are produced at a fixed distance from the hyphal end. Nevertheless, 

shake-flask cultures of Streptomyces hygroscopicus with glass beads reduced pellet size 

with simultaneous increase of the geldanamycin production (Dobson et al. 2008).

It is unclear how these observations can be applied for the production of 

proteins . In the case of filamentous fungi, production of enzymes is generally favored 

by a small/loose pellet morphology, which allows better oxygen and nutrient transfer. 

This is the case, for example, for the production of glucoamylase by Aspergillus niger 

(Papagianni and Moo-Young  2002) or to obtain acid phosphatase from Neurospora 

crassa  (Wen Su and Jun He 1997). 

In order to control the morphology of filamentous microorganisms in liquid 

cultures, different approaches can be applied, for example by altering the inoculum,the 

pH or the stirring speed (reviewed in Papagianni 2004). A low inoculum typically 

leads to pellet formation, while a dense inoculum results in dispersed growth. The 

initial pH of the medium (or in precultures) plays a role influencing the aggregation 

properties of the surface of the hyphae, with a more open mycelium at lower pH 

values. A strong agitation in stirred tank bioreactors forms free filaments rather than 

pellets but the maximum rate is limited as it causes physical damage to the mycelium. 

The use of microparticles affects the growth of filamentous organisms in liquid, 

changing the morphology from pellets to single hyphae (Walisko et al. 2012). The 

shear stress and consequent oxygenation of cultures grown in different types of flasks 



19

Host-vector optimization in Streptomyces 

affects morphology as well as production to a great extend (Gamboa-Suasnavart et 

al. 2011). The smaller pellet morphology obtained in baffled and coiled flask resulted 

in three-time higher production and higher glycosylation of the APA antigen from 

Mycobacterium tuberculosis in S. lividans when compared to standard flasks. This 

was successfully scaled up by changing the power input in a small scale bioreactor 

(Gamboa-Suasnavart et al. 2013). 

Nevertheless, physical methods show some limitations as they create a mix 

of different morphologies and do not allow a precise control. Therefore, a rational 

genetic approach can be used to favor a specific phenotype in submerged cultures. 

In Streptomyces, a specific case is represented by the overexpression of SsgA, 

a protein belonging to the SALP family and involved in septation during cell division 

and peptidoglycan maintenance (van Wezel et al. 2006). Enhanced expression of this 

protein led to a fragmenting phenotype in three species (S. coelicolor, S. lividans and 

S. roseosporus), clearly underlying a correlation between septation and the degree 

of fragmentation (see Fig. 2C for S. lividans). A fragmented phenotype presents a 

potential improvement for large scale liquid cultivations in terms of mass and nutrients 

transfer. In fact, the S. lividans SsgA overexpressing strain showed higher growth 

rates and a halved fermentation time, coupled to an increase in enzyme production 

when tyrosinase, a phenoloxidase, was used as a reporter. The effect on antibiotic 

production is less predictable. While enhanced expression of SsgA strongly enhanced 

the production of prodiginines, it completely blocked production of actinorhodin. 

This may be explained by the fact that undecylprodigiosin is produced during an 

earlier growth phase than actinorhodin, and that SsgA locks streptomycetes in an 

earlier phase of the life cycle (van Wezel et al. 2009). 

Extending a rational genetic approach for a wider use is strongly depending 

on the current knowledge about genetic control and regulatory pathways. The S. 

lividans SsgA overexpressing strain is a clear example of scientific and industrial 

success towards the building of Streptomyces as a valuable alternative for commercial 

protein production (van Wezel and Vijgenboom 2003). Therefore, it is worthwhile to 

invest more research time to extend the knowhow on morphology related processes.
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Secretion

Secretion pathways in Streptomyces
From a downstream processing point of view, heterologously expressed proteins 

can be best secreted into the fermentation broth. Therefore, increasing the secretion 

capacity is an important parameter towards optimization of the yield. The Sec pathway 

is the major secretion pathway in bacteria, and translocates unfolded proteins over the 

membrane (recently reviewed in (du Plessis et al. 2011). The Sec translocase is a highly 

flexible transmembrane channel constituted by a SecYEG heterotrimeric complex, 

associated to the motor protein SecA (Zimmer et al. 2008; du Plessis et al. 2009). 

Two different energy sources are used to create the mechanical motion: ATP and the 

proton motive force (PMF) (Driessen 1992). In Streptomyces, Sec-substrate proteins 

bind co-translationally to the signal recognition protein (SRP) prior translocation 

(Palacín et al. 2003). The substrate is gradually bound and released from the complex 

until the complete expulsion, followed by cleavage of the signal sequence. 

The twin arginine translocation (Tat) presents a second secretion pathway. 

Firstly discovered in the thylakoid membrane of chloroplasts, it has been subsequently 

identified in the membrane of many bacteria and studied extensively in E. coli. For 

a detailed overview see Palmer and Berks (2012). The route takes its name from the 

two arginines present in the recognition sequence, which play a crucial role during 

recognition. The ability of the Tat pathway to translocate folded substrates makes 

it the preferred route for a number of proteins: (1) those who require the insertion 

of complex cofactors, (2) proteins that need to avoid competition of metal ions for 

binding to their cofactor site, (3) the transport of hetero-oligomeric complexes and 

(4) substrates that need accessory proteins in the cytoplasm for folding or maturation 

or cannot be kept unfolded after translation.

Homologues of E. coli Tat proteins, TatA, TatB and TatC, have been identified 

and characterized in S. lividans (Hicks et al. 2006). TatB and TatC have a key role 

in triggering the assembly of the complex and binding the substrate, while TatA 

is abundantly present in the membrane, oligomerizing into a ring shaped channel 
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suggested to act as a translocon (De Keersmaeker et al. 2005; De Keersmaeker et 

al. 2007). TatA is recruited by PMF, which is used as the only energy source. After 

transport, the protein is cleaved by a signal peptidase and the complex dissociates. 

Recently, it was shown that during normal growth the Tat complex localises 

near the tips of growing hyphae (Willemse et al. 2012). The Tat complex shows a highly 

dynamic localization pattern, with more foci present along the hyphae including the 

tips. The assembly of the TatA complex was followed in time and space via a single 

particle tracking technique (Celler et al. 2013). Three different stages were identified 

in the assembly: an inert state followed by movement along the hyphae and wobbling 

prior final localization at about 2 µm from the tip. All these results confirm that Tat 

secretion occurs at the hyphal tips, in agreement to what is observed in fungi. The 

tip localization of TatABC suggests that increasing the number of apical sites and 

reducing branching and hyphal length would be a good strategy for enhancing the 

secretion of Tat-secreted enzymes. Indeed, increased fragmentation of the hyphae 

(which effectively increases the number of apical sites) resulted in enhanced secretion 

of the Tat substrate tyrosinase (van Wezel et al. 2006), which points at an intimate 

relation between morphology and secretion in Streptomyces. This example shows 

that better understanding of the behaviour, dynamics and localization of the proteins 

involved in secretion may lead to rational design of production hosts.

In contrast with most bacteria, substrate prediction programs revealed an 

exceptionally high number of Tat substrates in S. coelicolor genome: 129 proteins 

predicted by TATscan (Li et al. 2005) against 22 in E. coli (Dilks et al. 2003). The 

major role of this pathway in this organism is confirmed by proteomic studies on 

tat mutants in S. coelicolor (Widdick et al., 2006), with 25 out of 43 proteins verified 

as Tat-targeted. Moreover, 63 proteins were identified as Tat substrates in S. lividans 

(Guimond and Morosoli 2008), among which only 7 were expected from in silico 

prediction, and 47 out of the 73 proteins predicted from proteomic experiments  in 

S. scabies were confirmed to be secreted through this pathway (Joshi et al. 2010). In 

addition, S. lividans mutants ΔtatB and ΔtatC showed a retarded development on 

solid media and a dispersed growth in liquid (Schaerlaekens 2004), underscoring that 
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proteins essential for morphological development are secreted via the Tat pathway. 

The evidence suggests a different and more important role of the Tat pathway in 

Streptomyces than in other bacteria. This assumes a particular relevance in case of 

production of recombinant proteins that might need to be exported in an active form 

or that fail to be secreted through the Sec system. 

Enhancing heterologous protein production through secretion improvement
Reaching elevated yields of heterologous proteins is often impeded by the saturation 

of the secretion system. This paragraph will give a brief overview of the various 

strategies tested to enhance production levels through modification of the secretion 

capacity.

Enhancing secretion by simultaneous overexpression of the three 

components of the Tat pathway (TatA, TatB, TatC) proved to be an efficient tool in 

the case of xylanase C (XlnC) production in S. lividans, enhancing secretion of five 

fold (De Keersmaeker et al. 2006). The same strategy has been successfully tested in 

other bacteria such as Corynebacterium glutamicum (Kikuchi et al. 2009) and might 

therefore present a general way to improve protein secretion in various systems. 

The overexpression of Sec components could also present an alternative to increase 

protein secretion. However, the relative high number of proteins required for a 

functional Sec system seems to be a drawback. Only the overexpression of the core 

components SecYEG has been reported in E. coli (Douville et al. 1995), resulting in a 

30 fold increase in translocation of the preprotein proOmpA.

Several experiments have shown that cross talk seems to exist between the 

Sec and Tat pathways, leading to an increase in secretion from one route when the 

other one is inactivated. This has been exploited in the case of the S. lividans TatB 

mutant, in which the Sec secretion of the human interleukin 10 (hIL10) showed a 

15-fold increase compared to the wild type (Schaerlaekens et al. 2004). The opposite 

effect on Sec secretion has been observed in the TatABC overexpressing strain, with 

a strong reduction of XlnB secretion (De Keersmaeker et al. 2006). How the two 

secretion pathways communicate and how this is regulated is not understood. 
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Another interesting example of improvement of the secretion efficiency is 

presented by the overexpression of the phage shock protein A (PspA). Phage-shock 

protein response is a cell response activated in situation of stress such as phage 

infection, which causes dissipation of the proton motive force and alteration of 

redox state (reviewed in Joly et al. 2010). PspA, the main effector protein, reduces 

membrane depolarization and damage by blocking the proton leakage by a still 

unknown mechanism. A block in protein secretion is known to activate the response, 

although the exact nature of this interaction is still unclear. Recently, a PspA-TatA 

complex has been purified and analyzed in E. coli, suggesting an involvement of PspA 

in the control of membrane stress at active translocons (Mehner et al. 2012). The 

overexpression of PspA increased Tat dependent secretion in the case of XlnC and 

heterologous eGFP in S. lividans, while a limited effect (20%) was observed for the 

Sec pathway (Vrancken et al. 2007). This result is expected as the Tat translocation 

is solely dependent on the PMF, while the Sec translocation requires also hydrolysis 

of ATP. An increase in protein production through the Tat pathway in a pspA 

overexpressing strain is in accordance with experiments in E. coli, where the secretion 

of the exoglucanase (Exg) of Cellulomonas fimi was achieved, avoiding the previously 

reported saturation of the Sec system (Wang et al. 2011).

Proteolysis and product integrity

Proteolysis is a general mechanism to regulate levels of native proteins, 

removing the defective ones or inactivating them and recycling amino acids. In case 

of protein overexpression, proteolysis can be triggered due to folding problems and 

hamper final expression levels and protein integrity. The involvement of proteases 

in stress response after induction of heterologous protein expression has been well 

described in E. coli (Gill et al. 2000) and the use of protease-deficient mutants reduces 

protein degradation (Jiang et al. 2002). 

Among streptomycetes, S. lividans has a lower level of endogenous secreted 

protease activity when compared to other strains. However, extracellular (Lichenstein 
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et al. 1992; Butler et al. 1995), intracellular (Butler et al. 1994) and mycelium-associated 

proteases (Binnie et al. 1995) are present. In S. lividans, a proteasome-deficient 

mutant proved to enhance protein production (Hong et al. 2005). The proteasome is 

an intracellular, self-compartimentalizing protease with confined proteolytic activity. 

It was first discovered in eukaryotes, followed by archea and bacteria belonging to 

order of Actinomycetales such as Streptomyces (De Mot et al. 1999). A comprehensive 

review covering the different domains of life has been recently published (Maupin-

Furlow 2012). The physiological role in bacteria is unclear, as no cellular targets have 

been identified and no physiological changes have been observed in the deficient 

mutants, neither in Mycobacterium (Knipfer and Shrader 1997) nor in S. coelicolor 

(Nagy et al. 2003) or S. lividans (Hong et al. 2005). However, the level of protein 

expression increased in S. lividans proteasome mutant compared to wild type strain 

in case of the human tumor necrosis factor receptor II (shuTNFRII) and salmon 

calcitonin (sCT), while no effect was demonstrated on shuTNFRI (Hong et al. 

2005). These results suggest that protein expression may benefit from deleting the 

proteasome genes in the host.

In bacteria, proteins are tagged and directed to the proteasome by prokaryotic 

ubiquitin-like protein (Pup), similar to the ubiquitin system in eukaryotes (Burns and 

Darwin 2010). The pupylation mechanism is active in S. coelicolor, with 20 potential 

targets identified (P. Mazodier, J.L. Pernodet, personal communication). Therefore 

the pupylation system may be an interesting target for increasing heterologous 

protein production.

Despite the increase in protein expression obtained in a proteasome-deficient 

mutant, few studies describing the influence of  the deletion of other proteolytic 

enzymes have been published so far. Several protease mutants of S. lividans  were 

studied for their protein secretion but none of them showed a better protein secretion 

level than the wild type (Arias et al. 2007).
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Fermentation

Optimizing fermentation of Streptomyces for its use at industrial level requires insights 

in more aspects than the already discussed growth and morphology related issues 

(vide supra). Streptomyces is generally cultivated in batch fermentation in stirred 

tank reactors with a blade turbine impeller. Usually, a dispersed mycelium is the 

predominant form in these cultures while pellets are formed in shake flasks. In addition 

to genetic engineering (van Wezel et al. 2006), bioreactor operating conditions such 

as agitation and aeration influence to a great extent growth, morphology, oxygen and 

nutrient transfer. The impact of hydrodynamics on Streptomyces cultures in shaking 

flasks and stirred bioreactors has been recently reviewed (Olmos et al. 2012). 

A major limiting aspect for fermentation of filamentous organisms is the 

transfer of oxygen and nutrients. Especially for a strictly aerobic microorganism as 

Streptomyces, oxygen availability is a limiting step because of its diffusion at the gas-

liquid interface and transfer to the center of the pellet. Due to the great interest in 

Streptomyces as an antibiotic producer, most of the fermentation studies are focused 

on the effects of oxygen on secondary metabolism rather than on production of 

primary metabolites or heterologous proteins. Antibiotic production is coupled 

with an increase in oxygen consumption and a higher dissolved oxygen tension 

enhances production (Olmos et al. 2012). Concerning primary metabolism, it has 

been demonstrated that in S. lividans strain producing mTNFα, the dissolved oxygen 

percentage dropped to approximately 10% compared to the 30% for the WT strain 

(D’Huys et al. 2011), demonstrating also in this case a higher oxygen consumption 

as seen for antibiotic production. This is in agreement with studies in E. coli, where 

more oxygen is needed for protein production (Özkan et al. 2005), while a positive 

effect of hypoxic conditions has been described for Pichia pastoris (Baumann et al. 

2010).

One way to facilitate oxygen transfer is to increase the agitation rate, but this 

affects the rheology of the cultures, with fragmentation of the clumps, increase in 

viscosity, cell damage and even lysis. The dependence of morphology on the agitation 
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rate has been reported for S. fradiae, where a decrease in shear stress caused a shift 

in morphology from free filaments to pellets (Tamura et al. 1997). Cell lysis was also 

studied in correlation to the power input, a parameter that depends on agitation rate, 

airflow and reactor geometry. The effect of power input and consequent shear stress 

has been quantified for S. clavuligerus in  batch cultivations with defined media, 

supplemented with different carbon and nitrogen sources (Roubos et al. 2001). The 

study led to the conclusion that this strain is extremely shear-sensitive and that 

cell lyses occurs even at low agitation rates. The identification of threshold values 

below which no major lysis was observed was strictly dependent on the medium 

composition, with mycelium grown on glutamate and maltose or succinate as the 

most sensitive to lysis. Moreover, the power input can also influence the morphology 

of the cultured strain and the production of post-translationally modified proteins. 

This is the case for the production of Mycobacterium tuberculosis APA protein in S. 

lividans, where a controlled agitation rate led to a higher degree of mannosylation 

compared to cultures in shake flasks (Gamboa-Suasnavart et al. 2013). 

As an alternative to increasing the agitation rate, pure oxygen can be 

supplied during fermentation to increase the productivity without affecting the 

morphology of the culture. This is the case, for example, in the production of the 

immunosuppressant rapamycin in S. hygroscopicus (Yen and Hsiao 2013) where, 

despite a high requirement of oxygen, a high agitation rate resulted in pellet damage 

and lower production. Nevertheless, supplying pure oxygen is expensive and costs 

need to be carefully evaluated for commercial applications. It remains to be seen if 

this approach also works for protein production.

Beside the control of the bioreactor parameters, medium composition and 

nutrient dosing influence the efficiency of fermentation and protein production. This 

was demonstrated in early studies (Payne et al. 1990) where a continuous feeding of 

both glucose and tryptone led to a 25-fold increase in production for a Flavobacterium 

hydrolase in S. lividans, with an enhanced specific activity. Complex media increase 

protein production (Pozidis et al. 2001) and are usually preferred by industry for 

their low cost.
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Various studies have dealt with the importance of the amino acid composition 

of the medium for different protein production platforms as Saccharomyces 

cerevisiae (Görgens et al. 2005b) and Pichia stipitis (Görgens et al. 2005a). The same 

approach has been applied to Streptomyces, unraveling the importance of amino acid 

supplementation in heterologous protein production. A systematic study based on a 

statistical set up  identified aspartate, phenylalanine and methioinine as the essential 

amino acids for the production of the recombinant human interleukin-3 (rHuIL-3) 

in a glucose-based medium (Nowruzi et al. 2008). Moreover, a metabolite analysis in 

S. lividans  producing mTNFα (Kassama et al. 2010) identified seventeen metabolites 

at a higher level in the protein producing strain. Their role as energy source and in 

maintaining the membrane potential necessary for secretion was postulated.

Nevertheless, no clear connections with metabolism were demonstrated 

until recently, when the amino acid uptake in fed batch cultures for S. lividans 

producing mTNFα was described, representing the first link between biomass 

and protein production (D’Huys et al. 2011). The analysis of the wild type strain 

in minimal medium supplemented with a complex mixture of amino acids allowed 

the identification of two distinct growth phases: the first based on glutamate and 

aspartate consumption, and the second  with glucose as the limiting substrate. Due to 

the unusual excess of nitrogen and glucose during fermentation, a lot of by-products 

as pyruvate, α-ketoglutarate, succinate and alanine were detected. In addition, lactic 

acid was produced during the entire growth, probably as a result of the limitation in 

oxygen in the central part of the pellets, resulting in a microaerobic environment. On 

the other hand, the analysis of the mTNFα producing strain showed a lower growth 

rate, formation of bigger clumps and a shift in metabolism. This was represented by 

an increase in lactate and a decrease in by-product formation as a consequence of the 

increase in pellet size, with a less active metabolizing biomass.

The metabolic network of S. coelicolor had been investigated at genome scale, 

allowing the identification of 121 genes essential for metabolism and the simulation 

of growth and antibiotic production in media with different carbon and nitrogen 

sources (Borodina et al. 2005). To expand the knowledge obtained in this study, a 
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genome scale metabolic model based on flux analysis in different limiting conditions 

(glucose-ammonium, amino acids, organic acids and alanine) was investigated 

(D’Huys et al. 2012). Depletion of glutamate and aspartate diminished growth rate 

and biomass formation with consequent increase in protein production. It is clear 

from these observations that a complex equilibrium exists in the metabolism of 

expression strains and that the type and availability of carbon and nitrogen sources 

need to be optimized to promote heterologous protein production at the expense of 

biomass formation or undesired metabolites. 

To conclude, a general protocol for optimal fermentation parameters has not 

been written yet. Improvement of the process needs to be done experimentally on a 

case by case basis and strongly depends on multiple factors such as host, morphology, 

hydrodynamics parameters, medium composition and metabolism.

EXPRESSION VECTOR OPTIMIZATION
An efficient expression vector is an indispensable element to be combined with an 

engineered host for a maximum level of heterologous protein production. As for 

strain optimization, the design of an expression vector has to take into consideration 

all the possible processes that can be improved to get to a better protein production, 

with transcription, translation, posttranslational modification and secretion as the 

main ones. However, issues such as the selection used to maintain the plasmid, which 

is nowadays mainly done by antibiotic resistance, should be taken into account as well. 

The progresses in design of recombinant expression systems in actinomycetes have 

been reviewed (Nakashima et al. 2005). An overview of all the important elements is 

given in the following section.

Copy number
The vectors used for genetic manipulation in Streptomyces can be classified into two 

categories: integrative and multicopy (Kieser et al. 2000). The integrative vectors 

provide higher stability through integration into the genome using specific phage 

attachment sites. Based on the pioneering work of Maggie Smith, Keith Chater and 
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colleagues, in particular the attachment site for ΦC31 was exploited. This integration 

system found its way, among others, into the Eli Lilly vector pSET152 (Bierman 

et al. 1992) which is one of the most used vectors worldwide and revolutionized 

the field. Another frequently used vector system for genomic integration is based 

on pSAM2 (Pernodet et al. 1984; Smokvina et al. 1990). Although the integration 

should result in a single copy in the genome, expression from such vectors is often 

higher than expected, which may be explained by the fact that tandem integrations 

occur, with up to 10 integrations events at the same time (Combes et al. 2002). For 

industrial applications, integrative vectors may have the disadvantage of requiring 

antibiotic resistance markers. Therefore, strategies for genomic integration based on 

homologous recombination are a valuable alternative. Recently, major advances have 

been made in markerless integration of DNA intro the genome of streptomycetes 

(Siegl and Luzhetskyy 2012).

The autonomously replicating vectors occur at high, medium or low copy, 

depending on the ori. Industry typically uses high copy number vectors, which in 

streptomycetes are based on the vector pIJ101, such as pIJ702 (Katz et al. 1983) and 

pIJ486 (Ward et al. 1986), with up to 300 copies per chromosome. E. coli-Streptomyces 

shuttle vectors are also available, and usually preferred to simplify cloning and 

amplification, although there are major stability issues. The multi-copy shuttle vector 

pWHM3 is so unstable that it is used for gene disruption strategies as it is lost at an 

extremely high frequency when antibiotic pressure is relieved (van Wezel et al. 2005). 

Recently, novel high copy shuttle vectors derived from pIJ101 have been constructed 

for protein overexpression: pL97 and pL98 were tested in protein production using 

eGFP and redD as reporters (Sun et al. 2012), while pZRJ362 produced a four fold 

increase in the enzyme activity of the endoglucanase Cel6A from Thermobifida fusca 

when S. lividans is compared to Pichia pastoris (Li et al. 2013).

Selection markers
The choice of a selection marker is usually restricted to antibiotics. However, 

Streptomyces is naturally resistant to several of them (chloramphenicol, tetracycline 
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and β-lactams) limiting considerably the choice. Moreover, the necessity of keeping 

a constant antibiotic selection pressure is undesirable for large-scale industrial 

processes due to the risk of contaminating the final product. Recently, a promising 

alternative represented by a toxin-antitoxin system has been functionally tested 

in Streptomyces (Sevillano et al. 2012). The system consists of two small proteins, 

which act as a toxin-antitoxin complex in which the first one is inactivated by the 

latter one. This mechanism is wide spread among bacteria and archaea, with up to 

33 TA systems identified in E. coli, although their specific function in nature remains 

unclear. In Streptomyces, three different systems have been identified in silico. Among 

them, the proteins encoded by SCO2235/2236 in S. coelicolor have been studied and 

re-named YefM and YoeB by analogy to the YefM/YoeB system in E. coli (Sevillano 

et al. 2012). An S. lividans ΔyefM/yoeB null mutant strain carrying a copy of the 

toxin integrated in the genome and a copy of the antitoxin on a mulitcopy plasmid 

was tested for stable protein expression (Sevillano et al. 2013). High level of both 

xylanase and amylase were obtained. The expression system proved to be stable and 

to keep its expression level even after storage of the mycelium/spores, demonstrating 

the potential of this system as an alternative to antibiotic selection.

Promoters
A strong promoter resulting in a high level of transcript is an essential element in the 

design of an expression vector for optimal protein production. Very few promoters 

are known to be strong in Streptomyces and those that have been studied can be 

divided into constitutive and inducible (Table 1). 

The inducible promoters have the advantage that production can be started 

when sufficient biomass is available, although the addition of an inducer is undesirable 

for industrial applications. Constitutive promoters such as the frequently used PermE and 

Pvsi do not show the same strength under all conditions and in all hosts and therefore 

are far from optimal. The addition of thiostrepton when using the inducible promoter 

PtipA gives collateral expression of undesired proteins in Streptomyces genome that can 

saturate the expression machinery and thus have a negative effect on the production 
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of the desired protein/enzyme. Further investigation and characterization of new 

promoters is therefore a must for the design of optimal expression vectors.

To characterize strong promoters, extensive studies were carried out in 

the past in bacteria as E. coli, leading to the identification of essential elements for 

binding of the RNA polymerase, namely the -35 box, the -10 box for recognition 

by σ factors, the region upstream (between roughly -60/-35) for binding of the α 

subunit of the RNAP and other regions that determine the local structure of the 

DNA (reviewed in (Hook-Barnard & Hinton, 2007). However, the specific elements 

involved in promoter strength in Streptomyces are still largely unknown. More than 

a hundred sequences directly upstream from mapped transcriptional start sites have 

been compared (Strohl 1992; Bourn and Babb 1995), showing a wide variety of 

features with only a small group of E. coli-like promoters, while the majority did not 

resemble any known prokaryotic promoters. In Streptomyces, the work is complicated 

Gene Product Host Reference

vsi subtilisin inhibitor Streptomyces venezuelae (Lammertyn et al. 1997)

ermE resistance gene to eryth-
romycin 

Saccharopolyspora erythraea (Bibb et al. 1985)

ssmp metalloendopeptidase 
promoter 

Streptomyces cinnamoneus (Hatanaka et al. 2008)

pld phospholipase D Streptoverticillium cinnamoneum (Noda et al. 2010)

actI actinorhodin biosyn-
thetic gene cluster 

Streptomyces coelicolor (Rowe et al. 1998)

dagA agarase gene Streptomyces coelicolor (Parro and Mellado 1993)

nitA nitrilase inducible by 
ε-caprolactam 

Rhodococcus rhodochrous (Herai et al. 2004)

amdS inducible acetamidase 
promoter 

Mycobacterium smegmatis (Triccas et al. 1998)

tipA thiostrepton induced 
promoter 

Streptomyces lividans (Murakami et al. 1989)

xysA xylanase A, xylose 
inducible

Streptomyces halstedii JM8 (Adham et al. 2001)

tc tetracycline inducible 
promoter

Streptomyces coelicolor (Rodríguez-García et al. 2005)

Table 1 List of promoters in Streptomyces expression vectors
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by the existence of a large number of σ factors, such as the 66 σ factors encoded by 

the S. coelicolor genome, most of which are so-called ECF σ factors for extracellular 

functions (Bentley et al. 2002). This large number sharply contrasts with the seven σ 

factors found in E. coli (Pérez-Rueda and Collado-Vides 2000). Some of the σ factors 

are developmentally controlled, like bldN and sigF (Kelemen et al. 1996; Bibb et al. 

2000) or activated in response to different stimuli (rewied in Gruber & Gross 2003). 

Despite the interest in Streptomyces as an industrial host, few studies have 

been published in the last years on the identification of new strong promoters. An 

interesting study was provided by the Virolle group (Seghezzi et al. 2011), who 

created a synthetic library of randomized promoters based on the promoter for the 

household σ factor RpoD (σ70 or σHrdB). The results showed an over-representation 

of the guanine nucleotide in strong promoters in the -10 region and the -35 region, 

in addition to a motif related to an “extended -10 region”, an imperfect repetition 

particularly important in E. coli for recognition and positioning of the RNA 

polymerase. The abundance of guanine residues can be explained by the high GC-

content in Streptomyces strains, which might have led to an evolution driven towards 

highly G-rich strong promoters. The synthetically derived consensus sequence shows 

remarkable sequence similarity to PermE although none of the identified clones showed 

higher strength. 

Recently, a combination of rational and random mutagenesis of the promoter 

of kasO, which encodes the pathway-specific transcriptional activator gene for the 

cryptic type-I polyketide Cpk, led to the design of a stronger version of the promoter 

when compared to the original PkasO or PermE (Wang et al. 2013). The promoter is 

recognized by the σHrdB and repressed by the concerted action of two regulatory 

proteins, ScbR and ScbR2. The ScbR/ScbR2 binding site was deleted by rationally 

truncating the sequence up to an optimal length, while the second repressor 

binding site for ScbR2 was situated in an essential part of the sequence and was 

therefore inactivated by random mutagenesis. The recombinant promoter showed 

a higher strength both in E. coli and Streptomyces with luciferase and the antibiotic 

actinorhodin used as reporters, respectively. Such promoter optimization strategies 
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could be followed up for other vector-promoter systems. Moreover, this study also 

underlined the importance of the 20 nucleotides upstream of the -35 region (where 

the α subunit of the RNAP binds) and of the 18 nucleotide spacer between the -35 

and -10 region, as substantial modifications in nucleotide composition or length 

strongly affected promoter activity.

Strong transcriptional elements from species other than streptomycetes can 

be tested as well for their efficiency. The mostly used expression system in E. coli is the 

T7 system based on the T7 bacteriophage polymerase and promoter. An S. lividans 

expression strain based on the same system has been created, combining the ability 

of transcribing large fragments of DNA with a high copy number pIJ101-derivative 

vector (Lussier et al. 2010). Nevertheless, no applications are reported in literature for 

protein expression at present.

In addition to a high level of transcription, the control of gene expression 

is sometimes also desirable for protein expression, for instance when the product 

has a negative effect on growth or is even lethal. An example of such control 

elements are riboswitches. Riboswitches are sequences present at the 5’ end of a 

transcript and made of a ligand-binding/sensor domain and an expression platform. 

Upon binding of specific ligands, they adopt an altered conformation resulting in 

activation or repression of transcription or translation (Serganov and Nudler 2013). 

In Streptomyces, recent work has shown the applicability of the synthetic design of 

such sequences. The efficiency of at least two of the six tested theophylline-dependent 

riboswitches derived from B. subtilis was demonstrated in combination with three 

different promoters (Pgal2, PermE and SF14). Gene expression could be activated in a 

dose-dependent manner up to 260 fold, confirming the technique as a promising tool 

to regulate protein expression in Streptomyces (Rudolph et al. 2013).

In this thesis, a rational approach towards the identification of strong, 

constitutive promoters was tested based on RNA-Seq and microarray data (Chapter 

5). With this approach, three sequences were identified with strength higher or 

comparable to PermE when tested for the production of a small laccase in S. lividans. 

These sequences were the promoters of SCO1947 for glyceraldehyde-3-phosphate 
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dehydrogenase (GADPH), SCO3484 encoding a sugar binding protein and for 

SCO4253 for an uncharacterized protein. 

Ribosome binding sites and codon usage
The next step in the design of an expression vector is to optimize the translation 

of the transcript. Two of the main factors to be taken into account are: an efficient 

Ribosome Binding Site (RBS) and the codon usage. The RBS sequence is involved 

in binding and correct positioning of the ribosome. Typically, the RBS is located 

between 5-12 nucleotides upstream of the start codon, and has the consensus 

sequence AGGAGG, complementary to the sequence 5’-CCUCCU-3’ at the 3’ end of 

the 16S rRNA. In Streptomyces, analysis of the interaction with the ribosome showed 

that a high complementarity is not required (Strohl 1992). In addition to this, some 

genes do not show any obvious RBS in the 20 nucleotides sequence upstream of their 

translational start, implying that the binding to this region is not a prerequisite for 

ribosome translation. A well studied example is the ermE gene, encoding the 23S 

rRNA methylase of Saccharopolyspora erythrae, where the transcript initiates at the 

translational start codon without any sequence upstream for ribosome recognition 

(Bibb et al. 1994). In other cases, two putative translational starts are preceded by a 

RBS-like sequence (as for mannase, cellulase A, chitosanase, subtilisin inhibitor and 

esterase genes) (Morosoli et al. 2006). Evidence suggests that both RBS’s might be 

used as a way to increase the efficiency of protein translation, with two ribosomes 

binding the same mRNA molecule.

In Streptomyces the most often used RBS is obtained from the tuf1 gene 

from S. ramocissimus, which encodes the highly expressed elongation factor EF-Tu1. 

This ribosome binding site and linker have been cloned downstream of the ermE 

promoter (Motamedi et al. 1995) and use of his ribosome binding site allows very 

efficient recruitment of the ribosome (van Wezel et al. 2000a.

Codon usage has a strong influence on the efficiency of translation. 

