

Cover Page

Universiteit Leiden

The handle <http://hdl.handle.net/1887/28767> holds various files of this Leiden University dissertation

Author: Kraaij, Marina

Title: ROS-producing macrophages in immune modulation

Issue Date: 2014-09-24

ROS-producing Macrophages in immune modulation

Marina Kraaij

© 2014, Marina D. Kraaij, Hillegom, The Netherlands

All rights reserved. No part of this thesis may be reproduced or transmitted in any form or by any means, electronical or mechanical, without prior permission of the author.

ISBN/EAN 978-90-820008-1-8

The research described in this thesis was performed in the Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands.

The research was financially supported by the Dutch Kidney Foundation (grant no. KSPB07-0001 and KSPB07-0003).

ROS-producing Macrophages in immune modulation

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit Leiden
op gezag van de Rector Magnificus Prof. mr. C.J.J.M. Stolker
volgens besluit van het College voor Promoties
te verdedigen op
woensdag 24 september 2014
klokke 16:15 uur

door

Marina Deborah Kraaij
geboren te Hillegom
in 1984

Promotiecommissie

Promotor Prof. dr. C. van Kooten

Co-promotor Dr. K.A. Gelderman

Overige leden Prof. dr. L. Meyaard
University Medical Center Utrecht (Utrecht, The Netherlands)

Prof. dr. T.H. Ottenhoff

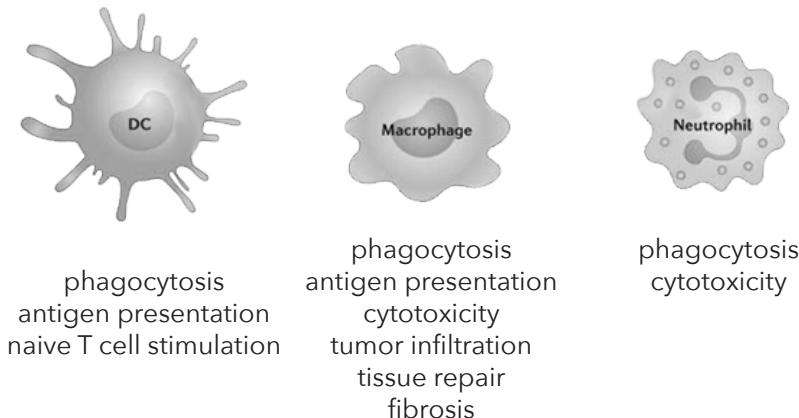
Dr. A.T. Rowshani
Erasmus University Medical Center (Rotterdam, The Netherlands)

Contents

Chapter 1	General introduction	7
Chapter 2	Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species <i>Proc Natl Acad Sci USA. 2010 Oct 12;107(41):17686-91</i>	25
Chapter 3	Dexamethasone increases ROS production and T cell suppressive capacity by anti-inflammatory macrophages <i>Mol Immunol. 2011 Dec;49(3):549-57</i>	45
Chapter 4	Subsets of human type 2 macrophages show differential capacity to produce reactive oxygen species <i>Cell Immunol. 2013 Jul-Aug;284(1-2):1-8</i>	63
Chapter 5	The NOX2-mediated ROS producing capacity of recipient cells is associated with reduced T cell infiltrate in an experimental model of chronic renal allograft inflammation <i>Transpl Immunol. 2013 Dec 21. pii: S0966-3274(13)00104-4</i>	81
Chapter 6	General discussion and summary	95
Appendix	Nederlandse samenvatting	109
	Dankwoord	115
	Curriculum Vitae	117
	Bibliography	119

Chapter 1

General introduction


Introduction

Summary

Macrophages (Mph) are major effector cells of the innate immune system. Mph are broadly divided into two types: pro-inflammatory Mph1 and anti-inflammatory Mph2. A distinctive feature described between human Mph1 and Mph2 is the high reactive oxygen species (ROS) production by Mph1, whereas Mph2 are being described as a non-ROS producing cell. ROS generated by Mph are usually associated with oxidative stress. However, ROS produced in the immunological synapse or produced in lower amounts can inhibit T cell activation. In addition, ROS serve as second messenger in various signaling pathways by changing specific proteins. These redox changes are in many cases associated with altered activity and effects on signaling pathways or cellular processes. ROS are thus being produced as a result of normal cell physiology or due to ageing or stress, but can also be produced in the context of immunological defense by a specific enzymatic system. A naturally occurring polymorphism in the NADPH oxidase complex member *Ncf1* was found to regulate the severity of arthritis in rats. This polymorphism caused reduced ROS production and promoted the activation of arthritogenic T cells. The main producers of phagocytic NADPH oxidase (NOX2)-derived ROS are neutrophils and Mph. It was shown using transgenic mice expressing a functional NOX2 restricted to Mph that Mph could inhibit T cell responses in a ROS-dependent fashion. Thus NOX2-derived ROS are involved in immune modulation and cellular signaling as well. The scope of this thesis was to obtain more insight in the role of ROS being produced by the human M-CSF-differentiated anti-inflammatory Mph2 in immune modulation.

Macrophage differentiation

In the bone marrow, hematopoietic progenitor cells give rise to neutrophils and cells from the mononuclear phagocyte system, including circulating blood monocytes (Mn), tissue macrophages (Mph) and dendritic cells (Figure 1) (1,2). Mn are released into the circulation upon maturation where they remain for a few days before migrating into all the tissue compartments in the body. There the Mn will differentiate into resident Mph and by adapting to their local environment, Mph such as Kupffer cells (liver), alveolar Mph (lung), and microglia (central nervous system) develop. These Mph types are morphologically and phenotypically very different, underscoring the plasticity of Mph. Mph are major effector cells of the innate immunity; they engulf and kill pathogens, but are also involved in tissue repair and resolution of inflammation. Under the influence of colony stimulating factors (CSF), including macrophage (M)-CSF and granulocyte-macrophage (GM)-SCF, Mn are differentiated from progenitor cells. This became evident when observing osteopetrotic mice having a genetic defect that makes them M-CSF deficient (3). These mice have severe reductions in circulating Mn, and almost complete absence of various myeloid cells including osteoclasts and resident peritoneal Mph. The majority of the tissue

Figure 1: Functions of myeloid cells: DC, Mph, and neutrophil

Mph depend upon signaling through the CSF-1R for their migration, survival and (re)population (4).

Since M-CSF is constitutively present in blood, it is thought that an anti-inflammatory Mph phenotype is maintained under homeostatic conditions (5). However, under the influence of environmental factors, including signals like cytokines, chemokines, and TLR ligands, resident Mph can undergo phenotypic and functional differentiation, thereby resulting in different Mph populations (6-8). This was shown in an elegant study by Arnold et al. using *in vivo* tracing methods where inflammatory Mph switched to an anti-inflammatory Mph phenotype in response to a changed microenvironment (9).

Macrophage plasticity during inflammation

In response to various inflammatory and immune stimuli, tissue-resident Mph undergo local activation. In addition, Mn are recruited causing an accumulation of tissue Mph with a pro-inflammatory phenotype (Mph1) contributing to inflammation. Mph1 phagocytose debris, invading micro-organisms and opsonized particles, thereby triggering a pro-inflammatory response with production of pro-inflammatory mediators, including Interleukin (IL)-1 β , IL-6, IL-12, and tumor necrosis factor- α (TNF)- α (10). During the phagocytosis of apoptotic cells, Mph dampen their pro-inflammatory activities, acquiring characteristics of anti-inflammatory Mph2; Mph that can initiate tissue healing and repair by producing the anti-inflammatory mediators TGF- β , IL-10, and prostaglandin E2 (11,12).

In a model of glomerulonephritis in the kidney, ablation of Mn and Mph diminished the amount of tissue injury (13,14). In addition, Kupffer cell depletion in a model of liver injury using clodronate liposomes attenuated liver damage (15). Mph depletion in a model of autoimmune diabetes blocked disease, and Mph inactivation led to increased graft survival in a model of islets of Langerhans

transplantation in the rat (16,17). This implicates that under several conditions Mph depletion could be of therapeutic interest. However, eliminating Mph can also have disadvantages. It has been demonstrated that hepatic Mph were necessary for matrix regression and regulating cell proliferation following liver injury (18). Similarly, in muscle Mph are needed to enhance myogenic growth by releasing trophic factors (19). These Mph depletion studies confirm *in vivo* that different Mph types exist: depletion does not only affect the pro-inflammatory function of Mph but also the wound healing function.

Macrophages in chronic inflammatory diseases

Lately there has been an increasing interest in the role of Mph in chronic inflammatory diseases. In atherosclerosis a persistent recruitment of Mn into atherosclerotic lesions is observed, where a variety of pro- and anti-inflammatory Mph can be found (20). A damaging role for Mph1 has been indicated in atherosclerosis, whereas Mph2 were shown to be protective (21,22). In addition, Mph play also a central role in the pathogenesis of rheumatoid arthritis (RA). In steady-state conditions a balance is established that allows normal joint function. This balance can shift towards an inflammatory pathway by increased production of growth factors that promote Mph1 development and increased production of pro-inflammatory cytokines such as TNF- α and IL-6 further favouring Mph1 progression (23). Furthermore, in obesity-induced inflammation Mph1 are considered to be the major inflammatory cell in adipose tissue, whereas normally resident adipose tissue Mph are non-inflammatory and regarded as Mph2 (24).

Macrophage 2-like phenotypes

Resident tissue Mph express the Mph2 marker CD163, indicating an Mph2 phenotype *in vivo* (25). Mph2 are also found in the lung where they function to protect against unwanted immune responses (26). They were also documented in a Th2-mediated inflammatory setting such as nematode infection (27). Embryonic Mph and Mph isolated from placentae and tumors also display characteristics of Mph2 (28-30). Additionally, coculturing monocytes with Tregs differentiated these cells toward Mph2 (31). Tumor-associated Mph (TAMs) also have Mph2 properties. TAMs originate from circulating monocytic precursors, which are recruited to the tumor in response to secreted chemokines and cytokines derived from cancer cells (32). They express high levels of the mannose receptor, are poor at presenting antigen and their cytokine profile consist of high IL-10 and low IL-12 production (33). The role of TAMs in tumors involves tumor progression and metastasis, immune suppression, and angiogenesis. Thus functionally different Mph2-like phenotypes have already been documented.

Although the results described above suggest fully polarized functions, Mph with overlapping phenotypes have been observed as well. In human Mn infected with cytomegalovirus and in adipose tissue Mph a mixed gene profile expressing both Mph1 and Mph2 genes was observed (34,35). In addition, oxidized phospholipid-treated murine Mph were identified as a new

Mph phenotype which is distinctly different from Mph1 and Mph2 (36). Thus ample Mph-like phenotypes have been observed, indicating the complexity of defining a specific Mph phenotype.

Macrophage activation

Interferon- γ (IFN- γ) was the first identified marker that could activate Mph (37). Later, LPS and GM-CSF were found to promote the generation of Mph1 (38). Factors that skew Mph towards Mph2 are M-CSF, IL-4, IL-13, immune complexes, Wnt5a, IL-10, or TGF- β , indicating great heterogeneity (39-43). These activators all induce a distinct, as well as partially overlapping, pattern of gene expression, thus presenting different Mph2 subsets. Mph2 are induced by M-CSF, Mph2a are induced by IL-4 or IL-13, Mph2b are induced by exposure to immune complexes, agonists of TLRs or IL-1R, and Mph2c are induced by IL-10 and glucocorticoid hormones (39). Functionally, Mph2a are responsible for wound healing and Mph2b together with Mph2c for immune regulation. Th2 driven inflammation is induced by Mph2b, whereas Mph2c are predominantly involved in deactivating immunoregulation (39). Overall, Mph2 participate in Th2 responses, dampen inflammation, promote tissue remodeling, angiogenesis, tumor progression and immune regulation, whereas Mph1 participates in Th1 responses and are protective against tumors and organisms (44).