Heterologous mRNA species have a high probability of containing rare codons 

when moved to another host (Gustafsson et al. 2004). This is particularly relevant in 
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Streptomyces, which has a high G+C content, and is reflected by a strong bias towards 

G or C in the second and third (wobble) codon positions. As a result expression of 

genes from lower G+C organisms such as E. coli and B. subtilis can be less efficient. 

Moreover, the translation of some rare codons such as the leucine codon TTA are 

strictly regulated by development (Takano et al. 2003). Codon modification has been 

reported to increase expression of heterologous proteins in E. coli between 5- and 

15-fold (Gustafsson et al. 2004). Several reports on codon optimization for reporter 

enzyme systems such as lux (Craney et al. 2007), eGFP (Sun et al. 1999), creA 

(Fedoryshyn et al. 2008) or signal sequences (Zhu et al. 2011) have been published 

but none of them was aimed at high level protein production.

Signal peptides
The transport across the membrane is another target for modification to obtain 

maximal yield of heterologous proteins. In addition to the strategies discussed before 

in this chapter, the choice of an appropriate signal peptide has as well a strong influence 

on directing protein secretion. Sec signal peptides such as the one derived from the 

subtilisin inhibitor of S. venezuelae (vsi) and the cellulase A (celA) from S. lividans are 

most frequently used. The vsi signal peptide was successfully used for the production 

of high levels of TNF-α (Lammertyn et al. 1997) while celA signal peptide increased 

the production of xylanase A (XlnA) (Pagé et al. 1996). Including a Tat pathway signal 

sequence in the expression construct is a prerequisite when expressing proteins that 

require folding and/or cofactor incorporation prior to secretion, as in the case of GFP 

(Thomas et al. 2001; Santini et al. 2001; Vrancken et al. 2007). As mentioned above, 

Streptomyces have the highest number of predicted Tat substrates. However, results 

of protein secretion through this route have not always been promising. The mouse 

tumor factor α (TNFα) and the human interleukin-10 (hIL10) were fused to the Tat 

signal peptide of xlnC of S. lividans and of the tyrosinase chaperone melC1 from S. 

antibioticus, but the levels of production were not competitive with the secretion via 

Sec by the vsi signal peptide (Schaerlaekens et al., 2004). Recently, a novel expression 
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vector has been tested for the production of human interleukin-6 (IL-6) in S. lividans 

(Zhu et al. 2011). The signal pepetides of MelC1 and of CagA were tested and only 

the latter turned out to support secretion of IL-6. Attempts to obtain better Tat 

secretion of XlnC by using a number of  other Tat signal sequences identified by 

various prediction programmes were not successful. Moreover, a mutation analysis 

of the signal peptide of XlnC did not result in more efficient secretion, suggesting that 

at least this signal sequence is already optimal (Li et al. 2006). Positive results using 

the Tat pathway were obtained recently, when 25 degrading enzymes of Thermobifida 

fusca and S. lividans were analyzed for secretion in S. lividans (Miyazaki et al. 2013). 

Using a cytoplasmic enzyme, β-glucosidase from T. fusca, as reporter, 17 promising 

signal peptides for both the Sec and Tat pathway, were tested if they could drive 

secretion of the reporter. The Sec signal of phospholipase D was used as reference 

(Noda et al. 2010). Three Tat-dependent signals, including the XlnC signal peptide, 

showed higher enzyme secretion.

Gauthier et al. (2005) showed that secretion of xylanase B1, through the 

Tat and Sec pathway in one transformant resulted in the sum of the enzyme levels 

obtained from transformants using only one of the secretion systems. In this way, 

the maximum secretion capacity of the host is utilized and therefore a promising 

approach if applicable to other enzymes. 
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CONCLUSION

Generating a general Streptomyces host capable of efficient high level enzyme 

production has come a long way but is far from complete, in particular when compared 

to the extremely efficient vector-host combinations for production platforms such as 

E. coli and B. subtilis. 

From a morphological point of view, a balance needs to be reached between 

reducing pellet size and preventing high viscosity due to fragmentation or mycelial 

mat production. The first steps in this process have been established and the focus can 

now be set on creating strains that have the ultimate submerged culture morphology. 

Testing and selecting different fermentation parameters will be strictly dependent on 

the chosen strain and desired product. Moreover, the tool box for the design of strong 

expression vectors has been expanded in the last decade and now contains sufficient 

parts to assemble expression vectors to meet the needs of a given production system. 

Since the publication of the complete genome of S. coelicolor in 2002 (Bentley 

et al. 2002), a fast improvement in last generation sequencing has occurred, allowing 

a large number of streptomycetes genome sequences being available (http://www.

genomesonline. org). This increasing volume of data has rapidly led to post-genomic 

and system biology studies in this organism. Integrating the results coming from 

these different techniques is a potent tool, on the one hand to identify novel actors 

in morphogenesis and, on the other hand, to study metabolism and growth during 

fermentation and protein production. Overall, this combinative approach might lead 

in the future to a substantial strain improvement for industrial purposes.

A comment on the best Streptomyces production host that can be assembled 

at this moment can be found in the General Discussion section of this Thesis.
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ABSTRACT

Extracellular polysaccharides are produced by many microorganisms and play 

pivotal roles in various aspects of their biology. The cellulose synthase-like protein 

(CslA) synthesizes a β-(1,4)-glycan at hyphal tips in the filamentous bacterium 

Streptomyces coelicolor. Here we show that the downstream located glxA, which 

encodes a radical copper oxidase, acts in conjunction with cslA in the production 

of a β-(1,4) glycan in Streptomyces lividans, and is required for its apical localization. 

The extracellular glycan becomes microscopically visible as fibrillar structures upon 

binding to a chimeric eGFP-chitin-binding domain fusion protein, suggesting that it 

consists at least in part of chitin. Perhaps as a consequence of the failure to produce 

the glycan polysaccharide, colonies of S. lividans cslA and glxA mutants could not 

grow invasively into the agar and were developmentally arrested. In liquid-grown 

cultures, cslA and glxA mutants did not form pellets but rather produced open 

mycelial networks. Taken together, our data demonstrate the involvement of cslA 

and glxA in the control of mycelial architecture in liquid- and solid-grown cultures. 
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INTRODUCTION

Streptomycetes are filamentous soil-dwelling bacteria, which establish branched 

networks of vegetative hyphae. When nutrients become limiting, a developmental 

program is initiated, producing on solid media erect aerial hyphae that eventually 

differentiate to generate chains of spores, which are then dispersed. Unlike unicellular 

bacteria, which grow by lateral wall extension, growth of Streptomyces hyphae occurs 

at the hyphal tips, and exponential growth is achieved by combination of tip growth 

and branching. A pivotal role in the control of apical growth is exerted by the polar-

localized protein DivIVA, which orchestrates cell wall synthesis (Flärdh et al. 2012). 

DivIVA is part of a larger so-called tip-organizing center (TIPOC) and in recent years, 

several proteins and complexes have been identified that are (transiently) localized 

at the hyphal tip. These include the cytoskeletal protein Scy (Holmes et al. 2013), the 

Tat secretion system (Willemse et al. 2012) and the cell wall remodeling protein SsgA 

(Noens et al. 2007). Furthermore, new chromosomes are also replicated near the tip 

in so-called replisomes (Wolánski et al. 2011). This complex TIPOC likely ensures 

that all apical processes, such as DNA replication and cell wall synthesis, are carried 

out in coordinated fashion, while cell damage is prevented (Ditkowski et al. 2013; 

Fuchino et al. 2013). 

The TIPOC protein CslA, which stands for cellulose synthase-like protein 

(Bentley et al. 2002), plays multiple roles in growth and development; mutants 

lacking the cslA gene fail to form aerial hyphae and are affected in attachment to solid 

surfaces (Xu et al. 2008; de Jong et al. 2009). Furthermore, CslA plays an important 

role in the morphology of mycelial clumps in liquid cultures (Xu et al. 2008; van 

Veluw et al. 2012). CslA is classified as a family 2 glycosyltransferase (GT2, http://

www.cazy.org/). This family does include cellulose synthases but also chitin synthases 

and other polysaccharide synthases. The polymers produced by these synthases have 

many different functions, often directed at providing structural integrity. 

Cellulose is the most abundant natural polymer on earth and present 

in plants, where it provides strength to the cell wall (Bringmann et al. 2012), and 
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in bacteria (Römling 2002), where it contributes to the formation of biofilms and 

plays a role during infection (Beloin et al. 2008). For instance, Rhizobiaceae produce 

cellulose to adhere to plants (Smit et al. 1992), while Salmonella spp. and Escherichia 

coli require cellulose for virulence (Zogaj et al. 2003; White et al. 2003; Saldaña et al. 

2009). Like cellulose, chitin typically also has a structural role (Martinez et al. 2009). 

In fungi chitin is a major component of the cell wall, where it plays crucial roles in tip 

growth, cytokinesis, spore formation and also pathogenicity (Latgé 2007; Lenardon 

et al. 2010). It is also produced in pathogenic amoebae, in parasitic nematodes and 

is abundantly present in the exoskeletons of invertebrates (Merzendorfer 2011). In 

Streptomyces, chitin is found among others in the spore coat (Smucker and Pfister 

1978; Gomes et al. 2008).

The polysaccharide synthesized by CslA has not yet been characterized. 

Typically, genes involved in bacterial cellulose synthesis are organized in an operon, 

containing the bcsABCD genes (Römling 2002). However, Streptomyces lacks a c-di-

GMP binding protein (BcsB), which is essential for the synthesis of cellulose according 

to the currently accepted model (Ross et al. 1991). Interestingly, cslA is translationally 

coupled to glxA, which encodes a radical copper oxidase that requires for its activity 

the Cu cofactor and the formation of a characteristic Tyr-Cys covalent bond. GlxA 

has weak homology to galactose oxidases and does not utilize galactose efficiently as 

substrate (Whittaker and Whittaker 2006). Besides in streptomycetes, this particular 

gene organization is only found in the myxobacterium Stigmatella aurantiaca, where 

deletion of either fbfA or fbfB hampers fruiting body formation following starvation 

(Silakowski et al. 1996). While cslA and glxA mutants of the model streptomycete 

Streptomyces coelicolor are blocked in development on rich media (Liman et al. 2013), 

the functional correlation of these two genes has not yet been clarified.

In this work, we show that GlxA cooperates with the synthase CslA in 

forming a β-(1,4)-glycan, presumably chitin-like, that is deposited at the hyphal 

surface fulfilling multiple roles in growth and development.
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RESULTS

Conserved gene synteny around cslA-glxA in streptomycetes
The overlapping cslA and glxA genes of S. coelicolor encode the cellulose synthase-

like protein CslA (SCO2836) and the radical copper oxidase GlxA (SCO2837), 

respectively. In S. lividans, the equivalent gene cluster consists of SLI_3187-3189 

(Cruz-Morales et al. 2013) (Fig. 1). 

Transcriptome analysis performed in our laboratory (Chapter 4) shows that cslA and 

glxA have similar expression levels in both S. coelicolor and in S. lividans, supporting 

the idea that cslA-glxA form an operon. cslA, glxA and SCO2838-SLI3190, encoding 

a polysaccharide hydrolase, are likely functionally linked and present in nearly all 

streptomycetes. Interestingly, some of them, including S. griseus and S. albus, have a 

second copy of the cslA-glxA operon elsewhere on the genome, with 54 and 66% end-

to-end amino acid identity between the paralogous of CslA and GlxA proteins in S. 

griseus, respectively (not shown). 

In terms of broader gene synteny, it is interesting to point at the following 

genes that are found in close proximity to glxA-cslA in nearly all streptomycetes: 

chb (SCO2833/SLI_3182), for a chitin binding protein that is part of the chitinolytic 

system of S. coelicolor (Schrempf 2001; Colson et al. 2007), SCO2834/SLI_3183 for 

a flotillin domain protein implicated in localizing multiprotein complexes to the 

membrane, SCO2835/SLI_3184 for a peptidoglycan binding protein, SCO2841/

SLI_3192 for sortase E and SCO2843/SLI_3194 for a sugar hydrolase related to 

N-acetylglucosamine deacetylase (Table 1). Thus, at least two genes near cslA-glxA 

correlate to chitin or its subunit N-acetylglucosamine.
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Figure 1. Gene organization around the cslA-glxA operon. 
The gene context of the chromosomal locus around cslA and glxA i. The filled arrows represent genes that are 
conserved in nearly all streptomycetes. The open arrows represent genes that are not conserved, while the 
grey arrowheads represent tRNA loci. 

S. lividans 
gene #

S. coelicol-
or gene #

Annotation

SLI_3182 SCO2833 Chb, Copper-dependent lytic polysaccharide monooxygenase (LPMO); 
chitin binding domain; AA10 family1 

SLI_3183 SCO2834 Penicillin acylase/amidohydrolase, flotillin
SLI_3184 SCO2835 Protein with C-terminal putative peptidoglycan binding domain
SLI_3185 doubtful ORF
SLI_3186 doubtful ORF
SLI_3187 SCO2836 CslA, Glycosyl Transferase Family 21
SLI_3188 SCO2837 GlxA, Radical copper oxidase
SLI_3189 SCO2838 Glycosyl Hydrolase Family 6
SLI_3190 SCO2839 Lipoprotein
SLI_3191 SCO2840 LysR-family transcriptional regulator
SLI_3192 SCO2841 Peptidase C60 Family, Sortase E
SLI_3193 SCO2842 Putative substrate of SCO28412
SLI_3194 SCO2843 Sugar (GlcNAc-6P) phosphatases of the HAD superfamily 

Table 1. Annotation and gene numbers in S. lividans and S. coelicolor. .

The cslA and glxA mutants are stalled in development and are hampered in 
agar invasion
To study the role of cslA and glxA in growth and morphogenesis of S. lividans, deletion 

mutants were constructed (see Material and Methods) and grown on different media 

(Fig. 2). Unlike S. coelicolor A3(2), S. lividans 1326 is delayed in development when 

grown on R5 agar plates, but the development can be stimulated by adding 2-10 µM 

Cu(II) to the medium (Fig. 2A and (Keijser et al. 2000). Null mutants of cslA or glxA 

in S. lividans failed to form aerial hyphae on R5 agar plates with 10 µM copper. In 
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contrast, development of the mutants was comparable to that of the parental strain 

when grown on MS agar plates. Development  of the mutant was restored when a 

copy of the respective genes, expressed from the cslA promoter, was re-introduced 

(Fig 2A). This shows that the mutant phenotypes were specifically caused by absence 

of cslA or glxA.

Notably, the mycelia of cslA and glxA mutants had lost the ability to adhere 

to and grow into the agar (Fig. 2B). As a result, colonies of the mutant strains could 

easily be removed from the agar surface. Introduction of a copy of the respective 

wild-type genes restored the ability of colonies of the cslA mutant and (although to a 

somewhat lesser extent) of the glxA mutant to grow into the agar (Fig. 2B). 

CslA and GlxA control pellet architecture in liquid-grown cultures
The S. coelicolor cslA mutant was previously shown to form significantly smaller 

pellets than the wild-type strain (Xu et al. 2008; van Veluw et al. 2012). To see if the 

same was true for a mutant lacking the glxA gene, the morphology of the cslA and 

glxA null mutants was compared to that of the parental strain S. lividans 1326 in 

YEME and TSBS liquid-grown cultures (Fig. 2C). This revealed that like cslA mutants, 

glxA mutants also formed less dense pellets in YEME. The most striking effect was 

observed in TSBS medium, wherein the mutants formed open mycelial networks 

(mycelial mats) rather than the clumps typical of the parental strain. These results 

indicate a role for CslA and GlxA in pellet architecture. In addition, the similarity 

between the phenotypes of the cslA and glxA mutants in liquid-grown cultures 

further supports functional linkage between the two genes.
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Figure 2. Morphology, copper dependency and hyphal attachment of cslA and glxA mutants in S. lividans. 
(A) The wild type, cslA, glxA mutants and the mutants complemented with a plasmid expressing the 
corresponding gene (pGMMP3 and 4) were grown for 4 days on R5, R5 supplemented with 10µM Cu(II) and 
MS. Drops of 10 µL containing 1000 spores were spotted on the plates followed by incubation at 30 0C.  Both 
the mutants and the complemented strains are bald on R5, while the wild type strain is entering aerial growth 
(top row). Supplementing the R5 medium with 10µM Cu(II) does stimulate development in the wild type and 
complemented strains, but not in the mutants (middle row). Note that on both R5 and R5 supplemented with 
Cu(II) the wild type grows in a more compact manner than the mutants and the complemented mutants. All 
the strains do produce spores on MS medium (bottom row).  
(B) The ability of the mycelium to invade the agar resulting in attachment of the mycelium to the agar is 
demonstrated on Nutrient Agar. The top row shows the growth of the spotted spores before the attempt to 
lift the mycelium with a flat toothpick. The bottom row shows the result after the lifting attempt.  The wild 
type is growing into the agar, while the two mutants do not and their mycelium can be lifted/removed as an 
intact sheet. Growth inside the agar is fully restored in the complemented cslA mutant but only partially in 
the complemented glxA mutant. The same effect was observed on R5 media (data not shown).
(C) The wild type and the cslA and glxA mutants show very different mycelium morphology in liquid cul-
tures after 24 hrs of growth. The two mutants are growing in smaller and more open clumps in YEME (top) 
and they show a completely open phenotype in TSBS (bottom). The wild type on the other hand shows the 
familiar dense mycelium structure. Complemented mutants have wild type pellet size and morphology (data 
not shown).  Bar size: 150 µm
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GlxA and CslA colocalize in two distinct positions in hyphal tips
To localize CslA and GlxA, CslA-eGFP and GlxA-eGFP fusion proteins were studied 

by fluorescence microscopy, using a low autofluorescent S. lividans derivative, 1326-

FM, as a host. This strain was isolated by a similar selection procedure as for the 

low autofluorescent derivative of S.  coelicolor (Willemse and van Wezel 2009). To 

create the chimeric genes, either gene was cloned without its stop codon upstream 

of the gene for eGFP in low-copy number shuttle vector pGFP-strep, behind the 

cslA promoter for cslA-egfp or the ftsZ promoter for glxA-egfp (see Materials and 

methods). 

CslA is a predicted membrane protein, with six membrane-spanning 

domains and a cytoplasmic catalytic domain (http://www.cbs.dtu.dk/services/

TMHMM/). Consistent with previous results, CslA-eGFP localized in bright foci 

at the hyphal tips of S. lividans 1326-FM (Fig. 3A). In addition to the bright foci 

at the tips, many additional but less intense foci were always observed throughout 

the hyphae. Furthermore, its localization was not dependent on GlxA, as a similar 

localization pattern was observed in a glxA mutant derivative of 1326-FM. However, 

around six times more foci of the CslA-eGFP fusion were observed in the glxA null 

mutant (Fig. 3B). In agreement, semi-quantitative RT-PCR analysis confirmed that 

the number of cslA transcripts was some 7.5-fold enhanced when glxA was deleted 

(Fig. 3C).

Figure 3. Hyphal tip localization of CslA-eGFP. 
Localization of CslAeGFP in S. lividans 1326-FM (A) 
and in glxA-FM (B) was studied with fluorescence 
microscopy after the strains were grown for 24 hrs on 
MS. CslA localizes at the tips of the hyphae (arrows) 
and does not require GlxA. (C) RT-PCR analysis of 
the amount of cslA transcripts in the wild type and 
ΔglxA strain grown for 24 hrs on MS. The rpsL gene 
encoding ribosomal protein S9 is used as an internal 
control. In the glxA mutant, 7.5 times more mRNA of 
cslA is detected. This is consistent with the amount of 
fluorescence observed with the CslA-eGFP construct 
in the glxA mutant which is approximately six-fold 
up. Bar, 5 μm.
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GlxA contains a predicted N-terminal transmembrane helix that likely acts 

as a membrane anchor. Mycelium fractionation followed by Western blot analysis 

with anti-GlxA antibodies showed that about half of GlxA resides in the insoluble 

fraction, whereas the other half is soluble (Fig. 4A). It was previously suggested that 

a putative C-terminal sortase sequence could anchor GlxA to the peptidoglycan layer 

(Whittaker and Whittaker 2006), and a gene for sortase E is in close proximity in all 

streptomycetes. To establish the role for the putative sortase signal in anchoring of 

GlxA, a recombinant GlxA protein lacking the C-terminal 35 residues, including the 

putative sortase sequence, was expressed, but the proportion of the truncated protein 

found in the insoluble fraction was similar as for wild-type GlxA (Fig. 4A).

Like CslA-eGFP, GlxA-eGFP localized as bright foci at apical sites, and also 

for GlxA-eGFP many less intense foci were observed further away from the tips. 

Apical sites also stained intensely with fluorescent wheat germ agglutinin (f-WGA), 

which binds to N-acetylglucosamine subunits from among others precursors of 

peptidoglycan or chitin (Wright et al. 1991; see arrow in Fig. 4B). Further away from 

hyphal tips, at subapical sites that are by definition the older parts of the hyphae, 

GlxA-eGFP foci and f-WGA staining frequently did not overlap (arrowhead in Fig. 

4B). To analyze the relative spatial localization of CslA and GlxA foci, their distances 

from the hyphal tip were assessed, relative to the f-WGA staining (Fig. 4C). Analyzing 

at least 40 tip located foci revealed that both CslA-eGFP and GlxA-eGFP localize in 

two distinct positions, one precisely in the hyphal tip, and a second at some distance 

(around 0.5 μm) behind the tip.
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Figure 4. Localization of GlxA in S. lividans.
(A) Western blot analysis with anti-GlxA antibodies on the insoluble and soluble fraction of mycelial 
extracts. Strains were S. lividans 1326, its cslA and glxA mutants and the glxA mutant harboring pGMMP9. 
The latter plasmid contains the gene for a truncated GlxA (designated GlxA*) lacking the C-terminal 35 
residues. The strains were grown for 24 hrs on solid MS. GlxA (around 71 kDa) is present in the insoluble 
and soluble fractions of the wild type strain and in the glxA mutant harboring pGMMP9, enhanced in the 
cslA mutant, but absent in the glxA mutant. Sample loading was adjusted to the wet weight of the mycelium 
and the cytosolic fraction is two-fold diluted as compared to the membrane fraction.
(B) Localization of GlxA-eGFP in S. lividans 1326-FM was studied with fluorescence microscopy, and in 
conjunction with staining with the lectin fluo-WGA (f-WGA, middle column). Right column shows the 
merged images. GlxA localizes at the tips of the hyphae (arrows). f-WGA staining is also observed at the tips, 
as well as further away from apical sites. Hyphal sections with GlxA-eGFP foci further away from the apical 
site (arrowheads) are not always stained with f-WGA. Bar size: 5 µm
(C) Fluorescence micrographs and derived cartoon of the localization of CslA-eGFP (black circles) and 
GlxA-eGFP (grey circles) in S. lividans.  Both proteins show localization at the tip (60 ± 5% of the foci) or 
localization away from the tip (40 ± 5% of the foci). For each of the fusion proteins 40 foci were analyzed.
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CslA and GlxA ensure the production of a polysaccharide at hyphal tips
It was shown previously that CslA is required for the accumulation of a β-(1,4) 

polysaccharide at apical sites during vegetative growth, identified by the fluorescent 

dye calcofluor white (CFW) (Xu et al. 2008; de Jong et al. 2009). This dye binds to 

a range of β-(1,4)-linked polysaccharides including cellulose and chitin (Herth and 

Schnepf 1980). Staining of wild-type mycelium of S.  lividans revealed fluorescence 

of CFW in approximately 60% of the hyphal tips. Notably, stained hyphal tips were 

invariably swollen (see arrows in Fig. 5). Accumulation of CFW, as well as tip swelling, 

was completely absent in the S. lividans cslA and glxA null mutants grown on solid 

medium (Fig 5). However, while accumulation of CFW at hyphal tips was absent 

in the glxA mutant, bright fluorescence was frequently detected at subapical sites 

(arrowheads). Similar results were obtained in liquid-grown cultures (not shown). 

These results show that GlxA is involved in the biosynthesis and/or modification of 

the same β-(1,4) polysaccharide produced by CslA at apical sites.
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Figure 5. Visualization of β-(1,4) glycan production by calcofluor white (CFW) staining. 
The wild type strain (top), and its glxA (middle) and cslA (bottom) mutants were grown for 24 hrs on MS agar plates 
and subsequently stained with CFW. Left panel, fluorescence micrograph; right panel, bright field image. CWF revealed 
accumulation of polysaccharides at the apical sites of the wild-type strain. In glxA null mutants, CFW failed to stain the 
tips, and instead accumulated in older sections of the hyphae (arrowheads). No CFW staining (other than occasional 
background fluorescence) was observed in the cslA mutant. Note the widening of apical sites of wild-type hyphae 
(arrows) due to the binding of CFW, indicative of CFW-induced lysis, which was not seen in either mutant incubated 
in precisely the same manner. The same results were observed on R5 media (data not shown). Bar size: 5 µm.
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The CslA-dependent polymer becomes visible upon binding to a chitin-
binding protein
The presence of genes related to chitin binding and N-acetylglucosamine metabolism 

around the cslA-glxA operon were reason to analyze whether CslA together with GlxA 

in fact synthesizes a polymer consisting perhaps in part of N-acetylglucosamine. 

Therefore, the sequence for a His6-tagged version of a chitin-binding domain (CBD) 

derived from chitinase A1 from Bacillus circulans WL-12 (Watanabe et al. 1994) was 

fused to the C-terminal end of the gene for eGFP, expressed in E. coli and purified. To 

assess its affinity for chitin, we incubated the eGFP-CBD fusion protein with chitin 

beads (Fig. 6A). The strong fluorescence of the chitin beads after binding of the fusion 

protein confirms its affinity for chitin polymers. Strikingly, fibril-like structures were 

identified when the purified eGFP-CBD fusion protein was added to mycelium of 

the wild-type strain (Fig 6B). After binding by eGFP-CBD, the long fibrils were also 

observed by light microscopy, and were often detected in close proximity to the 

hyphae (Fig. 6F). This strongly suggests that the chitin binding protein resulted in 

bundling of the fibrils. Notably, these bundled fibrils could also be stained with CFW, 

whose fluorescence co-localized with that of the eGFP-CBD fusion (Fig 6E-F). Similar 

fibrils were also occasionally observed in glxA mutants, but were invariably absent 

in the cslA mutant (data not shown). Taken together, these experiments identify an 

extracellular glycan whose production is dependent on CslA and to a lesser extent on 

GlxA, and which under these conditions is loosely associated to the mycelium. 
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Figure 6. Visualization of extracellular fibrils using a chitin-binding domain fused to eGFP.
Chitin beads become fluorescent upon binding to the eGFP-CBD fusion protein (A). Long, extracellular structures 
were visualized in S. lividans 1326 following incubation of mycelia grown for 16 hrs on MS agar with eGFP-CBD (B). 
Control experiments showed that no background fluorescence was visible for the protein alone (C) or for the MS agar 
plates alone (D). The long fibrils bound by eGFP-CBD are stained by CFW and are also visible with light microscopy 
(E). These fluorescent fibrils were observed in close proximity to the mycelium of the wild type strain (F). Arrows: 
fibrils. Arrowheads: hyphae, as assessed by fluorescence microscopy. Bar size: 5 µm.
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DISCUSSION
Streptomycetes are mycelial microorganisms that resemble filamentous fungi, with 

apical growth of the hyphae and similar challenges associated with growth in the soil. 

In particular, the apical sites are constantly being remodeled during elongation of 

the hyphae and this likely requires an additional surface layer to protect the hyphal 

tips from damage. We here show that in streptomycetes, the synthase CslA and the 

modifying oxidase GlxA together produce an extracellular β-(1,4) glycan that plays a 

critical role in growth and morphological development. Considering the presence of 

a CESA domain in CslA and the fact that CslA-dependent fibrils can be stained with 

calcofluor white (CFW), it was suggested previously that this glycan might consist 

of cellulose (Xu et al. 2008). However, CFW is not specific for cellulose and also 

efficiently binds to chitin. Additionally, Streptomyces lacks the c-di-GMP binding 

protein that is conserved in cellulose-producing organisms and that is required for 

cellulose synthesis (Ross et al. 1991; Römling 2002). We provide evidence that CslA 

and GlxA cooperate to produce an extracellular polysaccharide that may consist at 

least in part of chitin. This is suggested by experiments that showed that the CslA-

dependent fibrils are efficiently bound by a chitin-binding protein, which presumably 

causes aggregation of smaller submicroscopic fibrils into larger structures that are 

easily discerned by light microscopy. Additionally, gene synteny analysis indicates 

that the cslA-glxA region (SCO2836-2837/SLI_3187-3188) is conserved in 

streptomycetes and contains chb (SCO2833/SLI_3182) for chitin binding protein 

Chb, which is part of the chitinolytic system (Schrempf 2001; Colson et al. 2007) and 

an N-acetylglucosamine metabolism-related enzyme (SCO2843/SLI_3194). Finally, 

the lectin f-WGA, which stains apical sites, binds to N-acetylglucosamine, allowing 

detection of peptidoglycan precursors as well as chitin oligosaccharides.

In filamentous fungi, polar growth requires chitin synthesis at apical sites 

(Bowman and Free 2006). The cell wall of filamentous fungi contains chitin (Lenardon 

et al. 2010) and other carbohydrate polymers (mostly β-(1,3) glucans and mannans), 

interspersed with glycoproteins (Levitz 2010), whereby a highly cross-linked, yet 

dynamic structure is formed. Chitin synthases transfer N-acetylglucosamine subunits 
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to the growing chitin chain, which is simultaneously exported to the extracellular 

environment. The chitin polymers are then bundled to form protective crystalline 

structures, or further processed to chitosan, the deacetylated form of chitin, or cross-

linked to other cell-wall polysaccharides (Davis and Bartnicki-Garcia 1984). 

We previously showed that CslA might play a role in attachment by forming 

fibrillar glycan structures that are associating with chaplins to form so-called fimbriae 

(de Jong et al. 2009). These fibrillar structures could be removed by incubation with 

fungal extracts containing cellulases, which suggested the presence of cellulose in 

the fibrils. However, analysis of the crude enzyme preparation by MALDI-ToF mass 

spectrometry revealed that, in addition to cellulase, the extract contained a number 

of other polysaccharide hydrolases that act on β-(1,4) glucans (not shown). Chemical 

characterization of the polysaccharide structure produced by CslA and GlxA in 

Streptomyces should provide the precise nature of the β-(1,4) glycan. The composition 

of the polymer produced by CslA and GlxA may in fact be different depending on 

the growth condition. Indeed, the bacterium Gluconacetobacter xylinus, which has 

served as a model organism for bacterial cellulose biosynthesis, can also incorporate 

glucosamine and/or N-acetylglucosamine in addition to glucose (the preferred 

substrate) into the growing polysaccharide chains. The net result is heteropolymers 

consisting of mixed sugar moieties, revealing the apparent promiscuous nature of the 

synthase (Lee et al. 2001).

Multiple roles in growth and development for the CslA- and GlxA-depen-
dent glycan
Calcofluor white staining revealed that CslA and GlxA are both required for the 

synthesis of the β-(1,4) glycan at apical sites. Interestingly, CFW induced widening 

of apical sites in S. lividans. This is most likely indicative of the initial stages of lysis, 

consistent with the complete absence of such widening in either mutant. Such tip 

swelling was also observed in filamentous fungi grown in the presence of CFW 

(Damveld et al. 2005). In cslA null mutants, no CFW staining was found, explained 

by absence of the synthase CslA, while in glxA null mutants CFW staining was 



56

Chapter 3

observed, but in older sections of the hyphae, rather than at apical sites. This suggests 

that the immature glycan is produced by CslA, but does not remain associated with 

apical sites. We propose that the oxidase GlxA - which is a predicted to be mycelium 

associated through a N-terminal transmembrane segment - is involved in the 

subsequent maturation and apical attachment of the glycan.

Previous and current work indicates that this extracellular polysaccharide 

plays an important role during growth and development; the polysaccharide polymers 

facilitate the emergence of aerial hyphae during osmotic stress (Xu et al. 2008; Liman 

et al. 2013; this work) and contribute to invasion of and attachment to solid substrates, 

such as soil particles or (in the laboratory) the surface of agar plates. Interestingly, 

the putative chitin-like glycan dependent on CslA and GlxA is also involved in the 

architecture of mycelial pellets in liquid-grown cultures. Pellet formation is observed 

in many streptomycetes, although their specific sizes can be quite different, dependent 

on pH and other media-related factors as well as temperature, but also cell-wall 

related genes (van Veluw et al. 2012). Indeed, polymers such as hyaluronic acid but 

perhaps also extracellular DNA (eDNA) contribute to pellet integrity in S. coelicolor 

(Kim and Kim 2004). The chitin-related glycan produced by CslA and GlxA may 

play a role in formation of these structures. The open mycelial networks formed in 

the absence of the glycan fibrils suggest a role for these fibrils in surface adhesion so 

as to connect the hyphae, thus leading to the compact pellet structure. In this respect, 

mycelial pellets may be reminiscent of biofilm-like structures, which are embedded 

in an extracellular matrix (Flemming and Wingender 2010). Notably, such matrices 

also often contain amyloid proteins (Gebbink et al. 2005). It is interesting to note that 

the conserved Streptomyces chaplin proteins, which can assemble into amyloid fibrils 

(Claessen et al. 2003) are also required for maintaining pellet integrity (M.L.C. Petrus 

and D. Claessen, unpublished). 