Recently other Mph subsets have been described. Mph2d are the results of switching from Mph1 as a response to adenosine A2A receptor signaling induced by TLR agonists (45). These Mph have decreased expression of pro-inflammatory cytokines, including IL-12 and TNF- α , while concurrently produce high levels of IL-10 and vascular endothelial growth factor. Mox Mph are induced by ox-PL 1-palmitoyl- 2arachidonoyl-sn-glycero-3-phosphorylcholine, resulting in a population of Mph that express an unique set of genes like heme oxygenase-1 (HO-1) and thioredoxin-reductase in a Nrf2 dependent manner (36). Mha macrophages are differentiated from monocytes using haptoglobin complexes or oxidized red blood cells leading to the up-regulation of CD163, HO-1 and IL-10 in an Nrf2-dependent manner, suggesting that these two subsets might be related (46). In addition, Mph4 have combined features of Mph1 and Mph2 and were shown to be CSF/CXCL4-dependent (47). These Mph have a weak phagocytic capacity, but their function remains poorly understood. Mox, Mha and Mph4 have until now been poorly characterized. Considering the heterogeneous expression of cell surface markers in Mph, the number of Mph-subpopulations could be infinite (2).

Distinguishing between Mph1 and Mph2 subsets

Considering the great heterogeneity, it is a major challenge to distinguish different Mph subsets. This characterization is mainly based on the expression of cell surface markers as well as their cytokine and chemokine production profile (Table 1). Specific Mph2 markers in mice, arginase-1, FIZZ1, Ym1, Ym2 and MRC1 have been identified both *in vivo* and *in vitro* (1,48), whereas establishing specific markers for human Mph2 is still an ongoing challenge. Candidates like CD163, CD206 (mannose receptor), HO-1, folate receptor- β ,

	Mph1 (IFN- γ /LPS/GM-CSF)	Mph2 (M-CSF)	Mph2a (IL-4)	Mph2c (IL-10)
markers	MHC class II CD80, CD86 CD16, CD32, CD64	CD16, CD32, CD64 CD163	MHC class II CD80, CD86 CD163, CD206	CD16, CD32, CD64 CD163, CD206
	CD206	MHC class II CD80, CD86	CD16, CD32, CD64	MHC class II CD80, CD86
cytokines	TNF- α IL-1, IL-6, IL-12 IL-18, IL-23	IL-10	IL-10, IL-1ra TGF- β	IL-10, IL-1ra TGF- β
	IL-10	TNF- α IL-1, IL-6, IL-18	TNF- α IL-1, IL-6, IL-18, IL-12	TNF- α IL-1, IL-6, IL-18, IL-12
chemokines	CCL2,3,4,5,8,15,19,20 CXCL9,10,11,13,16 CX3CL1 CCR7	CCL2	CCL2,13,14,17,18 CCL22,23,24,26 CXCL4,8 CXCR1,2	CCL2,16,18,23 CXCL4,13 CCR2,5
	CCL17,18,22,24 CCR2	CCL17,22	CCL5 CXCL9,10	CCL5 CXCL9,10
other	high ROS (NOX2) IRF5 STAT5 pathway Th1 response	IRF4 Th2 response	low ROS (NOX2) STAT6 pathway Th2 response	low ROS (NOX2) STAT3 pathway Th2 response

Table 1: Characteristics of Mph1, Mph2, Mph2a, and Mph2c regarding markers, cytokines, chemokines and miscancellous

and CCL18 have been described (1,49-51). In general, the high expression of cell surface markers CD163 and CD206 on Mph2 is used to distinguish Mph1 and Mph2, although different levels have been reported depending on the Mph2 subtype (52-55). Mph1 and Mph2 produce distinct cytokines: Mph1 show high TNF- α , IL-6, IL-12, and IL-23 production and low IL-10 levels, whereas Mph2 typically produce high levels of IL-10 and TGF- β (40,41,53,55,56) (Table 1). In addition, the chemokine production of Mph1 and Mph2 is different. Mph1 produces inflammatory CC chemokines and IFN- γ -responsive chemokines CCL5 (RANTES), CXCL9, CXCL10 (IFN- γ -IP-10), and CXCL16 that will recruit Th1, Tc1, and NK cells and thus a type 1 immune response (39,56). IL-4 and IL-10 differentiated Mph2 will inhibit the expression of most of these chemokines, and thereby limiting inflammation. M-CSF, IL-4, and IL-10 all induce CCL2 (MCP-1). IL-4 induces CCL17, CCL24, and CCL22, which will be inhibited by IFN- γ differentiated Mph1 (39,57). CCL22 binds to CCR4 which is expressed on Th2 lymphocytes, thereby amplifying the Th2 response (58). Taken together, the cytokine and chemokine production of Mph1 will lead to a Th1 response, whereas that of Mph2 will lead a Th2 response.

The transcriptional regulation during differentiation is also different in Mph1 and Mph2 (Table 1). The transcription factor PU.1 is essential to Mph lineage

commitment and Mph-specific gene expression (59). Transcription factors are also involved in the Mph polarization. The transcription factors involved in Mph1 polarization are NF- κ B, activator protein-1, CCAAT/enhancer-binding protein- α (C/EBP- α), and interferon regulatory factor (IRF)5, whereas STAT6, peroxisome proliferator-activated receptor γ (PPAR γ), IRF4, C/EBP- β , and Krüppel-like factor 4 (KLF4) are associated with Mph2 polarization (60). STAT6 induces the transcription factor PPAR γ , which acts together with STAT6 to regulate Mph2-specific genes and polarization (61). KLF4 was found to cooperate with STAT6 to induce an Mph2 profile, while inhibiting Mph1 targets (62). IRF4 has been implicated in Mph2 polarization, whereas IRF5 participates in the activation of genes encoding pro-inflammatory cytokines and represses the gene encoding IL-10, resulting into Mph1 activation (56,63).

ROS producing capacity of Mph1 and Mph2

A distinctive difference described between Mph1 and Mph2 is the high reactive oxygen species (ROS) production by Mph1, while IL-4 differentiated Mph2 are described as non-ROS producing cell (40,53,57,64). ROS generated by Mph are usually associated with oxidative stress (65). However, it has been shown that ROS produced in the immunological synapse or produced in lower amounts can inhibit T cell activation, or can serve as second messenger in various signaling pathways (66-69). These data indicate that the exact role of Mph-derived ROS in the immune system needs to be resolved.

Reactive oxygen species

Important insights into the potential role of ROS in immune regulation were obtained in experimental models of autoimmunity, where Dark Agouti (DA) rats were found to be more prone to develop RA compared with other rat strains. Genetic studies identified a naturally occurring polymorphism in *Ncf1*, component of the NADPH oxidase complex, linked to the severity of arthritis in rats (70). This polymorphism resulted in a reduced ROS production and promoted the activation of arthritogenic T cells.

Phagocytic NADPH oxidase complex

ROS are produced by the mitochondrial electron transport chain, peroxisomes, xanthine oxidase, endoplasmic reticulum and the NADPH oxidases. There are seven family members of the NADPH oxidases, namely NOX complexes 1-5, and DUOX 1 and 2. The main producers of phagocytic NOX2-derived ROS are PMN and Mph. The NOX2 complex is responsible for the oxidative burst, causing a sufficient concentration of ROS in the phagosome, required to kill pathogens. NOX2 consists of multiple components: the membrane-bound cytochrome-b558 consisting of gp91^{phox} and p22^{phox}, and the cytosolic components p47^{phox} (*Ncf1*), p67^{phox}, and p40^{phox}, and the small GTPase Rac. Upon phosphorylation p47^{phox}, together with p67^{phox} and p40^{phox}, form the NOX2 complex in the membrane by interacting with p22^{phox} and gp91^{phox}, resulting in the production of superoxide. This will dismutate to hydrogen peroxide, and

is then further processed to generate more reactive metabolites like hydroxyl radical, after interaction with transition metal ions, and hypochlorous acid, which is catalyzed by myeloperoxidase. NOX2-derived ROS are generated in the plasma membrane, but ROS production can also occur within intracellular organelles, although the exact compartment is yet to be determined (71).

Chronic granulomatous disease (CGD) is a disease that develops when mutations in one of the NOX2 components occur, resulting in defective ROS production. At this moment, mutations in the CYBB ($gp91^{phox}$), CYBA ($p22^{phox}$), NCF1 ($p47^{phox}$), NCF2 ($p67^{phox}$), and NCF4 ($p40^{phox}$) genes have been described (72,73). The predominant form of CGD, comprising about 70% of cases, results from mutations in $gp91^{phox}$ which are inherited in an X-linked recessive manner, whereas mutations in the other genes are inherited in an autosomal recessive manner (73). CGD patients have a ROS production of 0.1 - 27% compared to normal levels (74). The X-linked recessive cases are more severe than autosomal recessive cases, since these patients have a lower residual ROS production. In addition, with a modest residual ROS production there is a greater probability of long-term survival compared with those having little residual ROS levels (74). The consequences of the diminished or abrogated oxidative burst by the NOX2 complex in CGD patients are recurrent bacterial and fungal infections, as well as granuloma formation (75). In addition these patients suffer more often from autoimmune diseases such as RA or systemic lupus erythematosus compared to the normal population (76,77). Since a hyperinflammatory phenotype is presented under non-infectious conditions with suboptimal ROS production, this indicates that normal phagocytic ROS production suppress pro-inflammatory gene transcription and preserve homeostasis (71). Interestingly, CGD patients have defective apoptosis after phagocytosis, as a result of reduced induction of the pro-apoptotic protein BAX (78). This study indicates that ROS are involved in the resolution of inflammation as well.

Redox signaling

ROS are being produced as a result of normal cell physiology or due to ageing or stress. As defense against ROS, cells have anti-oxidants, like glutathione, Vitamins C and E, superoxide dismutases, catalase, peroxidases, thioredoxins, glutaredoxins, and peroxiredoxins (79). Oxidative stress generally involves non-specific oxidation of a wide variety of molecules and is associated with higher oxidation states like sulfenic and sulfonic acid, causing irreversibly damage. There are strong indications that oxidative stress is an important pathogenic mechanism in various disorders, including cancer, ageing, atherosclerosis, diabetes, and ischemia-reperfusion injury (80). Thus eliminating ROS by anti-oxidants would potentially be beneficial. However, it has been demonstrated that antioxidants could not improve the disease course of RA or atherosclerosis (81,82). Even more so, the use of pro-oxidant phytol, causing increased ROS production, actually decreased inflammation in animals with arthritis (83).

ROS serve as second messenger in various signaling pathways by changing

specific proteins. Hydrogen peroxide oxidizes thiol groups of protein cysteine residues forming disulfides either with other protein cysteines or with low-molecular weight thiols like glutathione, or forming sulfenic acids. Only a subset of cysteine residues in proteins is susceptible to oxidation, indicating the specificity of the reactions. These redox changes are in many cases associated with altered activity and effects on signaling pathways or cellular processes. In bacteria, the transcriptional activator OxyR, is directly oxidized in response to hydrogen peroxide (84). Even though both the oxidized and reduced OxyR are able to bind DNA, only the oxidized form can activate the transcription of antioxidant genes. In eukaryotes, proteins susceptible to thiol oxidation are protein tyrosine phosphatases (PTPs), kinases, and some transcription factors (85,86). PTPs are inactivated after oxidation, resulting in the activation of downstream signaling pathways. The transcription factor family NF-κB is also under redox control, although both oxidation and reduction by ROS are implicated in the activation process (87). In addition, the stress-responsive transcription factor Nrf2 is activated by the oxidation of its inhibitory partner Keap1, thereby disassociating Nrf2 from the complex, leading to the activation of target genes like HO-1 and superoxide dismutase (88). Since the above mentioned transcription factors also control the expression of genes involved in immunity and inflammation, understanding redox signaling is of great importance.