Besides the fundamental implications for understanding hyphal growth 

and development in Streptomyces, the open mycelial structures formed by cslA and 

glxA null mutants in liquid-grown cultures could also have implications in industrial 

processes. Pellet morphology directly relates to viscosity and mass-transfer issues 
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(efficiency of nutrient and oxygen uptake), and thus to the efficiency in protein or 

secondary metabolite production and secretion (van Wezel et al. 2006). 

GlxA and the Cu-dependence of S. lividans development
Copper-dependent morphological development is common in Streptomyces and 

is most pronounced in S. lividans. At low Cu levels, S. lividans displays a delayed 

development, while the removal of all the available metal results in vegetative growth 

arrest (Ueda et al. 1997; Keijser et al. 2000). This dependency is related to the ram 

(rapid aerial mycelium) genes, which produce the secreted RamS protein, eventually 

processed to the lantibiotic-type molecule SapB (Willey et al. 1991; Kodani et al. 2004). 

Indeed, the copper dependence of S. lividans development can be complemented by  

the introduction of an extra copy of ramSAB (Keijser et al. 2000). The reason for 

this is unknown, as none of these genes has a direct correlation with copper. Strains 

harboring an extra copy of the ram cluster have strongly enhanced transcription 

of ramS . An interesting hypothesis to test is is whether more SapB is sufficient to 

provide compensation for the too low amounts of the CslA/GlxA synthesized glycan 

in the matrix under limited copper conditions . 

Development of S. lividans requires the copper chaperone Sco1 and the 

deletion of the gene leads to vegetative arrest, which can be restored by the addition 

of 10 µM Cu (Fujimoto et al. 2012; Blundell et al. 2013). What then is the acceptor of 

the copper atom offered by Sco1, which could explain the copper dependence of S. 

lividans development? The cytochrome c oxidase (CcO), which requires Sco1 for its 

maturation, is not the effector, as a cco deletion mutant still showed full development, 

suggesting that Sco1 has yet another target (Blundell et al. 2013).  In this work, we 

show that glxA null mutants cannot develop on R5 agar plates, and do not attach nor 

invade the agar surface, which in fact is the same phenotype as observed for sco1 

mutants (Worrall & Vijgenboom, unpublished). Since the phenotype of the glxA null 

mutant cannot be rescued by copper, GlxA could be the Sco1-dependent enzyme that 

is responsible for the Cu-dependence of the development of S. lividans. However, this 

awaits further evidence.
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Localization of GlxA
In agreement with previous observations, GlxA and CslA localise to apical sites. 

We observed very bright foci for both proteins at apical sites, and in addition many 

less intense foci distributed throughout the hyphae. It is known from previous 

studies that CslA is most likely membrane-associated and localizes at apical sites 

independent from the radical copper oxidase GlxA (Liman et al. 2013) and interacts 

with the apically situated DivIVA (Xu et al. 2008). GlxA has a predicted secretion 

signal, but was found at least partially in the membrane fraction (Whittaker and 

Whittaker 2006). A putative C-terminal sortase signal might anchor the protein 

to the peptidoglycan layer (Whittaker and Whittaker 2006), but we show here that 

deletion of the C-terminal 35 residues of the protein has no effect on the localization 

of GlxA, consistent with a recent study that argues against a covalent attachment to 

the cell surface (Liman et al. 2013). How secreted GlxA remains associated with the 

hyphae remains to be established. 

CslA and GlxA were fused to mCherry C-terminally, so as to allow 

colocalization of CslA-eGFP with GlxA-mCherry and vice versa, but the fluorescence 

of the mCherry fusions was not bright enough to allow their visualization. Therefore, 

the localization of the foci at the hyphal tips was assessed as the relative distance from 

the cell wall stained by f-WGA. In 60% of the cases, CslA-eGFP and GlxA-eGFP 

localized immediately at the tip, while 40% was found close to but not immediately in 

the apex. Whether the two proteins fully colocalize awaits further analysis. 

Model
Our data are consistent with a model of polysaccharide synthesis and attachment at 

the hyphal tips of Streptomyces requiring the action of GlxA and CslA (Fig. 7).  The 

mature form of GlxA migrates at the hyphal tips, where it is secreted and associated 

with the membrane by a yet unknown mechanism. GlxA colocalizes with its functional 

partner CslA and they cooperate to produce a glycan-type polysaccharide - such as 

cellulose as previously suggested or perhaps chitin, or even a combination thereof - at 

the hyphal apices. CslA is the synthase, while GlxA presumably modifies the glycan 
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through oxidation, allowing its extracellular association with the mycelium. The 

glycan then becomes part of an extracellular matrix and likely acts in concert with 

other matrix components and proteins, such as the chaplins, rodlins and/or SapB. 

The drastic changes in morphology and absence of  hyphae capable of invading agar 

media in both the cslA and glxA mutant highlight the important and intriguing role of 

matrix components in the control of (liquid) morphology, growth and development 

of streptomycetes. 

Figure 7. Summarizing model for the production of extracellular polysaccharides by CslA and GlxA. 
GlxA localizes at the hyphal tips, where it is involved in the modification and accumulation of the polysaccharide pro-
duced by CslA. The polysaccharide may function together with other matrix components, such as the chaplins or SapB, 
in mediating its function in growth and development. Note that CslA interacts with DivIVA, which is an important 
member of the tip-organizing center (TIPOC) that controls polarized growth. 
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MATERIAL AND METHODS

Strains and media
All mutant strains were constructed in S. lividans 1326 (S. lividans 66, stock number 

1326 from the John Innes Centre; (Hopwood et al. 1985). The low fluorescent S. 

lividans strain 1326-FM was isolated as described (Willemse and van Wezel 2009). 

Escherichia coli JM109 was used for routine cloning and plasmid amplification 

(Messing et al. 1981). All strains used and constructed are presented in Table S1. 

Soy flour mannitol (MS) agar plates were used for the isolation of spores from 

Streptomyces strains. For growth and phenotypical characterizations, R5 agar plates 

with or without 10 µM Cu(II), tryptic soy broth with 10% sucrose (TSBS) and yeast 

extract-malt extract medium (YEME) were used (Kieser et al. 2000). E. coli strains 

were routinely grown on Luria-Bertani medium (LB). Nutrient agar was obtained 

from Difco.

Constructs for gene replacement and deletion mutants
All the plasmids used in this work are listed in Table S2. The strategy for creating 

knock-out mutants is based on the unstable multi-copy vector pWHM3 (Vara et 

al. 1989) as described previously (van Wezel et al. 2005). For the deletion of cslA, 

the -1260/+78 and +1828/+3263 regions relative to the start of cslA were amplified 

by PCR, using primer pairs cslA-1260F/ cslA+78RV and cslA+1828F/cslA+3263RV, 

respectively (Table S3). Fragments were cloned into pWHM3, and the engineered 

XbaI site was used for insertion of the apramycin resistance cassette aac(3)IV flanked 

by loxP sites between the flanking regions. The constructed plasmid was called 

pGMMP1. Using essentially the same strategy as for pGMMP1, we constructed 

plasmid pGMMP2 for the single gene replacement of glxA. pGMMP2 contains 

the -1498/+59 and +1917/+3428 regions relative to the start of glxA. The antibiotic 

cassettes were subsequently removed from the mutants by the Cre-lox recombinase 

using plasmid pUWLcre (Fedoryshyn et al. 2008). This resulted in the cslA and glxA 

null mutants, which had the corresponding genes replaced by a scar loxP site flanked 
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by XbaI restriction sites. The mutants were complemented by plasmids pGMMP3 

and pGMMP4, respectively carrying cslA and glxA under the control of PcslA in 

plasmid pHJL401 (Larson and Hershberger 1986). This plasmid is ideally suited for 

complementation experiments for its very high stability and low copy number (van 

Wezel et al. 2000b). All plasmids were introduced through protoplast transformation 

(Hopwood et al. 1985). The primers used for PCR amplification are listed in Table S3.

Construction of eGFP fusion proteins
To create eGFP fusions, we used a low-copy number shuttle vector pGFP-strep, which 

is based on pHJL401, and carried a version of the gene for eGFP codon-optimized 

for expression in Streptomyces, which is transcribed from the ftsZ promoter region.  

This construct showed good results in other experiments and was therefore selected 

(J. Willemse, personal communication). For localization of CslA, the cslA gene with 

500 bp of the upstream promoter region was cloned in pGFP-strep, whereby the ftsZ 

promoter was removed (pGMMP5). To localize GlxA, the glxA gene was cloned into 

pGFP-strep (pGMMP6). In this construct, expression of the fusion is under control 

of PftsZ (pGMMP6). The fusion constructs were introduced in 1326-FM and/or 

ΔglxA-FM. 

Microscopy 
Light microscopy was used to check the phenotypes of the strains in liquid culture, 

using a Carl Zeiss Standard 25 microscope and a 20x lens. The agar invasion capacity 

of strains was tested on various agar media and recorded with a Leica DFC295 

stereomicroscope. The GFP fusion proteins were observed with a fluorescence 

microscope (Axioscope A1) and analyzed with the Axio Vision software to assess 

localization using filter set 38HE (470/40 nm excitation, 495 nm dichroic, 525/50 nm 

emission). The spores were inoculated at the edge of glass slides inserted at an angle 

of 45º in MS plates and grown for 24 hrs, generating a sample of vegetative mycelium.

For CFW staining, mycelium was grown for 24 hrs on glass slides and MS plates as 

described above. The mycelium was stained with 5µl of a 10x diluted solution of a 1:1 
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mixture of CFW:10% KOH and analyzed at the fluorescent microscope (Axioscope 

A1). Alternatively, spores were inoculated in 10 ml liquid TSBS and grown for 24 hrs. 

A sample of 5 µl of the culture was mixed with 5 µl of a 10x diluted solution of a 1:1 

mixture of CFW:10% KOH and analyzed. For CFW staining filter set 49 was used 

(excitation 365 nm, dichroic 395 nm, emission 445/50 nm).

For fluorescently conjugated wheat germ agglutinin staining (f-WGA), 

spores were inoculated on glass slides and MS plates as discussed above and grown 

for 24 hrs, incubated with 5µl of a 10x diluted solution of f-WGA in glycerol and 

analyzed with filter set 63HE (572/25 nm excitation, 590 nm dichroic, 629/62 nm 

emission).

To calculate distances between the fluorescent proteins and the WGA-stained 

cell wall, ImageJ was used (Schneider et al. 2012). All images were background-

corrected using Adobe Photoshop CS4.

Protein methods
For the preparation of protein samples MS plates were overlaid with cellophane 

disks and inoculated confluently with 105 spores. After 24 hrs, the mycelium was 

harvested and the wet weight determined. Mycelium was resuspended in 10 mM 

Tris-HCl (pH7; volume adjusted according to wet weight, 20µl per mg of protein) 

and sonicated. After centrifugation, the supernatant was removed and mixed with 

an equal volume of SDS-PAGE loading buffer containing 1% β-mercaptoethanol. 

The pellet was directly resuspended in loading buffer, resulting in a 2x concentrated 

sample compared to the soluble fraction. Following electrophoresis in a 10% SDS 

PAGE gel, the proteins were blotted on nitrocellulose filters. Standard Western blot 

protocols and polyclonal antibodies against GlxA (1 µL per 10 mL) were used for 

detection with GARAP as the secondary antibody.

Analysis of GlxA anchoring by sortases
To assess the role of sortases in anchoring of GlxA, a truncated version of the glxA gene 

was cloned in pHJL401 under the control of the cslA promoter, generating plasmid 
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pGMMP9. The resulting recombinant protein lacks the C-terminal 35 amino acids, 

which would include the putative sortase signal (Whittaker and Whittaker 2006).

RT-PCR Analysis
Total RNA for transcript analysis was isolated from cultures grown on MS plates for 24 

hrs, purified using the Kirby-mix protocol (Kieser et al. 2000) and additionally treated 

with DNase I to remove any traces of DNA. RT-PCR was carried on as described 

previously (Noens et al. 2007) using  200 ng of RNA as a template. Quantification of 

the amplified RNA on gel was carried out with a Bio-Rad Gel Doc EZ Imager and 

Image Lab software. The primers used for PCR amplification are listed in Table S3 of 

the Supporting Information.

Visualization of fibrils using a chitin-binding domain 
The eGFP gene was amplified using pGFP as template DNA and cloned in pTYB3 

(New England Biolabs), upstream of the intein domain and the chitin binding domain 

(CBD) of chitinase A1 from Bacillus circulans WL-12, generating plasmid pGMMP7. 

The chitin binding domain of chitinase A1 is known to have a strong preference for 

chitin binding (Watanabe et al. 1994; Chong et al. 1997).

The sequence encoding the eGFP-CBD fusion was amplified by PCR and cloned in 

pET28a (Novagen), thereby introducing an N-terminal His tag (plasmid pGMMP8). 

Standard procedures were followed to isolate the eGFP-CBD fusion protein on 

HisPurTM Cobalt resin (Thermo Scientific). Ultrafiltration (Amicon Ultra, 30 kDa 

cut off) was used to concentrate the protein. Several wash steps with 50 mM NaPi 

(pH 8) were performed to reduce the concentration imidazole and NaCl below 0.1 

mM.  About 3 ng of protein was used to detect the polysaccharide associated with the 

mycelium of the wild-type, cslA and glxA mutant strains that had been grown for 16 

hrs on cover slips inserted in MS plates.
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SUPPLEMENTAL MATERIAL

Name Description Reference

pWHM3 pIJ486 derived E.coli-Streptomyces shuttle vector, TsrR, AmpR (Vara et al., 1989)

pET28a E.coli expression vector, KanR Novagen

pGMMP1 pWHM3 containing the flanking regions of the S. lividans cslA 
gene, interspersed by the apraloxP_XbaI insert

This work

pGMMP2 pWHM3 containing the flanking regions of the S. lividans glxA 
gene, interspersed by the apraloxP_XbaI insert

This work

pUWLcre pUWLoriT derivative containing the gene for the Cre-lox recombi-
nase under the control of PermE

(Fedoryshyn et al., 2008)

pHJL401 E.coli-Streptomyces shuttle vector, TsrR, AmpR (Larson and Hershberger, 
1986)

pGMMP3 pHJL401 containing the cslA gene under the control of  the cslA 
promoter

This work

pGMMP4 pHJL401 containing the glxA gene under the control of the cslA 
promoter

This work

pGFP pHJL401 containing a codon-optimized version of the eGFP gene 
under the control of PftsZ

This work

pGMMP5 pGFP derivative containing a chimeric cslA-eGFP gene under the 
control of PcslA cloned as an EcoRI-XbaI fragment

This work

Table S2.  Plasmids used and constructed in this study

Strains Description Reference

S. lividans

1326 S. lividans 1326 wild type strain Hopwood et al., 1985

1326-FM derivative of S. lividans 1326 with reduced autofluorescence This work

cslA cslA deletion mutant in 1326-FM This work

glxA glxA deletion mutant in S. lividans 1326 This work

glxA-FM S. lividans glxA mutant derivative with reduced autofluorescence This work

E. coli

JM109 E.coli K12 strain used for routine subcloning Messing et al, 1981

Table S1. Strains used in this study.

ACKNOWLEDGMENTS
The authors would like to thank Jacob Gubbens for help with mass spectrometry, 

Kasia Celler for help with microscopy and James Whittaker for providing GlxA 

antibodies.



65

Apical synthesis of an extracellular polysaccharide involved in aerial growth

Name 5’-3’ sequence

Restriction 
site(s)

(underlined in 
sequence)

cslA-1260F GCGGAATTCGGCGTAGGGCGTGTCGAGCTTC EcoRI

cslA+78RV CGCTCTAGACCGGTGCCCGGGCACCCT XbaI

cslA+1828F GCGTCTAGAGGGTCCCGCCGCAGCAGG XbaI

cslA+3263RV CGCAAGCTTCTTCGGGTCGTCCGCCTTGAGGT HindIII

cslA F GCGGAATTCCTCACACTCCCGGTCGGCAGG EcoRI

cslA RV CGCGGATCCATATGTCATTCCCCCCACACGCGGGTC NdeI

cslA RV 2 CGCTCTAGATTCCTTACGTCCCCCAAGTCCAC XbaI

cslA RV 3 CGCTCTAGAGCATCATTCCTTACGTCCCCCAAGTCC XbaI

glxA-1498F GCGGAATTCCGAGACCGGCACCAAGGTCGC EcoRI

glxA+59RV GCGTCTAGACGTGCCTATCGCGAAGCGACG XbaI

glxA+1917F GCGTCTAGAGAGTGGGTGCGAGTTCCGTAGCG XbaI

glxA+3428 GCGAAGCTTGAGTCGGCCGGCAAGCTGTGG HindIII

glxA F GCGCCATGGAAGACCGTGCCGGCCG NcoI

glxA RV CGCTCTAGACGGCACCCGCACCCACTC XbaI

glxA F 2 GCGGAATTCCATATGAAAGACCGTGCCGGCCGC EcoRI-NdeI

glxA RV 2 CGCAAGCTTGGCGCTACGGAACTCGCACC HindIII

GFP F CGCGAATTCCCATGGGCAAGGGCGAGGAGCTGTTC EcoRI-NcoI

GFP RV GCGAAGCTTCTCGAGCTTGTACAGCTCGTCCATGCC HindIII-XhoI

pET28 F CGCAAGCTTCATATGAGCAAGGGCGAGGAGCTGTTCAC HindIII-NdeI

CBD RV GCGGAATTCTCCTGCAGTCATTGAAGCTGCCACAAG EcoRI

glxA-105nt RV CGCTCTAGACACCGTCAGCTTGTCCCCGTC XbaI

rpsL_for GAGACCACTCCCGAGCAGCCGC none

rpsL_rev GTAGCGGTTGTCCAGCTCGAGCA none

cslA_for TGGGCGTGCACCACTTCTCC none

cslA_rev CGCGGTACCGGAAGGTGCCGAACA none

 Table S3. Oligonucleotides used in this study. 

pGMMP6 pGFP derivative containing a chimeric glxA-eGFP gene under the 
control of PftsZ cloned as an NcoI-XbaI fragment

This work

pGMMP7 pTYB3 containing the eGFP gene from pGFP,  cloned as an NcoI-
XhoI fragment  thereby creating an eGFP-intein-CBD fusion.

This work

pGMMP8 eGFP-intein-CBD domain from pGMMP7 cloned into pET28a  as 
an NdeI-EcoRI fragment

This work

pGMMP9 pHJL401 containing the cslA promoter upstream of a truncated 
version of the glxA gene, which encodes GlxA lacking its 35 amino 
acids at its C-terminus.

This work
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ABSTRACT

Streptomyces mutants lacking genes cslA and glxA grow as an open mycelium in liquid 

cultures. Such a non-pelleting phenotype may be of interest from the perspective 

of industrial applications. cslA and glxA form an operon, whereby cslA encodes a 

cellulose synthase-like protein, while glxA encodes a copper oxidase. Both proteins 

are involved in the synthesis and deposition of a glycan at hyphal tips. The absence of 

this polysaccharide is linked to an alteration in the formation of the matrix and in the 

aggregation of pellets. To better understand which changes are induced in the mutants 

and to identify potential targets for the control of morphology, global transcriptome 

profiling was performed taking advantage of the last generation RNA sequencing 

(RNA-Seq) with Illumina technology. This led to the identification of genes that are 

potentially involved in morphogenesis and matrix formation, including a cluster 

that encodes phage tail-related proteins. The increased expression of genes related to 

osmoprotection indicates that, in addition, the mutants suffer from osmotic stress. 

Taken together, the data provide interesting new insights into the role of CslA and 

GlxA in the control of morphogenesis and stress management.
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INTRODUCTION

Streptomycetes are mycelial soil bacteria that grow as an intricate network of branched 

hyphae. After vegetative growth, the colonies develop and produce aerial hyphae, 

which grow in the air and eventually differentiate to generate chains of spores. The 

formation of aerial hyphae is facilitated by various macromolecules. The lantibiotic-

like peptide SapB is involved in lowering the water surface tension at the medium-air 

interface (Willey et al. 1991; Willey et al. 1993), which enables hyphae to leave the 

aqueous environment. Aerial hyphae then become decorated with a mosaic of pair-

wise aligned fibrils, which is known as the rodlet layer. Formation of this surface layer 

requires the activity of two types of proteins, called chaplins and rodlins. Chaplins 

are the main constituents of the rodlet layer and were shown to assemble into small 

fibrils. In vivo, these fibrils are deposited in an often pair-wise aligned arrangement 

on the cell surface by the activity of the rodlins. 

Recent evidences unambiguously demonstrated that the chaplins assemble 

into so-called amyloid structures (Sawyer et al. 2011; Bokhove et al. 2013). Amyloids 

are proteinaceous aggregates that are rich in β-sheet structure. Amyloid fibrils are 

associated with the surfaces of many bacteria and fungi, often having roles in biofilm 

formation, but also in providing surface hydrophobicity or protection. Examples 

are curli fibers in E. coli (Zogaj et al. 2003) and thin aggregative fimbriae (tafi) in 

Salmonella species (White et al. 2003), which are involved in biofilm formation, and 

hydrophobins of filamentous fungi, which render the aerial hyphae hydrophobic in 

a similar manner as chaplins do for streptomycetes (Wösten et al. 1999; Linder et al. 

2005) . 
In addition to their role in aerial growth, the Streptomyces chaplin proteins 

are involved in attachment of hyphae to surfaces. Attachment coincides with the 

formation of a so-called extracellular matrix (de Jong et al. 2009). This matrix is 

composed of assembled chaplin amyloid fibrils in association with a polymer produced 

by a protein annotated as a cellulose synthase-like protein, CslA (Xu et al., 2008). The 

absence of CslA leads to an arrest of development on rich solid media (Xu et al, 2008) 
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and strongly decreases attachment (de Jong et al., 2009; Chapter 2). CslA is required 

for the synthesis of a β-(1,4) polymer, although the exact nature of the polymer is 

unclear. These results demonstrate the important roles that macromolecules play 

during growth and development of streptomycetes. 

Although development is mostly associated with growth on solid substrates, 

Streptomyces also differentiate in liquid-grown cultures. Some streptomycetes 

fragment and sporulate in submerged cultures, such as the chloramphenicol 

producer S. venezuelae and the streptomycin producer S. griseus, whereby submerged 

sporulation correlates to the specific amino acid sequence (and expression level) of 

the SsgA and SsgB proteins (Girard et al. 2013), which control sporulation-specific 

cell division (Willemse et al. 2011). Many strains, however, form so-called pellets 

in liquid media (Pamboukian et al. 2002). Interestingly, deletion of genes encoding 

for cell surface proteins such as the chaplins or CslA strongly reduces the size and 

changes the morphology of pellets (van Veluw et al. 2012; Chapter 3). Recent data 

indicates that CslA acts in conjuction with GlxA, a copper oxidase with remote 

similarity to galactose oxidases (Liman et al. 2013), encoded by a gene adjacent to (and 

cotranscribed with) cslA. In particular, the cslA and glxA mutants form open mycelial 

structures when grown in rich liquid media (Fig. 1). This effect is likely explained by 

the absence of a glycan-like polysaccharide, synthesized at the hyphal tips by CslA 

and associated to the cell wall via non-covalent interactions after modification by 

GlxA. While the absence of CslA leads to a complete block in polymer formation, the 

absence of GlxA caused the CslA-produced polymer to be mislocalized. A role for the 

glycan in hyphal aggregation has therefore been postulated (Chapter 3). 

The phenotypes associated with the changes in morphology in liquid-grown 

cultures will inevitably lead to changes in gene expression. To obtain more insight 

into the changes as a result of the deletion of cslA and glxA, global transcription 

profiling was performed using RNA-Seq analysis. The results not only demonstrate 

the impact of CslA and GlxA on Streptomyces physiology, but also point at genes that 

may play a role in the observed morphological changes in liquid-grown cultures. 
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RESULTS AND DISCUSSION

Transcriptome analysis of the cslA and glxA mutants
The global transcription profiles of the cslA and glxA mutants were compared to those 

of the parental strain S. lividans 1326 and to one another, using RNA seq analysis. For 

this, RNA was isolated from liquid-grown cultures in the mid-exponential growth 

phase and sequenced as described in the Materials and Methods section. For the 

analysis of the transcriptome data, a change of two-fold or more in transcript levels 

and an RPKM value >10 were chosen as cut-off (RPKM: Reads per Kilobase of exon 

model per Million mapped reads; Mortazavi et al. 2008). 

An overview of the number of genes whose transcription was changed 

according to the criteria set above is given in Figure 2, while the corresponding 

RPKM values and fold changes of those genes are provided in the Appendix. 

Figure 2. Venn diagram showing the number of genes uniquely up- or down regulated in the cslA and 
glxA mutant and those shared by the two mutants.

Figure 1. Phenotypic comparison between the wild-type (1326) and the corresponding ΔcslA and ΔglxA 
mutants in liquid-grown cultures
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Following these criteria, deletion of cslA resulted in 256 genes whose 

transcription was upregulated and 813 genes whose transcription was downregulated 

in comparison to the parental strain. For the glxA mutant, 93 genes were upregulated 

and 89 genes downregulated. Most genes whose transcription levels were changed 

in the glxA mutant showed comparable changes in the cslA mutant (Fig. 2 and 

Appendix). 

Despite the remarkable changes in the expression profile, few changes in the 

transcription of genes encoding transcriptional regulators were observed (Tables S1 

and S2). Among the TetR regulators, which control among others efflux pumps and 

osmotic stress, five genes are upregulated in the glxA mutant (SLI_0468, SLI_0641, 

SLI_2006, SLI_3521 and SLI_4911). Two ArsR regulators (SLI_1107, SLI_7362), 

involved in modulating metal resistance and stress, are about two-fold upregulated 

in the glxA mutant, while SLI_1891 and SLI_5378, belonging to the GntR family that 

regulate general metabolism, are two-fold down in both cslA/glxA mutants. 

Changes in transcription of genes related to pellet morphology
In the cslA null mutant, transcription of glxA was upregulated around 18-fold, 

perhaps as an attempt to compensate for the absence of the functionally linked 

cslA. Transcripts corresponding to the remainder of cslA were also enhanced in 

the cslA mutant (around 17-fold) (Table 1). Interestingly, such a strong increase in 

transcription of cslA-glxA was not observed in the glxA mutant. This suggests the 

presence of a CslA-dependent feedback mechanism that is involved in coordination 

of glxA and cslA transcription. 

Transcription of SLI_3189, located directly next to the cslA-glxA gene 

cluster, is two-three fold enhanced in glxA and cslA mutants respectively (Table 1). It 

encodes a glycosyl hydrolase previously suggested to be functionally related to CslA 

and GlxA (Liman et al. 2013). However, our unpublished data suggest that the gene 

does not play a major role in the control of morphogenesis (D. Claessen, personal 

communication).
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Previous work demonstrated that the overexpression of the ssgA gene 

(SLI_4184) leads to smaller pellets due to increased fragmentation (van Wezel et 

al. 2006). Furthermore, the deletion of ssgA causes a two- to six-fold increase in 

transcription of glxA (Noens et al. 2007). However, in our data no changes in the 

level of ssgA were observed in the glxA and cslA mutants as compared to the parental 

strain (Table 1). Pellet morphology is also influenced by the chaplin genes (de Jong 

et al. 2009; van Veluw et al. 2012; M.L.C. Petrus and D. Claessen, unpublished data). 

By looking at the transcription of the long chaplins (SLI_3063, SLI_7473, SLI_1979) 

and short chaplins (SLI_3064, SLI_2108, SLI_3053, SLI_3047, SLI_1980), substantial 

differences were observed only in the case of SLI_1980 (chpH), with a near two-

fold increase in the cslA mutant, and SLI_7473 (chpB), with is around two-fold 

downregulated in both mutants (Table1).

Gene # 
S. coelicolor

Gene # 
S. lividans

1326 
(RPKM)

cslA 
(RPKM)

glxA 
(RPKM)

cslA/1326 glxA/1326 Annotation 

SCO2836 SLI3187 136,3 167,3 129,4 1,2 0,9 CslA

SCO2837 SLI3188 188,4 3460,9 1,1 18,4 0,0 GlxA

SCO2838 SLI3189 172,9 529,4 312,0 3,1 1,8 glycosyl 
hydrolase

SCO3926 SLI4184 24,0 20,8 32,4 0,9 1,3 SsgA

SCO2716 SLI3063 1,1 1,6 1,1 1,4 1,0 ChpA

SCO7257 SLI7473 25,0 14,0 12,1 0,6 0,5 ChpB

SCO1674 SLI1979 32,6 32,0 24,7 1,0 0,8 ChpC

SCO2717 SLI3064 6,4 3,4 4,9 0,5 0,8 ChpD

SCO1800 SLI2108 100,6 147,6 69,9 1,5 0,7 ChpE

SCO2705 SLI3053 6,7 11,3 8,5 1,7 1,3 ChpF

SCO2699 SLI3047 2,5 5,3 3,8 2,2 1,5 ChpG

SCO1675 SLI1980 61,8 117,0 62,3 1,9 1,0 ChpH

SCO7657 SLI7885 532,7 985,9 809,2 1,9 1,5 HyaS

Table 1. Expression analysis of genes known to be involved in pellet morphology
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Other genes relating to morphology include SLI_7885, which encodes the 

hyphal aggregation protein HyaS. Transcription of hyaS was between 1.5- and 1.9- 

fold enhanced in the glxA and cslA mutants (Table 1). HyaS is a putative lysyl/amine 

oxidase with a suggested role in hyphal aggregation and pellet formation in liquid 

cultures. Its deletion decreases pellet density and leads to abundant protrusion of 

hyphae from the pellet surface (Koebsch et al. 2009). Increased transcription of the 

hyaS gene could indicate a compensation effect for the loss of pellet integrity. 

Enhanced transcription of a cluster of genes for phage tail-related proteins
Analysis of the differentially transcribed genes indicated that transcription of the gene 

cluster SLI_4479-SLI_4495 was significantly enhanced in the cslA and glxA mutants, 

namely between 1.5-2.5 fold in the glxA mutant and between two to five-fold in 

the cslA mutant. These genes are organized in five sets of genes, four of which were 

suggested to be transcribed from two divergent promoters in S. coelicolor (Kim et al. 

2005; Table 2 and Figure 3A). The presence of genes SLI_4479-4485 and SLI_4487-

4489 is highly conserved among Actinomycetales. They may have been acquired via 

horizontal transfer, as suggested by the presence immediately upstream of SLI_4478 

of a gene for the threonine tRNA that recognises ACA codons. tRNA genes often 

serve as sites for exogenous gene integration (Williams 2002). 

Figure 3. (A) The SLI4479-4495 cluster in S. lividans. Thick arrows indicate genes for phage assembly 
proteins, black arrows genes not involved in the cluster and triangle tRNA genes (B) A representation 
of phage proteins in the bacteriophage T4 (picture taken from Leiman et al. 2010) (1) Schematic repre-
sentation of the assembly of the phage and conformation prior to (2) and during (3) bacterial infection.
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Gene # 
S. coelicolor

Gene # 
S. lividans

1326 
(RPKM)

cslA 
(RPKM)

glxA 
(RPKM)

cslA/1326 glxA/1326 Annotation 

SCO4243 SLI4480 24,9 98,3 60,7 3,9 2,4 secreted protein

SCO4244 SLI4481 39,3 146,7 85,3 3,7 2,2 hypothetical 
protein

SCO4245 SLI4482 40,4 146,1 87,9 3,6 2,2 hypothetical 
protein

SCO4246 SLI4483 38,4 165,0 93,3 4,3 2,4 hypothetical 
protein

SCO4247 SLI4484 56,0 249,4 138,1 4,5 2,5 hypothetical 
protein

SCO4248 SLI4485 37,2 174,2 94,9 4,7 2,5 hypothetical 
protein

SCO4249 SLI4486 18,2 57,5 30,0 3,2 1,7 hypothetical 
protein

SCO4250 116,7 299,3 128,0 2,6 1,1 ampullate 
spidroin

SCO4251 SLI4487 575,8 2311,7 1137,6 4,0 2,0 secreted protein

SCO4252 SLI4488 845,1 4425,2 2045,2 5,2 2,4 hypothetical 
protein

SCO4253 SLI4489 550,1 2388,0 1065,2 4,3 1,9 Phage tail sheath 
protein FI

SCO4254 SLI4490 12,2 25,2 20,0 2,1 1,6 Hypothetical 
protein

SCO4255 SLI4491 20,7 73,8 42,5 3,6 2,1 Conserved 
hypothetical 
protein

SCO4260 10,5 26,7 29,5 2,6 2,8 hypothetical 
protein

SCO4257 SLI4492 73,4 236,8 192,1 3,2 2,6 Hydrolytic 
protein

SCO4258 SLI4493 101,4 325,3 193,6 3,2 1,9 Hydrolytic 
protein

SCO4259 SLI4494 29,0 94,4 54,5 3,3 1,9 ATPase AAA

SCO4260 SLI4495 80,8 158,2 123,5 2,0 1,5 hypothetical 
protein

Table 2. Upregulation of the cluster SLI4479-SLI4495. Two gaps were detected in the S. lividans ge-
nome sequence, corresponding to the S. coelicolor SCO4250 and SCO4256 genes. The data for these 
genes were obtained with the S. coelicolor genome as a reference and normalization of the RPKM values 
between the two data sets.
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Interestingly, several of the proteins encoded within the gene cluster show 

striking similarities with those involved in phage assembly. Seven genes encode 

morphogenetic phage proteins (indicated with thick arrows in Fig. 3A), whose role 

in the assembly of phages has been recently reviewed (Leiman et al. 2010 and Fig 3B). 