Effects of oxidation on signaling via the T cell receptor (TCR) has also been reported. In RA patients T cell hyporesponsiveness was dependent on the translocation of linker for activation (LAT) of T cells induced by oxidative stress, which impaired the TCR signaling (89). Also TCR zeta and p56^{lck} signaling molecules have been indicated as redox targets after structural changes were observed after oxidation (90). The integrin VLA-4 was identified as redox target, which is a co-stimulatory molecule in the immunologic synapse (91). These data indicate an important role for ROS in modifying the T cell response, directly associating redox-dependent TCR signaling regulation and T cell function. This was also shown in a rat model where decreased ability to produce ROS in DA rats was associated with increased numbers of thiol groups present on the cell surface of their T cells (92). In addition, T cells from rats with normal ROS production could only transfer arthritis after increasing the number of thiol groups, whereas T cells from DA rats became less arthritogenic after decreasing the thiol groups (92).

ROS producing capacity of myeloid cells

During phagocytosis of pathogens, neutrophils produce NOX2-derived ROS to kill microorganisms (3). Interestingly, when comparing neutrophils from CGD patients with healthy controls increased expression of genes encoding for inflammation and host defense were observed, whereas anti-inflammatory mediators were down-regulated (78). A more recently discovered process stimulated by ROS is the formation of neutrophil extracellular traps (NETs) (93). Stimulated neutrophils generate these NETs in order to catch and kill pathogens. Interestingly, CGD patients cannot form NETs, further implicating

NOX2-derived ROS in the antimicrobial response (93).

Myeloid-derived suppressor cells (MDSC), a recently identified population of myeloid cells, continuously produce inflammatory mediators, like IL-1, IL-6, and nitric oxide, but also ROS (94,95). MDSC are predominantly found in tumour bearing patients where they proliferate and stay activated due to chronic inflammation in the tumour environment. ROS production of MDSC is mediated through increased activity of NOX2. The role of ROS in T cell suppression was confirmed when MDSC from *gp91^{-/-}* mice were not able to induce T cell tolerance (96). MDSC, via generation of ROS and peroxynitrite (O₂^{·-} and NO interaction), induced the modification of the peptide-MHC binding of T cells rendering them unresponsive to antigen-specific stimulation (96).

ROS producing capacity of Mph

The *Ncf1* gene, encoding the NOX2 protein p47^{phox}, was responsible for DA rats being more prone to develop RA or multiple sclerosis compared with other rat strains (70). This indicates that a lack of ROS production in these rats caused a higher susceptibility to disease. A mutation in the *Ncf1* gene in the mouse had similar results in models of RA and multiple sclerosis showing increased susceptibility and severity due to reduced oxidative burst (97). Interestingly, in rats with a reduced ROS producing capacity the increased susceptibility to pristane-induced arthritis was mediated in a T cell-dependent fashion (98). However, T cells have a very low NOX2 expression production, if any, suggesting that other cells were involved. Among murine APCs, Mph were the highest ROS producing cells compared with B cells and DCs (99). In addition, mice expressing functional p47^{phox} only in their Mph were similarly protected against collagen induced arthritis compared to fully functional wild type mice (99). These data indicate that ROS derived from Mph inhibit T cell responses. Mn/Mph NADPH oxidase was also identified playing a central role in controlling fungal infecting and limiting lung inflammation in a mouse model (100). Furthermore, mice with Mn/Mph expressing functional *Ncf1* were protected against bacterial infections (101). These data indicate an anti-inflammatory role for Mph-derived ROS. However, IL-4 differentiated Mph2 have reduced respiratory burst, whereas Mph1 are known for their ROS-producing capacity (45,59,68,83). Mph-derived ROS are associated with oxidative stress (84), and therefore linked to Mph1, but apparently there is a dual role for Mph-derived ROS. The function of ROS in the immune system is thus not simply antimicrobial, but NOX2-derived ROS are also involved in immune modulation, cellular signaling, chemotaxis, antigen cross-presentation and in inducing autophagy (102).

Scope of thesis

ROS are implicated in cell signaling and also play a role in immune-modulating processes. Anti-inflammatory Mph could inhibit T cell responses in a ROS-dependent fashion, which was shown using transgenic mice expressing functional *Ncf1* restricted to Mph. However, there is limited information on the T cell inhibitory role of Mph-derived ROS in the human setting. For that reason the scope of this thesis was to obtain better insight in the role of

ROS being produced by anti-inflammatory Mph2 in immune regulation. First we investigated the human anti-inflammatory Mph2 for their functional capacity in a ROS-dependent fashion in **Chapter 2**. The anti-inflammatory potential of the ROS-producing capacity of Mph2 led us to investigate the possibility of using Mph2 as cellular therapy, therefore **Chapter 3** focuses on the effect of several commonly used immunosuppressive drugs on Mph1 and Mph2 regarding ROS production and the subsequent effect on T cell responses. Since inhibition of T cell activation in a ROS-dependent fashion was observed, we investigated a potential mechanism by which Mph2-derived ROS could affect T cell function in **Chapter 4**. Since an observed protective role of macrophages-derived ROS in autoimmune diseases was observed, in **Chapter 5** we investigated the impact of ROS production on the inflammatory response in a renal allograft transplantation model. **Chapter 6** summarizes the studies presented in this thesis and discusses the implications of these findings as well as some unpublished data, and further discusses the role of Mph2-derived ROS in immune modulation.

References

1. Gordon, S., and F. O. Martinez. 2010. Alternative activation of macrophages: mechanism and functions. *Immunity*. 32: 593-604.
2. Hume, D.A. 2008. Differentiation and heterogeneity in the mononuclear phagocyte system. *Mucosal Immunol* 1: 432-441.
3. Witmer-Pack, M. D., D. A. Hughes, G. Schuler, L. Lawson, A. McWilliam, K. Inaba, R. M. Steinman, and S. Gordon. 1993. Identification of macrophages and dendritic cells in the osteopetrosic (op/op) mouse. *J Cell Sci* 104 (Pt 4): 1021-1029.
4. Chitu, V., and E. R. Stanley. 2006. Colony-stimulating factor-1 in immunity and inflammation. *Curr. Opin. Immunol* 18: 39-48.
5. Martinez, F. O., S. Gordon, M. Locati, and A. Mantovani. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: New molecules and patterns of gene expression. *Journal of Immunology* 177: 7303-7311.
6. Lin, S. L., A. P. Castano, B. T. Nowlin, M. L. Lupher, and J. S. Duffield. 2009. Bone Marrow Ly6C(high) Monocytes Are Selectively Recruited to Injured Kidney and Differentiate into Functionally Distinct Populations. *Journal of Immunology* 183: 6733-6743.
7. Geissmann, F., C. Auffray, R. Palframan, C. Wirrig, A. Ciocca, L. Campisi, E. Narni-Mancinelli, and G. Lauvau. 2008. Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. *Immunology and Cell Biology* 86: 398-408.
8. Cassetta, L., E. Cassol, and G. Poli. 2011. Macrophage polarization in health and disease. *ScientificWorldJournal*. 11: 2391-2402.
9. Arnold, L., A. Henry, F. Poron, Y. Baba-Amer, R. N. van, A. Plonquet, R. K. Gherardi, and B. Chazaud. 2007. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. *J. Exp. Med.* 204: 1057-1069.
10. Duffield, J. S. 2003. The inflammatory macrophage: a story of Jekyll and Hyde. *Clin. Sci. (Lond)* 104: 27-38.
11. Chan, A., R. Seguin, T. Magnus, C. Papadimitriou, K. V. Toyka, J. P. Antel, and R. Gold. 2003. Phagocytosis of apoptotic inflammatory cells by microglia and its

therapeutic implications: termination of CNS autoimmune inflammation and modulation by interferon-beta. *Glia* 43: 231-242.

- 12. Huynh, M. L., V. A. Fadok, and P. M. Henson. 2002. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. *J Clin Invest* 109: 41-50.
- 13. Duffield, J. S., P. G. Tipping, T. Kipari, J. F. Cailhier, S. Clay, R. Lang, J. V. Bonventre, and J. Hughes. 2005. Conditional ablation of macrophages halts progression of crescentic glomerulonephritis. *American Journal of Pathology* 167: 1207-1219.
- 14. Guo, S. H., T. A. Wietecha, K. L. Hudkins, Y. Kida, M. W. Spencer, W. Pichaiwong, I. Kojima, J. S. Duffield, and C. E. Alpers. 2011. Macrophages are essential contributors to kidney injury in murine cryoglobulinemic membranoproliferative glomerulonephritis. *Kidney International* 80: 946-958.
- 15. Schumann, J., D. Wolf, A. Pahl, K. Brune, T. Papadopoulos, R. N. van, and G. Tiegs. 2000. Importance of Kupffer cells for T-cell-dependent liver injury in mice. *Am J Pathol* 157: 1671-1683.
- 16. Bottino, R., L. A. Fernandez, C. Ricordi, R. Lehmann, M. F. Tsan, R. Oliver, and L. Inverardi. 1998. Transplantation of allogeneic islets of Langerhans in the rat liver: effects of macrophage depletion on graft survival and microenvironment activation. *Diabetes* 47: 316-323.
- 17. Jun, H. S., C. S. Yoon, L. Zbytnuik, R. N. van, and J. W. Yoon. 1999. The role of macrophages in T cell-mediated autoimmune diabetes in nonobese diabetic mice. *J Exp Med* 189: 347-358.
- 18. Duffield, J. S., S. J. Forbes, C. M. Constandinou, S. Clay, M. Partolina, S. Vuthoori, S. Wu, R. Lang, and J. P. Iredale. 2005. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. *J. Clin. Invest* 115: 56-65.
- 19. Chazaud, B., C. Sonnet, P. Lafuste, G. Bassez, A. C. Rimaniol, F. Poron, F. J. Authier, P. A. Dreyfus, and R. K. Gherardi. 2003. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. *J. Cell Biol.* 163: 1133-1143.
- 20. Martinet, W., D. M. Schrijvers, and G. R. De Meyer. 2012. Molecular and cellular mechanisms of macrophage survival in atherosclerosis. *Basic Res Cardiol.* 107: 297.
- 21. Babaev, V. R., P. G. Yancey, S. V. Ryzhov, V. Kon, M. D. Breyer, M. A. Magnuson, S. Fazio, and M. F. Linton. 2005. Conditional knockout of macrophage PPARgamma increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice. *Arterioscler. Thromb. Vasc. Biol.* 25: 1647-1653.
- 22. Park, S. H., Y. Sui, F. Gizard, J. Xu, J. Rios-Pilier, R. N. Helsley, S. S. Han, and C. Zhou. 2012. Myeloid-specific IkappaB kinase beta deficiency decreases atherosclerosis in low-density lipoprotein receptor-deficient mice. *Arterioscler. Thromb. Vasc. Biol.* 32: 2869-2876.
- 23. Li, J., H. C. Hsu, and J. D. Mountz. 2012. Managing macrophages in rheumatoid arthritis by reform or removal. *Curr. Rheumatol. Rep.* 14: 445-454.
- 24. Osborn, O., and J. M. Olefsky. 2012. The cellular and signaling networks linking the immune system and metabolism in disease. *Nat Med* 18: 363-374.
- 25. Van den Heuvel, M. M., C. P. Tensen, J. H. van As, T. K. van den Berg, D. M. Fluitsma, C. D. Dijkstra, E. A. Dopp, A. Droste, F. A. Van Gaalen, C. Sorg, P. Hogger, and R. H. J. Beelen. 1999. Regulation of CD163 on human macrophages: cross-linking of CD163 induces signaling and activation. *Journal of Leukocyte Biology* 66: 858-866.
- 26. Holt, P. G. 1986. Down-regulation of immune responses in the lower respiratory tract: the role of alveolar macrophages. *Clin. Exp. Immunol.* 63: 261-270.