SLI_4480-SLI_4481 and SLI_4488_SLI_4489 are annotated as genes encoding phage 

tail proteins. In bacteriophage T4, phage tail proteins organize in a contractile helical 

structure that is part of the phage tail. Contraction leads to penetration of the cell 

membrane by the central tail tube and injection of the DNA into the bacterial cell. 

The protein encoded by SLI_4485 shows similarities with the tail tube. Other phage-

related proteins include those encoded by SLI_4483 and SLI_4482, which could form 

a baseplate component with acidic lysozyme activity, used by viruses to digest the 

peptidoglycan of the bacterial cell envelope and inject the DNA directly into the 

cytosol. SLI_4484 encodes a protein with a LysM domain. Proteins containing such 

domains are typically involved in binding to peptidoglycan and chitin in bacteria 

and eukaryotes, respectively (Buist et al. 2008). The transcript levels of SLI_4498, 

described in the past as the transcriptional regulator of at least three of the five gene 

sets in S. coelicolor (Kim et al. 2005), was not significantly changed in cslA and glxA 

mutants. This suggests that either the activation of the transcriptional activator is 

post-translationally regulated, or that its role at least under these conditions is limited.

Phage-related proteins are present in many bacteria, although knowledge 

about their biological significance is limited. In the pathogenic E. coli strain O157:H7, 

phage tail proteins are described as collagen-like proteins which may play a role in 

virulence (Ghosh et al. 2012). Similarly, collagen-like proteins have been described 

in Streptococcus pyogenes, with a role in cell adhesion and pathogenicity (Chen et al. 

2010). In the food pathogen Cronobacter sakazakii, biofilm and extracellular matrix 

formation are affected in mutants lacking, among others, phage tail proteins (Du et 

al. 2012). It is interesting to notice that SLI_4488 is one of the most strongly expressed 

genes in terms of absolute RPKM, with transcription comparable to that of ribosomal 

protein genes, which suggests a pivotal role for the protein encoded by this gene.

In contrast to genes SLI_4479-4485 and SLI_4487-4489, the presence of 
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SLI_4486 is less well conserved. In S. coelicolor, the homologous SCO4249 is coupled 

to SCO4250, encoding a protein with weak similarity to the major ampullate spidroin 

of Nephila madagascariensis (Gatesy et al. 2001). In S. lividans, there is a gap in 

the genome sequence, but analysis of the transcription data using the S. coelicolor 

genome as reference suggests that the gene is present but not annotated (data 

not shown). Spidroin is the major constituent of spider-silk, whose final fiber has 

striking similarities with amyloid fibrils (Kenney et al. 2002). Amyloid fibrils have an 

important role in attachment and biofilm formation in various organisms (Zogaj et 

al. 2003; White et al. 2003; Linder et al. 2005) including Streptomyces (Claessen et al. 

2003; de Jong et al. 2009; Gras and Claessen, 2014). 

The putative role for phage tail proteins in biofilm formation may suggest a 

role for these proteins in the formation of an extracellular matrix in streptomycetes, 

perhaps in conjuncion with the glycan produced by CslA and GlxA and possibly 

the chaplins (M.L.C. Petrus and D. Claessen, unpublished data). Their increased 

transcription might reflect a compensation effect for the loss of pellet architecture. 

Notably, the involvement of this gene cluster in morphogenesis has been observed 

previously in a non-pelleting mutant of S. lividans (MD Dissel and GP van Wezel, 

unpublished data). If and how these proteins contribute to extracellular matrix 

formation and pellet aggregation in Streptomyces is under current investigation.

Transcription of genes related to osmoprotection 

A second category of genes that stood out in terms of being significantly enhanced in 

the cslA and glxA mutants were those encoding ABC transporters for the uptake of 

amino acids. These include SLI_3177-3180, which lie adjacent to the cslA-glxA genes 

(Table S1). Interestingly, genes SLI_1923-1924 for the putative glycine transporter are 

also upregulated in the mutants, as well as SLI_5103-5105, which are part of an operon 

together with SLI_5101-5102, encoding a choline and an aldehyde dehydrogenase 

(Table 3). Glycine forms bridges in the peptidoglycan in Gram-positive bacteria 

(Leyh-Bouille et al. 1977). Moreover, glycine betaine is a cellular osmoprotectant that 

accumulates in the cytoplasm to provide protection against osmotic stress (Landfald 



78

Chapter 4

and Strøm 1986; Bursy et al. 2008). Glycine betaine can be imported in the cell via 

specific ABC transporters or synthesized from glycine (Kimura et al. 2010) or from 

precursors choline and glycine betaine aldehyde (Lamark et al. 1991). The two best 

studied systems are genes betTIBA in E. coli (Lamark et al. 1991) and genes opuABC 

and gbsAB in B. subtilis (Kappes et al. 1999).

In the cslA and glxA mutants, transcription of SLI_1923 (an OpuABC-like 

permease) and SLI_1924 (the likely ATPase of the uptake system) was six- and almost 

four-fold enhanced, respectively (Table 3). In addition, two- to five-fold upregulation 

is observed for genes SLI_5101 (similar to B. subtilis GbsAB dehydrogenases), 

SLI_5102, (a putative choline dehydrogenase), SLI_5103 (an ATP-binding protein), 

SLI_5104 (similar to B. subtilis OpuAB transporters) and SLI_5105 (a possible glycine 

betaine substrate binding protein). 

Another molecule that accumulates in the cell in response to salt and 

temperature stress is ectoine (Bursy et al. 2008). Transcription of the genes involved 

in ectoine biosynthesis (SLI_2175-2178) was approximately two-fold increased in the 

glxA mutant and between three- and ten-fold in the cslA mutant (Table 3). Ectoine 

is a natural osmoprotectant that is either imported or synthesized through the 

conversion of the precursor, L-aspartate-β-semialdehyde, via four enzymatic steps 

involving: acetyl-transferase EctA (SLI_2175), aminotransferase EctB (SLI_2176), 

ectoine synthase EctC (SLI_2177) and hydroxylase EctD (SLI2178) (Bursy et al. 2008). 

The increased transcription of genes for choline/glycine betaine transporters and for 

ectoine synthesis may reflect increased osmotic stress in glxA and cslA mutants. We 

hypothesize that the glycan synthesized by CslA and GlxA may play an important 

role in osmoprotection; in that model, upregulation of genes for osmoprotectants 

(such as glycine betaine and ectoine) is an attempt to compensate for the absence of 

the glycan in cslA mutants, or of the mature glycan in glxA mutants. 

Finally, strong downregulation was observed for SLI_3420-3423 and 

SLI_5205, all of which are involved in histidine catabolism (Table 3). This may reflect 

an attempt to maintain the histidine pool during osmotic stress. Histidine is a precursor 

of ergothioneine, a thiourea derivative that is synthesized via methylation of histidine 
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and incorporation of a cysteine-derived sulfur atom in the imidazole ring (Seebeck 

2013). Ergothioneine, naturally produced by Actinobacteria and by filamentous 

fungi, acts as an efficient antioxidant (Cheah and Halliwell 2012). A possible role 

of histidine/ergothioneine accumulation in osmotic stress in Streptomyces should be 

investigated.

However, changes in the transcription of known osmotic stress regulatory 

genes such as sigB and osaC were not observed, with only a partial effect on osaB 

in the cslA mutant (Fernández Martínez et al. 2009 and Table 5). This is consistent 

with earlier work, where the regulation of glxA by these elements has been ruled out 

(Liman et al. 2013). 

CONCLUSION

The analysis of the transcriptome of the mutants reveals a large number of genes 

whose transcription is significantly up- or downregulated. The most drastic changes 

are observed in cslA mutants. Two classes of genes stood out, namely genes for phage 

tail-like proteins that possibly relate to matrix formation/morphology and genes 

related to osmoprotection. Phage tail-like proteins (SLI_4479-4495) are upregulated 

three to five-fold in the cslA mutant and around two-fold in the glxA mutant. Their 

role in bacteria is not clear, but their function in attachment to the bacterial cell wall 

and their role in biofilm formation suggests a structural role. Moreover, a change 

in transcription has been observed in other strains with a nonpelleting phenotype, 

suggesting a direct correlation with pellet morphology. In addition hyaS, involved in 

hyphal aggregation, is also upregulated in both mutants, suggesting that a network 

of proteins might interact in the determination of morphology. We currently favor a 

model in which the absence of one of them leads to a compensation effect increasing 

the transcription of the others. However, this awaits further experimental evidence.

In addition to the observed effect on morphology-related genes, deletion 

of cslA and glxA also majorly influence the transcription of genes related to 

osmoprotection.
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Gene # 
S. coelicolor

Gene # 
S. lividans

1326 
(RPKM)

cslA 
(RPKM)

glxA 
(RPKM)

cslA/1326 glxA/1326 Annotation 

SCO1620 SLI1923 31,5 193,9 117,3 6,2 3,7 Glycine betaine ABC 
transport system

SCO1621 SLI1924 28,7 153,3 106,7 5,3 3,7 L-proline glycine be-
taine ABC transport 
system 

SCO4828 SLI5101 20,9 49,8 48,8 2,4 2,3 Betaine aldehyde de-
hydrogenase GsbAB 
(EC 1.2.1.8)

SCO4829 SLI5102 17,8 62,4 48,6 3,5 2,7 Choline dehydroge-
nase (EC 1.1.99.1)

SCO4830 SLI5103 8,2 41,1 26,2 5,0 3,2 Glycine betaine ABC 
transport system, 
ATP-binding protein 
(EC 3.6.3.32)

SCO4831 SLI5104 8,1 33,2 22,0 4,1 2,7 Glycine betaine ABC 
transport system, 
permease protein 
OpuAB

SCO4832 SLI5105 24,4 67,4 50,1 2,8 2,1 Choline/glycine 
betaine ABC trans-
porter, substrate 
binding protein

SCO1864 SLI2175 32,4 94,2 52,1 2,9 1,6 L-2,4-diaminobutyr-
ic acid acetyltrans-
ferase (EC 2.3.1.-)

SCO1865 SLI2176 31,3 167,0 61,8 5,3 2,0 Diaminobutyr-
ate-pyruvate ami-
notransferase (EC 
2.6.1.46)

SCO1866 SLI2177 67,7 666,0 139,3 9,8 2,1 L-ectoine synthase 
(EC 4.2.1.-)

SCO1867 SLI2178 72,5 614,8 125,1 8,5 1,7 Ectoine hydroxylase 
(EC 1.17.-.-)

SCO0600 SLI0566 33,1 36,2 35,9 1,1 1,1 sigma factor SigB

SCO5749 SLI6010 447,5 262,7 342,2 0,6 0,8 OsaB

SCO5747 SLI6008 63,7 43,6 56,9 0,7 0,9 OsaC

Table 3. Transcription data of genes linked to osmotic stress
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In the cslA and glxA mutants, we observed an increase in transcription of genes 

related to ectoine synthesis and glycine betaine import and synthesis. We postulate 

that the absence of the polymer synthesized and deposited at the hyphal tips by the 

concerted action of cslA and glxA induces possible weakness to the hyphae, which 

stimulates the increase of intracellular osmoprotectants. The fact that the deletion of 

cslA almost invariably results in stronger changes in gene expression than deletion 

of glxA may be explained by the absence of the glycan in the cslA mutant, while this 

polysaccharide is present but not localized properly in the glxA mutant. 

Future work is aimed at further analysis and verification of the major changes 

observed by RNA seq analysis, and to study the role of the phage tail proteins in the 

control of morphogenesis. In this way we will obtain more insight into the factors 

that play a role in controlling mycelial architecture.
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MATERIAL AND METHODS

Strains and growth conditions
Streptomyces lividans strains 1326 (S. lividans 66, stock number 1326 from the John 

Innes Centre; Hopwood et al. 1985), and the ΔcslA and ΔglxA derivatives thereof 

(Chapter 3) were used in this study. 2,5*108 spores were used to inoculate 250 ml 

flasks containing 50 ml liquid NMMP medium, supplemented with 0.5% glucose and 

0.5% mannitol (Kieser et al. 2000). 

RNA sequencing
Mycelium was collected after 17 h of growth by centrifugation at 5,000 rpm for 10 

min. RNA was immediately isolated using the Kirby protocol (Kieser et al. 2000). 

The samples were treated with DNase I to remove any traces of DNA. The purity 

and integrity of the sample was assessed using a Bio-Rad Gel Doc EZ Imager, while 

the absence of residual DNA was verified by PCR (Fig. 1S). The RNA samples were 

sent for sequencing to BaseClear, after which the RNA quality was further assessed 

using a Bioanalyzer. Ribosomal RNA was subsequently removed with a Ribo-Zero 

kit (Epicenter) and the remaining RNA used as input for the Illumina TruSeq 

RNA-seq library preparation. Once fragmented and converted into double strand 

cDNA, the fragments (about 100-200 bp) were ligated with DNA adapters at both 

ends and amplified via PCR. The resulting library was then sequenced using an 

Illumina Sequencer. The FASTQ sequence reads were generated using the Illumina 

Casava pipeline version 1.8.3. Initial quality assessment was based on data passing 

the Illumina Chastity filtering. Subsequently, reads containing adapters and/or PhiX 

control signals were removed using an in-house filtering protocol. The second quality 

assessment was based on the remaining reads using the FASTQC quality control tool 

version 0.10.0. 
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RNA-seq analysis
The RNA-Seq analysis was performed by Baseclear BV (Leiden, The Netherlands). 

Briefly, the quality of the FASTQ sequences was enhanced by trimming off low-

quality bases using the “Trim sequences” option present in CLC Genomics 

Workbench Version 6.0.4. The quality-filtered sequence reads were used for further 

analysis with CLC Genomics Workbench. First an alignment against the reference(s) 

and calculation of the transcript levels was performed using the “RNA-Seq” option. 

Subsequent comparison of transcript levels between strains and statistical analysis 

was done with the “Expression analysis” option, calculating so-called RPKM values. 

These are defined as the Reads Per Kilobase per Million mapped reads (Mortazavi 

et al. 2008) and seeks to normalize for the difference in number of mapped reads 

between samples as well as the transcript length. It is given by dividing the total 

number of exon reads by the number of mapped reads (in Millions) times the exon 

length (in kilobases).

SUPPLEMENTAL MATERIAL

Figure 1S.  (A) Quality assessment of the RNA samples on a 1.2% agarose TAE gel. The 23S, 16S and 
5S bands are clearly visible in the three samples and no signs of degradation are visible. (B) PCR check 
for the absence of genomic DNA on 4 µg of RNA as a template. The first lane include a control sample 
with S. lividans genomic DNA.
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ABSTRACT

A growing number of Gram-positive bacteria are considered as effective hosts 

for the production of industrial relevant enzymes. In the era of high throughput  

genome sequencing, many new genes for enzymes are identified. With the expected 

concomitant increase in the use of heterologously produced enzymes in industry, 

the optimization of the hosts for all aspects related to production becomes more 

and more attractive. One of the platforms for the production of enzymes and also 

secondary metabolites is Streptomyces lividans. However, the number of expression 

vectors with strong promoters is limited. Here we present a short pipeline to identify 

and apply new naturally occurring promoters in Streptomyces that form good 

alternatives to those currently in use. The strong constitutive promoter PermE was 

used as the benchmark. RNA-Seq and DNA-microarray data were analyzed, which 

resulted in 15 candidate promoters. These promoters were then screened using the 

lux genes as reporters. The most attractive candidate promoters were validated in an 

expression system based on the secreted laccase SLAC in Streptomyces lividans 1326. 

This resulted in the identification of three promoter sequences (Psco1947, Psco4253 and 

Psco3484) with higher or comparable strength than the benchmark PermE.
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INTRODUCTION

Streptomycetes are Gram positive, soil dwelling bacteria, which are well known for 

their ability to produce the vast majority of the antibiotics available on today’s market 

and have a great potential in the production of enzymes and therapeutic proteins 

(Vrancken and Anné 2009; Anné et al. 2012). 

Several aspects should be taken into consideration when selecting a bacterial 

host for heterologous protein production. Among them, the availability of proven 

expression systems plays a substantial role. The expression system should provide 

high level transcription and efficient translation and secretion (Nakashima et al. 

2005; Vrancken et al. 2010). Plasmids derived from the high copy number pIJ101 are 

generally preferred, as they are present in the cell in up to 300 copies per chromosome 

(Kieser et al. 2000). For plasmid maintenance, a selectable marker is required, 

which is typically a gene conferring antibiotic resistance. To avoid the addition of 

antibiotics during fermentations, alternatives such as toxin/antitoxin systems have 

been developed, e.g. for the production of a xylanase and an amylase in S. lividans 

(Sevillano et al. 2013). At a transcriptional level, strong promoters that do not affect 

the physiology and morphology of the host when present in high copy are required. 

Furthermore, optimal ribosome binding sites for efficient ribosome recruitment, 

appropriate signal sequences and optimized codon usage contribute to maximal 

production.

In this study, we have identified strong and constitutive promoters obtained 

from Streptomyces genomes as valuable alternatives to the current small selection 

of available sequences. The promoter of the erythromycin resistance gene from S. 

erythraeus (PermE) is commonly used (Bibb et al. 1985). However, it does not always 

perform reliably in all strains and conditions (Zhou et al. 2011). An alternative, the 

constitutive promoter from the subtilisin inhibitor vsi from S. venezuelae, has also be 

used for protein expression (Lammertyn et al. 1997). Some inducible promoters such 

as the thiostrepton-inducible promoter PtipA from S. lividans (Murakami et al. 1989) 

or the xylan-inducible promoter PxysA from S. halstedii (Ruiz-Arribas et al. 1997), 
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which are important for the expression of toxic proteins, have been used in protein 

production studies but have the drawback of requiring an inducer during industrial 

production. Moreover, the addition of thiostrepton induces the expression of stress-

related  proteins in Streptomyces (Holmes et al. 1993), while PxysA leads to significant 

expression only after prolonged fermentation times. 

The elements that define a strong promoter have been studied in Streptomyces 

but not completely understood (Strohl 1992; Bourn and Babb 1995). Over 60 different 

genes for σ factors have been identified in S. coelicolor (Bentley et al. 2002), some of 

which are strictly regulated by development such as bldN and sigF (Kelemen et al. 

1996; Bibb et al. 2000). In contrast, the E. coli genome only encodes seven σ factors 

(Pérez-Rueda and Collado-Vides 2000). Attempts to isolate a strong promoter from 

a synthetic library of randomized promoter sequences underlined the importance 

of guanine residues at specific position within the regulatory regions, but failed to 

produce promoters stronger than the currently available ones (Seghezzi et al. 2011). 

The engineering of known promoters can produce a remarkable 

improvement in strength. A combination of rational and random mutagenesis of the 

strictly regulated promoter PkasO resulted in a de-repressed strong promoter sequence 

(Wang et al. 2013). The opposite engineering was shown recently to work as well 

in Streptomyces. Introduction of riboswitches in between the promoter sequence 

and the translational start codon mediated ligand-dependent expression of reporter 

genes (Rudolph et al. 2013).

In this work, we analyzed the global transcription profiles from liquid- and 

solid-grown cultures of two different streptomycetes, S. coelicolor M145 (Świątek et 

al. 2013) and S. lividans 1326  (Dwarakanath et al. 2012) and identified new strong 

promoters. To screen the activity of those promoters, a reliable and quick reporter 

system with a good level of sensitivity and an easy temporal recording is needed. The 

redD, xylE, egfp and lux promoter-probe systems are commonly used for analysis of 

promoter activity. RedD is the transcriptional activator of the biosynthetic pathway 

for the pigmented antibiotic undecylprodigiosin (Red) in Streptomyces  (Takano et 

al. 1992). The redD gene has been used as a reporter (van Wezel et al. 2000c) as it 
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allows a direct pigmentation of the colonies that can be followed in time, and is in 

contrast to most antibiotics not secreted, but the limited sensitivity of the detection 

method hampers an accurate quantification. The xylE gene from Pseudomonas putida 

encodes catechol dioxygenase, which converts the colorless substrate catechol into 

the bright yellow compound benzoquinone (Ingram et al. 1989). The requirement 

of a substrate that needs to be sprayed directly onto the plate is a disadvantage of 

this system. Cloning different promoters in front of the egfp gene from the jellyfish 

Aequorea Victoria  (Chalfie et al. 1994) allows assessing gene expression in space and 

time, but is not suitable for large scale screenings. 

In this work, we chose the LuxCDABE system optimized for GC rich bacteria 

(Craney et al. 2007) to test our selection of putative strong promoters. This system 

consists of the operon from Photorhabdus luminescens, that includes the luciferase 

genes luxA and luxB in addition to three genes for the production of the substrate 

tetradecanal (luxC, luxD, luxE) which is synthesized directly in the cytosol and does 

not need to be added separately. The result is a spontaneous emission of light at 490 

nm, potentially suitable for screening large number of samples in 96-well plates and 

including the collection of temporal data. 

Among the 15 promoters analyzed, three were equivalent or stronger in 

comparison to PermE and were successfully tested for the production of a small laccase 

(SLAC) in S. lividans.
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RESULTS AND DISCUSSION

Putative constitutive strong promoters
In this study, we used a modified version of the lux reporter plasmid, namely 

pMU1S*_mmrt, and a laccase reporter system to assess the strength of promoters 

selected on the basis of genome-wide transcript analysis data (in-house RNA-Seq 

and microarray analysis). 

A list of putative strong promoters was compiled on the basis of our RNA-

Seq data of S. lividans 1326 in liquid-grown cultures (Dwarakanath et al. 2012). 

The best hits in terms of transcriptional activity were filtered for ribosomal protein 

synthesis genes, because these genes are known to have a strict and growth dependent 

transcription control (Lindahl and Zengel 1982). Only the promoter upstream of 

rpsP (Psco5591) was kept in the selection as an internal control. 15 promoters were 

selected, the 13 best hits from S. lividans and in addition the two best hits of genes 

present in S. coelicolor but not in S. lividans (Table 1 and Table S1). The latter data 

were taken from microarray data of S. coelicolor M145 grown on minimal media 

agar plates with mannitol (15 w/v) as the sole carbon source (Świątek et al. 2013). 

In the final list, five genes encode stress-related proteins, namely the cold-shock 

proteins CspD, CspG, CspA and the heat-shock proteins GroEL2 and GroES, while 

the others encode various membrane proteins and enzymes. Little is known about 

the regulation of these sequences (Table S2). When the regulatory elements are not 

described in literature, the sequences were analyzed by BPROM Softberry (http://

linux1.softberry.com) for the presence of canonical -10/-35 sequences, conforming 

to the consensus for the household sigma factor σ70. This identified seven out of 15 

sequences as likely σ70-like promoters (Table S2).
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Vector optimization
The vector used in this study is a derivative of pMU1, designated pMU1S* (Craney 

et al. 2007, JR Nodwell pers comm.). First, S. lividans 1326 was transformed with the 

empty vector and tested for background transcription when grown on several solid 

media (Fig. S1). The vector itself already gave high luminescence from the 30 hr time 

point onwards. This luminescence was assumed to be caused by promoter activity 

originating from the vector sequences upstream of the lux genes. Analysis for the 

presence of a putative promoter by BPROM Softberry revealed putative promoter 

sequences upstream of the transcriptional terminator (-10 box AGTTAGGCT and 

-35 box TTTTTT).  To reduce transcriptional readthrough, the transcriptional 

terminator of the methylenomycin resistance gene of S. coelicolor (mmrT) was 

amplified from pMT3003 (Paget et al. 1994) and cloned as an EcoRV-BamHI fragment 

in the multiple cloning site of pMU1S*, generating plasmid pMU1S*_mmrt. The new 

Annotation SCO Gene # SLI Gene # sequence relative to 
start codon

RPKM

Cold shock protein CspD SCO4505 SLI4786 -200/-22 40657
Membrane protein SCO6624 SLI6984 -182/-15 14184
60 kDa chaperonin 2 
GroEL protein 2

SCO4296 SLI4533 -200/-25 10076

Cold-shock protein 
CspG

SCO3731 SLI3978 -191/-12 9099

Cold shock protein CspA SCO0527 SLI0486 -324/-16 7184
DNA-binding protein 
Hbsu

SCO2950 SLI3296 -184/-23 6658

10 kDa chaperonin 
GroES protein

SCO4761 SLI5031 -300/-81 5850

Uncharacterized protein 
SCO4253

SCO4253 SLI4489 -212/-15 2466

30S ribosomal protein 
16S, RpsP

SCO5591 SLI5878 -277/-16 5167

Glyceraldehyde-3-phos-
phate dehydrogenase 
GAPDH (EC 1.2.1.12) 

SCO1947 SLI2261 -236/-25 4322

ATP synthase subunit a SCO5367 SLI5636 -200/-13 1679
Thiosulfate sulfurtrans-
ferase (EC 2.8.1.1)

SCO4164 SLI4405 -200/-27 3970

Membrane protein SCO7636 SLI7864 -300/-10 43
Sugar binding protein SCO3484 - -278/-14 -
Hydrolase SCO3487 - -280/-10 -

Table 1. Selection of 15 potential strong promoters and relative expression levels from in-house 
transcription data (RNA-Seq and microarray analysis).
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vector showed much lower background luminescence on different solid media (Fig. 

S1) and was therefore used in all subsequent experiments.

To eliminate translational effects, the RBS from pIJ8660 cloned in front of 

luxC in the original vector was substituted with the strong RBS from S. ramocissimus 

elongation factor tuf1, preceded by a 16 nucleotide linker essential for the correct 

recognition (Vijgenboom et al. 1994; Motamedi et al. 1995). The reference PermE 

including the tuf1 RBS was taken from pHM10a (Motamedi et al. 1995). This 

construct typically results in high levels of protein expression (van Wezel et al. 2000).

Promoter screening
All promoter sequences were cloned in pMU1S*_mmrt directly upstream of 

luxCDABE. S. lividans transformants containing the constructs with the lux genes 

under the control of one of the selected promoters were first screened by growing 

them in 96-well microtitre plates containing minimal agar medium supplemented 

with mannitol (1% w/v). Luminescence was measured at eight hour intervals over a 

period of 72 hours (Fig. S2). All putative promoter sequences that did not result in 

luminescence higher than 4000 cps during exponential growth were discarded. The 

seven strongest promoters were Psco0527, Psco1947, Psco3484, Psco3487, Psco4505, Psco4253 and Psco5591 

and these were selected for further analysis (Fig. 1A). The transformants were grown 

in liquid minimal medium supplemented with 0.5% mannitol and 0.5% glucose (Fig. 

1B). The luminescence was measured at 10 time points during exponential growth 

(14-23 hr) and normalized for biomass. Comparison of the luminescence/biomass 

values (14-20h) showed that four promoters had similar or higher strength than 

PermE, namely Psco1947 (about the same strength), Psco4253 (+33%), Psco5591 (+125%) and 

Psco3484 (+154%) (Fig. 1C). The other three promoters (Psco0527, Psco3487 and Psco4505) were 

discarded.
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Average luminescence/biomass 

14-20 hrs (%)
highest value (%)

PermE 100 100
Psco1947 108 145
Psco3484 254 308
Psco4253 133 114
Psco5591 225 179
negative control 3 0

Figure 1 Pre-screening of the selected promoters. The data for the seven strongest promoters are 
shown together with the luminescence of the benchmark PermE and the empty vector. The strains are 
grown on solid MM + 1% mannitol (A) and liquid NMMP + 0.5% mannitol and 0.5% glucose (B).

Table 2 Comparison of promoters PSCO1927, PSCO3484, PSCO4253 and PSCO5591 from liquid culture data between 
14 and 20 hr of growth. The luminescence obtained with PermE was set as 100%.
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Validation of the promoters
To assess if the promoters could potentially find application in expression vectors, the 

four selected promoters were used to drive the transcription of a small laccase gene, 

encoding SLAC of S. coelicolor (Machczynski et al. 2004). S. lividans transformants 

containing the different promoter-slac expression constructs were grown in liquid 

TSBS and samples were taken at 24 and 48 hr. The amount of SLAC present in the 

spent medium was determined by an in-gel enzymatic detection, visualizing the 

active SLAC fraction (Fig. 2A and C) and by Western blot analysis (Fig. 2B and D), 

reflecting the total protein produced.

The activity assay showed that Psco1947-slac resulted in SLAC activity comparable 

to PermE after 24 hr of growth, with an increase of 67% after 48 hr, while Psco4253-slac 

and Psco3484-slac resulted in slightly higher (+10%) or comparable expression of SLAC 

when enzyme levels were measured after 48 hr. Similar results were obtained with 

the Western blot analysis for Psco1947-slac construct. The total SLAC levels for PSCO4253-

slac and Psco3484-slac as detected in the Western blots are higher than those measured 

by the in-gel assay. So part of the enzyme produced in transformants with these 

constructs is not active. However, the difference between the protein production 

assays is much smaller after 48 hours of growth.  Nevertheless, it should be noted that 

Psco3484 was almost three-fold stronger when the transcriptional level was analyzed 

with the bioluminescence assay and that the transformants carrying Psco3484-slac were 

strongly retarded in growth. This might be explained by a metabolic imbalance, 

with a deviation of the flux towards heterologous protein production versus biomass 

formation, resulting in growth impairment (D’Huys et al. 2011). In addition, the 

promoter derived from rpsP (Psco5591) did not show any protein production despite 

the high transcriptional levels shown in the lux experiment. This difference might 

depend on the fact that the slac reporter is inserted in a multicopy vector while the 

lux construct is present in a single copy integrated in the genome. However, this 

demonstrates once more that promoters derived from ribosomal protein or rRNA 

genes typically are not suitable for use in multicopy expression vectors. 
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Figure 2 In-gel SLAC activity assay with DMPPDA 0.125 mg/ml and 1-naphtol 0.125 mg/ml (A) and 
Western blot with polyclonal antibodies raised in rabbits and GARAP as secondary antibody (B). The 
quantification of the signals corresponding to active SLAC as determined by the in-gel assay and the 
total amount fo SLAC as detected by Western blot are shown in panels C and D Band intensities were 
normalized for biomass and the amount of (active) protein obtained in the PermE construct was set at 
100%.
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The SLAC assays are all carried out on laboratory scale and in rich liquid 

medium, mimicking to some extend the conditions in industry were complex media 

are preferred. However, production pilots in a fermentation setup with optimized 

growth conditions and fermentation parameters are required to properly validate the 

potential of expression systems.

CONCLUSION

We have identified three promoters with potential use in expression systems. The 

transcriptional activity of these promoters could also be correlated to high level 

protein expression, using the versatile SLAC protein as a reporter. Currently, a 

limited number of promoter-vector combinations are available in Streptomyces. The 

promoters identified in this study are a welcome addition to the selection and will 

provide more flexibility for the design of protein production platforms. Further design 

of these new promoters by random or Selex methods as well as optimizing growth 

conditions should be employed to obtain even better levels of protein production.
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MATERIALS AND METHODS

Promoter amplification and cloning in lux constructs
A modified version of plasmid pMU1 (Craney et al. 2007) named pMU1S* (JR 

Nodwell, personal communication) was used in this study. All 15 promoter sequences 

were amplified by PCR with the S. lividans 1326 genome as template, except for 

Psco3484 and Psco3487, which were amplified from S. coelicolor M145 genomic DNA. The 

region to amplify was selected as a 200-300bp sequence upstream of the annotated 

translational start site for each gene, including the putative -35 and -10 regions. The 

ribosome binding site was identified and substituted by a 16 nucleotide linker and 

the RBS of tuf1 (TACAGAACCACTCCACAGGAGGACC) included in the reverse 

primer of each construct. The constructs and primers used in this study are listed 

in Table S3 and S4. The promoters were cloned in pMU1S*_mmrt as BamHI-NdeI 

fragments, generating 15 different lux constructs. These plasmids were introduced 

in S. lividans 1326 by protoplast transformation (Kieser et al. 2000). Transformants 

carrying the promoterless pMU1S*_mmrt plasmid were used as negative control and 

transformants carrying PermE as reference (benchmark).