27. Loke, P., M. G. Nair, J. Parkinson, D. Giuliano, M. Blaxter, and J. E. Allen. 2002. IL-4 dependent alternatively-activated macrophages have a distinctive *in vivo* gene expression phenotype. *BMC. Immunol.* 3: 7.
28. Gustafsson, C., J. Mjosberg, A. Matussek, R. Geffers, L. Matthiesen, G. Berg, S. Sharma, J. Buer, and J. Ernerudh. 2008. Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. *PLoS. One.* 3: e2078.
29. Mantovani, A., A. Sica, P. Allavena, C. Garlanda, and M. Locati. 2009. Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. *Human Immunology* 70: 325-330.
30. Mues, B., D. Langer, G. Zwadlo, and C. Sorg. 1989. Phenotypic Characterization of Macrophages in Human Term Placenta. *Immunology* 67: 303-307.
31. Tiemessen, M. M., A. L. Jagger, H. G. Evans, M. J. C. van Herwijnen, S. John, and L. S. Taams. 2007. CD4(+)CD25(+)Foxp3(+) regulatory T cells induce alternative activation of human monocytes/macrophages. *Proceedings of the National Academy of Sciences of the United States of America* 104: 19446-19451.
32. Traves, P. G., A. Luque, and S. Hortelano. 2012. Macrophages, inflammation, and tumor suppressors: ARF, a new player in the game. *Mediators. Inflamm.* 2012: 568783.
33. Mantovani, A., B. Bottazzi, F. Colotta, S. Sozzani, and L. Ruco. 1992. The origin and function of tumor-associated macrophages. *Immunol. Today* 13: 265-270.
34. Chan, G., E. R. Bivins-Smith, M. S. Smith, P. M. Smith, and A. D. Yurochko. 2008. Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage. *Journal of Immunology* 181: 698-711.
35. Shaul, M. E., G. Bennett, K. J. Strissel, A. S. Greenberg, and M. S. Obin. 2010. Dynamic, M2-Like Remodeling Phenotypes of CD11c+Adipose Tissue Macrophages During High-Fat Diet-Induced Obesity in Mice. *Diabetes* 59: 1171-1181.
36. Kadl, A., A. K. Meher, P. R. Sharma, M. Y. Lee, A. C. Doran, S. R. Johnstone, M. R. Elliott, F. Gruber, J. Han, W. S. Chen, T. Kensler, K. S. Ravichandran, B. E. Isakson, B. R. Wamhoff, and N. Leitinger. 2010. Identification of a Novel Macrophage Phenotype That Develops in Response to Atherogenic Phospholipids via Nrf2. *Circulation Research* 107: 737-U155.
37. Nathan, C. F., H. W. Murray, M. E. Wiebe, and B. Y. Rubin. 1983. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. *J Exp Med* 158: 670-689.
38. Gordon, S. 2003. Alternative activation of macrophages. *Nature Reviews Immunology* 3: 23-35.
39. Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. 2004. The chemokine system in diverse forms of macrophage activation and polarization. *Trends Immunol.* 25: 677-686.
40. Ricardo, S. D., H. van Goor, and A. A. Eddy. 2008. Macrophage diversity in renal injury and repair. *J. Clin. Invest* 118: 3522-3530.
41. Verreck, F. A., T. de Boer, D. M. Langenberg, M. A. Hoeve, M. Kramer, E. Vaisberg, R. Kastelein, A. Kolk, R. de Waal-Malefyt, and T. H. Ottenhoff. 2004. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. *Proc. Natl. Acad. Sci. U. S. A* 101: 4560-4565.
42. Xu, W., A. Roos, N. Schlagwein, A. M. Woltman, M. R. Daha, and K. C. van. 2006. IL-10-producing macrophages preferentially clear early apoptotic cells. *Blood* 107: 4930-4937.
43. Bergenfelz, C., C. Medrek, E. Ekstrom, K. Jirstrom, H. Janols, M. Wullt, A.

Bredberg, and K. Leandersson. 2012. Wnt5a induces a tolerogenic phenotype of macrophages in sepsis and breast cancer patients. *J Immunol* 188: 5448-5458.

44. Mantovani, A., S. K. Biswas, M. R. Galdiero, A. Sica, and M. Locati. 2013. Macrophage plasticity and polarization in tissue repair and remodelling. *J Pathol* 229: 176-185.

45. Grinberg, S., G. Hasko, D. Wu, and S. J. Leibovich. 2009. Suppression of PLCbeta2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype. *Am J Pathol* 175: 2439-2453.

46. Boyle, J. J., M. Johns, J. Lo, A. Chiodini, N. Ambrose, P. C. Evans, J. C. Mason, and D. O. Haskard. 2011. Heme induces heme oxygenase 1 via Nrf2: role in the homeostatic macrophage response to intraplaque hemorrhage. *Arterioscler. Thromb. Vasc. Biol.* 31: 2685-2691.

47. Gleissner, C. A., I. Shaked, K. M. Little, and K. Ley. 2010. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. *J. Immunol.* 184: 4810-4818.

48. Raes, G., P. De Baetselier, W. Noel, A. Beschin, F. Brombacher, and G. Hassanzadeh. 2002. Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. *Journal of Leukocyte Biology* 71: 597-602.

49. Puig-Kroger, A., E. Sierra-Filardi, A. Dominguez-Soto, R. Samaniego, M. T. Corcuera, F. Gomez-Aguado, M. Ratnam, P. Sanchez-Mateos, and A. L. Corbi. 2009. Folate Receptor beta Is Expressed by Tumor-Associated Macrophages and Constitutes a Marker for M2 Anti-inflammatory/Regulatory Macrophages. *Cancer Research* 69: 9395-9403.

50. Schraufstatter, I. U., M. Zhao, S. K. Khaldoyanidi, and R. G. DiScipio. 2012. The chemokine CCL18 causes maturation of cultured monocytes to macrophages in the M2 spectrum. *Immunology* 135: 287-298.

51. Sierra-Filardi, E., M. A. Vega, P. Sanchez-Mateos, A. L. Corbi, and A. Puig-Kroger. 2010. Heme Oxygenase-1 expression in M-CSF-polarized M2 macrophages contributes to LPS-induced IL-10 release. *Immunobiology* 215: 788-795.

52. Ambarus, C. A., S. Krausz, M. van Eijk, J. Hamann, T. R. Radstake, K. A. Reedquist, P. P. Tak, and D. L. Baeten. 2011. Systematic validation of specific phenotypic markers for *in vitro* polarized human macrophages. *J. Immunol. Methods* 375: 196-206.

53. Bogdan, C., and C. Nathan. 1993. Modulation of Macrophage Function by Transforming Growth-Factor-Beta, Interleukin-4, and Interleukin-10. *Annals of the New York Academy of Sciences* 685: 713-739.

54. Verreck, F. A. W., T. de Boer, D. M. L. Langenberg, L. van der Zanden, and T. H. M. Ottenhoff. 2006. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. *Journal of Leukocyte Biology* 79: 285-293.

55. Tugal, D., X. Liao, and M. K. Jain. 2013. Transcriptional control of macrophage polarization. *Arterioscler. Thromb. Vasc. Biol.* 33: 1135-1144.

56. Tomioka, H., Y. Tatano, W. W. Maw, C. Sano, Y. Kanehiro, and T. Shimizu. 2012. Characteristics of Suppressor Macrophages Induced by Mycobacterial and Protozoal Infections in relation to Alternatively Activated M2 Macrophages. *Clinical & Developmental Immunology*.

57. Biswas, S. K., and A. Mantovani. 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. *Nature Immunology* 11: 889-896.

58. Bonecchi, R., S. Sozzani, J. T. Stine, W. Luini, G. D'Amico, P. Allavena, D. Chantry, and A. Mantovani. 1998. Divergent effects of interleukin-4 and interferon-gamma on macrophage-derived chemokine production: an amplification circuit of polarized

T helper 2 responses. *Blood* 92: 2668-2671.

59. DeKoter, R. P., and H. Singh. 2000. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. *Science* 288: 1439-1441.
60. Lawrence, T., and G. Natoli. 2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. *Nat Rev Immunol* 11: 750-761.
61. Odegaard, J. I., R. R. Ricardo-Gonzalez, M. H. Goforth, C. R. Morel, V. Subramanian, L. Mukundan, A. R. Eagle, D. Vats, F. Brombacher, A. W. Ferrante, and A. Chawla. 2007. Macrophage-specific PPAR gamma controls alternative activation and improves insulin resistance. *Nature* 447: 1116-1U12.
62. Liao, X. D., N. Sharma, F. Kapadia, G. J. Zhou, Y. Lu, H. Hong, K. Paruchuri, G. H. Mahabeleshwar, E. Dalmas, N. Venteclief, C. A. Flask, J. Kim, B. W. Doreian, K. Q. Lu, K. H. Kaestner, A. Hamik, K. Clement, and M. K. Jain. 2011. Kruppel-like factor 4 regulates macrophage polarization. *Journal of Clinical Investigation* 121: 2736-2749.
63. Satoh, T., O. Takeuchi, A. Vandenbon, K. Yasuda, Y. Tanaka, Y. Kumagai, T. Miyake, K. Matsushita, T. Okazaki, T. Saitoh, K. Honma, T. Matsuyama, K. Yui, T. Tsujimura, D. M. Standley, K. Nakanishi, K. Nakai, and S. Akira. 2010. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. *Nature Immunology* 11: 936-U89.
64. Abramson, S. L., and J. I. Gallin. 1990. IL-4 Inhibits Superoxide Production by Human Mononuclear Phagocytes. *Journal of Immunology* 144: 625-630.
65. Duffield, J. S. 2010. Macrophages and immunologic inflammation of the kidney. *Semin. Nephrol.* 30: 234-254.
66. Matsue, H., D. Edelbaum, D. Shalhevett, N. Mizumoto, C. Yang, M. E. Mummert, J. Oeda, H. Masayasu, and A. Takashima. 2003. Generation and function of reactive oxygen species in dendritic cells during antigen presentation. *J. Immunol.* 171: 3010-3018.
67. Pillay, J., V. M. Kamp, H. E. van, T. Visser, T. Tak, J. W. Lammers, L. H. Ulfman, L. P. Leenen, P. Pickkers, and L. Koenderman. 2012. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. *J Clin Invest* 122: 327-336.
68. Schmielau, J., and O. J. Finn. 2001. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. *Cancer Res.* 61: 4756-4760.
69. Stone, J. R., and S. Yang. 2006. Hydrogen peroxide: a signaling messenger. *Antioxid. Redox. Signal.* 8: 243-270.
70. Olofsson, P., J. Holmberg, J. Tordsson, S. M. Lu, B. Akerstrom, and R. Holmdahl. 2003. Positional identification of Ncf1 as a gene that regulates arthritis severity in rats. *Nature Genetics* 33: 25-32.
71. Bylund, J., K. L. Brown, C. Movitz, C. Dahlgren, and A. Karlsson. 2010. Intracellular generation of superoxide by the phagocyte NADPH oxidase: how, where, and what for? *Free Radic. Biol. Med* 49: 1834-1845.
72. Matute, J. D., A. A. Arias, N. A. M. Wright, I. Wrobel, C. C. M. Waterhouse, X. J. Li, C. C. Marchal, N. D. Stull, D. B. Lewis, M. Steele, J. D. Kellner, W. M. Yu, S. O. Meroueh, W. M. Nauseef, and M. C. Dinauer. 2009. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40(phox) and selective defects in neutrophil NADPH oxidase activity. *Blood* 114: 3309-3315.
73. van den Berg, J. M., E. van Koppen, A. Ahlin, B. H. Belohradsky, E. Bernatowska, L. Corbeel, T. Espanol, A. Fischer, Kurenko-Dept, R. Mouy, T. Petropoulou, J. Roesler, R. Seger, M. J. Stasia, N. H. Valerius, R. S. Weening, B. Wolach, D. Roos, and T. W. Kuijpers. 2009. Chronic Granulomatous Disease: The European Experience. *Plos*

One 4.