Bioluminescence assay
Bioluminescence assays on solid media were performed in 96 well plates made of 

white polystyrene (Greiner-bio-one) filled with 200 µl of different media, including 

MS, R5 and Minimal Medium + 1% mannitol. Eight wells per construct were 

inoculated with 1000 spores and the plate was incubated at 30 ºC. Measurements 

of the eight replicates were done every 8 hr for 72 hr with a GloMax 96 Microplate 

Luminometer and luminescence is expressed in counts per second (cps).

For the assay in liquid cultures, one flask per construct carrying 50 ml of 

liquid minimal medium (NMMP + 0.5% mannitol and 0.5% glucose) was inoculated 

with 2.5*108 spores and incubated at 30 ºC in a shaking incubator. After 14 hrs of 

growth, sampling of each culture was done every hr up to 23 hrs of growth with 

eight replicates. A 1.5 mL sample was taken and the mycelium was harvested by 
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centrifugation and used for the biomass determination. The dry weight of each 

sample was determined after overnight drying at 100 0C. Eight samples of 100 µL 

were taken for the bioluminescence measurements. These samples were loaded in 

eight wells of a white polystyrene 96 well plate and bioluminescence was determined 

in a GloMax 96 Microplate Luminometer.

Plasmids for SLAC expression
The efficiency of the promoters in protein production was carried out with a selection 

of the four strongest promoters and PermE as reference. They were cloned as EcoRI-

NdeI fragments in plasmid pSLAC, carrying the ORF of slac (SCO6712) with an NdeI 

site overlapping with the translational start codon and 400 nucleotides downstream. 

The vector used is a modified version of pHJL401 lacking all NdeI sites (pHJL401N-). 

The constructs and primers used in this study are listed in Table S3 and S4. After 

protoplast transformation of S. lividans 1326, two independent transformants were 

used for the enzymatic assay. Transformants carrying the promoterless pSLAC 

plasmid were used as negative control.

SLAC/laccase in-gel activity assay
The transformants were grown in 10 ml TSBS with 25 µM Cu(II) and 2 µg/ml 

thiostrepton. About 5*107 spores were inoculated and the flasks incubated at 30 ºC 

in a shaking incubator. Samples of 1 ml were taken after 24 and 48 hr of growth, 

centrifuged for 10 min and the pellet incubated overnight at 100 ºC for dry weight 

determination. Ten µl of the supernatant were mixed with ten µl of SDS PAGE 

loading buffer without the addition of β-mercaptoethanol and loaded on a 12.5% 

polyacrylamide gel. Enzymatic activity was essentially determined according to Endo 

et al. (2003) and Machczynski et al. (2004). Following electrophoresis, the gel was 

soaked for 1 hr in 100 mM Na-phosphate buffer pH 6.8 at room temperature on 

a rocking platform and for 1 hr at 30 ºC. Subsequently, the subtrates, 0.125 mg/ml 

DMPPDA and 0.125 mg/ml 1-naphtol in phosphate buffer were added. SLAC activity 
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becomes visible within minutes as clear blue/purple bands in the gel. A digital image 

was taken and the band intensities were analyzed with the software ImageJ (Schneider 

et al. 2012). For the calibration curve, two to 25 µl of the most concentrated sample 

were loaded, revealing a linear range.

Western blot
Samples of the spent medium were mixed 1:1 with loading buffer including 

β-mercaptoethanol and heated at 95 0C for 4 minutes. Equal amounts of each sample 

were loaded on a 12.5% polyacrylamide SDS-PAGE gel. After electrophoresis, 

proteins were transferred to Hybond-P membrane (Amersham) using the Biorad 

blotting system. The membranes were washed with PBS and incubated in 5% low fat 

baby milk powder (Frisolac) in PBS for 30 minutes followed by overnight incubation 

with a 1:5000 diluted polyclonal antibodies raised against SLAC in rabbits. SLAC was 

detected using an anti–rabbit IgG alkaline phosphatase secondary antibody (sigma 

A8025), diluted 1:5000 and BCIP/NBT (5-Bromo-4-chloro-3-indolyl phosphate/

Nitro blue tetrazolium) as substrates. Band intensities were determined with ImageJ 

and the gel analysis option. Gels were standardized using 2 pmol of purified SLAC 

and one of the samples as internal controls in each Western Blot experiment. The 

amount of SLAC detected was normalized for the biomass (g/L). For the calibration 

curve, SLAC was purified as a N-terminal truncated form following expression in E. 

coli an stored as a 5 µM stcok at -20 0C (Machczynski et al 2004). Serial dilution were 

run on SDS PAGE followed by Western blotting. NBT/BCIP signals were quantified 

with ImageJ and the calibration curve showed a linear response up to 3 pmol of SLAC.
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S.coelicolor 
M145

S.lividans 
1326

RPKM Function

SCO4505 SLI4786 40657 Cold shock protein CspD

SCO4635 SLI4906 37093 LSU ribosomal protein L33p @ LSU ribosomal protein L33p, 
zinc-dependent

SCO4653 SLI4924 19581 LSU ribosomal protein L7/L12 (P1/P2)

SCO4662 SLI4936 17428 Translation elongation factor Tu

SCO3906 SLI4164 15191 SSU ribosomal protein S6p

SCO4652 SLI4923 14885 LSU ribosomal protein L10p (P0)

SCO6624 SLI6984 14184 hypothetical protein

SCO4725 SLI4994 12641 Translation initiation factor 1

SCO4716 SLI4985 11909 SSU ribosomal protein S8p (S15Ae)

SCO4721 SLI4990 11528 LSU ribosomal protein L15p (L27Ae)

SCO4702 SLI4971 10854 LSU ribosomal protein L3p (L3e)

SCO4717 SLI4986 10637 LSU ribosomal protein L6p (L9e)

SCO4713 SLI4982 10483 LSU ribosomal protein L24p (L26e)

SCO4296 SLI4533 10076 chaperonin GroEL

SCO4661 SLI4935 9424 Translation elongation factor G

SCO4701 SLI4970 9381 SSU ribosomal protein S10p (S20e)

SCO4711 SLI4980 9375 SSU ribosomal protein S17p (S11e)

SCO4730 SLI4999 9232 LSU ribosomal protein L17p

SCO3731 SLI3978 9099 Cold shock protein CspG

SCO4714 SLI4983 8983 LSU ribosomal protein L5p (L11e)

SCO3909 SLI4167 8730 LSU ribosomal protein L9p

SCO4706 SLI4975 8576 SSU ribosomal protein S19p (S15e)

SCO4659 SLI4933 8390 SSU ribosomal protein S12p (S23e)

SCO4709 SLI4978 8172 LSU ribosomal protein L16p (L10e)

SCO4719 SLI4988 8051 SSU ribosomal protein S5p (S2e)

SCO4720 SLI4989 8046 LSU ribosomal protein L30p (L7e)

SCO4660 SLI4934 8044 SSU ribosomal protein S7p (S5e)

SCO3908 SLI4166 7728 SSU ribosomal protein S18p @ SSU ribosomal protein S18p, 
zinc-dependent

SCO4704 SLI4973 7614 LSU ribosomal protein L23p (L23Ae)

SCO4708 SLI4977 7220 SSU ribosomal protein S3p (S3e)

SCO0527 SLI0486 7184 Cold shock protein CspA

SUPPLEMENTAL MATERIAL

Table S-1 The best expression hits obtained from RNA-Seq data ordered by expression level.
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SCO1998 SLI2315 7085 SSU ribosomal protein S1p

SCO4718 SLI4987 6987 LSU ribosomal protein L18p (L5e)

SCO4712 SLI4981 6979 LSU ribosomal protein L14p (L23e)

SCO4727 SLI4996 6970 SSU ribosomal protein S13p (S18e)

SCO4707 SLI4976 6742 LSU ribosomal protein L22p (L17e)

SCO2950 SLI3296 6658 Non-specific DNA-binding protein HBsu

Table S-2. Classification of sequences according to their similarities with the σ-70 like promoters. 
Known elements of regulation are listed.

SCO Gene # SLI Gene # -35/-10 regions 
(based on Strohl 
et al.)

-35/-10 regions 
(Softberry)

σ70-like 
promoter

Regulators

SCO4505 SLI4786 -160/-182 -60/-83 yes

SCO6624 SLI6984 -135/-161 - yes

SCO4296 SLI4533 -159/-183 - HrcA/CIRCE regulon 
(Duchene et al.  1994) 

SCO3731 SLI3978 - -57/-84 yes

SCO0527 SLI0486 - -

SCO2950 SLI3296 -149/-167 developmentally regulat-
ed (Salerno et al, 2009)

SCO4761 SLI5031 -131/-155 -133/-155 yes HrcA/CIRCE regulon 
(Duchene et al.  1994) 

SCO4253 SLI4489 - - controlled by SCO4263, 
BldA dependent (Kim et 
al, 2005)

SCO5591 SLI5878 -59/-83 -135/-184 yes

SCO1947 SLI2261 - -

SCO5367 SLI5636 - -

SCO4164 SLI4405 -140/-163 -

SCO7636 SLI7864 - -

SCO3487 - -61/-84 -61/-84 yes possible BldA regulation 
(Temuujin et al 2012)

SCO3484 - -134/-156 -96/-120 yes
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Figure S-1. Comparison of background light emission between pMU1S* and pMU1S*_mmrt on 
different solid media. An increase in emission can be observed starting at 30 hr for pMU1*, while 
pMU1S*_mmrt shows  a remarkable reduction in background.

Figure S-2. Pre-screening of the 15 selected promoters compared with the benchmark PermE and the 
empty vector. Transformants were grown on MM agar plates with mannitol (1% w/v).
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Name Sequence 5'-3' Restriction 
sites

mmrt FW GCG GAT ATC GAA CGC CGC AGC GCC GTC AC EcoRV

mmrt RV CGC GGA TCC GGT CGA TAC CCG GAG TGC GTG BamHI

4253F GCG GAA TTC GGA TCC GAC AGT CGA CAC AAG ACG TTG AAT C EcoRI-BamHI

4253R_RBS CGC AAG CTT CAT ATG GGT CCT CCT GTG GAG TGG TTC TGT AGGG 
TAC GAG ACA GGA CGC C

HindIII-NdeI

5591F GCG GAA TTC GGA TCC GGT CGG CGC GGG AAT GAG CTG EcoRI-BamHI

5591R_RBS CGC AAG CTT CAT ATG GGT CCT CCT GTG GAG TGG TTC TGT AGGT 
TTT GAC GTG GTT GGG CAC GG

HindIII-NdeI

1947F            GCG GAA TTC GGA TCC GAC GAG TGA ATC CCG GTG TGC G EcoRI-BamHI

1947R_RBS CGC AAG CTT CAT ATG GGT CCT CCT GTG GAG TGG TTC TGT AGGC 
CCG ATG TGC CGG CGA G

HindIII-NdeI

4505F GCG GAA TTC GGA TCC TCT TGA CCT CTG TTG CGC TCG G EcoRI-BamHI

4505R_RBS CGC AAG CTT CAT ATG GGT CCT CCT GTG GAG TGG TTC TGT AGTT 
GCC CTG CTC CAG AAC CAG

HindIII-NdeI

6624F GCG GAA TTC GGA TCC GTG CAG TAG AGT GAC TTG TGC TG EcoRI-BamHI

6624R_RBS CGC AAG CTT CAT ATG GGT CCT CCT GTG GAG TGG TTC TGT AGGT 
GGT GAG CAG GAA TGG TGG

HindIII-NdeI

4296F GCG GAA TTC GGA TCC CCC GAG AGG CGC TTG CAC TC EcoRI-BamHI

4296R_RBS CGC AAG CTT CAT ATG GGT CCT CCT GTG GAG TGG TTC TGT AGGT 
GAT TCC TTC GGA CCG CGC

HindIII-NdeI

3731F GCG GAA TTC GGA TCC GCC GTC CCG GGA ATA TTC CC EcoRI-BamHI

Table S-3. Plasmid used in this study

Name Description Reference

pMU1S* pIJ8660 derivative carrying the luxCDABE cluster from Photorhabdus 
luminescens

(derived from 
Craney et al., 2007)

pMU1S*_mmrt pMU1S* derivative with additional mmrT transcriptional terminator 
upstream of the MCS

This work

pTZ18R pUC18 derivative, E. coli cloning vector Pharmacia, Sweden

p18ERM pTZ18R carrying PermE from er gene of S. erythraeus + 16 nucleotide 
linker sequence and RBS of tuf1 from S. ramocissimus 

(derived from 
Motamedi et al., 
1995)

pHJL401 E.coli-Streptomyces shuttle vector, TsrR, AmpR (Larson and Her-
shberger, 1986)

pHJL401N- pHJL401 derivative without NdeI sites This work

pSLAC pHJL401N- carrying the slac gene and 400 downstream nucleotides 
from S. coelicolor cloned as EcoRI/NdeI-HindIII

This work

Table S-4. Oligonucleotides used in this study
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3731R_RBS CGC AAG CTT CAT ATG GGT CCT CCT GTG GAG TGG TTC TGT AGGT 
ACG GTG CTC GGA GTT CAC C

HindIII-NdeI

2950F GCG GAA TTC GGA TCC GGG TGC CGG ATT GGC TTT ACC EcoRI-BamHI

2950R_RBS CGC AAG CTT CAT ATG GGT CCT CCT GTG GAG TGG TTC TGT AGCC 
GTT GAG GCG TGC CAC

HindIII-NdeI

5367F GCG GAA TTC GGA TCC TGT GAA GTC CTG CTA TCG TCC G EcoRI-BamHI

5367R_RBS CGC AAG CTT CAT ATG GGT CCT CCT GTG GAG TGG TTC TGT AAGC 
GTG GCG CAT GGA TAC GG

HindIII-NdeI

4164F GCG GAA TTC GGA TCC ACG AAG CGG CGG GCA GTG EcoRI-BamHI

4164R_RBS CGC AAG CTT CAT ATG GGT CCT CCT GTG GAG TGG TTC TGT AGGG 
CGT GCG GTG AGA AGG

HindIII-NdeI

4761PF GCG GAA TTC GGA TCC TCG AGG ACG AGG CCG TCC EcoRI-BamHI

4761R_RBS CGC AAG CTT CAT ATG GGT CCT CCT GTG GAG TGG TTC TGT AGA 
CCT GCC CGT CGC GTA G

HindIII-NdeI

3487PF GCG GAA TTC GGA TCC CTC ATC TTG TCG TCG CAG CC EcoRI-BamHI

3487R_RBS CGC AAG CTT CAT ATG GGT CCT CCT GTG GAG TGG TTC TGT AAT 
CTG GGA AGG TGC GCA GAG G

HindIII-NdeI

3484PF GCG GAA TTC GGA TCC CGT CGA CCA GAT AGA GGG CC EcoRI-BamHI

3484R_RBS CGC AAG CTT CAT ATG GGT CCT CCT GTG GAG TGG TTC TGT AGAG 
CGT CGT TGC ATC GGG

HindIII-NdeI

7636PF GCG GAA TTC GGA TCC CCG GAA CTC CGC GGA GCC EcoRI-BamHI

7636R_RBS CGC AAG CTT CAT ATG GGT CCT CCT GTG GAG TGG TTC TGT ATA 
CGT GCA CGC CGC CCG G

HindIII-NdeI

0527F GCG GAA TTC GGA TCC CTC CGA CTC CGT GGG TGG ACT C EcoRI-BamHI

0527R_RBS CGC AAG CTT CAT ATG GGT CCT CCT GTG GAG TGG TTC TGT ACCG 
TTA TCG GAT TCG CAC CGC G

HindIII-NdeI
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ABSTRACT

SsgA-like proteins (SALPs) are a family of actinomycete-specific regulatory proteins 

that control sporulation-specific cell division and spore maturation in actinomycetes. 

We recently showed that SsgA and SsgB activate cell division by directly controlling 

the localization of FtsZ, while other SALPs have yet poorly characterized roles in 

morphogenesis and cell wall synthesis. Here we report the creation of null mutants for 

the genes encoding SsgA-like proteins SsgA, SsgB, SsgC, SsgD and SsgE, respectively, 

and show that ssgA and ssgB null mutants had a nonsporulating phenotype. Three 

alternative translational start sites for ssgA were analyzed, and it was established that 

of these, changing the first or the third codon into an ATC had a detrimental effect on 

development, whereby the first ATG is perhaps preferred over the third ATG codon. 

The ssgB null mutants of S. lividans lacked the large colony phenotype seen in S. 

coelicolor, which may reflect differences in the morphogenesis between these sister 

streptomycetes. Finally, enzyme production by several of the mutants was analyzed 

using the small laccase SLAC as a reporter.
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INTRODUCTION

Streptomycetes have a strong potential to adapt to diverse natural habitats. This is 

highlighted by the presence of more than 20 clusters specifying secondary metabolites, 

around 65 sigma factors and an unprecedented number of sugar transporters and 

polysugar hydrolases on their genomes (Bentley et al. 2002; Ikeda et al. 2003; Ohnishi 

et al. 2008). The study of Streptomyces development is carried out primarily on solid-

grown cultures, whereby the vegetative mycelium develops aerial hyphae which then 

produce chains of spores  (Chater 1972). Most developmental genes that control aerial 

development (the so-called whi genes) encode transcription factors (Chater 1972; 

Flärdh et al. 1999; Ryding et al. 1999). Aerial hyphae are by definition not produced 

in submerged culture. Nonetheless, several streptomycetes also produce spores in 

liquid cultures, such as S. griseus and S. venezuelae (Kendrick and Ensign 1983; 

Glazebrook et al. 1990). Some whi genes also play a role in submerged sporulation. 

For example, overexpression of the sporulation-specific σ-factor WhiG induces some 

submerged sporulation in liquid-grown mycelium of S. coelicolor (Chater et al. 1989), 

and deletion of a number of whi gene orthologues in S. venezuelae (i.e. whiA, whiB, 

whiD, whiG, whiH and whiI) resulted in a failure to sporulate on agar plates and 

in liquid-grown cultures (M.J. Buttner and M.J. Bibb, pers. comm.). This suggests 

significant overlap between the sporulation pathways under both conditions.

The SsgA-like proteins are a family of sporulation control proteins (Traag 

and van Wezel 2008; Jakimowicz and van Wezel 2012). SsgA was originally identified 

as a suppressor of a hyper-sporulating S. griseus mutant (designated SY1) and was 

shown to be essential for submerged sporulation (Kawamoto and Ensign 1995; 

Kawamoto et al. 1997). Overexpression of S. griseus SsgA in liquid-grown mycelium 

of S. coelicolor induced mycelial fragmentation and spore formation (van Wezel et al. 

2000a). The ability of SsgA to enhance fragmentation and also protein secretion was 

applied in industrial fermentations, revealing a significant improvement in yield and 

fermentation time (van Wezel et al. 2006). We recently discovered that SsgA acts by 

dynamically controlling the localization of its paralogue SsgB, which is a member of 
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the cell division complex in actinomycetes, and in turn recruits FtsZ to the septum 

sites to initiate sporulation-specific cell division (Willemse et al. 2011). This rare 

example of positive control of cell division explains the critical role of SsgAB in the 

sporulation process. The ssgA, ssgB and ssgG genes directly relate to the control of 

septum-site localization in S. coelicolor, with ssgA and ssgB essential for sporulation 

(van Wezel et al. 2000a; Keijser et al. 2003; Sevcikova and Kormanec 2003), while 

in ssgG mutants septa are frequently skipped, resulting in large spores containing 

multiple well-segregated chromosomes (Noens et al. 2005). The crystal structure of 

SsgB, which is the archetype of the SALP family and has functional orthologues in 

all sporulating actinomycetes, revealed a bell-shaped trimer with strong similarity to 

mitochondrial guide RNA binding proteins, although direct nucleic acid binding by 

SALPs is unlikely (Xu et al. 2009).

Here we look into the role of SALPs in Streptomyces lividans, studying the 

effect of deletion of either ssgA, ssgB, ssgC, ssgD or ssgE on growth and morphogenesis. 

An initial assessment of the ability of the mutants to produce enzyme is presented.
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RESULTS AND DISCUSSION

Functional heterogeneity in SsgA orthologues and the ssgA translational start

The differential activity of SsgA orthologues obtained from different Streptomyces 

species is still poorly understood. For example, overexpression of S. griseus SsgA in 

liquid-grown mycelium of S. coelicolor induces mycelial fragmentation (van Wezel 

et al. 2000b), while overexpression of orthologues from S. coelicolor or S. lividans 

does not have a major effect on liquid-culture morphology (van Wezel et al. 2006; 

van Wezel et al. 2009). Apparently, the effect of SsgA is dictated by its amino acid 

sequence. Indeed, it was recently shown that streptomycetes may be separated 

phylogenetically on the basis of the SsgA sequence, where six signature amino acid 

residues allow discrimination between streptomycetes that sporulate in submerged 

culture (LSp) and those that do not (NLSp) (Girard et al. 2013). 

Another controversy relates to the precise translational start site of ssgA. 

Alignment of the promoter regions of ssgA orthologues identified three alternative 

translational start sites, with the first and third possible ATG conserved in all 

species, including the putative ribosome binding site (RBS) upstream (Figure 1). 

These are therefore considered as possible alternative translational start sites. In all 

streptomycetes but S. ramocissimus, which contains duplication of the codons for 

VQA, the first and second ATG are separated by precisely 30 nucleotides, or ten 

possible codons. To further analyse which of the three alternative ATG start codons 

of ssgA may be used in vivo, clones were prepared with one of the respective ATG 

start codons mutated to an ATC codon (for isoleucine). For convenience, the three 

ATG triplets will be referred to as ATG(1), ATG(2) and ATG(3), for the first, second 

and third of the three candidate start codons, respectively. The S. griseus ssgA gene 

fully complements ssgA null mutants of S. coelicolor and the proteins have identical 

N-terminal regions (including the three ATG triplets). The introduction of ssgASg in 

the S. coelicolor ssgA null mutant allows us to test not only which start codons are 

important, but also what the effect is of the introduction of an SsgA with a “submerged 

sporulation signature” (LSp; (Girard et al. 2013)) on liquid-culture morphology.
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Figure 1. Multiple alignment of ssgA promoter regions. Only completely conserved nucleotides are 
shaded; nucleotides shaded in light grey refer to conserved purines. The two most likely start codons S1 
(ATG(1)) and S2 (ATG(3)) for ssgA and their respective ribosome binding sites (RBS1 and RBS2) are 
indicated below the aligned sequence. The ATG immediately upstream of start codon S2 (designated 
ATG(2) in the text) is most likely not a true translational start codon. The two transcriptional start sites 
and their respective -35 and -10 recognition sequences from S. griseus (Yamazaki et al. 2003)  and S. 
coelicolor (Traag et al. 2004) are underlined, where “A” refers to the p1 promoter from S. griseus, “B” to 
p1 from S. coelicolor or p2 from S. griseus, and “C” to p2 from S. coelicolor. The TGA stop codon for ssgR 
is indicated with an asterisk. The consensus amino acid sequence of the N-terminus of SsgA proteins is 
given above the aligned DNA sequences. Sequences were labeled by their strain of origin and abbreviated 
as follows: (S.albu) S. albus, (S.aver) S. avermitilis, (S.clav) S. clavuligerus, (S.coel) S. coelicolor, (S.coll) 
S. collinus, (S.dias) S. diastatochromogenes, (S.fili) S. filipinensis, (S.frad) S. fradiae, (S.livi) S. lividans, 
(S.gran) S. granaticolor, (S.gris) S. griseus, (S.rose) S. roseosporus, (S.ramo) S. ramocissimus, (S.scab) S 
scabies, (S.vene) S. venezuelae, (S.Wlb19) Streptomyces species Wlb19, (S.Che26) Streptomyces species 
Che26, (S.Gre54) Streptomyces species Gre54.
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Figure 2. Complementation of the ssgA null mutant.  Constructs carrying wild-type ssgRA or muta-
tions in the first (pGWS177), second (pGWS182) and third (pGWS183) predicted start codons were 
introduced in the mutant and their ability to restore sporulation assessed on MS medium. M145 and the 
ssgA null mutant GSA3 harbouring pHJL401 as control plasmid are also shown.

To obtain a construct for the ready cloning and expression of ssgA variants 

from the S. coelicolor promoter region, around 1.5 kb of the upstream and downstream 

regions of S. coelicolor A3(2) ssgA were amplified by PCR and cloned into the low-copy 

vector pHJL401, resulting in ssgA exchange construct pGWS174. The S. griseus ssgA 

variants with mutated translational start codons were then introduced in the ssgA 

exchange construct, resulting in pGWS177 (ssgA-ATG(1)→ATC), pGWS182 (ssgA-

ATG(2)→ATC), and pGWS183 (ssgA-ATG(3)→ATC), respectively. In this way, the 

ssgA gene of S. griseus (or mutants thereof) is expressed from the natural S. coelicolor 

promoter region. The ssgR gene was included as read-through occurs into ssgA from 

a promoter upstream of ssgR (Traag et al. 2004; van Wezel et al. 2000a). pGWS178, 

which carries a 27 nt in-frame deletion rendering ssgA inactive (Kawamoto et al. 

1997) was used as negative control, while pGWS176 (carrying wild-type S. griseus 

ssgA) and pGWS32 (wild-type S. coelicolor ssgA; (Traag et al. 2007)) were used as 

positive controls. All constructs were introduced into the S. coelicolor ssgA mutant 

GSA3, and their ability to complement the non-sporulating phenotype of the ssgA 

null mutant was assessed. 
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The phylogenetic evidence (Figure 1) and its location relative to the upstream 

RBS, with only three nucleotides spacing (instead of the canonical 6-9 nt), apparently 

ruled out the second ATG as possible start codon. Indeed, sporulation was fully 

restored to ssgA mutants by the expression of ssgA-ΔATG(2), strongly suggesting that 

ATG(2) is not used as translational start codon (Figure 2). Mutation of ATG(3) - which 

in contrast to ATG(2) is completely conserved in all Streptomyces ssgA genes - did not 

dramatically affect sporulation, although less grey spore pigment was observed for 

GSA3 transformants harbouring this variant than for the transformants expressing 

wild-type S. griseus ssgA or ssgA-ATG(2)→ATC. No complementation of sporulation 

was observed when ssgA-ATG(1)→ATC was introduced in the S. coelicolor ssgA null 

mutant, and this should therefore be regarded as the primary start codon for ssgA, at 

least in surface-grown cultures on MS agar plates. Interestingly, when the same ssgA-

ATG(1)→ATC was introduced in multiple copies, using pWHM3 instead of the low-

copy vector pHJL401, sporulation was fully restored to the ssgA null mutant (data not 

shown). Apparently, ATG(3) is a less efficient start codon or full length SsgA (145 aa) 

is more effective in activating sporulation than the truncated SsgA (135 aa) .

Construction of null mutants of the cell division genes ssgA and ssgB in S. lividans

We then wondered if indeed the function of the cell division proteins SsgA and 

SsgB was the same in S. coelicolor and S. lividans. Firstly, an ssgA null mutant was 

created by replacement of the coding region of the gene by the apramycin resistance 

cassette aacC4, which confers resistance to apramycin, using the instable multi-copy 

vector pWHM3 as described previously (Colson et al. 2008). S. lividans 1326 was 

transformed with the disruption construct pGWS175 followed by several rounds of 

nonselective growth to allow loss of the vector. Double recombinants were selected 

by replication of the colonies to MS agar plates containing either apramycin or 

thiostrepton as selective markers, whereby double recombinants should be resistant 

to apramycin (gene replacement) and sensitive to thiostrepton (due to loss of the 

pWHM3 vector sequences). The putative mutant colonies were verified by PCR 

amplification with oligonucleotides flanking the ssgA gene. This showed that all 
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In S. coelicolor, deletion of the gene for SsgB result in an unconditionally 

white (nonsporulating) phenotype on all media, resulting in the formation of long 

aseptate aerial hyphae (Keijser et al. 2003). Interestingly, the ssgB mutant colonies 

have a large colony phenotype, which grow on to form very large colonies as compared 

to those formed by the wild-type strain. This suggests that SsgB not only controls 

cell division, but may also be involved in the correct timing of growth cessation, 

which is an important checkpoint for the initiation of aerial growth (Chater 2001). To 

establish the role of ssgB in cell division and growth in S. lividans, a null mutant was 

created in similar fashion as for ssgA, by replacing the entire coding sequence of the 

gene (nt positions -6/+469 relative to the translational start of ssgB) by the apramycin 

resistance cassette aacC4 that was flanked by loxP sequences to allow the removal 

of the cassette after double recombination. Subsequently, the apramycin resistance 

cassette was excised following introduction of plasmid pUWLcre (Fedoryshyn et al. 

2008) expressing the Cre recombinase that recognizes the loxP sites, thus leaving an 

in-frame deletion of the gene except for a scar sequence as a result of the joined loxP 

sites. 

Figure 3. Phenotypic analysis of the S. lividans ssgA mutant and complementation with wild-type 
ssgA. The strains were incubated for five days at 300C on MS agar plates. 

correct double recombinants have a white (nonsporulating) phenotype, similar to 

ssgA null mutants of S. coelicolor (Figure 3). The mutant phenotype of the ssgA null 

mutant of S. lividans could be restored to sporulation by the introduction of a wild-

type copy of ssgA in the low-copy number vector pHJL401 (Figure 3). 
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Expectedly, colonies had a whi mutant phenotype, failing to sporulate in 

surface-grown culture, and regardless of what media were used (Figure 4). However, 

in S. lividans a large colony phenotype (LCP) was not observed. This suggests that 

these two functions - sporulation and LCP - are not functionally coupled. However, 

this cannot be due to intrinsic functional differences between the ssgB orthologues of 

S. coelicolor and S. lividans, as the genes are identical at the nucleotide level. 

Deletion of ssgC, ssgD and ssgE in S. lividans

In similar fashion as described for ssgB, deletion mutants were also prepared for ssgC, 

ssgD and ssgE. For ssgC, the +1 to +425 region was removed, for ssgD +1/+408, and 

for ssgE -7/+367. The precise function of SsgC, SsgD and SsgE is less clear. SsgC was 

suggested to be involved in septum formation and peptidoglycan maintenance and the 

mutant in S. coelicolor has a phenotype that is more or less the inverse of that of ssgA 

null mutants, with increased septation for null mutants, while overexpression results 

in inhibition of cell division. Therefore, it was proposed that SsgC may function as 

an antagonist of SsgA (Noens et al. 2005). In addition, S. coelicolor ssgC null mutants 

produced long spore chains with spores of variable length. Direct orthologues of ssgC 

have only been found in streptomycetes of the NLSp branch (species that do not 

sporulate in submerged cultures), which invariably have a low SsgA expression level 

(Girard et al. 2013). As published previously for S. coelicolor, colonies of deletion 

mutants of ssgC in S. lividans also gave a dark grey phenotype on MS agar plates, 

and showed enhanced production of the antibiotic actinorhodin on R5 agar plates 

with added copper (Figure 4). No major effect on septum formation was observed in 

S. lividans, although closer examination is required, for example by high resolution 

transmission electron microscopy.

SsgD is the only SALP that is highly expressed during vegetative growth, and 

ssgD null mutants of S. coelicolor show major defects in lateral cell wall synthesis; it 

was therefore suggested to play a role in the synthesis of the lateral cell wall, perhaps 

by enabling the proper function of one or more penicillin binding proteins (PBPs), 

such as PBP2 (Den Blaauwen et al. 2003; Errington et al. 2003). The ssgD mutant of 
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S. coelicolor shows defects in integrity of the hyphae and spores, whereby the spores 

have a significantly thinner peptidoglycan layer than those of the wild-type strain. 

Deletion of ssgD in S. lividans resulted in mutants with reduced sporulation on R5 

agar plates and normal sporulation on MS agar plates (Figure 4). SsgE was previously 

reported as being involved in spore maturation in S. coelicolor, with hypersporulation 

and in particular the formation of single spores rather than spore chains, suggesting 

accelerated autolytic spore separation. However, major differences between ssgE null 

mutants and the parental strain were not observed (Figure 4). The phenotypes of the 

mutants are currently being investigated in more detail and should reveal the extent 

of the morphological changes. Furthermore, growth curves should be carried out 

under different conditions to check for the phenotype of the mutants in liquid-grown 

cultures.

Figure 4. Phenotypic analysis of S. lividans mutants ΔssgB, ΔssgC, ΔssgD and ΔssgE. wt, S. lividans 
1326. The strains were incubated for five days at 300C on R5 agar (left) or MS agar (right). 