- 74. Kuhns, D. B., W. G. Alvord, T. Heller, J. J. Feld, K. M. Pike, B. E. Marciano, G. Uzel, S. S. DeRavin, D. A. Priel, B. P. Soule, K. A. Zaremba, H. L. Malech, S. M. Holland, and J. I. Gallin. 2010. Residual NADPH oxidase and survival in chronic granulomatous disease. *N. Engl. J Med* 363: 2600-2610.
- 75. Segal, B. H., P. Veys, H. Malech, and M. J. Cowan. 2011. Chronic Granulomatous Disease: Lessons from a Rare Disorder. *Biology of Blood and Marrow Transplantation* 17: S123-S131.
- 76. De Ravin, S. S., N. Naumann, E. W. Cowen, J. Friend, D. Hilligoss, M. Marquesen, J. E. Balow, K. S. Barron, M. L. Turner, J. I. Gallin, and H. L. Malech. 2008. Chronic granulomatous disease as a risk factor for autoimmune disease. *Journal of Allergy and Clinical Immunology* 122: 1097-1103.
- 77. Rosenzweig, S. D. 2008. Inflammatory manifestations in chronic granulomatous disease (CGD). *Journal of Clinical Immunology* 28: S67-S72.
- 78. Kobayashi, S. D., J. M. Voyich, K. R. Braughton, A. R. Whitney, W. M. Nauseef, H. L. Malech, and F. R. DeLeo. 2004. Gene expression profiling provides insight into the pathophysiology of chronic granulomatous disease. *J. Immunol.* 172: 636-643.
- 79. Biswas, S., A. S. Chida, and I. Rahman. 2006. Redox modifications of protein-thiols: emerging roles in cell signaling. *Biochem. Pharmacol.* 71: 551-564.
- 80. Droege, W. 2002. Free radicals in the physiological control of cell function. *Physiological Reviews* 82: 47-95.
- 81. Bae, S. C., W. J. Jung, E. J. Lee, R. Yu, and M. K. Sung. 2009. Effects of Antioxidant Supplements Intervention on the Level of Plasma Inflammatory Molecules and Disease Severity of Rheumatoid Arthritis Patients. *Journal of the American College of Nutrition* 28: 56-62.
- 82. Tardif, J. C., J. J. V. McMurray, E. Klug, R. Small, J. Schumi, J. Choi, J. Cooper, R. Scott, E. F. Lewis, P. L. L'Allier, and M. A. Pfeffer. 2008. Effects of succinobucol (AGI-1067) after an acute coronary syndrome: a randomised, double-blind, placebo-controlled trial. *Lancet* 371: 1761-1768.
- 83. Hultqvist, M., P. Olofsson, K. A. Gelderman, J. Holmberg, and R. Holmdahl. 2006. A new arthritis therapy with oxidative burst inducers. *Plos Medicine* 3: 1625-1636.
- 84. Storz, G., L. A. Tartaglia, and B. N. Ames. 1990. Transcriptional Regulator of Oxidative Stress-Inducible Genes - Direct Activation by Oxidation. *Science* 248: 189-194.
- 85. Sareila, O., T. Kelkka, A. Pizzolla, M. Hultqvist, and R. Holmdahl. 2011. NOX2 Complex-Derived ROS as Immune Regulators. *Antioxidants & Redox Signaling* 15: 2197-2208.
- 86. Salmeen, A., and D. Barford. 2005. Functions and mechanisms of redox regulation of cysteine-based phosphatases. *Antioxidants & Redox Signaling* 7: 560-577.
- 87. Bubici, C., S. Papa, K. Dean, and G. Franzoso. 2006. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. *Oncogene* 25: 6731-6748.
- 88. Kundu, J. K., and Y. J. Surh. 2010. Nrf2-Keap1 Signaling as a Potential Target for Chemoprevention of Inflammation-Associated Carcinogenesis. *Pharmaceutical Research* 27: 999-1013.
- 89. Gringhuis, S. I., E. A. M. Papendrecht-van der Voort, A. Leow, E. W. N. Levarht, F. C. Breedveld, and C. L. Verweij. 2002. Effect of redox balance alterations on cellular localization of LAT and downstream T-cell receptor signaling pathways. *Molecular and Cellular Biology* 22: 400-411.
- 90. Cemerski, S., J. P. M. van Meerwijk, and P. Romagnoli. 2003. Oxidative-stress-induced T lymphocyte hyporesponsiveness is caused by structural modification

rather than proteasomal degradation of crucial TCR signaling molecules. *European Journal of Immunology* 33: 2178-2185.

91. Laragione, T., V. Bonetto, F. Casoni, T. Massignan, G. Bianchi, E. Gianazza, and P. Ghezzi. 2003. Redox regulation of surface protein thiols: Identification of integrin alpha-4 as a molecular target by using redox proteomics. *Proceedings of the National Academy of Sciences of the United States of America* 100: 14737-14741.
92. Gelderman, K. A., M. Hultqvist, J. Holmberg, P. Olofsson, and R. Holmdahl. 2006. T cell surface redox levels determine T cell reactivity and arthritis susceptibility. *Proceedings of the National Academy of Sciences of the United States of America* 103: 12831-12836.
93. Fuchs, T. A., U. Abed, C. Goosmann, R. Hurwitz, I. Schulze, V. Wahn, Y. Weinrauch, V. Brinkmann, and A. Zychlinsky. 2007. Novel cell death program leads to neutrophil extracellular traps. *Journal of Cell Biology* 176: 231-241.
94. Gabrilovich, D. I., and S. Nagaraj. 2009. Myeloid-derived suppressor cells as regulators of the immune system. *Nat Rev Immunol* 9: 162-174.
95. Gabrilovich, D. I., S. Ostrand-Rosenberg, and V. Bronte. 2012. Coordinated regulation of myeloid cells by tumours. *Nat Rev Immunol* 12: 253-268.
96. Nagaraj, S., K. Gupta, V. Pisarev, L. Kinarsky, S. Sherman, L. Kang, D. L. Herber, J. Schneck, and D. I. Gabrilovich. 2007. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. *Nat Med* 13: 828-835.
97. Hultqvist, M., P. Olofsson, J. Holmberg, B. T. Backstrom, J. Tordsson, and R. Holmdahl. 2004. Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene. *Proceedings of the National Academy of Sciences of the United States of America* 101: 12646-12651.
98. Holmberg, J., J. Tuncel, H. Yamada, S. M. Lu, P. Olofsson, and R. Holmdahl. 2006. Pristane, a non-antigenic adjuvant, induces MHC class II-restricted, arthritogenic T cells in the rat. *Journal of Immunology* 176: 1172-1179.
99. Gelderman, K. A., M. Hultqvist, A. Pizzolla, M. Zhao, K. S. Nandakumar, R. Mattsson, and R. Holmdahl. 2007. Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. *Journal of Clinical Investigation* 117: 3020-3028.
100. Grimm, M. J., R. R. Vethanayagam, N. G. Almyroudis, C. G. Dennis, A. N. Khan, A. C. D'Auria, K. L. Singel, B. A. Davidson, P. R. Knight, T. S. Blackwell, T. M. Hohl, M. K. Mansour, J. M. Vyas, M. Rohm, C. F. Urban, T. Kelkka, R. Holmdahl, and B. H. Segal. 2013. Monocyte- and macrophage-targeted NADPH oxidase mediates antifungal host defense and regulation of acute inflammation in mice. *J Immunol* 190: 4175-4184.
101. Pizzolla, A., M. Hultqvist, B. Nilson, M. J. Grimm, T. Eneljung, I. M. Jonsson, M. Verdrengh, T. Kelkka, I. Gjertsson, B. H. Segal, and R. Holmdahl. 2012. Reactive oxygen species produced by the NADPH oxidase 2 complex in monocytes protect mice from bacterial infections. *J Immunol* 188: 5003-5011.
102. Lam, G. Y., J. Huang, and J. H. Brumell. 2010. The many roles of NOX2 NADPH oxidase-derived ROS in immunity. *Seminars in Immunopathology* 32: 415-430.

Chapter 2

Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species

Marina D. Kraaij^a, Nigel D.L. Savage^b, Sandra W. van der Kooij^a,
Karin Koekkoek^a, Jun Wang^c, J. Merlijn van den Berg^d, Tom
H.M. Ottenhoff^b, Taco W. Kuijpers^d, Rikard Holmdahl^e, Cees van
Kooten^a and Kyra A. Gelderman^a

Department of Nephrology^a, Infectious Diseases^b and Rheumatology^c, Leiden
University Medical Center, Leiden, The Netherlands; ^dEmma Children's Hospital,
Amsterdam Medical Center, Amsterdam, The Netherlands; ^eMedical Inflammation
Research, Karolinska Institute, Stockholm, Sweden

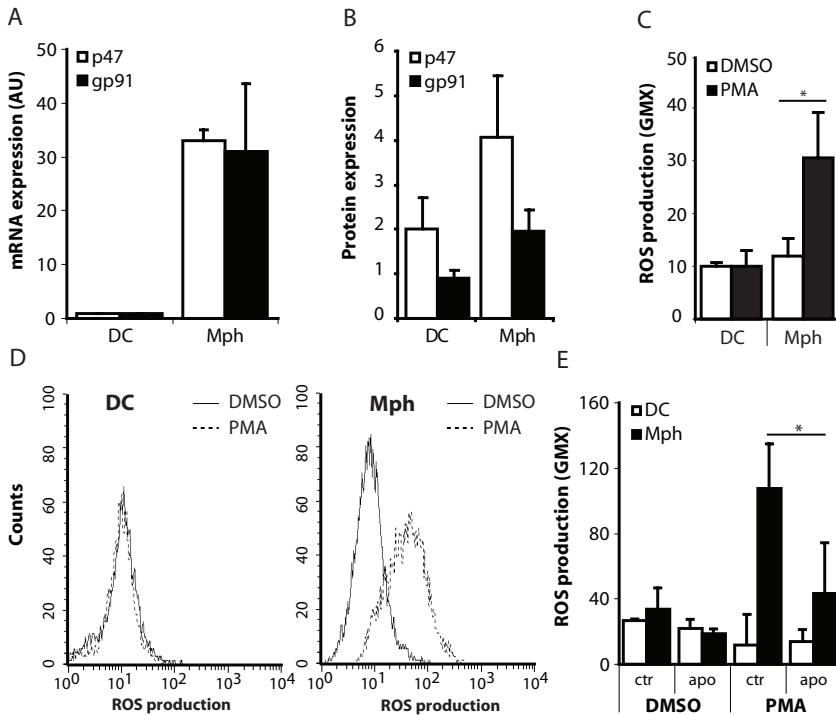
Proc Natl Acad Sci USA. 107(41):17686-91 (2010)