Enzyme production in selected mutants

The ssgB, ssgC, ssgD and ssgE mutants, together with the cslA and glxA mutants 

(Chapter 3), were tested for productivity using the small laccase SLAC as a reporter 

enzyme. Laccases are multicopper oxidases with a wide variety of substrates in 

nature. A small laccase (SLAC) has been characterized in S. coelicolor (Machczynski 

et al. 2004) and the gene was inserted in the low copy number vector pHJL401 under 

the control of the strong constitutive promoter PermE to generate PermEslac (see Chapter 

6 of this Thesis). The reproducibility of the assay using a gel-based system makes it a 

suitable reporter for this study. The assays were performed as described in Materials 

and Methods. 
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Figure 5. (A) Phenotype of SLAC-producing strains after 48 hrs growth in liquid TSBS. All strains 
harboured plasmid PermEslac. S. lividans 1326 was the parent for all mutants. (B) In-gel laccase activity 
assay performed on samples obtained from 24 hrs (top) and 48 hrs (bottom). Activity in the ssgC 
mutants was zero (data not shown). (C) Quantification of the signals corresponding to active SLAC 
as determined by the in-gel assay. Band intensities were normalized for biomass and S. lividans 1326 
harbouring PermE construct was set at 100%.
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The experiments were carried out in duplicate, with samples taken at 24 

and 48 hrs, analyzed on gel for their activity and normalized for dry weight. The 

phenotypes of the transformants were analyzed after 48 hrs of growth in TSBS cultures 

(containing 5 μg/ml thiostrepton for plasmid maintenance). This showed that ssgC, 

ssgD and ssgE null mutants had a phenotype similar to that of the parental strain 

1326, while ssgB mutants harbouring the plasmid expressing laccase grew poorly and 

produced small pellets. In accordance with the experiments presented in Chapter 3, 

transformants of cslA and glxA mutants grew fast, forming open mycelial structures, 

often referred to as mycelial mats (Figure 5A).

In terms of laccase production, there was strong variability between the two 

independent transformants, for wild-type (in particular after 24 hrs of growth) and 

in particular also for the mutants. The ssgB mutant not only grew slowly but also 

produced only small amounts of the laccase per gram of biomass, while ssgD and 

ssgE mutants on average produced similar amounts of laccase as the parent but with 

strong variability in production between transformants (Figure 5B and C). Enzyme 

activity in the ssgC mutants was zero and will need to be confirmed further (data 

not shown). Transformants of the cslA and glxA mutants, which produced open 

mycelial mats and grew fast (Figure 5A) produced only small amounts of laccase, 

and in particular cslA mutants had completely lost their ability to produce laccase 

after 48 hrs of growth. This is most likely due to poor stability of the plasmid in the 

mutants at times when the thiostrepton pressure drops. This is supported by the fact 

that following sporulation on MS plates, more than 80% of the spores do not contain 

plasmid (unpublished results). This loss of plasmid may tentatively be explained by 

lack of a protective layer of the CslA-dependent polysaccharide at apical sites, resulting 

in plasmid leakage. This interesting phenomenon needs to be analyzed in more 

detail. Finally, the high variation in productivity between individual transformants 

is typical of streptomycetes and underlines the need to analyze a large amount of 

transformants, for example by prescreening using high throughput systems, such as 

using 96 well microtitre plates.  

In conclusion, mutants deleted for the genes encoding SsgA-SsgE were 

created, whereby ssgA and ssgB null mutants had the same nonsporulating phenotype 
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as seen for S. coelicolor. The alternative translational start sites for ssgA were analyzed, 

which showed that two alternative start sites are used, whereby the first ATG may 

be preferred, with less frequent use of the third ATG. Changing the second ATG 

codon (annotated as the start codon in S. coelicolor) into an ATC had no effect on 

morphogenesis, and therefore most likely does not function as a start codon for 

translation. The ssgB null mutants lacked the large colony phenotype seen in S. 

coelicolor, which was unexpected and also unfortunate as an ‘immortal’ phenotype of 

ssgB null mutants seems like a promising phenotype from the perspective of growth 

during fermentations. More extensive study of the mutants, both phenotypically 

by various microscopy methods and in terms of growth and enzyme production, 

is required to assess the role of the SALPs in morphogenesis and productivity of S. 

lividans. 
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MATERIAL AND METHODS

Strains and media
The parent of all strains described in this study was S. lividans 1326 (also known 

as S. lividans 66; stock number 1326 from the John Innes Centre (Hopwood et al. 

1985). Escherichia coli JM109 was used for routine cloning and plasmid amplification 

(Messing et al. 1981). For growth and phenotypic characterization, soy flour mannitol 

(Ms) agar plates, R5 agar plates supplemented with 10µM copper or minimal medium 

(MM) agar plates with 1% (w/v) mannitol were used. For liquid-grown cultures, 

liquid minimal medium (NMMP) supplemented with 1% mannitol or tryptic soy 

broth with 10% sucrose (TSBS) were used (Kieser et al. 2000). E. coli strains were 

routinely grown on Luria-Bertani medium (LB). 

Constructs Description

pWHM3 Multi-copy shuttle vector, colE1 replicon, pSG5 replicon, TsrR, AmpR (Vara et al. 1989)

pHJL401 Low-copy shuttle vector, SCP2*, pUC19 replicon, TsrR, AmpR (Larson and Hershberger 1986)

pGWS174 pHJL401 with 1.5 kb of the upstream (including ssgR) and 1.5 kb of the downstream region of S. 
coelicolor ssgA

pGWS175 pWHM3 harbouring the insert of pGWS174 and an apramycin resistance cassette cloned between 
the 1.5 kb flanking regions

pGWS176 pGWS174 containing ssgAsg-WT

pGWS177 pGWS174 containing ssgAsg- ATG(1)→ATC

pGWS178 pGWS174 containing ssgAsg with a 27 bp SacI in-frame deletion (Kawamoto et al. 1997)

pGWS182 pGWS174 containing ssgAsg- ATG(2)→ATC

pGWS183 pGWS174 containing ssgAsg- ATG(3)→ATC

pGWS32 pHJL401 containing 2kb ssgRA region of S. coelicolor (Traag 2004)

Table 1. Constructs used in this study. 

Plasmids and constructs
All constructs used in this study are presented in Table 1. The gene replacement 

mutants were obtained by cloning the flanking regions of the genes with the 

apramycin resistance cassette aacC4 flanked by loxP sites in the unstable multi-copy 

vector pWHM3 (Vara et al. 1989) as described previously (van Wezel et al. 2005). 
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The flanking regions were (nucleotide positions are relative to the translational start 

of the genes): ssgB -1500/-7 and +470/+1968; for ssgC -1497/-1 and +426/+1920; for 

ssgD -1494/-1 and +409/+1917; for ssgE -1500/-8 and +368/+1881. To obtain the 

deletion mutants, the antibiotic cassettes were removed by the Cre-lox recombinase 

using plasmid pUWLcre (Fedoryshyn et al. 2008), leaving a scar loxP site flanked by 

XbaI restriction sites. All the primers are presented in Table 2.

Laccase assay
The SLAC gene from S. coelicolor (Machczynski et al. 2004) was cloned in the low 

copy number vector pHJL401 (Larson and Hershberger 1986; van Wezel et al. 2000c) 

under the control of the strong constitutive promoter PermE as described in Chapter 

5 of this Thesis. Each mutant was transformed with the construct and the spores 

harvested. 107 spores were inoculated in 10 ml TSBS supplemented with 25µM copper 

and 2 µg/ml thiostrepton and grown at 30 ºC for 48 hrs. Alternatively, mycelium 

was harvested from two MS plates and inoculated in the case of the non sporulating 

strain ΔssgB. The experiment was carried out in duplicate, with 1 ml sample per 

transformant taken at 24 and 48 hrs and centrifuged for 10 min at 14000 rpm. The 

pellet was incubated overnight at 100 ºC for dry weight determination, while 10 µl of 

the supernatant were mixed with an equal volume of SDS-PAGE loading buffer and 

loaded on a 10% acrylamide gel. The gel was incubated for 1 hr in 100mM phosphate 

buffer pH 6.8 at room temperature on a rocking platform refreshing the buffer every 

20 min and for an additional hr at 30 ºC. The activity assay is based on the conversion 

of N-N-Dimethyl-p-phenylenediamine (DMPPDA) into a dark blue precipitate. The 

gel is therefore incubated with 0.125 mg/ml DMPPDA and 0.125 mg/ml 1-naphtol 

until the appearance of the signal. The intensity of the bands is directly proportional 

to the amount of protein and can be quantified with the software ImageJ. 



121

Functional analysis of the SsgA-like proteins in S. lividans 1326

SUPPLEMENTAL MATERIAL

Name 5'-3'sequence Restriction sites

ssgB-1500F CGCAGATCTCCCGCATC ACCTG CCGC BglII

ssgB-7RV GCGTCTAGAACATGCCACCTACGGTGCCG XbaI

ssgB+470F CGCTCTAGAGAAAGCTAGGGCGGGGCCTC XbaI

ssgB+1968RV GCGAAGCTTGGTGGCACCCGCAAGCAGCG HindIII

ssgC-1497F GCGGAATTCCGCGTACCGGGTGGTCTTCGG EcoRI

ssgC-1RV CGCTCTAGAGGGGGCCTCCAGCAGGAC   XbaI

ssgC+426 GCGTCTAGATGAACCGCCCGGGCCGGC XbaI

ssgC+1920RV CGCAAGCTTGTCCGGCCTGCTGACCGG       HindIII

ssgD-1494F CGCGAATTCTGATGTGCTCGTACTGCCGC EcoRI

ssgD-1RV GCGTCTAGACGCCTTGCTCCCTCGTGAC XbaI

ssgD+409F CGCTCTAGAGCTGCTGACCGGCTCCCG XbaI

ssgD+1917 GCGAAGCTTGCCAGCCGCAGCAGCACC HindIII

ssgE-1500F CGCGAATTCGAGCACCGCGAAGGCGAC EcoRI

ssgE-8RV GCGTCTAGACCCTTACGCTCTGCCACCTG XbaI

ssgE+368F CGCTCTAGAGGTGGCCCACTGAGCCGC XbaI

ssgE+1881RV GCGAAGCTTAGCGGTTCCTGACCGCCTG HindIII

Table S1. Oligonucleotides used in this study. 
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GENERAL DISCUSSION

Enzymes play a very important role in industrial biotechnology, and where possible 

are applied to replace the more traditional chemical synthesis processes. This has led to 

what is generally referred to as “the bio-based economy”. Examples of enzymes include 

amylases and glucose isomerases that are used in the starch industry, cellulases and 

xylanases in the paper industry, lipases for detergents, and peroxidases and laccases 

for, among others, bleaching denim. In addition, many therapeutic proteins are 

produced in the fermentation industry, typically in heterologous hosts, which started 

with the production of growth hormone in 1985. The increasing demand for energy 

from clean sources as a result of exhaustion of natural sources and an ever expanding 

world population has shifted the attention to more sustainable alternatives, namely 

the second generation biofuels, which are obtained via conversion of waste sugars 

into bioethanol and require a variety of degrading enzymes for the process. 

The constant increase in the need of enzymes and new hosts for production 

has again brought Streptomyces in the spotlight. Streptomyces are well known as 

antibiotic producers, and were recently referred to as the medicine makers by Sir 

David Hopwood (Hopwood 2007). However, as saprophytic microorganisms, 

streptomycetes recycle all biologically occurring biopolymers, aimed at obtaining the 

necessary nutrients (Chater et al. 2010), whilst secreting antibiotics to compete with 

other microorganisms (van Wezel and McDowall 2011). The utilization of complex 

polysaccharides such as cellulose, chitin, starch, xylan, agar and lignin is possible 

due to the production of a massive arsenal of hydrolytic enzymes that are attractive 

for industry. Moreover, some species, such as the preferred host for the production 

of industrial enzymes Streptomyces lividans, couple high secretion to low proteolytic 

activity and thus prove to be a valuable alternative for the production of a variety of 

proteins when compared to traditional bacterial hosts (Anné et al. 2012). 

Despite advances that have been made in the past, streptomycetes are still 

relatively unattractive production hosts. This is primarily due to their mycelial life 

style, which results in slow growth and mass transfer problems, with oxygen and 
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nutrient limitation inside the mycelia as a result (van Wezel et al. 2006). In liquid-

grown cultures, such as during industrial fermentation, the intricate network of 

vegetative hyphae forms dense aggregates of different sizes (Pamboukian et al. 2002) 

with oxygen as the limiting nutrient (Celler et al. 2012). In these pellets, only the outer 

layer is metabolically active (Manteca et al. 2008). Moreover, the mycelial behavior 

causes high viscosity in the culture, problems in oxygen and nutrient transfer and 

limits the stirring speed to avoid cell lysis (Meyerhoff et al. 1995). Secondly, in 

contrast to the preferred production platforms, the molecular biological tools and 

expression systems are still relatively limited. Within the frame work of the ERA-

Industrial Biotechnology (ERA-IB) project EPOS, funded by NWO-ACTS, new 

ways were explored to optimize Streptomyces lividans and to develop new vectors for 

efficient protein production. 

The factors involved in pellet formation in Streptomyces have been partially 

identified, although the global mechanism remains unknown. Hyphal aggregation 

is linked to the formation of an extracellular matrix via cell surface proteins such 

as the chaplins (Claessen et al. 2003; Elliot et al. 2003) and a cellulose synthase-like 

protein CslA (Xu et al. 2008). The chaplins form amyloid structures (Sawyer et al. 

2011; Bokhove et al. 2013) which organize into a network, perhaps in conjunction 

with the polysaccharide synthesized by CslA, and allow attachment of the hyphae 

to surfaces (de Jong et al. 2009). Deletion of either the chaplin genes or cslA leads 

to pellets of reduced size or open mycelial structures in liquid cultures (Xu et al. 

2008; van Veluw et al. 2012). Another protein that influences pellet aggregation is 

SsgA. As a cell division protein responsible for septum localization and initiation 

(Jakimowicz and van Wezel 2012), its overexpression leads to hyper septation and 

fragmentation in liquid cultures with consequent higher enzyme production (van 

Wezel et al. 2006), perhaps due to the increase of the number of tips, which are active 

sites for secretion (Willemse et al. 2012). Changing Streptomyces morphology through 

a rational genetic approach is an attractive concept. This guided the investigation 

to study in more detail the function of CslA and its functional partner, a copper 

oxidase GlxA, and the effect on liquid morphology of null mutants in S. lividans. 
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Moreover, analysis of global transcript profiles by RNA-seq of cslA and glxA mutants 

identified novel proteins potentially involved in morphogenesis. Considering their 

major impact on mycelial morphology, a pilot study was initiated to study the effect 

of the ssg genes in S. lividans, to see if this could potentially be an attractive target for 

altering mycelial morphology and protein production. Therefore, several ssg genes 

for SsgA-like proteins (SsgA-G) were deleted to analyze the phenotype of the mutants 

and compare it to the data obtained in S. coelicolor (Traag and van Wezel 2008). This 

showed similarities but also some noteworthy differences between S. lividans and S. 

coelicolor, which should be analyzed in more detail in the future.

The data presented in this thesis show that both CslA and GlxA are required 

for the synthesis and correct deposition at the hyphal tips of a polysaccharide 

involved in matrix formation, aerial development on rich media, agar invasion 

and pellet aggregation. That means the proteins have a major impact on the 

morphology of the mycelia. We were able to detect thin fibrils of the polysaccharide 

with a fluorescent chitin binding protein as probe, which suggests that the glycan 

may at least in part consist of chitin. This represents a novel aspect in Streptomyces 

morphology, and is a feature more akin to the fungal cell wall than to that of bacteria 

(Bowman and Free 2006). The localization of CslA and GlxA to in particular the 

hyphal tips again stresses that this may be a hub for the expression proteins involved 

in growth and development (Holmes et al. 2013). RNA-Seq analysis of the cslA and 

glxA null mutants revealed that a cluster of 17 adjacent genes (SCO4242-SCO4260 

and SLI_4479-SLI_4495) showed a two- to five- fold increase in the mutants. The 

function of these genes in bacteria is not known, but their products show similarity 

with phage tail proteins and a role in virulence and biofilm formation has been 

suggested in some species (Chen et al. 2010; Ghosh et al. 2012; Du et al. 2012). It is 

intriguing that one or more of these proteins may assemble into amyloid-like fibrils, 

which have an important role in Streptomyces morphogenesis (Claessen et al. 2003; 

de Jong et al. 2009; Gras and Claessen, 2014). In a recent study in our laboratory on 

the spontaneous nonpelleting mutant S. lividans 1326MR, phage tail proteins were 

also among the most significantly deregulated proteins (D. van Dissel and G.P. van 
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Wezel, unpublished), and this further supports the notion that these proteins may 

be pivotal for maintaining the typical pellet morphology. More extensive analysis 

of these proteins is required to establish their precise function and if indeed these 

proteins may be a target for strain engineering. One important aspect of this work 

that awaits to be resolved is the exact nature of the polysaccharide produced by the 

concerted action of CslA and GlxA. Fibrils that were suggested to consist of cellulose 

were previously identified as dependent on CslA in S. coelicolor (de Jong et al. 2009) 

and, although it is known that bacteria can synthesize polysaccharides with different 

composition according to the growth conditions (Lee et al. 2001), characterizing the 

polysaccharide in detail will be of great interest for both basic and applied research. 

Moreover, it will be compelling to unravel the links between CslA, GlxA and all the 

proteins described so far as involved in matrix formation, aerial development and 

pellet aggregation, namely the chaplins, SapB and HyaS, in addition to identifying the 

specific role of the phage tail related proteins in this organism.

In addition to the study of genes involved in matrix formation, several genes 

belonging to the SALP group were also analyzed for their involvement in cell division 

and morphology. Mutants of the ssg genes ssgA, ssgB, ssgC, ssgD and ssgE were studied 

in S. lividans and compared to the corresponding S. coelicolor mutants, demonstrating 

functional overlaps but also some differences between the function of the genes in 

the two strains. This awaits further analysis.

Besides the analysis of genes involved in the control of morphogenesis, 

a search was also initiated for new strong and constitutive promoters for use in 

Streptomyces expression vectors that should allow higher level expression of industrial 

enzyme genes. Through the analysis of in-house transcription data (RNA-Seq and 

microarray data obtained previously), three promoters were identified, namely 

PSCO1947, PSCO4253 and PSCO3484, with higher or comparable strength than the benchmark 

PermE and validated for the production in S. lividans of a small laccase SLAC from 

S. coelicolor. This represents an improvement in respect to reported studies, which 

failed to produce promoters stronger than the currently known ones (Seghezzi et al. 

2011). 
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Based on the data described in this thesis as well as in the literature, advances 

can be envisioned for both morphology and expression systems. As mentioned 

previously, Streptomyces are able to decompose various substrates such as chitin, 

cellulose, lignin and xylan to obtain nutrients (Chater et al. 2010). Their capacity as 

hosts would be therefore exploited at best in the production of these proteins, with 

clear advantages, for example, in the production of second generation biofuels. 

The most effective change in morphology has so far been achieved by the 

overexpression of the SsgA  protein, which enhances cell division resulting in mycelial 

fragmentation, which leads to enhanced expression and secretion of proteins (van 

Wezel et al. 2006). However, other mutants with an open mycelial morphology might 

present good alternatives, either in terms of producing higher yield per kg of biomass, 

as well as in improving the secretion efficiency. This is among others achieved by 

increasing the number of apical sites, as this is the place in the mycelia where secretion 

may primarily take place (Willemse et al. 2012). Targeting cell surface (Claessen et al. 

2006) or cytoskeleton-related genes (Celler et al. 2013) should be considered and in 

particular the application of cslA and glxA need to be analyzed further. For example, 

while deletion mutants produce less dense pellets, we do not have sufficient insight 

into the stress resistance of the hyphae that lack the CslA-produced polysaccharide. 

Such stress resistance is also an important factor during industrial fermentations 

as extensive lysis in the often heavily stirred cultures would be detrimental for the 

production process. 

New ways need to be found to create a morphology that circumvents viscosity 

issues while allowing high growth rate and maintaining production and secretion 

capacity. Preliminary studies have shown that null mutants of sco1, encoding the 

copper chaperon suggested to deliver the metal to GlxA, show the same open mycelial 

phenotype as glxA null mutants, while the addition of copper to the medium restores 

pellet growth. Perhaps positioning glxA under the control of an inducible promoter 

is an option as it will allow temporally changing the expression of the gene without 

disrupting the production of the structural polysaccharide during growth phases 

where this is undesirable. 
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In terms of expression vectors, the development of tailor-made promoter-

expression combinations for expression of genes in Streptomyces is continuing to 

be an important issue. Such an expression system should encompass a stable multi-

copy vector, a strong constitutive or inducible promoter, an efficient ribosome 

binding site such as that for the elongation factor EF-Tu (Vijgenboom et al. 1994) 

and a signal sequence for efficient secretion, such as vsi or xlnC (Schaerlaekens et 

al. 2004; Pimienta et al. 2007). In terms of promoter sequences, this thesis revealed 

the possible applicability of  the promoters PSCO1947, PSCO3484 and PSCO4253 for strong 

and constitutive gene expression. To further improve their transcriptional activity, 

random mutagenesis and/or SELEX methods (Zimmermann et al. 2010) should 

be investigated. Thus, the thesis presents new ideas towards developing enabling 

technologies for the improved production of enzymes by Streptomyces in general 

and by S. lividans in particular. The availability of the S. lividans genome sequence 

is thereby very useful for among others genomics-based global strain improvement 

approaches. For example, production hosts have been generated by random strain 

improvement programs over the years, by companies that use Streptomyces for 

industrial enzyme production. Comparison of these strains by genomics approaches 

should reveal new genes that correlate to the achieved improved productivity. Such 

novel insight in combination with a morphology-optimized host and excellent 

expression systems should make streptomycetes a preferred industrial platform for 

heterologous protein production.
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NEDERLANDSE SAMEVATTING

Enzymen spelen een belangrijke rol in de Biotechnologie industrie waar ze indien 

mogelijk toegepast worden om de traditionele chemisch synthetische processen te 

vervangen. Dit heeft geleid tot wat nu in het algemeen de “bio-based economy” wordt 

genoemd. Voorbeelden van deze enzymen zijn: amylasen en glucose isomerasen die 

gebruikt worden in de zetmeelindustrie, cellulasen en xylanasen in de papierindustrie, 

lipasen in waspoeders en peroxidasen en laccasen in ondermeer het blekingsproces 

van denim. Verder zijn er vele therapeutische eiwitten die geproduceerd worden in 

de fermentatie-industrie, over het algemeen in heterologe gastheren. De productie 

van groeihormoon in 1985 is één van de eerste voorbeelden. De toegenomen vraag 

naar energie uit schone grondstoffen als gevolg van de uitputting van natuurlijke 

bronnen en de zich alsmaar uitbreidende wereldbevolking, heeft de aandacht verlegd 

naar meer duurzame alternatieven zoals de tweede generatie biobrandstoffen. Deze 

energiebron wordt verkregen via de omzetting van o.a. plantaardig agrarisch afval in 

bio-ethanol waarvoor een diversiteit aan enzymen nodig is.

De constante toename in de vraag naar enzymen en nieuwe gastheren voor 

hun productie heeft de filamenteuze bacterie Streptomyces weer naar de voorgrond 

gebracht. Streptomyceten zijn bekend als antibiotica producenten en zijn aangeduid 

als de “medicine makers” door Sir David Hopwood (Hopwood 2007). Echter, 

streptomyceten hergebruiken als saprofytische micro-organismen alle biopolymeren 

om de benodigde nutriënten te verkrijgen (Chater et al. 2010) en scheiden 

tegelijkertijd antibiotica uit om de strijd aan te gaan met andere micro-organismen 

(van Wezel en McDowal 2011). Hun gebruik van complexe polysacchariden zoals 

cellulose, chitine, zetmeel, xylaan, agar en lignine is mogelijk vanwege de productie 

van een zeer grote verscheidenheid aan hydrolytische enzymen die ook aantrekkelijk 

zijn voor de industrie. Sommige streptomyceten, zoals de industrieel geprefereerde 

productiegastheer Streptomyces lividans, koppelen een grote secretiecapaciteit aan 

een lage proteolytische activiteit. Daarmee is deze streptomyceet een waardevol 

alternatief voor de productie van diverse enzymen ten opzichte van de traditionele 

bacteriële gastheren (Anné et al. 2012).
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Ondanks de vooruitgang die in het verleden is geboekt, blijven streptomyceten 

relatief onaantrekkelijke gastheren voor enzymproductie. De voornaamste oorzaak 

is de filamenteuze groeiwijze welke resulteert in langzame groei en limitatie van 

onder andere zuurstof en nutriënten in het mycelium (van Wezel et al. 2006). In 

vloeibare cultures, zoals tijdens industriële fermentaties, vormt het complexe 

netwerk van myceliumdraden compacte aggregaten van verschillende grootte 

(Pamboukian et al. 2002) waarbij zuurstof de limiterende nutriënt is (Celler et al. 

2012). In deze pellets heeft alleen de buitenste laag metabole activiteit (Manteca et 

al. 2008). Bovendien resulteert de filamenteuze groei in een hoge viscositeit van de 

cultuur, problemen met zuurstof- en nutriëntenoverdracht en wordt de roersnelheid 

gelimiteerd om cellysis te voorkomen (Meyerhoff et al. 1995). In tegenstelling tot de 

geprefereerde productiesystemen zijn de moleculair biologische gereedschappen en 

expressiesystemen voor Streptomyces nog niet optimaal. In het project EPOS binnen 

het kader van het ERA netwerk Industrial Biotechnology (ERA-IB), gefinancierd 

door NWO-ACTS, zijn nieuwe wegen onderzocht om Streptomyces lividans te 

optimaliseren als gastheer voor enzymproductie inclusief de ontwikkeling van 

nieuwe expressieplasmiden.

De factoren betrokken bij de pelletvorming van Streptomyces zijn deels 

geïdentificeerd maar het volledige mechanisme dat eraan ten grondslag ligt is 

nog onopgehelderd. Aggregatie van hyfen is gekoppeld aan de vorming van een 

extracellulaire matrix waar oppervlakte-eiwitten zoals chaplins deel van uit maken 

(Claessen et al. 2003; Elliot et al. 2003) en waarbij een cellulose synthase-achtig 

enzym, CslA, betrokken is (Xu et al. 2008). De chaplins vormen amyloide structuren 

(Sawyer et al. 2011; Bokhove et al. 2013) die zich organiseren in een netwerk, mogelijk 

in samenhang met het polysaccharide dat gemaakt wordt door CslA, waardoor hyfen 

zich kunnen hechten aan oppervlakken (de Jong et al. 2009). Verwijderen van één 

van de chaplin genen of van cslA resulteert in kleinere pellets of open mycelium-

structuren in vloeibare cultures (Xu et al. 2008; van Veluw et al. 2012). Een ander eiwit 

dat pelletaggregatie beïnvloedt is SsgA, een celdelingseiwit verantwoordelijk voor de 

septumlokalisatie en initiatie (Jakimowicz and van Wezel 2012). Overexpressie van 

SsgA leidt tot hyper septumvorming, fragmentatie in vloeibare cultures en een hogere 
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enzymproductie (van Wezel et al. 2006). Mogelijk is de verhoogde enzymproductie 

het gevolg van meer myceliumtips waar de secretie van eiwitten plaats heeft (Willemse 

et al. 2012).

De Streptomyces morfologie veranderen op basis van een rationele genetische 

benadering is een aantrekkelijk concept. Op basis hiervan werd onderzoek gedaan 

naar de functie van CslA en de functionele partner GlxA, een radicaalkoperoxidase, 

en het effect van de deletie van de genen op de morfologie in vloeibare cultures van 

S. lividans. De analyse van het transcriptieprofiel van de cslA en glxA mutanten met 

RNA-Seq resulteerde in de identificatie van een aantal nieuwe eiwitten dat mogelijk 

betrokken is bij de morfogenese. In het kader van deze rationele genetische benadering 

is ook gekeken naar de ssg genen, die een grote impact hebben op de morfologie 

op vaste voedingsbodems. De onderzoeksvraag was of deze genen potentiële doelen 

zijn om de morfologie in vloeistofcultures te veranderen en de eiwitproductie te 

verhogen. Diverse ssg genen die coderen voor SsgA-achtige eiwitten in S. lividans 

zijn verwijderd en het fenotype van de mutanten is vergeleken met dat van de data 

verkregen met dezelfde mutanten in S. coelicolor (Traag en van Wezel 2008). Hier 

kwamen overeenkomsten uit maar ook noemenswaardige verschillen die in een 

vervolgexperiment nader uitgezocht moeten worden.

De resultaten gepresenteerd in deze thesis laten zien dat zowel CslA als GlxA 

nodig zijn voor de synthese en de correcte plaatsing van een polysaccharide in de 

tips van de hyfen. Dit polymeer, een glycaan, is betrokken bij de matrix vorming, 

luchtmycelium ontwikkeling op rijke media, invasie van de agar en aggregatie van het 

mycelium tot pellets. De eiwitten CslA en GlxA hebben dus een grote invloed op de 

morfologie. Dunne fibrillen van het polysaccharide konden gedetecteerd worden met 

een fluorescent chitine bindingsdomein, hetgeen suggereert dat de glycaan deels uit 

chitine bestaat. Dit is een geheel nieuw aspect in de morfologie van Streptomyceten 

en is meer verwant aan de celwand van schimmels dan die van bacteriën (Bowman 

and Free 2006). De localisatie van CslA en GlxA in de uiteinden van de hyfen 

onderstreept  dat een centrum voor eiwitten betrokken bij groei en ontwikkeling hier 

is gelegen (Holmes et al. 2013). 

Expressie analyse met RNA-Seq in de cslA en glxA mutanten laat zien dat 
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zeventien naast elkaar gelegen genen (SCO4242-4260 en SLI_4479-4495) een twee 

tot vijf maal hogere expressie hebben in de mutanten. De functie van de eiwitten 

gecodeerd door deze genen is in bacteriën niet bekend maar de eiwitten vertonen 

overeenkomsten met de “phage tail proteins”. Voor deze eiwitten is een rol in virulentie 

en biofilmvorming voorgesteld (Chen et al. 2010; Ghosh et al. 2012; Du et al. 2012). 

Het is fascinerend dat één of meerdere van deze “phage tail proteins” zich kunnen 

samenvoegen tot amyloïde-achtige fibrillen. Dit type fibrillen speelt een belangrijke 

rol in de Streptomyces morfogenese (Claessen et al. 2003; de Jong et al. 2009; Gras and 

Claessen 2014). In een recent onderzoek in ons laboratorium aan de spontane niet-

pelleterende S. lividans mutant 1326MR bleek dat de “phage tail proteins” ook sterk 

gedereguleerd zijn (D. Van Dissel and G.P. van Wezel, unpublished). Dit onderbouwt 

de stelling dat deze eiwitten van doorslaggevend belang zijn voor de handhaving van 

de typische pelletmorfologie.  Een meer gedetailleerde analyse van deze eiwitten is 

nodig om de exacte functie vast te stellen en om te bepalen of deze eiwitten geschikte 

doelen zijn voor stamontwikkeling.

Een belangrijk aspect van dit onderzoek dat nog opgehelderd moet worden is 

de karakterisatie van het polysaccharide dat geproduceerd wordt door de gezamelijke 

activiteit van CslA en GlxA. Fibrillen die verondersteld werden uit cellulose te 

bestaan zijn eerder in S. coelicolor als CslA-afhankelijk geïdentificeerd (de Jong et al. 

2009). Aangezien het bekend is dat bacteriën polysacchariden kunnen produceren 

waarvan de samenstelling afhankelijk is van de groeicondities (Lee et al. 2001), is de 

karakterisatie van dit polysaccharide van belang voor zowel fundamenteel onderzoek 

als de toegepaste wetenschap. Bovendien is het fascinerend het verband tussen 

CslA, GlxA en alle andere eiwitten, o.a. chaplins, SapB en HyaS, betrokken bij de 

matrixvorming, luchtmycelium ontwikkeling en mycelium aggregatie aan te tonen. 

Hierbij dient ook de rol van de “phage tail proteins” meegenomen te worden.

Naast de analyse van de genproducten betrokken bij de controle van de 

morfogenese werd ook een onderzoek opgestart naar sterke constitutieve promotors. 

Deze zijn nodig in Streptomyces plasmiden voor het produceren van industrieel 

relevante enzymen in zo groot mogelijke hoeveelheden. Deze promotors zijn 

geïdentificeerd met de transcriptiegegevens verkregen uit RNA-Seq en micro-
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arrays. Drie promotors zijn geselecteerd, PSCO1947, PSCO4253 en PSCO3484, met een hogere 

of gelijkwaardige transcriptieactiviteit als de referentie PermE. Met de productie van 

een laccase (SLAC) in S. lividans, is aangetoond dat deze promotors daadwerkelijk 

een verbetering in de productie opleveren ten opzichte van de referentie. Dit is een 

vooruitgang in vergelijking met eerder onderzoek waar men niet slaagde in het 

verkrijgen van sterkere promotors (Seghezzi et al. 2011).

Gebaseerd op de resultaten beschreven in deze thesis en in de literatuur 

kan een vooruitgang in de ontwikkeling van zowel aangepaste morfologie als 

expressiesystemen voorzien worden. Zoals eerder genoemd zijn Streptomyceten in 

staat tot het afbreken van een verscheidenheid aan substraten zoals chitine, cellulose, 

lignine en xylaan om nutrienten te verkrijgen (Chater et al. 2010). Daarom kan hun 

capaciteit als productiegastheer het best tot zijn recht komen bij de productie van de 

enzymen die voor de afbraak van deze substraten nodig zijn bijvoorbeeld voor de 

productie van de tweede generatie biobrandstoffen.