Abstract

The phagocyte NAPDH-oxidase complex consists of several phagocyte oxidase (*phox*) proteins, generating reactive oxygen species (ROS) upon activation. ROS are involved in the defense against microorganisms but also in immune regulation. Defective ROS formation leads to chronic granulomatous disease (CGD) with increased incidence of autoimmunity and disturbed resolution of inflammation. Because regulatory T cells (Tregs) suppress autoimmune T-cell responses and are crucial in down-regulating immune responses, we hypothesized that ROS deficiency may lead to decreased Treg induction. Previously, we showed that in *p47^{phox}*-mutated mice, reconstitution of macrophages (Mph) with ROS-producing capacity was sufficient to protect the mice from arthritis. Now, we present evidence that Mph-derived ROS induce Tregs. *In vitro*, we showed that Mph ROS-dependently induce Treg, using an NADPH-oxidase inhibitor. This was confirmed genetically: rat or human CGD Mph with mutated *p47^{phox}* or *gp91^{phox}*, displayed hampered Treg induction and T-cell suppression. However, basal Treg numbers in these subjects were comparable to controls, indicating a role for ROS in induction of peripheral Treg. Induction of allogeneic delayed-type hypersensitivity with *p47^{phox}*-mutated Mph confirmed the importance of Mph-derived ROS in Treg induction *in vivo*. We conclude that NAPDH oxidase activity in Mph is important for the induction of Tregs to regulate T cell-mediated inflammation.

Introduction

Reactive oxygen species (ROS) are not only harmful and mediators of oxidative stress, but also have immune regulatory functions, especially when produced in lower amounts (1,2,3). The mechanisms of how ROS affect the immune system are just beginning to become clear. For example, mitochondrial ROS oxidize released HMGB-1 during apoptosis, thereby preventing immune activation and allowing induction of tolerance (4), and myeloid-derived suppressor cells suppress antitumor T-cell responses in a phagocytic NADPH-oxidase (Nox2) complex-dependent way (5). This Nox2 complex consists of multiple components (i.e. the membrane-expressed cytochrome-b558 consisting of *gp91^{phox}* and *p22^{phox}* and the cytosolic components *p47^{phox}*, *p67^{phox}* and *p40^{phox}*). Chronic granulomatous disease (CGD) develops when any of these components is absent or functionally hampered and ROS production is defective. CGD is characterized by recurrent bacterial and fungal infections and abnormal granuloma formation. These granulomas are mostly sterile and often respond to steroid therapy without antibiotics (6). In addition, CGD patients suffer more frequently from autoimmune diseases as compared to the healthy population (7,8). These features point to a defect in immune regulation due to the absence of ROS.


We observed previously that mice and rats with alleles of the neutrophil cytosolic factor 1 (*Ncf1*) gene (encoding p47^{phox}) that encode a less functional Nox2 and thus lower ROS production are more susceptible to induced autoimmune diseases than are their wild-type littermates (9,10). This observation is in line with observations in CGD patients. Interestingly, the reduced ROS-producing capacity in our congenic rat model mediated higher susceptibility to pristane-induced arthritis in a T-cell-dependent fashion (9,11). However, T cells express no or only very low levels of Nox2, suggesting that other cells determine the T-cell response by producing ROS (12). One study, however, does show low levels of Nox2 in T cells (13). Because antigen-presenting cells (APC) interact with T cells during antigen presentation, and APC express Nox2 they may affect T-cell responses via ROS production. Indeed, ROS produced during antigen presentation affect the immune response (14,15) by interfering in signal transduction (16,17). In addition, ROS generated in phagosomes/endosomes determines the ability to cross-present antigen, both in mice and humans (18,19). We showed that amongst murine APCs, macrophages (Mph) were most efficient at producing ROS (20). Transgenic mice expressing functional p47^{phox} only in Mph on a p47^{phox} mutated background were equally protected against collagen-induced arthritis (CIA) as their fully wild-type littermates. These observations indicate that Mph-derived ROS are sufficient to inhibit T-cell responses (20).

Regulatory T cells (Tregs) can suppress activation and proliferation of effector T cells and thereby diminish immune responses. Autoimmunity can therefore be the result of a defective Treg system (21) and successful treatment of autoimmune disease with Tregs has been reported in mouse models (22,23). We hypothesized that if Mph-derived ROS prevent T-cell-mediated immune responses, it could do so by inducing Tregs. Previously we showed that antiinflammatory Mph can induce potent Tregs, in contrast to proinflammatory Mph (24). Here we here investigated whether Mph-derived ROS influence induction of Tregs in humans *in vitro* as well as in rats *in vivo*. We observed that Mph can induce Tregs in a ROS-dependent fashion *in vitro* and, more importantly, that Mph from ROS deficient CGD patients are significantly less efficient in inducing Tregs. We conclude that Mph can modulate T-cell responses by producing ROS and induce Tregs in a ROS-dependent fashion.

Results

Human Mph produce ROS upon stimulation

To investigate the role of ROS in antigen presentation by different APC, the expression of two Nox2 members was determined: p47^{phox} (*Ncf1*) and gp91^{phox} (*Cybb*) in human dendritic cells (DC) and in Mph colony-stimulating factor (M-CSF)-differentiated Mph. mRNA expression for both p47^{phox} and gp91^{phox} was about 30 times higher in Mph as compared to DC (Fig 1A). By intracellular

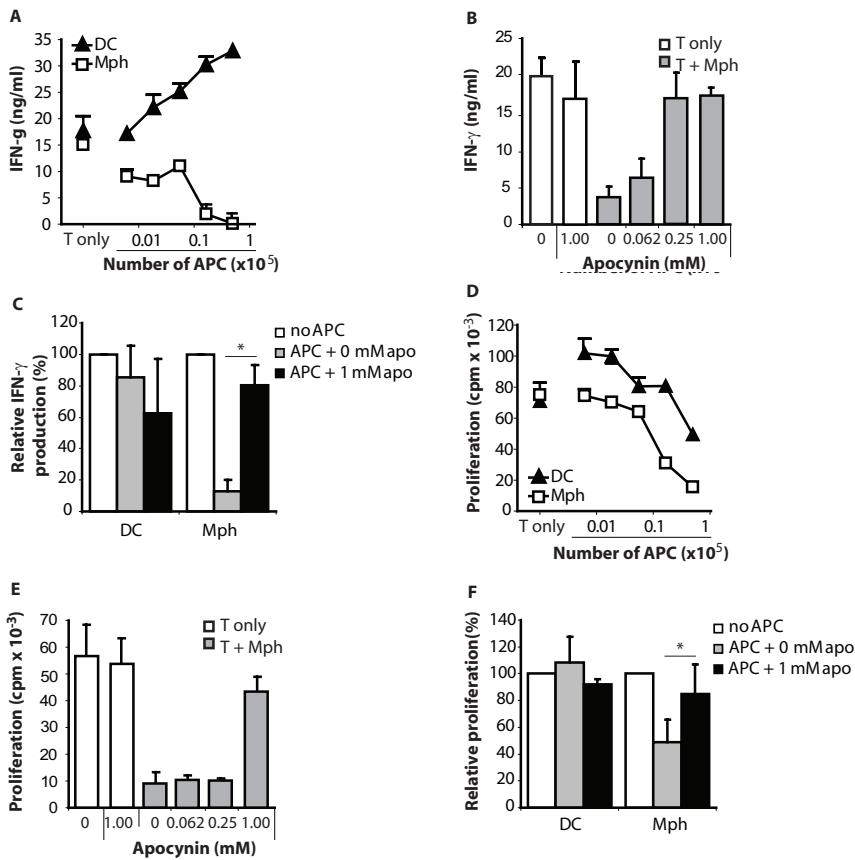
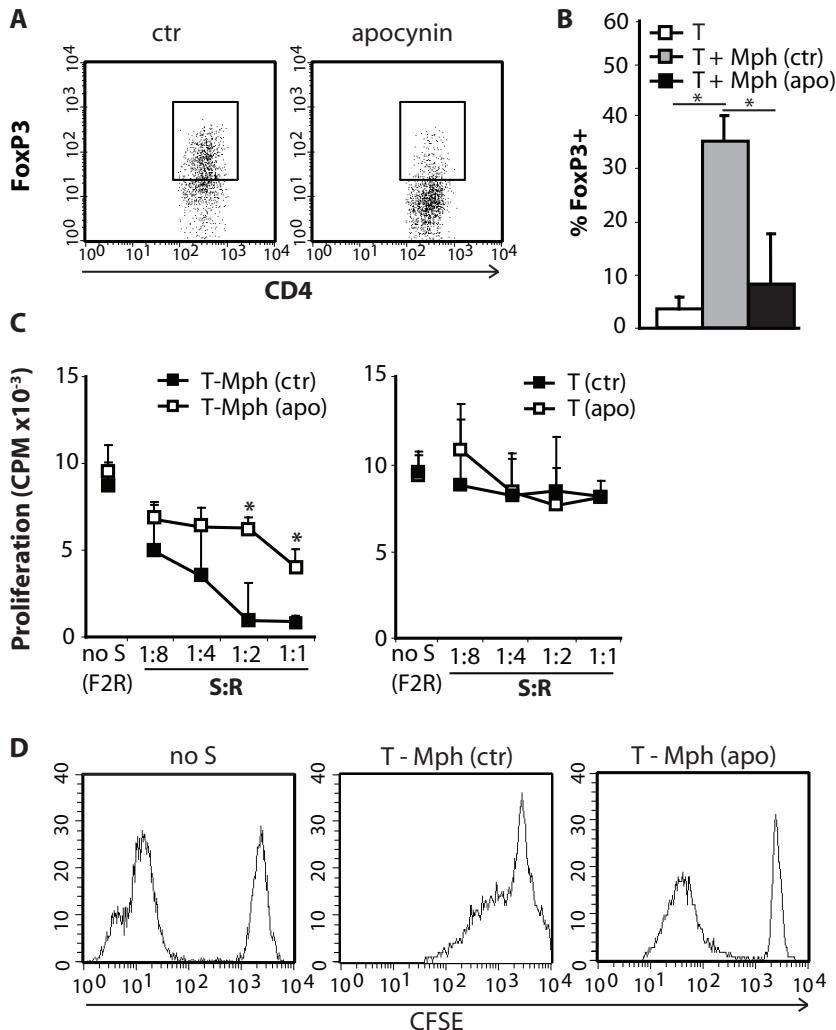