De meest effectieve verandering van de morfologie is tot nu toe verkregen 

door de overexpressie van SsgA. Dit eiwit verhoogt de frequentie van celdeling 

hetgeen resulteert in fragmentatie bij Streptomyces en een verhoogde opbrengst bij 

de productie van gesecreteerde eiwitten (van Wezel et al. 2006). Echter, mutanten 

met een open myceliumstructuur zijn mogelijk goede alternatieven voor zowel de 

productiecapaciteit per kilogram biomassa als de verhoogde secretie-efficientie.  

Dit laatste wordt onder meer bereikt door de toename van het aantal groeipunten 

aangezien dit de plekken zijn waar eiwitsecretie voornamelijk plaatsvindt (Willemse 

et al. 2012). Gericht onderzoek aan celoppervlakte (Claessen et al. 2006) en 

cytoskelet gerelateerde genen (Celler et al. 2012) dient overwogen te worden en in 

het bijzonder de toepassing van cslA en glxA mutanten behoeft verder onderzoek. 

Hoewel de cslA en glxA mutanten minder compacte pellets maken, hebben we 

niet voldoende inzicht in de stressbestendigheid van de hyfen waar het door CslA 

geproduceerde polysaccharide ontbreekt. Tijdens industriële fermentaties speelt 

stressbestendigheid een voorname rol omdat uitgebreide lysis van de hyfen, in de 

vaak intensief geroerde cultures, zeer ongunstig is voor het productieproces. Nieuwe 

wegen moeten gevonden worden om een morfologie te creëren die problemen met 
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de viscositeit omzeilt en tegelijkertijd een hoge groeisnelheid, productiecapaciteit 

en eiwitsecretie handhaaft.  Voorbereidende experimenten hebben laten zien dat 

mutanten met een deletie van sco1, een gen coderend voor de koperchaperone van 

GlxA, dezelfde open myceliumgroei heeft als de glxA mutant. Toevoegen van koper 

aan het medium tijdens de groei herstelt de pelletvorming weer in de sco1 mutant. 

Mogelijk biedt een stam met glxA of sco1 onder de controle van een induceerbare 

promotor de mogelijkheid de morfologie in een cultuur tijdelijk te wijzigen al naar 

gelang de morfologie die nodig is voor groei of eiwitproductie.

De ontwikkeling van op maat gemaakte expressieplasmiden voor de 

productie van enzymen in Streptomyces is nog steeds een belangrijke zaak. Zulke 

expressieplasmiden bestaan uit een stabiele vector met meerdere copiën per cel, 

een sterke constitutieve of induceerbare promotor, een sterke bindingsplaats voor 

ribosomen zoals die voor de translatie van EF-Tu (Vijgenboom et al. 1994) en 

een efficiënt secretiesignaal zoals gevonden voor Vsi en XlnC (Schaerlakens et al. 

2004; Pimienta et al. 2007). De resutaten in deze thesis laten zien dat een drietal 

constitutieve promotors goede kandidaten zijn voor gebruik in een expressieplasmide. 

De transcriptie-activiteit zou nog verbeterd kunnen worden met willekeurige 

mutagenese en/of SELEX methoden (Zimmerman et al. 2010).

Deze thesis beschrijft nieuwe ideeën gericht op de ontwikkeling van 

technologie voor de verbetering van enzymproductie in Streptomyces in het algemeen 

en in S. lividans in het bijzonder. De volledige genoomsequentie van S. lividans, die 

recent beschikbaar is gekomen, is daarbij zeer bruikbaar voor bijvoorbeeld globale op 

de genoomsequentie gebaseerde stamverbeteringsmethoden. Een voorbeeld daarvan 

is dat in de productiegastheren, die door de jaren heen door diverse bedrijven via 

algemene mutagenese methoden zijn geïsoleerd, de wijzigingen ten opzichte van de 

ouderstam nu bepaald kunnen worden. Deze genoomvergelijkingen zullen nieuwe 

genen aan het licht brengen die van belang zijn voor verdere enzymproductieverhoging 

in S. lividans. Zulke nieuwe inzichten zullen in combinatie met optimalisatie van de 

morfologie en excellente expressievectoren resulteren in een competatief industrieel 

platform voor enzymproductie.
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APPENDIX

RNA-Seq  DATA

Table S1-A. Genes expessed higher in both cslA and glxA

Gene # 
S. coelicolor

Gene # 
S. lividans

1326 
(RPKM)

cslA 
(RPKM)

glxA 
(RPKM)

cslA/1326 glxA/1326 Annotation

SCO0187 SLI0127 6,4 15,5 13,2 2,4 2,1 Phytoene synthase

SCO0188 SLI0128 5,2 13,1 13,0 2,5 2,5 CrtV-methyltransferase-like protein

SLI0138 9,9 26,5 20,6 2,7 2,1 hypothetical protein

SCO0231 SLI0175 41,8 99,3 97,1 2,4 2,3 small hydrophobic protein

SCO0426 SLI0384 4,9 16,6 10,3 3,4 2,1 hypothetical protein

SCO0508 SLI0468 6,5 14,1 13,3 2,2 2,0 Transcriptional regulator, TetR family

SLI0944 5,3 11,3 12,4 2,1 2,3 Transcriptional regulator XRE family

SLI0994 5,7 11,8 13,0 2,1 2,3 CopZ-like Copper chaperone

SLI1041 3,8 10,0 8,3 2,7 2,2 putative lipoprotein

SLI1076 4,7 11,5 9,6 2,4 2,0 hypothetical protein

SCO6808 SLI1107 11,9 32,5 29,7 2,7 2,5 ArsR regulator

SLI1228 4,5 10,1 11,7 2,2 2,6 Non-heme chloroperoxidase

SCO1134 SLI1410 3,1 14,6 8,5 4,7 2,8 Aromatic aldehyde oxidoreductase, YagT

SLI1425 9,2 27,6 24,6 3,0 2,7 hypothetical protein

SCO1250 SLI1531 4,8 12,8 13,5 2,7 2,8 putative acetyltransferase

SLI1606 6,4 29,2 19,2 4,5 3,0 hypothetical protein

SCO1620 SLI1923 31,5 193,9 117,3 6,2 3,7 opuABC glycine betaine transport system 
permease

SCO1621 SLI1924 28,7 153,3 106,7 5,3 3,7 opuAA glycine betaine transport ATP-binding 
protein

SCO1866 SLI2177 67,7 666,0 139,3 9,8 2,1 L-ectoine synthase, ectC

SCO2631 SLI2974 6,1 14,2 17,4 2,3 2,9 putative amino acid permease

SCO2828 SLI3177 27,1 124,4 62,2 4,6 2,3 amino acid ABC transporter, amino acid-binding 
protein

SCO2829 SLI3178 17,6 99,8 46,0 5,7 2,6 amino acid ABC transporter, permease

SCO2830 SLI3179 19,6 106,2 52,2 5,4 2,7 amino acid ABC transporter, integral membrane 
protein

SCO2831 SLI3180 23,7 118,8 54,8 5,0 2,3 amino acid ABC transporter, ATP-binding 
protein

SCO3121 SLI3478 3,8 9,0 19,2 2,4 5,1 hypothetical protein

SCO3428 SLI3771 2,4 7,5 13,5 3,1 5,6 LSU ribosomal protein L33p, zinc-independent

SLI3944 4,0 9,2 12,3 2,3 3,1 hypothetical protein

SCO4243 SLI4480 24,9 98,3 60,7 3,9 2,4 secreted protein

SCO4244 SLI4481 39,3 146,7 85,3 3,7 2,2 hypothetical protein

SCO4245 SLI4482 40,4 146,1 87,9 3,6 2,2 hypothetical protein

SCO4246 SLI4483 38,4 165,0 93,3 4,3 2,4 hypothetical protein

SCO4247 SLI4484 56,0 249,4 138,1 4,5 2,5 hypothetical protein

SCO4248 SLI4485 37,2 174,2 94,9 4,7 2,5 hypothetical protein

SCO4252 SLI4488 845,1 4425,2 2045,2 5,2 2,4 hypothetical protein
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SCO4255 SLI4491 20,7 73,8 42,5 3,6 2,1 hypothetical protein

SCO4257 SLI4492 73,4 236,8 192,1 3,2 2,6 Hydrolytic protein

SCO4514 SLI4795 29,8 94,3 64,5 3,2 2,2 integral membrane protein

SLI4831 3,6 10,2 12,0 2,8 3,3 type IV peptidase

SCO4663 SLI4937 1074,9 3617,6 2612,2 3,4 2,4 hypothetical protein

SCO4828 SLI5101 20,9 49,8 48,8 2,4 2,3 Betaine aldehyde dehydrogenase

SCO4829 SLI5102 17,8 62,4 48,6 3,5 2,7 Choline dehydrogenase

SCO4830 SLI5103 8,2 41,1 26,2 5,0 3,2 Glycine betaine ABC transporter, ATP-binding 
protein

SCO4831 SLI5104 8,1 33,2 22,0 4,1 2,7 Glycine betaine ABC transporter, permease

SCO4832 SLI5105 24,4 67,4 50,1 2,8 2,1 Glycine betaine ABC transporter, substrate 
binding protein

SCO4947 SLI5222 5,2 11,4 11,2 2,2 2,2 Respiratory nitrate reductase alpha chain

SCO4994 SLI5269 33,4 122,9 70,8 3,7 2,1 hypothetical protein

SLI5784 83,6 320,1 198,4 3,8 2,4 hypothetical protein

SCO5522 SLI5797 116,8 482,6 242,5 4,1 2,1 3-isopropylmalate dehydrogenase

SLI6177 26,4 57,4 62,6 2,2 2,4 hypothetical protein

SLI6330 17,5 40,0 52,9 2,3 3,0 hypothetical protein

SCO6073 SLI6466 3,4 12,0 7,0 3,5 2,0 germacradienol/germacrene D synthase 

SCO6509 SLI6857 6,6 22,9 18,9 3,5 2,9 hydrophobic protein

SCO6980 SLI7182 6,0 19,1 12,4 3,2 2,1 Inositol transport system permease

SCO7428 SLI7648 6,2 15,4 14,4 2,5 2,3 Flavohemoprotein, hmpA1

SLI7822 3,0 36,0 12,0 12,1 4,0 hypothetical protein

SLI8052 1,1 14,0 16,3 13,0 15,1 hypothetical protein

Table S1-B. Genes expessed higher in glxA only

Gene # 
S. coelicolor

Gene # 
S. lividans

1326 
(RPKM)

cslA 
(RPKM)

glxA 
(RPKM)

cslA/1326 glxA/1326 Annotation

SCO0569 SLI0532 9,1 13,3 20,4 1,5 2,2 LSU ribosomal protein L36p

SCO0672 SLI0644 8,9 8,1 18,3 0,9 2,1 anti-sigma factor antagonist

SLI1189 5,7 8,9 13,9 1,6 2,4 hypothetical protein

SCO1423 SLI1720 179,6 136,4 370,5 0,8 2,1 Dolichol-phosphate mannosyltransferase

SCO1700 SLI2004 47,0 33,7 106,1 0,7 2,3 putative membrane protein

SCO1702 SLI2006 5,0 7,4 10,2 1,5 2,0 Transcriptional regulator, TetR family

SLI2561 14,1 19,6 35,2 1,4 2,5 hypothetical protein

SCO2336 SLI2667 6,7 5,2 14,4 0,8 2,2 L-Proline/Glycine betaine transporter ProP

SLI2831 7,9 10,2 20,0 1,3 2,6 hypothetical protein

SLI2934 225,1 284,1 477,1 1,3 2,1 hypothetical protein

SCO2827 SLI3176 7,2 14,1 15,5 2,0 2,2 hypothetical protein

SCO2976 SLI3320 6,1 10,6 12,9 1,8 2,1 hypothetical protein

SCO3167 SLI3521 54,3 63,9 116,0 1,2 2,1 Transcriptional regulator, TetR family

SCO3271 SLI3617 5,3 5,2 16,8 1,0 3,2 dehydrogenase

SLI4035 17,9 20,4 43,8 1,1 2,4 hypothetical protein

SLI4041 68,3 129,8 190,7 1,9 2,8 hypothetical protein
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Table S1-C. Genes expessed higher in cslA only

Gene # 
S. coelicolor

Gene # 
S. lividans

1326 
(RPKM)

cslA 
(RPKM)

glxA 
(RPKM)

cslA/1326 glxA/1326 Annotation

SCO0148 SLI0077 12,6 25,6 23,1 2,0 1,8 Transcriptional regulator, Cro/CI family

SCO0346 SLI0303 4,4 12,9 8,6 2,9 1,9 putative 2-hydroxyhepta-2,4-diene-1,7- dioate 
isomerase

SCO0379 SLI0337 50,0 122,1 49,8 2,4 1,0 Catalase

SCO0408 SLI0366 11,1 27,0 9,9 2,4 0,9 Methyltransferase

SCO0409 SLI0367 5,6 21,8 7,5 3,9 1,3 Spore-associated protein A precursor

SCO0427 SLI0385 11,4 25,2 15,4 2,2 1,4 Beta-ketoadipate enol-lactone hydrolase

SCO0442 SLI0400 11,0 27,7 14,9 2,5 1,3 Allophanate hydrolase 2 subunit 1

SCO0443 SLI0401 5,9 21,2 10,6 3,6 1,8 Allophanate hydrolase 2 subunit 2

SCO0461 SLI0419 6,8 14,9 8,3 2,2 1,2 putative hydrolase

SCO0484 SLI0443 6,9 19,4 11,4 2,8 1,6 putative monooxygenase

SCO0494 SLI0454 59,7 141,6 53,8 2,4 0,9 iron-siderophore binding lipoprotein

SCO0498 SLI0458 9,8 21,8 7,1 2,2 0,7 Siderophore biosynthesis, monooxygenase

SLI0487 2624,6 5701,9 3530,0 2,2 1,3 hypothetical protein

SCO0543 SLI0504 6,9 26,7 12,8 3,9 1,9 hypothetical protein

SLI0587 5,0 13,7 9,8 2,7 2,0 hypothetical protein

SCO0682 SLI0655 46,2 92,3 57,2 2,0 1,2 hypothetical protein

SLI4370 204,9 281,1 424,9 1,4 2,1 hypothetical protein

SLI4571 37,0 58,8 132,2 1,6 3,6 hypothetical protein

SCO4640 SLI4911 70,0 67,5 159,9 1,0 2,3 Transcriptional regulator, TetR family

SCO4816 SLI5087 5,9 7,7 11,9 1,3 2,0 hypothetical protein

SCO5225 SLI5514 478,0 533,1 967,9 1,1 2,0 Ribonucleotide reductase, beta subunit

SCO5467 SLI5736 4,9 9,5 11,7 1,9 2,4 Zinc D-Ala-D-Ala carboxypeptidase

SLI5781 13,2 6,2 30,2 0,5 2,3 hypothetical protein

SCO5908 SLI6183 8,1 7,7 20,8 1,0 2,6 hypothetical protein

SCO3525 SLI6348 6,1 5,9 14,2 1,0 2,3 transmembrane protein

SLI6555 6,3 8,4 14,7 1,3 2,3 hypothetical protein

SCO6259 SLI6648 14,5 16,5 29,1 1,1 2,0 Inositol transport system, ATP-binding 
protein

SCO6524 SLI6872 7,2 10,8 15,6 1,5 2,2 putative integral membrane protein

SCO6728 SLI7072 34,3 35,6 70,6 1,0 2,1 hypothetical protein

SCO7146 SLI7361 34,8 55,4 84,3 1,6 2,4 Transcriptional regulator, ArsR family

SCO7196 SLI7413 4,7 5,5 10,0 1,2 2,1 possible ion transport integral membrane 
protein

SCO7271 SLI7489 35,8 57,5 71,9 1,6 2,0 putative ion channel subunit

SCO7506 SLI7727 5,0 7,5 11,0 1,5 2,2 Beta-galactosidase

SLI7900 4,7 5,5 10,5 1,2 2,2 hypothetical protein

SLI7991 4,9 9,7 12,0 2,0 2,5 hypothetical protein

SCO7754 SLI7994 7,6 12,1 16,8 1,6 2,2 anti-sigma factor antagonist

SCO7826 SLI8076 4,6 7,5 10,2 1,6 2,2 hypothetical protein
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SCO0701 SLI0677 5,2 10,8 6,7 2,1 1,3 hypothetical protein

SCO0760 SLI0741 38,7 98,2 30,6 2,5 0,8 putative methyltransferase

SCO0795 SLI0778 8,3 19,6 7,4 2,4 0,9 hypothetical protein

SCO0825 SLI0809 6,6 14,9 11,0 2,2 1,7 putative transmembrane transport protein

SCO0834 SLI0818 5,4 13,7 7,8 2,6 1,5 hypothetical protein

SLI0916 8,8 22,5 13,0 2,6 1,5 hypothetical protein

SCO6914 SLI0941 5,4 11,1 8,9 2,1 1,7 hypothetical protein SC1B2.20

SCO3698 SLI1077 7,0 14,2 11,2 2,0 1,6 ArsB heavy metal resistance transport membrane 
protein

SCO6821 SLI1094 6,3 15,7 5,1 2,5 0,8 hypothetical protein

SCO6819 SLI1096 1,9 10,5 2,6 5,5 1,3 5-Enolpyruvylshikimate-3-phosphate synthase

SCO6818 SLI1097 2,9 11,5 4,0 3,9 1,4 putative phosphoglycerate mutase

SCO6814 SLI1101 3,8 11,2 6,5 2,9 1,7 ABC transporter ATP-binding protein

SCO0912 SLI1141 6,4 13,1 6,8 2,0 1,1 Glutamine amidotransferases class-II

SCO0913 SLI1142 6,4 18,0 9,8 2,8 1,5 ABC transporter ATP-binding protein

SCO0922 SLI1153 2,1 14,1 2,8 6,7 1,3 Succinate dehydrogenase iron-sulfur protein

SCO0923 SLI1154 4,0 23,8 4,0 6,0 1,0 Succinate dehydrogenase flavoprotein subunit

SCO0924 SLI1155 19,8 43,0 17,4 2,2 0,9 Succinate dehydrogenase cytochrome b subunit

SCO1131 SLI1407 6,9 15,9 9,1 2,3 1,3 Xanthine and CO dehydrogenases accessory protein

SCO1132 SLI1408 8,5 19,7 11,0 2,3 1,3 aromatic aldehyde oxidoreductase, YagR

SCO1133 SLI1409 3,2 10,7 4,7 3,3 1,4 aromatic aldehyde oxidoreductase, YagS

SCO1147 SLI1423 7,2 23,8 5,8 3,3 0,8 putative ABC transporter transmembrane subunit

SCO1148 SLI1424 3,2 26,0 6,0 8,1 1,9 putative ABC transporter ATP-binding protein

SCO1293 SLI1575 6,8 15,9 7,5 2,3 1,1 hypothetical protein

SCO1294 SLI1576 2,5 29,9 4,5 12,1 1,8 Methionine gamma-lyase

SCO1357 SLI1649 8,2 17,1 10,9 2,1 1,3 hypothetical protein

SCO1570 SLI1873 32,1 133,9 54,4 4,2 1,7 Argininosuccinate lyase

SCO1577 SLI1880 32,2 116,5 34,3 3,6 1,1 Acetylornithine aminotransferase

SCO1578 SLI1881 17,0 96,9 28,8 5,7 1,7 Acetylglutamate kinase

SCO1579 SLI1882 24,8 100,2 35,6 4,0 1,4 putative glutamate N-acetyltransferase, argJ

SCO1580 SLI1883 26,1 77,1 43,7 3,0 1,7 N-acetyl-gamma-glutamyl-phosphate reductase, argC

SCO1864 SLI2175 32,4 94,2 52,1 2,9 1,6 L-2,4-diaminobutyric acid acetyltransferase

SCO1865 SLI2176 31,3 167,0 61,8 5,3 2,0 Diaminobutyrate-pyruvate aminotransferase

SCO1867 SLI2178 72,5 614,8 125,1 8,5 1,7 Ectoine hydroxylase

SCO1898 SLI2209 14,8 32,7 11,1 2,2 0,8 possible sugar binding protein

SCO1899 SLI2210 8,7 26,5 8,7 3,0 1,0 possible integral membrane sugar transport protein

SCO1900 SLI2211 8,2 40,3 9,5 4,9 1,2 possible integral membrane sugar transport protein

SCO1901 SLI2212 18,2 69,3 18,0 3,8 1,0 Sorbitol dehydrogenase

SLI2217 29,3 125,6 39,2 4,3 1,3 hypothetical protein

SCO1987 SLI2304 10,5 25,2 10,3 2,4 1,0 Translation initiation inhibitor

SCO1988 SLI2305 22,3 51,7 16,6 2,3 0,7 hypothetical protein

SCO2011 SLI2332 29,2 65,6 32,6 2,2 1,1 Branched-chain amino acid transport ATP-binding 
protein LivG

SCO2012 SLI2333 39,9 86,9 49,5 2,2 1,2 Branched-chain amino acid transport ATP-binding 
protein LivF
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SCO2025 SLI2346 90,4 235,5 106,5 2,6 1,2 Glutamate synthase (NADPH) small chain

SCO2026 SLI2347 80,5 182,1 104,2 2,3 1,3 Glutamate synthase (NADPH) large chain

SCO2270 SLI2596 7,5 16,6 4,3 2,2 0,6 hypothetical protein

SCO2372 SLI2706 11,7 40,2 21,6 3,4 1,8 Antiholin-like protein LrgA

SCO2449 SLI2785 18,6 46,4 24,6 2,5 1,3 MoxR-like ATPases

SCO2464 SLI2800 19,3 43,3 25,4 2,2 1,3 Lipid A export ATP-binding/permease protein MsbA

SCO2492 SLI2826 57,7 144,7 35,4 2,5 0,6 hypothetical protein

SCO2493 SLI2827 7,8 17,6 10,8 2,3 1,4 hypothetical protein

SCO2591 SLI2930 663,2 1353,8 612,4 2,0 0,9 hypothetical protein

SCO2633 SLI2975 406,1 2553,7 609,1 6,3 1,5 superoxide dismutase, Fe-Zn

SCO2637 SLI2979 59,5 127,2 61,0 2,1 1,0 Serine protease

SCO2776 SLI3123 15,8 198,8 15,1 12,6 1,0 Methylcrotonyl-CoA carboxylase carboxyl transferase

SCO2777 SLI3124 11,6 172,3 9,6 14,8 0,8 Methylcrotonyl-CoA carboxylase biotin-containing

SCO2778 SLI3125 10,6 228,0 8,0 21,6 0,8 Hydroxymethylglutaryl-CoA lyase

SCO2779 SLI3126 16,5 344,2 15,7 20,9 1,0 Isovaleryl-CoA dehydrogenase

SCO2783 SLI3130 11,1 26,8 15,9 2,4 1,4 Desferrioxamine E biosynthesis, monooxygenase, 
DesB

SCO2785 SLI3132 13,6 28,8 15,1 2,1 1,1 Desferrioxamine E biosynthesis, ligase, DesD

SCO2837 SLI3188 188,4 3460,9 1,1 18,4 0,0 Radical Cu-oxidase, glxA

SCO2838 SLI3189 172,9 529,4 312,0 3,1 1,8 putative secreted endoglucanase

SCO2839 SLI3190 4,7 20,5 8,5 4,3 1,8 lipoprotein

SLI3212 11,8 24,0 11,1 2,0 0,9 hypothetical protein

SLI3213 17,2 37,7 25,7 2,2 1,5 hypothetical protein

SLI3214 92,6 200,2 140,8 2,2 1,5 hypothetical protein

SCO2879 SLI3224 27,8 70,9 21,3 2,5 0,8 conserved hypothetical secreted protein

SCO2880 SLI3225 32,3 83,6 38,2 2,6 1,2 hypothetical protein

SCO2881 SLI3226 29,2 61,8 24,1 2,1 0,8 hypothetical protein

SCO2882 SLI3227 21,1 61,6 21,3 2,9 1,0 conserved ATP/GTP-binding protein

SCO2883 SLI3228 22,1 55,5 24,5 2,5 1,1 cytochrome P450 monooxygenase

SCO2884 SLI3229 41,3 136,1 42,5 3,3 1,0 putative cytochrome P450 hydroxylase

SCO2885 SLI3230 26,4 93,5 31,3 3,5 1,2 hypothetical protein

SCO2920 SLI3264 68,1 264,5 85,4 3,9 1,3 Serine protease 3 precursor

SCO3051 SLI3400 164,9 399,8 190,1 2,4 1,2 Butyryl-CoA dehydrogenase

SCO3160 SLI3514 36,6 75,3 71,6 2,1 2,0 possible integral membrane transport protein, Co 
transport

SCO3614 SLI3857 219,8 460,1 241,2 2,1 1,1 Aspartate-semialdehyde dehydrogenase

SCO3811 SLI4062 213,3 568,2 197,7 2,7 0,9 D-alanyl-D-alanine carboxypeptidase

SCO3831 SLI4083 5,6 13,8 10,0 2,4 1,8 Branched-chain alpha-keto acid dehydrogenase, E1 
alpha subunit, bkdA2

SCO4020 SLI4254 20,3 81,4 20,3 4,0 1,0 putative two-component system response regulator

SCO4021 SLI4255 3,1 32,3 4,5 10,5 1,5 Osmosensitive K+ channel histidine kinase KdpD

SCO4108 SLI4338 100,5 244,1 106,0 2,4 1,1 putative peptidase

SCO4157 SLI4395 6,8 14,7 6,9 2,2 1,0 putative protease

SCO4242 SLI4479 46,5 155,0 80,4 3,3 1,7 hypothetical protein

SCO4249 SLI4486 18,2 57,5 30,0 3,2 1,7 hypothetical protein
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SCO4251 SLI4487 575,8 2311,7 1137,6 4,0 2,0 secreted protein

SCO4253 SLI4489 550,1 2388,0 1065,2 4,3 1,9 Phage tail sheath protein FI

SCO4254 SLI4490 12,2 25,2 20,0 2,1 1,6 hypothetical protein

SCO4258 SLI4493 101,4 325,3 193,6 3,2 1,9 hydrolytic protein

SCO4259 SLI4494 29,0 94,4 54,5 3,3 1,9 ATPase, AAA family

SCO4336 SLI4574 236,9 477,1 394,9 2,0 1,7 Transcriptional regulator, MarR family

SCO4512 SLI4793 56,2 122,7 95,3 2,2 1,7 hypothetical protein

SCO4513 SLI4794 35,1 96,4 56,7 2,7 1,6 hypothetical protein

SCO4515 SLI4796 39,5 110,4 63,2 2,8 1,6 hypothetical protein

SCO4683 SLI4956 79,3 168,8 90,5 2,1 1,1 NADP-specific glutamate dehydrogenase

SCO4784 SLI5054 58,4 162,4 70,0 2,8 1,2 Chorismate mutase I

SCO4896 SLI5168 20,9 57,3 32,6 2,7 1,6 putative transport integral membrane protein

SCO4930 SLI5203 12,0 31,2 9,8 2,6 0,8 Methylglutaconyl-CoA hydratase

SCO4931 SLI5204 7,1 23,8 6,3 3,4 0,9 putative secreted protein

SCO4936 SLI5210 7,6 18,6 7,2 2,5 1,0 putative ABC transporter ATP-binding protein

SCO4937 SLI5211 3,8 13,4 3,3 3,5 0,9 hypothetical protein

SCO4951 SLI5223 8,8 18,2 10,3 2,1 1,2 putative oxidoreductase

SCO4995 SLI5270 12,9 35,5 19,9 2,8 1,5 hypothetical protein

SCO5012 SLI5288 9,2 19,9 12,0 2,2 1,3 hypothetical protein

SCO5013 SLI5289 4,6 11,9 7,8 2,6 1,7 secreted protein

SCO5014 SLI5290 4,7 12,6 8,6 2,7 1,8 hypothetical protein

SCO5240 SLI5531 600,9 1401,1 689,7 2,3 1,1 transcription regulator, WhiB-like

SCO5249 SLI5540 5,0 15,6 8,3 3,1 1,7 putative nucleotide-binding protein

SCO5389 SLI5658 185,0 583,3 161,6 3,2 0,9 hypothetical protein

SCO5390 SLI5659 20,3 48,0 16,5 2,4 0,8 putative alkanal monooxygenase (luciferase)

SCO5448 SLI5717 4,7 14,3 7,2 3,0 1,5 putative ABC transporter ATP-binding protein

SCO5449 SLI5718 7,1 18,2 11,1 2,6 1,6 putative ABC transporter transmembrane protein

SCO5450 SLI5719 6,5 22,6 12,0 3,5 1,8 putative ABC transporter ATP-binding protein

SLI5785 189,0 584,0 315,4 3,1 1,7 hypothetical protein

SCO5512 SLI5786 111,5 311,5 173,7 2,8 1,6 Acetolactate synthase large subunit

SCO5513 SLI5787 51,7 233,3 72,4 4,5 1,4 Acetolactate synthase small subunit

SCO5514 SLI5788 472,1 1735,1 613,3 3,7 1,3 Ketol-acid reductoisomerase

SCO5530 SLI5806 6,4 12,9 9,3 2,0 1,5 putative membrane protein

SCO5553 SLI5830 51,4 141,1 70,9 2,7 1,4 3-isopropylmalate dehydratase large subunit

SCO5554 SLI5831 38,3 137,2 50,7 3,6 1,3 3-isopropylmalate dehydratase small subunit

SLI6006 104,6 225,4 193,3 2,2 1,8 hypothetical protein

SCO5774 SLI6036 561,1 1300,9 779,6 2,3 1,4 glutamate permease

SCO5776 SLI6038 1414,2 2997,5 1975,9 2,1 1,4 glutamate-binding protein of ABC transporter system

SLI6109 31,7 75,6 49,8 2,4 1,6 hypothetical protein

SCO5976 SLI6258 25,0 77,2 40,1 3,1 1,6 Ornithine carbamoyltransferase

SLI6370 5,6 15,2 10,2 2,7 1,8 hypothetical protein

SLI6371 38,5 82,8 55,1 2,1 1,4 hypothetical protein

SLI6372 53,9 110,0 80,5 2,0 1,5 hypothetical protein.