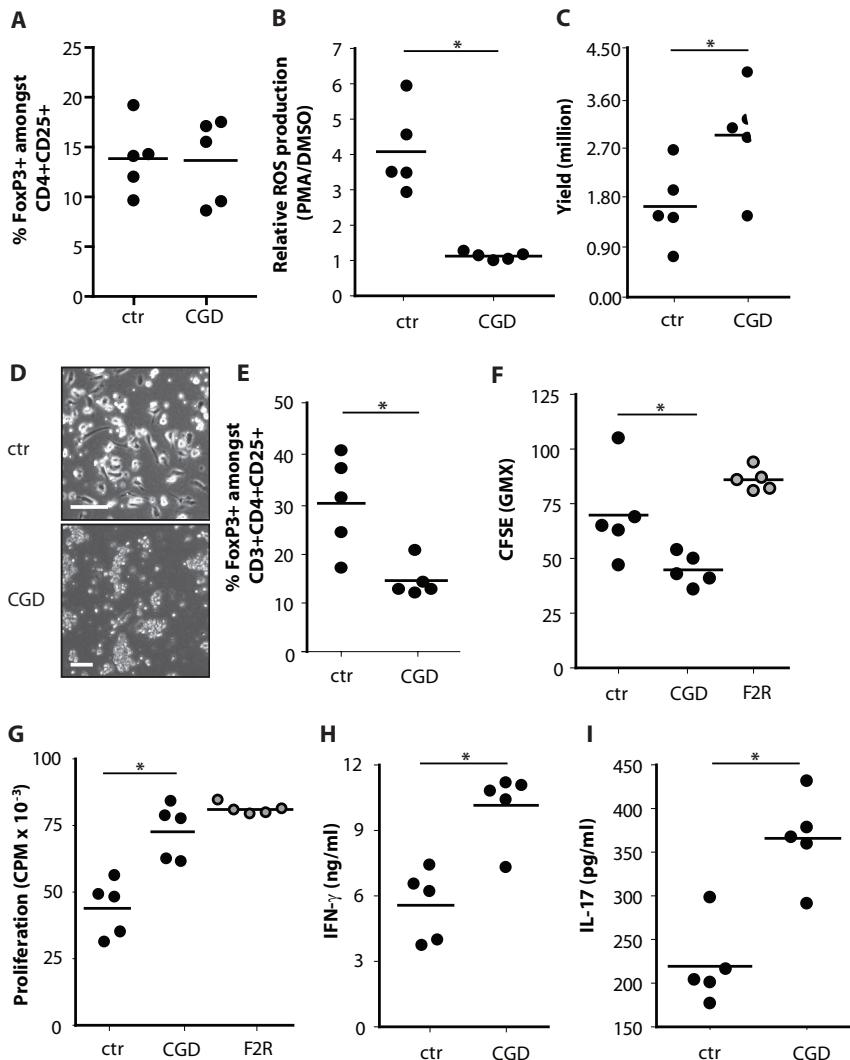
Figure 1: Mph produce ROS. **(A)** mRNA and **(B)** protein expression levels of the two most important NADPH oxidase complex components, $p47^{phox}$ and $gp91^{phox}$, determined in DC and Mph by RT-PCR and flowcytometry, respectively. In **(A)** mRNA expression levels were corrected for GAPDH expression and expression levels of DC were set to 1. **(B)** shows the ratio between specific staining and isotype control. Shown are average + SD of the relative expression levels of 4 experiments with cells from 4 different donors. **(C)** The capacity of DC and Mph to produce ROS was measured after PMA stimulation. Shown are average + SD of 6-10 independent experiments; the conditions after PMA stimulation or stimulated with vehicle (DMSO) are shown. **(D)** Representative examples of FACS histograms of ROS production, measured by DHR123 fluorescence, by DC (left) and Mph (right) after PMA (dotted line) or DMSO (ctr; solid line) stimulation. **(E)** Production of ROS by DC and Mph was measured after PMA or vehicle activation and in the absence or presence of the specific $p47^{phox}$ inhibitor apocynin (1 mM). Average + SD of 3-4 independent experiments are shown, * = $p < 0.05$.

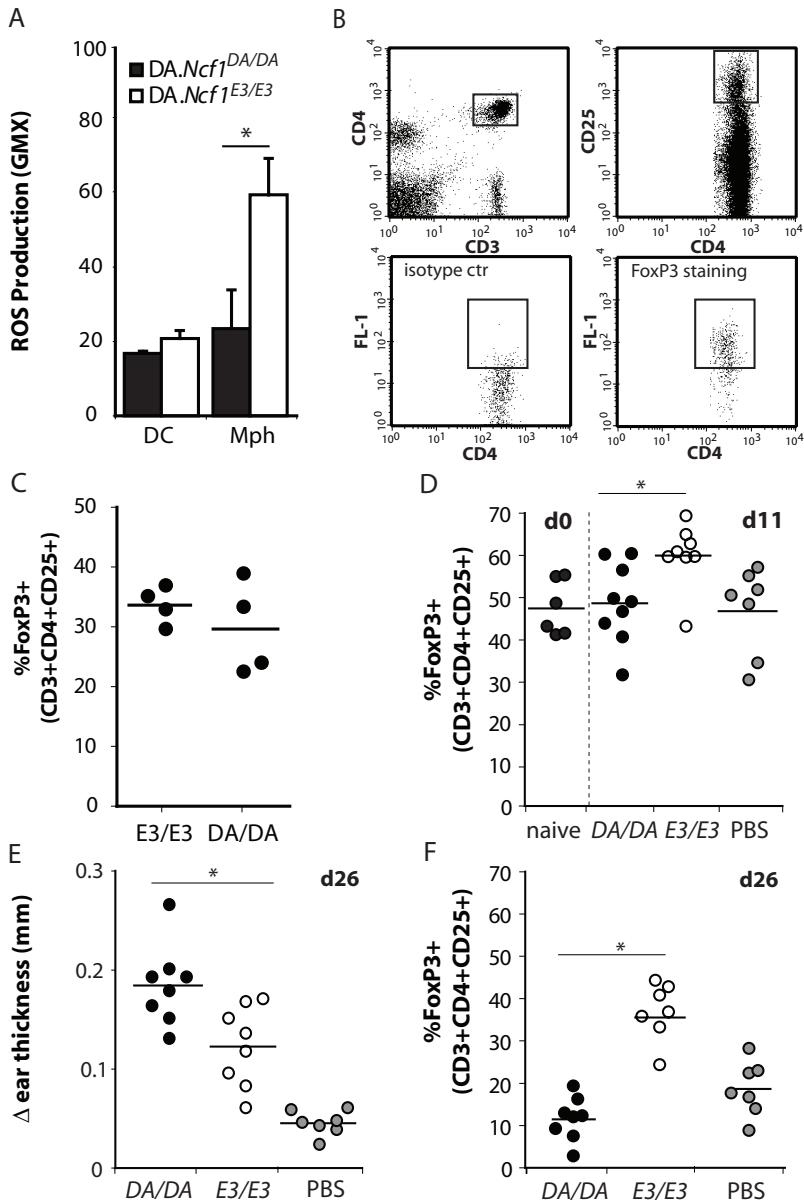
FACS analysis we observed that the expression of $gp91^{phox}$ protein was very low in DC, whereas $p47^{phox}$ was clearly present. In contrast, Mph showed significant expression of both $gp91^{phox}$ and $p47^{phox}$ (Fig 1B). Functionally, human Mph efficiently generated ROS upon phorbol 12-myristate 13-acetate (PMA) stimulation (Fig 1C,D). In contrast, DC hardly produced ROS, in line with the low of $gp91^{phox}$ expression. Mph differentiated in GM-CSF (proinflammatory Mph) produced only marginal amounts of ROS (Fig S1A) The ROS production by Mph could be blocked to background levels with apocynin; an inhibitor of Nox2 that binds $p47^{phox}$ and prevents translocation to the membrane (Fig 1E).


Mph suppress T-cell responses by producing ROS

To investigate the suppressive capacity of ROS produced by APC on T-cell responses, purified T cells were activated with anti-CD3/CD28 mAbs in

Figure 2: Mph suppress T cell activation in a ROS-dependent fashion. **(A, D)** T cells (150.000) were activated with anti-CD3/28 Ab and Mph or DC were added in increasing numbers (x-axes). After 5 days of coculture IFN- γ production (A) and proliferation (D) were determined by ELISA and ^3H thymidine incorporation, respectively. Shown are the average + SD of triplicates within one representative experiment. **(B, E)** 150.000 T cells and 25.000 Mph were cocultured in absence or presence of different concentrations of apocynin (x-axis) to study the effect of ROS on Mph mediated T cell suppression. After 5 days of coculture IFN- γ production (B) and proliferation (E) were determined by ELISA and ^3H thymidine incorporation, respectively. Representative experiments are shown. **(C, F)** Similar experiments as in A,B,D,E, but the average with SD of 3-4 independent experiments are shown for an APC:T ratio of 1:6. Values shown are relative to the conditions without APC (100%, white bars). * = $p < 0.05$


the presence of increasing numbers of Mph or DC. IFN- γ production and the proliferative response were determined at day 5. IFN- γ production (Fig 2A,C, and Fig S1B) and, to a lesser extent, T cell proliferation (Fig 2D,F) were suppressed by Mph but not by DC. The Nox2-inhibitor apocynin abrogated the Mph-mediated suppressive effect in a dose-dependent manner (Fig 2B, C, E and F). GM-CSF differentiated proinflammatory Mph slightly suppressed T-cell activation, but this suppression was not reversible by apocynin and thus was not ROS-dependent (Fig S1C).

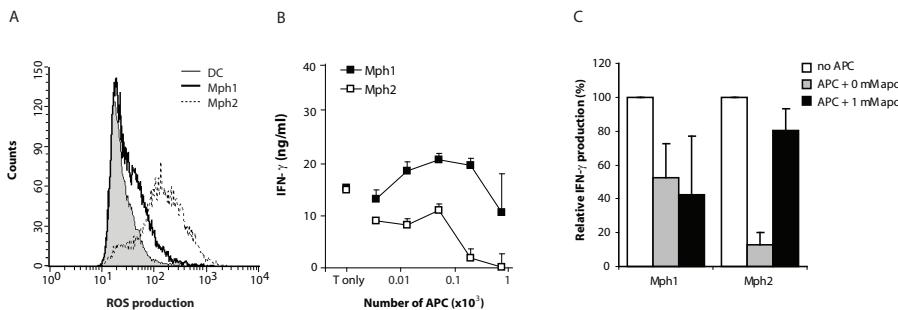

Figure 3: Mph induce Tregs via ROS. **(A)** Expression of FoxP3 within CD3⁺CD4⁺CD25⁺ population of T cells primed with Mph in absence (left) or presence (right) of apocynin. **(B)** Priming of CD4⁺CD25⁺ T cells with Mph in the presence or absence of apocynin for 7 days, followed by the analysis of the percentage of FoxP3⁺ cells amongst CD3⁺CD4⁺CD25⁺ cells. The white bar represents CD4⁺CD25⁺ T cells cultured similarly, but without Mph. The average + SD of 3 experiments is shown. **(C)** T cells were primed with (left panel) or without (right panel) Mph in presence or absence of apocynin (1 mM). After 5 days, these T cells were used as suppressor cells (S) and combined with responder T cells (R) and irradiated feeder cells (F). Proliferation of R was assessed by ³H thymidine incorporation (C) or by determining CFSE dilution (D). In C, average + SD of 4 experiments are shown. In D, the 1:1 ratio from a representative experiment out of 3 is shown, as well as the control condition without S, but with two times responders (F2R) to correct for crowding effects. * = p < 0.05

Mph induce Tregs in a ROS-dependent fashion

Mph differentiated with M-CSF induce CD4⁺CD25⁺FoxP3⁺ Tregs (24). The observed ROS-dependent suppression of T-cell activation by Mph could be mediated, at least in part, via induction of Tregs. To check this possibility,