SLI6482 8,9 22,0 16,7 2,5 1,9 hypothetical protein
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SCO6090 SLI6484 6,8 18,2 9,5 2,7 1,4 hypothetical protein

SCO6096 SLI6490 5,1 11,6 3,4 2,3 0,7 ABC-transporter, probable sulfate transport

SCO6097 SLI6492 9,8 22,0 7,0 2,3 0,7 Sulfate adenylyltransferase subunit 1

SCO6196 SLI6585 14,5 50,8 19,0 3,5 1,3 putative long-chain-fatty-acid-CoA ligase

SCO6197 SLI6586 272,7 632,1 209,3 2,3 0,8 secreted protein

SCO6198 SLI6587 10,6 51,5 11,8 4,8 1,1 hypothetical protein

SCO6199 SLI6588 14,2 54,1 15,5 3,8 1,1 hypothetical protein

SCO6200 SLI6589 6,4 13,2 3,8 2,1 0,6 hypothetical protein

SCO6243 SLI6631 7,7 15,9 12,3 2,1 1,6 Malate synthase

SCO6295 SLI6688 4,8 14,1 5,8 3,0 1,2 Transport ATP-binding protein CydCD

SCO6298 SLI6690 5,6 14,0 10,6 2,5 1,9 hypothetical protein

SLI6712 4,5 11,0 5,0 2,4 1,1 hypothetical protein

SCO6344 SLI6741 14,7 29,8 20,3 2,0 1,4 amidotransferase-related protein

SCO6451 SLI6797 45,2 263,1 53,4 5,8 1,2 Nickel ABC transporter, nickel-binding protein, nikA

SCO6452 SLI6798 24,7 192,3 39,3 7,8 1,6 Nickel ABC transporter, permease, nikB

SCO6453 SLI6799 16,7 108,0 22,2 6,4 1,3 Nickel ABC transporter, permease, nikC

SCO6454 SLI6800 11,9 56,9 16,5 4,8 1,4 Nickel ABC transporter, ATP-binding protein, nikD

SCO6455 SLI6801 17,1 65,6 29,0 3,8 1,7 Nickel ABC transporter, ATP-binding protein, nikE

SCO6470 SLI6816 35,2 70,8 51,9 2,0 1,5 Mesaconyl-CoA hydratase

SLI6822 10,6 27,7 16,8 2,6 1,6 hypothetical protein

SCO6550 SLI6900 6,9 15,6 12,4 2,3 1,8 Short-chain dehydrogenase/reductase SDR

SCO6590 SLI6947 190,0 387,6 107,6 2,0 0,6 hypothetical protein

SCO6644 SLI6989 60,6 141,5 109,2 2,3 1,8 Oligopeptide ABC transporter, solute binding protein

SCO6646 SLI6991 15,4 30,9 21,7 2,0 1,4 putative transport system permease

SCO6658 SLI7003 89,1 223,9 176,2 2,5 2,0 6-phosphogluconate dehydrogenase, decarboxylating

SCO6659 SLI7004 70,9 173,7 131,9 2,5 1,9 Glucose-6-phosphate isomerase

SCO6682 SLI7026 7,4 16,2 7,5 2,2 1,0 Lanthionine precursor peptide LanA

SCO6695 SLI7039 48,5 103,8 55,3 2,1 1,1 hypothetical protein

SCO6715 SLI7059 18,5 59,1 21,6 3,2 1,2 transcriptional regulator, WhiB-type

SCO6717 SLI7061 133,2 405,4 162,9 3,0 1,2 putative acyl-[acyl-carrier protein] desaturase

SCO6766 SLI7114 14,2 31,4 17,2 2,2 1,2 hopanoid biosynthesis associated radical SAM protein 
HpnH

SCO6767 SLI7115 8,7 23,9 15,7 2,8 1,8 GcpE protein homolog, lipid metabolism

SCO6778 SLI7126 8,8 17,8 15,7 2,0 1,8 hypothetical protein

SCO6981 SLI7183 6,1 14,0 9,7 2,3 1,6 Inositol transport system ATP-binding protein

SCO6982 SLI7184 7,3 16,1 12,6 2,2 1,7 Inosose dehydratase

SCO6989 SLI7191 7,1 18,5 8,0 2,6 1,1 hypothetical protein

SCO6990 SLI7192 12,0 34,5 17,2 2,9 1,4 Sodium-dependent transporter

SCO7002 SLI7204 5,1 12,3 6,5 2,4 1,3 amino acid permease (GABA permease)

SCO7036 SLI7241 36,5 232,4 67,7 6,4 1,9 Argininosuccinate synthase (EC 6.3.4.5)

SCO7040 SLI7245 21,5 50,3 26,9 2,3 1,3 NADPH-dependent glyceraldehyde-3-phosphate 
dehydrogenase

SCO7047 SLI7252 11,6 35,4 11,4 3,1 1,0 Undecaprenyl-diphosphatase

SCO7251 SLI7467 87,4 201,3 68,5 2,3 0,8 hypothetical protein

SCO7252 SLI7468 69,5 141,1 62,0 2,0 0,9 putative regulatory protein
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SCO7253 SLI7469 17,4 40,1 19,4 2,3 1,1 hypothetical protein

SLI7481 7,5 19,7 9,9 2,6 1,3 hypothetical protein

SCO7399 SLI7618 35,8 76,3 36,8 2,1 1,0 Ferric hydroxamate ABC transporter, substrate 
binding protein FhuD

SCO7420 SLI7640 27,7 57,2 34,0 2,1 1,2 hypothetical protein

SCO7421 SLI7641 35,7 74,2 47,3 2,1 1,3 hypothetical protein

SCO7467 SLI7684 39,7 122,0 51,0 3,1 1,3 hypothetical protein

SCO7659 SLI7886 58,7 129,5 112,0 2,2 1,9 hypothetical protein

SLI7935 10,0 20,4 15,8 2,0 1,6 hypothetical protein

SCO7722 SLI7953 3,5 10,0 5,5 2,9 1,6 hypothetical protein

SCO7733 SLI7969 12,9 26,1 21,6 2,0 1,7 hypothetical protein

SCO7772 SLI8015 14,6 33,1 22,9 2,3 1,6 hypothetical protein

SLI8060 8,7 24,2 15,6 2,8 1,8 hypothetical protein

SCO7814 SLI8061 15,4 35,5 22,0 2,3 1,4 putative oxidoreductase (pseudogene)

Table S2-A. Genes expressed lower in both cslA and glxA

Gene # 
S. coelicolor

Gene # 
S. lividans

1326 
(RPKM)

cslA 
(RPKM)

glxA 
(RPKM)

cslA/1326 glxA/1326 Annotation

SLI0003 23,0 11,1 11,1 0,5 0,5 hypothetical protein

SLI0174 37,1 14,6 11,2 0,4 0,3 hypothetical protein

SLI0229 35,0 15,2 15,1 0,4 0,4 hypothetical protein

SCO0558 SLI0520 40,1 9,5 19,3 0,2 0,5 hypothetical protein

SCO0793 SLI0776 12,4 5,3 5,7 0,4 0,5 hypothetical protein

SLI1219 13,1 1,9 1,5 0,1 0,1 hypothetical protein

SLI1372 15,9 4,4 6,9 0,3 0,4 hypothetical protein

SLI1891 21,9 8,6 10,5 0,4 0,5 Transcriptional regulator, GntR family

SCO1602 SLI1906 144,5 51,5 39,2 0,4 0,3 hypothetical protein

SLI1910 108,5 43,6 54,2 0,4 0,5 hypothetical protein

SLI1955 36,7 10,4 8,2 0,3 0,2 hypothetical protein

SCO1708 SLI2012 15,0 6,4 6,4 0,4 0,4 hypothetical protein

SCO1748 SLI2052 77,5 32,7 38,0 0,4 0,5 putative regulator, highly similar to metallo-
thionein-like proteins

SLI2174 94,6 28,3 30,8 0,3 0,3 hypothetical protein

SLI2277 10,0 3,2 2,5 0,3 0,2 hypothetical protein

SLI2499 28,1 10,2 12,2 0,4 0,4 hypothetical protein

SCO2185 SLI2512 264,0 76,0 92,6 0,3 0,4 hypothetical protein

SCO2224 SLI2550 168,1 65,7 64,4 0,4 0,4 hypothetical protein

SLI2615 15,5 7,6 5,2 0,5 0,3 hypothetical protein

SCO2530 SLI2866 11,3 2,5 4,2 0,2 0,4 hypothetical protein

SCO2636 SLI2978 106,0 24,4 50,6 0,2 0,5 hypothetical protein

SCO2887 SLI3232 298,6 101,8 141,8 0,3 0,5 membrane protein

SCO3071 SLI3421 87,9 13,2 33,1 0,1 0,4 Formiminoglutamic iminohydrolase

SCO3072 SLI3422 65,1 6,5 12,2 0,1 0,2 putative amino acid hydrolase

SCO3073 SLI3423 74,5 12,8 10,6 0,2 0,1 Urocanate hydratase
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SCO3075 SLI3425 52,3 6,8 8,9 0,1 0,2 Transcriptional regulator, ArsR family

SCO3081 SLI3431 202,7 61,7 101,7 0,3 0,5 hypothetical protein

SCO3088 SLI3440 133,6 19,5 63,5 0,1 0,5 hypothetical protein

SCO3196 SLI3550 45,0 23,4 20,9 0,5 0,5 PTS system, putative fructose-specific permease

SCO3285 SLI3630 30,5 14,0 12,6 0,5 0,4 hypothetical protein

SCO3386 SLI3729 30,8 13,2 7,9 0,4 0,3 hypothetical protein

SCO3431 SLI3775 98,9 26,5 37,2 0,3 0,4 membrane protein

SCO3620 SLI3864 13,8 5,0 6,1 0,4 0,4 putative membrane protein

SLI3865 78,5 39,0 33,1 0,5 0,4 serine-threonine protein kinase

SCO3657 SLI3904 361,0 61,2 101,4 0,2 0,3 loricrin

SCO3750 SLI3994 28,0 8,0 13,8 0,3 0,5 two-component sensor histidine kinase

SCO3784 SLI4028 130,4 36,7 60,8 0,3 0,5 hypothetical protein

SLI4074 204,7 81,0 80,2 0,4 0,4 hypothetical protein

SCO3942 SLI4190 23,1 6,2 8,6 0,3 0,4 hypothetical protein

SLI4248 44,8 7,1 14,8 0,2 0,3 hypothetical protein

SLI4284 12,9 5,5 5,9 0,4 0,5 penicillin amidase family protein

SCO4174 SLI4415 17,9 7,6 7,5 0,4 0,4 integral membrane protein

SLI4557 25,5 13,1 12,6 0,5 0,5 probable DNA-binding protein

SLI4681 33,9 10,0 9,6 0,3 0,3 hypothetical protein

SCO4802 SLI5073 49,8 7,3 21,2 0,1 0,4 hypothetical protein

SCO4803 SLI5075 81,8 13,7 35,4 0,2 0,4 hypothetical protein

SCO4867 SLI5140 20,6 6,3 8,7 0,3 0,4 hypothetical protein

SLI5201 152,7 65,5 66,8 0,4 0,4 hypothetical protein

SCO4932 SLI5205 499,2 24,5 59,7 0,0 0,1 Histidine ammonia-lyase

SLI5220 1099,7 498,8 385,4 0,5 0,4 hypothetical protein

SLI5247 18,8 2,4 5,5 0,1 0,3 hypothetical protein

SLI5409 287,2 132,4 144,2 0,5 0,5 hypothetical protein

SLI5426 25,1 10,3 9,4 0,4 0,4 hypothetical protein

SCO5228 SLI5517 55,6 17,4 28,0 0,3 0,5 putative acetyltransferase

SCO5462 SLI5731 12,4 3,3 4,9 0,3 0,4 hypothetical protein

SCO5581 SLI5863 211,7 91,1 96,8 0,4 0,5 hypothetical protein

SCO5680 SLI5940 155,4 14,7 68,4 0,1 0,4 Cytidine deaminase

SLI6080 459,5 163,8 137,0 0,4 0,3 hypothetical protein

SLI6081 292,0 141,5 147,4 0,5 0,5 hypothetical protein

SCO5853 SLI6124 29,4 14,7 12,6 0,5 0,4 SgaA homolog

SLI6195 10,6 2,7 4,8 0,3 0,5 hypothetical protein

SCO6421 SLI6765 13,3 4,7 6,2 0,4 0,5 putative two-component system sensor kinase

SCO6538 SLI6886 20,6 5,7 9,7 0,3 0,5 integral membrane protein

SCO7247 SLI7463 12,6 5,2 5,5 0,4 0,4 Usp-like, universal stress protein family

SCO7284 SLI7502 258,7 86,0 125,4 0,3 0,5 Ribonuclease HI
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Table S2-B. Genes expressed lower in glxA only

Gene # 
S. coelicolor

Gene # 
S. lividans

1326 
(RPKM)

cslA 
(RPKM)

glxA 
(RPKM)

cslA/1326 glxA/1326 Annotation

SCO0286 SLI0239 10,7 7,3 4,8 0,7 0,4 secreted peptidoglycan binding protein

SCO0761 SLI0742 281,0 356,8 104,5 1,3 0,4 hypothetical protein

SLI1233 10,7 6,2 5,3 0,6 0,5 hypothetical protein

SLI1346 87,5 52,4 43,6 0,6 0,5 hypothetical protein

SCO1682 SLI1987 14,9 9,6 7,5 0,6 0,5 L-idonate 5-dehydrogenase

SLI2083 78,8 41,5 34,5 0,5 0,4 hypothetical protein

SCO1902 SLI2213 11,4 9,2 4,7 0,8 0,4 hypothetical hydrophilic protein

SCO2038 SLI2360 362,8 334,5 156,1 0,9 0,4 FIG01124547: hypothetical protein

SCO2159 SLI2485 24,7 13,9 11,5 0,6 0,5 SC6G10.32, unknown, len: 69aa

SLI2771 28,3 24,8 14,1 0,9 0,5 FIG01121890: hypothetical protein

SLI3141 49,1 34,5 22,8 0,7 0,5 hypothetical protein

SCO2837 SLI3188 188,4 3460,9 1,1 18,4 0,0 Radical Cu-oxidase, glxA

SLI3223 35,8 57,4 17,8 1,6 0,5 hypothetical protein

SCO3074 SLI3424 149,3 238,5 66,6 1,6 0,4 putative integral membrane protein

SCO3362 SLI3704 19,5 31,1 8,6 1,6 0,4 putative membrane protein

SCO5100 SLI5378 73,7 63,8 35,2 0,9 0,5 Transcriptional regulator, GntR family

SCO6099 SLI6494 20,4 24,1 9,3 1,2 0,5 Adenylylsulfate kinase

SCO6100 SLI6495 36,9 20,1 16,9 0,5 0,5 phosphoadenosine phosphosulfate reductase, 
cysH

SLI6946 18,8 13,1 3,9 0,7 0,2 hypothetical protein

SLI6951 66,5 88,5 32,7 1,3 0,5 hypothetical protein

SCO6716 SLI7060 54,5 93,9 21,4 1,7 0,4 hypothetical protein

SLI7157 11,8 7,4 5,3 0,6 0,4 hypothetical protein

SCO7257 SLI7473 25,0 14,0 12,1 0,6 0,5 ChpB

SCO7279 SLI7497 32,9 19,2 16,6 0,6 0,5 DNA-binding protein

Table S2-C. Genes expressed lower in cslA only. Only hints that are three-fold down or more are 
shown in the table.

Gene # 
S. coelicolor

Gene # 
S. lividans

1326 
(RPKM)

cslA 
(RPKM)

glxA 
(RPKM)

cslA/1326 glxA/1326 Annotation

SCO0084 SLI0010 11,3 3,7 6,6 0,3 0,6 hypothetical protein

SCO0536 SLI0496 49,6 14,7 35,3 0,3 0,7 hypothetical protein

SCO0953 SLI1186 158,0 33,1 107,9 0,2 0,7 regulatory protein, LacI

SCO0954 SLI1187 62,8 19,2 44,4 0,3 0,7 putative acetyltransferase

SCO0977 SLI1212 111,1 29,8 94,3 0,3 0,8 hypothetical protein

SCO1000 SLI0872 27,4 1,8 36,3 0,1 1,3 Integrase

SCO1087 SLI1361 469,9 36,9 483,7 0,1 1,0 threonine aldolase

SCO1088 SLI1362 647,8 32,2 697,2 0,0 1,1 putative oxidoreductase

SCO1089 SLI1363 955,2 80,1 947,5 0,1 1,0 hypothetical protein

SCO1090 SLI1364 76,7 17,4 58,6 0,2 0,8 Glycerophosphoryl diester phosphodiesterase

SCO1109 SLI1382 104,9 26,8 91,2 0,3 0,9 2,4-dienoyl-CoA reductase (NADPH)
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SCO1377 SLI1670 24,7 6,0 21,6 0,2 0,9 Molybdate-binding domain of ModE

SCO1378 SLI1671 235,7 31,1 229,2 0,1 1,0 putative glycine dehydrogenase

SCO1379 SLI1672 13,1 3,0 8,1 0,2 0,6 hypothetical protein

SCO1454 SLI1752 47,9 14,9 53,6 0,3 1,1 Lysine 2-monooxygenase

SCO1455 SLI1753 73,2 16,5 70,1 0,2 1,0 hydrolase

SCO1459 SLI1756 15,4 4,5 13,2 0,3 0,9 putative amino acid transporter

SCO1541 SLI1842 41,9 11,8 38,8 0,3 0,9 putative regulator

SCO1749 SLI2053 557,5 147,5 507,8 0,3 0,9 hypothetical protein

SCO1788 SLI2096 96,3 31,9 65,1 0,3 0,7 4-nitrophenylphosphatase

SCO1799 SLI2107 22,0 5,8 13,7 0,3 0,6 hypothetical protein

SCO1908 SLI2220 50,6 14,8 33,5 0,3 0,7 putative large secreted protein

SCO1982 SLI2298 83,0 26,1 66,1 0,3 0,8 hypothetical protein

SCO2099 SLI2423 52,8 12,7 27,1 0,2 0,5 hypothetical protein

SCO2107 SLI2431 171,7 53,1 101,2 0,3 0,6 glycine oxidase

SCO2255 SLI2582 107,3 36,7 79,5 0,3 0,7 putative membrane protein

SCO2256 SLI2583 113,1 29,1 109,9 0,3 1,0 3-methyl-2-oxobutanoate hydroxymethyltrans-
ferase

SCO2297 SLI2625 64,7 17,6 61,2 0,3 0,9 hypothetical protein

SCO2320 SLI2650 30,0 8,4 19,5 0,3 0,7 hypothetical protein

SCO2352 SLI2683 82,5 25,1 54,0 0,3 0,7 hypothetical protein

SCO2353 SLI2684 121,0 19,2 63,7 0,2 0,5 hypothetical protein

SCO2472 SLI2808 12,2 4,2 6,4 0,3 0,5 SanA protein

SCO2538 SLI2874 318,7 95,8 199,7 0,3 0,6 hypothetical protein

SCO2574 SLI2911 113,7 38,4 102,5 0,3 0,9 hypothetical protein

SCO2939 SLI3283 237,5 71,7 143,9 0,3 0,6 hypothetical protein

SCO2942 SLI3287 459,5 147,5 245,4 0,3 0,5 oxidoreductase

SCO2953 SLI3299 71,8 18,6 37,9 0,3 0,5 putative membrane protein

SCO2954 SLI3300 15,6 5,4 13,7 0,3 0,9 RNA polymerase sigma-70 factor, ECF subfamily

SCO3048 SLI3396 505,7 156,3 435,5 0,3 0,9 putative membrane protein

SCO3070 SLI3420 81,3 14,3 42,5 0,2 0,5 Imidazolonepropionase

SCO3084 SLI3434 13,8 4,0 8,4 0,3 0,6 P-hydroxybenzoate hydroxylase

SCO3086 SLI3437 1554,2 207,9 1456,8 0,1 0,9 putative lipoprotein

SCO3087 SLI3438 981,7 114,2 702,9 0,1 0,7 hypothetical protein

SCO3114 SLI3471 11,7 3,8 10,9 0,3 0,9 putative cellulose-binding protein

SCO3157 SLI3511 210,8 71,4 147,0 0,3 0,7 putative penicillin-binding protein

SCO3194 SLI3548 681,7 198,5 490,6 0,3 0,7 putative lipoprotein

SCO3197 SLI3551 59,1 16,6 44,3 0,3 0,7 Putative sugar kinase

SCO3293 SLI3638 10,1 2,8 7,0 0,3 0,7 hypothetical protein

SCO3330 SLI3673 40,0 10,3 36,9 0,3 0,9 NAD-independent protein deacetylase AcuC

SCO3341 SLI3684 440,5 114,7 258,4 0,3 0,6 hypothetical protein

SCO3342 SLI3685 894,5 129,6 539,8 0,1 0,6 glycine-rich secreted protein

SCO3343 SLI3686 121,6 29,7 71,8 0,2 0,6 hypothetical protein

SCO3356 SLI3698 2083,9 664,0 1835,7 0,3 0,9 ECF sigma factor

SCO3432 SLI3776 41,2 13,0 26,9 0,3 0,7 hypothetical protein

SCO3577 SLI3820 198,4 67,4 144,8 0,3 0,7 Arsenical pump-driving ATPase
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SCO3601 SLI3844 240,8 73,4 218,7 0,3 0,9 ligand-binding protein related to C-terminal 
domains of K+ channels

SCO3621 SLI3866 156,8 28,1 86,5 0,2 0,6 serine-threonine protein kinase

SCO3626 SLI3871 75,5 25,7 53,2 0,3 0,7 putative RNA polymerase sigma factor

SCO3656 SLI3903 67,3 21,0 41,4 0,3 0,6 hypothetical protein

SCO3676 SLI3924 830,2 212,4 502,6 0,3 0,6 hypothetical protein

SCO3686 SLI3934 58,6 16,8 39,3 0,3 0,7 hypothetical protein

SCO3703 SLI3952 70,6 19,6 71,2 0,3 1,0 Molybdate-binding domain of ModE

SCO3710 SLI3959 240,8 67,2 242,8 0,3 1,0 hypothetical protein

SCO3712 SLI3961 719,2 135,4 469,0 0,2 0,7 hydrolase

SCO3772 SLI4016 32,8 8,1 22,3 0,2 0,7 hypothetical protein

SCO3783 SLI4027 46,7 14,9 28,4 0,3 0,6 putative lipoprotein

SCO3786 SLI4030 24,2 6,0 17,8 0,2 0,7 integral membrane protein

SCO3817 SLI4068 617,2 206,3 532,2 0,3 0,9 Branched-chain alpha-keto acid dehydrogenase, 
E1 alpha subunit

SCO3840 SLI4092 264,3 84,6 209,8 0,3 0,8 hypothetical protein

SCO3866 SLI4120 40,2 14,0 25,8 0,3 0,6 hypothetical protein

SCO3905 SLI4163 158,9 52,1 161,3 0,3 1,0 hypothetical protein

SCO3914 SLI4172 289,6 87,9 264,0 0,3 0,9 Transcriptional regulator, MarR family

SCO3915 SLI4173 261,2 21,9 189,6 0,1 0,7 putative transmembrane efflux protein

SCO3943 SLI4191 21,4 6,6 13,0 0,3 0,6 putative LacI-family transcriptional regulator

SCO3975 SLI4226 208,8 32,0 128,9 0,2 0,6 putative regulatory protein

SCO3976 SLI4227 91,9 26,2 75,1 0,3 0,8 Glycerophosphoryl diester phosphodiesterase

SCO4015 SLI4249 54,5 10,3 30,7 0,2 0,6 hypothetical protein

SCO4038 SLI4272 239,8 80,4 125,6 0,3 0,5 tRNA-specific adenosine-34 deaminase

SCO4039 SLI4273 430,3 121,6 245,9 0,3 0,6 hypothetical protein

SCO4040 SLI4274 31,4 5,5 21,6 0,2 0,7 hypothetical protein

SCO4053 SLI4288 10,7 3,3 8,1 0,3 0,8 Integral membrane protein, CopC & CopD 
domain

SCO4054 SLI4289 251,1 64,5 279,8 0,3 1,1 hypothetical protein

SCO4055 SLI4290 28,6 8,0 24,6 0,3 0,9 Threonine dehydrogenase and related Zn-depen-
dent dehydrogenases

SCO4069 SLI4297 87,8 25,5 53,8 0,3 0,6 hypothetical protein

SCO4082 SLI4310 109,7 34,9 76,7 0,3 0,7 hypothetical protein

SCO4083 SLI4311 29,8 8,6 22,2 0,3 0,7 hypothetical protein

SCO4084 SLI4312 54,2 17,7 35,0 0,3 0,6 hypothetical protein

SCO4095 SLI4325 83,6 27,1 49,5 0,3 0,6 hypothetical protein

SCO4100 SLI4330 20,5 7,0 14,8 0,3 0,7 hypothetical protein

SCO4113 SLI4344 190,9 63,9 111,3 0,3 0,6 L-2-hydroxyglutarate oxidase

SCO4125 SLI4362 55,1 14,6 36,0 0,3 0,7 acetyltransferase

SCO4142 SLI4381 15,6 5,2 14,5 0,3 0,9 Phosphate ABC transporter, phosphate-binding 
protein PstS

SCO4167 SLI4408 65,1 21,4 58,6 0,3 0,9 Transcriptional regulator, TetR family

SCO4188 SLI4428 82,8 28,4 59,2 0,3 0,7 Transcriptional regulator, GntR family

SCO4190 SLI4430 298,3 80,4 172,7 0,3 0,6 Transcriptional regulator, GntR family, devA

SCO4234 SLI4472 86,4 29,8 67,4 0,3 0,8 2-C-methyl-D-erythritol 2,4-cyclodiphosphate 
synthase
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SCO4262 SLI4497 36,1 12,6 37,2 0,3 1,0 hypothetical protein

SCO4268 SLI4503 83,6 24,3 64,7 0,3 0,8 hypothetical protein

SCO4287 SLI4524 138,9 46,9 95,6 0,3 0,7 hypothetical protein

SCO4289 SLI4526 477,5 58,8 299,0 0,1 0,6 secreted protein

SCO4290 SLI4527 190,0 31,6 99,6 0,2 0,5 Alpha,alpha-trehalose-phosphate synthase 
[UDP-forming] (EC 2.4.1.15)

SCO4291 SLI4528 26,5 8,7 18,6 0,3 0,7 hypothetical protein

SCO4292 SLI4529 69,9 24,2 51,8 0,3 0,7 putative glucosyl-3-phosphoglycerate synthase

SCO4302 SLI4539 15,7 3,2 10,7 0,2 0,7 secreted protein

SCO4322 SLI4559 86,3 28,7 55,6 0,3 0,6 hypothetical protein

SCO4343 SLI4582 30,4 10,4 21,0 0,3 0,7 Mobile element protein

SCO4386 SLI4620 91,0 30,5 66,7 0,3 0,7 hypothetical protein

SCO4409 SLI4645 101,2 32,4 64,0 0,3 0,6 hypothetical protein

SCO4410 SLI4646 45,3 11,2 44,9 0,2 1,0 putative anti anti sigma factor

SCO4412 SLI4650 31,3 10,2 20,5 0,3 0,7 putative regulatory protein

SCO4422 SLI4659 12,7 3,8 6,9 0,3 0,5 putative hydrolase

SCO4424 SLI4661 353,4 62,4 284,5 0,2 0,8 hypothetical protein

SCO4435 SLI4674 48,9 15,6 28,5 0,3 0,6 putative ADP-ribosylglycohydrolase

SCO4458 SLI4700 89,6 29,0 48,4 0,3 0,5 lipoprotein

SCO4467 SLI4746 283,0 83,6 163,1 0,3 0,6 hypothetical protein

SCO4477 SLI4756 16,4 5,1 14,0 0,3 0,9 Transcriptional regulator, MerR family

SCO4500 SLI4780 43,9 15,0 27,3 0,3 0,6 Acyl dehydratase

SCO4503 SLI4784 15,6 5,1 13,6 0,3 0,9 Long-chain-fatty-acid--CoA ligase

SCO4587 SLI4871 118,0 36,5 97,1 0,3 0,8 Multimeric flavodoxin WrbA

SCO4588 SLI4872 347,5 49,2 197,4 0,1 0,6 hypothetical protein

SCO4633 SLI4904 102,3 34,2 78,9 0,3 0,8 Cytosine deaminase

SCO4696 SLI4967 15,5 5,3 14,4 0,3 0,9 hypothetical protein

SCO4744 SLI5014 31,8 8,1 24,9 0,3 0,8 Holo-[acyl-carrier protein] synthase

SCO4779 SLI5050 158,2 44,9 92,6 0,3 0,6 putative serine/threonine protein kinase

SCO4804 SLI5076 15,4 4,8 8,0 0,3 0,5 hypothetical protein

SCO4818 SLI5089 12,5 3,9 6,5 0,3 0,5 hypothetical protein

SCO4895 SLI5167 192,8 50,5 118,1 0,3 0,6 RNA polymerase sigma-70 factor

SCO4908 SLI5180 2709,8 493,3 1387,1 0,2 0,5 putative RNA polymerase ECF-subfamily sigma 
factor

SCO4988 SLI5263 56,8 17,4 41,5 0,3 0,7 2-dehydro-3-deoxygluconate kinase

SCO5070 SLI5348 10,9 3,6 5,7 0,3 0,5 hypothetical protein

SCO5138 SLI5420 95,1 25,5 76,1 0,3 0,8 hypothetical protein

SCO5157 SLI5440 301,2 64,1 167,7 0,2 0,6 Magnesium and cobalt transport protein CorA

SCO5158 SLI5441 146,7 48,1 109,9 0,3 0,7 hypothetical protein

SCO5209 SLI5498 50,9 17,6 41,0 0,3 0,8 Transcriptional regulator, TetR family

SCO5254 SLI5545 4185,1 1183,8 3958,7 0,3 0,9 Nickel-dependent superoxide dismutase

SCO5401 SLI5672 83,9 20,3 59,8 0,2 0,7 probable integral membrane protein

SCO5403 SLI5674 116,5 35,7 134,9 0,3 1,2 Two-component response regulator

SCO5415 SLI5684 407,2 135,8 472,5 0,3 1,2 putative isobutyryl-CoA mutase, chain B

SCO5416 SLI5685 148,5 50,7 130,8 0,3 0,9 Transcriptional regulator, AraC family
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SCO5417 SLI5686 54,2 16,9 50,0 0,3 0,9 putative zinc-binding oxidoreductase

SCO5437 SLI5705 40,2 13,5 22,6 0,3 0,6 putative MerR-family transcriptional regulator

SCO5469 SLI5738 126,4 34,9 116,4 0,3 0,9 L-serine dehydratase

SCO5472 SLI5741 236,6 49,7 231,1 0,2 1,0 Aminomethyltransferase (glycine cleavage system 
T protein)

SCO5473 SLI5742 194,1 34,9 148,2 0,2 0,8 putative ATP/GTP binding protein

SCO5483 SLI5753 80,2 26,4 72,3 0,3 0,9 Transcriptional regulator, TetR family

SCO5528 SLI5803 90,1 30,7 74,1 0,3 0,8 Transcriptional regulator, TetR family

SCO5557 SLI5834 212,7 51,9 171,1 0,2 0,8 hypothetical protein

SCO5676 SLI5935 301,3 28,2 213,6 0,1 0,7 Gamma-aminobutyrate:alpha-ketoglutarate 
aminotransferase

SCO5679 SLI5939 192,8 20,7 132,7 0,1 0,7 aldehyde dehydrogenase family protein

SCO5681 SLI5941 26,7 1,6 16,4 0,1 0,6 Dolichol-phosphate mannosyltransferase

SCO5772 SLI6034 109,6 33,0 81,7 0,3 0,7 hypothetical protein

SCO5798 SLI6061 357,9 117,0 245,3 0,3 0,7 putative secreted protein

SCO5807 SLI6073 56,3 19,6 45,0 0,3 0,8 hypothetical protein

SCO5881 SLI6154 181,2 61,1 116,6 0,3 0,6 two-component system response regulator

SCO5915 SLI6190 12,3 3,5 8,3 0,3 0,7 hypothetical protein

SCO5919 SLI6197 27,1 5,8 22,9 0,2 0,8 hypothetical protein

SCO5920 SLI6198 52,6 7,6 63,1 0,1 1,2 ATP-dependent RNA helicase

SCO5985 SLI6267 13,5 2,6 9,7 0,2 0,7 Putative translation initiation inhibitor, yjgF 
family

SCO5986 SLI6268 116,8 22,5 78,5 0,2 0,7 putative oxidoreductase

SCO5987 SLI6269 144,2 27,5 118,4 0,2 0,8 hypothetical protein

SCO5991 SLI6274 122,1 29,8 71,6 0,2 0,6 secreted protein

SCO6045 SLI6439 198,7 53,9 144,9 0,3 0,7 hypothetical protein

SCO6084 SLI6477 127,2 43,2 87,9 0,3 0,7 putative DNA polymerase III epsilon subunit

SCO6526 SLI6874 13,7 4,0 13,7 0,3 1,0 hypothetical protein

SCO6540 SLI6888 83,3 27,8 43,4 0,3 0,5 Pterin-4-alpha-carbinolamine dehydratase

SCO6621 SLI6980 157,6 36,2 108,6 0,2 0,7 hypothetical protein

SCO6799 SLI7149 127,4 3,5 121,8 0,0 1,0 L-threonine 3-dehydrogenase

SCO6800 SLI7150 138,7 3,7 187,9 0,0 1,4 2-amino-3-ketobutyrate coenzyme A ligase

SCO6801 SLI7151 65,4 19,9 73,3 0,3 1,1 Transcriptional regulator, LysR-family

SCO7248 SLI7464 10,1 3,5 7,1 0,3 0,7 hypothetical protein

SCO7533 SLI7755 11,2 2,7 10,7 0,2 1,0 two-component system response regulator

SCO7597 SLI7819 26,4 9,0 19,2 0,3 0,7 putative N-acetylglucosamine kinase

SLI5074 20,6 2,7 21,8 0,1 1,1 hypothetical protein

SLI3439 526,9 107,8 356,3 0,2 0,7 hypothetical protein

SLI7216 16,5 3,9 14,6 0,2 0,9 Transcriptional regulator, LacI-family

SLI1383 17,0 4,0 17,4 0,2 1,0 hypothetical protein

SLI3901 11,5 2,8 7,7 0,2 0,7 hypothetical protein

SLI4663 69,4 17,7 60,9 0,3 0,9 hypothetical protein

SLI3397 405,7 112,1 264,6 0,3 0,7 putative membrane protein

SLI3436 14,1 4,0 11,4 0,3 0,8 hypothetical protein

SLI0018 88,1 25,5 59,4 0,3 0,7 putative two-component system response 
regulator
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SLI8089 12,1 3,6 8,6 0,3 0,7 hypothetical protein

SLI4844 15,6 4,7 9,7 0,3 0,6 hypothetical protein

SLI4699 25,8 8,0 14,5 0,3 0,6 hypothetical protein

SLI6125 35,3 10,9 27,3 0,3 0,8 hypothetical protein

SLI3499 18,4 5,7 11,7 0,3 0,6 two-component system response regulator

SLI3881 76,2 24,0 42,3 0,3 0,6 hypothetical protein

SLI3774 23,1 7,4 27,0 0,3 1,2 hypothetical protein

SLI7074 9,7 3,1 10,7 0,3 1,1 hypothetical protein

SLI5049 69,6 22,5 78,3 0,3 1,1 hypothetical protein

SLI1401 18,4 6,1 10,2 0,3 0,6 hypothetical protein

SLI5843 53,1 17,9 47,7 0,3 0,9 hypothetical protein

SLI1210 69,1 23,5 39,2 0,3 0,6 hypothetical protein

SLI5857 53,3 18,3 27,0 0,3 0,5 hypothetical protein

SLI2084 19,5 6,7 14,3 0,3 0,7 putative regulatory protein
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