Figure 4: CGD macrophages induce less Tregs. **(A)** The % of FoxP3⁺ cells amongst CD4⁺CD25⁺ in peripheral blood of CGD patients and healthy controls. **(B)** ROS production by Mph differentiated from healthy control or CGD monocytes, as determined by flow cytometry after DHR123 staining. The ratio of ROS production after stimulation with PMA or DMSO is depicted. **(C)** 106 CD4⁺CD25⁺ T cells per condition, from a single allogeneic donor, were primed with Mph from either CGD patients or controls in presence of anti-CD3/28 Ab. After 5 days the number of viable T cells was determined. **(D)** Representative picture showing the T cell clustering observed after activation with anti-CD3/CD28 in presence of ctr Mph (upper) or Mph derived from CGD patients (lower). The bars represent 25 μ m. **(E)** T cells primed with Mph derived from CGD patients or controls were analyzed for the percentage of FoxP3⁺ cells amongst CD4⁺CD25⁺ by flow cytometry. **(F)** CFSE-labeled responder cells were cocultured with the Mph-primed T cells and irradiated feeder cells in presence of anti-CD3/28 and dilution of CFSE was measured by flow cytometry after 4 days. **(G)** In parallel experiments, ³H thymidine incorporation was determined. Grey dots are control conditions in the absence of Mph-primed suppressor T cells but with double amounts of responder cells (F2R), to correct for crowding effects. In the supernatants of this suppression assay IFN- γ **(H)** and IL-17 **(I)** levels were determined. * = $p < 0.05$

Figure 5: Mph suppress DTH responses in vivo in a ROS-dependent fashion. **(A)** Rat BM cells were cultured with rat GM-CSF and IL-4 or human M-CSF to obtain DC and Mph, respectively. ROS production by PMA-stimulated DC and Mph generated from DA.*Ncf1*^{DA/DA} or congenic *Ncf1*-wildtype DA.*Ncf1*^{E3/E3} rats was measured by DHR123 staining. Average + SD of 4 experiments are shown. **(B)** Treg gating strategy on peripheral blood. **(C)** The % of FoxP3⁺ cells amongst CD3⁺CD4⁺CD25⁺ in peripheral blood of naïve DA.*Ncf1*^{E3/E3} (E3/E3) rats or DA.*Ncf1*^{DA/DA} (DA/DA) rats. **(D)** Lewis rats were primed with Mph from either DA.*Ncf1*^{DA/DA} (DA/DA) or DA.*Ncf1*^{E3/E3} rats (E3/E3) or PBS at day 0. At day 11, the % of FoxP3⁺ amongst CD3⁺CD4⁺CD25⁺ T cells was determined and compared to the levels in naïve Lewis rats. **(E)** After immunization at day 11 and challenging in the ear at day 25 with irradiated DA/DA splenocytes, the difference in ear thickness, as a measure for the DTH reaction, was determined at day 26. **(F)** The percentage of FoxP3⁺ amongst CD3⁺CD4⁺CD25⁺ T cells at day 26 after priming. * = p < 0.05


CD4⁺CD25⁻ T cells were cocultured with Mph and anti-CD3/28 for 5 days and the percentage of FoxP3⁺ cells amongst CD3⁺CD4⁺CD25⁺ cells was assessed (Fig 3A left, 3B). The percentage of FoxP3⁺ cells amongst CD3⁺CD4⁺CD25⁺ was increased upon coculture of T cells with Mph, confirming their Treg inducing capacity. Addition of apocynin to these cultures significantly reduced the number of Tregs (Fig 3A right, 3B), demonstrating the ROS dependency of Treg induction. To determine the functional capacity of these Tregs, suppression assays were performed. CD4⁺CD25⁻ T cells were primed by Mph for 5 days, in presence of anti-CD3/28 and in absence or presence of apocynin. These primed T cells were used as suppressor cells and combined with CD4⁺CD25⁻ allogeneic carboxyfluorescein succinimidyl ester (CFSE)-labeled responder T cells and irradiated feeder cells. After 5 days, T cell proliferation was assessed by ³H thymidine incorporation and CFSE dilution. T cells primed with Mph suppressed proliferation of responder T cells in a dose dependent fashion. In line with the observed ROS dependence of FoxP3 induction, priming in presence of apocynin prevented this suppressive activity (Fig 3C, D). ROS dependency of this effect was confirmed further by the observation that GM-CSF differentiated Mph that hardly produced ROS did not induce Treg (Fig S2A, B).

Mph from CGD patients show disturbed Treg induction

To obtain genetic proof of the ROS-dependency of Treg induction, similar experiments were performed with Mph from CGD patients. The percentages of FoxP3⁺ cells amongst CD4⁺CD25⁺ cells were determined in peripheral blood of CGD patients and from healthy controls. No differences were observed (Fig 4A). To study the role of ROS in induction of Treg by Mph, monocytes from CGD patients and controls were isolated and cultured in M-CSF to obtain Mph. Mph from CGD patients and healthy controls showed similar morphology and expression levels of CD14 and CD163 (25), whereas the capacity to produce ROS was completely absent in CGD Mph (Fig 4B). Upon priming of CD4⁺CD25⁻ T cells from one donor with either CGD or control Mph in presence of anti-CD3/28, we observed that CGD Mph allowed significantly more T cell activation and expansion (Fig 4C and D). Moreover, CGD Mph induced significantly lower numbers of FoxP3⁺ T cells (Fig 4E) than did control Mph. In a suppression assay, we observed that T cells primed by CGD Mph showed reduced inhibition of responder T cell proliferation than did cells primed by control Mph (Fig 4F, G). In line with this observation, the levels of IFN- γ and IL-17 produced in these assays were significantly higher when suppressor cells were primed with CGD Mph than with control Mph (Fig 4H, I). These results provide genetic confirmation in human cells that production of ROS by Mph is involved in the induction of peripheral Tregs in human cells.

Mph induce Tregs *in vivo* in a ROS-dependent fashion

To investigate whether Mph induce Treg in a ROS-dependent fashion *in vivo*, we used the congenic rat model (9). Dark Agouti (DA).*Ncf1*^{DA/DA} rats have a reduced ROS producing capacity due to SNPs (M106V and M153T) in *Ncf1*.

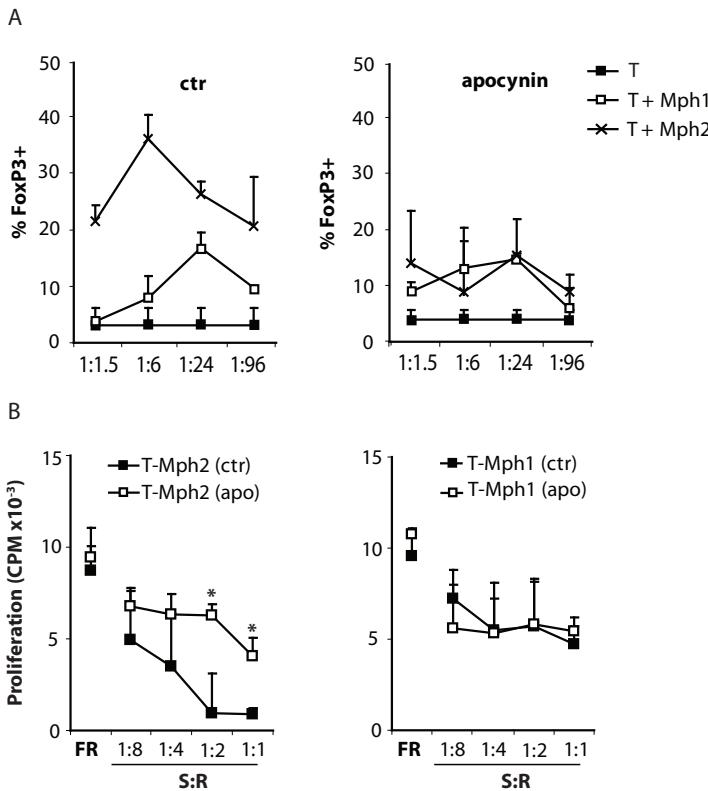


Figure S1: Anti-inflammatory Mph2 but not pro-inflammatory Mph1 suppress T cell activation in a ROS dependent fashion. (A) Proinflammatory Mph (Mph1) produce lower levels of ROS as compared to anti-inflammatory Mph2 as measured by DHR123 fluorescence by flow cytometry after stimulation with PMA. (B) Suppression of anti-CD3/28 Ab induced T cell IFN- γ production by pro-inflammatory Mph1 is less efficient as compared to suppression by anti-inflammatory Mph2. (C) Apocynin (apo) prevents inhibition of T cell activation by anti-inflammatory Mph2 but not by pro-inflammatory Mph1.

DA.*Ncf1*^{E3/E3} congenic rats express the allelic variant which leads to higher ROS production. First ROS production by Mph and DC cultured from bone marrow of both strains was determined. Similar to the human and murine (20) situation, Mph of the DA.*Ncf1*^{E3/E3} strain were able to produce significant levels of ROS after stimulation, whereas DC were far less efficient (Fig 5A). To compare circulating Treg numbers, FoxP3⁺ cells amongst CD3⁺CD4⁺CD25⁺ cells was measured, but no differences between the two strains were observed, similar to findings in CGD patients and controls (Fig 5B,C). To study the effect of Mph ROS on Treg induction and T cell responses *in vivo*, allogeneic Lewis rats were primed with Mph from either DA.*Ncf1*^{E3/E3} or DA.*Ncf1*^{DA/DA} rats. Eleven days later, all rats were immunized with irradiated splenocytes from DA.*Ncf1*^{DA/DA} rats to boost the anti-DA response. At this time point Lewis rats primed with DA.*Ncf1*^{DA/DA} Mph, had lower numbers of CD3⁺CD4⁺CD25⁺FoxP3⁺ cells than those primed with ROS-sufficient DA.*Ncf1*^{E3/E3} Mph (Fig 5D), whereas the number of activated T cells (CD4⁺CD25⁺) cells was comparable (Fig S3A). Two weeks later, all rats were challenged with irradiated DA.*Ncf1*^{DA/DA} splenocytes in the ear, to evoke a delayed-type hypersensitivity (DTH) response. After 24 hours, rats initially primed with ROS producing DA.*Ncf1*^{E3/E3} Mph showed a significantly less ear swelling as compared to rats primed with Mph from DA.*Ncf1*^{DA/DA} rats (Fig 5F). Moreover, these rats still showed higher levels of FoxP3⁺ cells in their peripheral blood (Fig 5G), whereas the number of activated T cells did not differ between groups (Fig S3B). These results indicate that Mph induce Tregs in a ROS-dependent fashion *in vivo*, thereby leading to lower T-cell responses.

Discussion

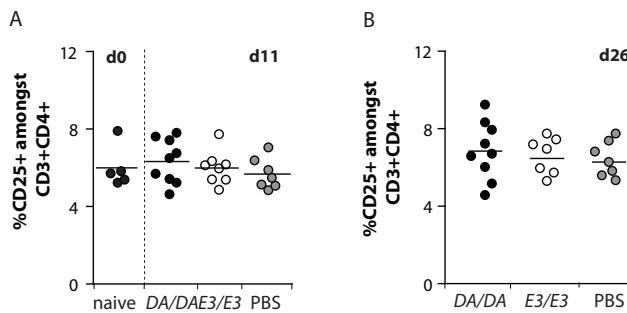

Here we show that, in both humans and rats, Mph-derived ROS suppress T-cell responses by induction of Tregs. This finding was confirmed by using Mph

Figure S2: Mph2 but not Mph1 induce Treg in a ROS dependent fashion. **(A)** Priming of CD4⁺CD25⁺ T cells with anti-inflammatory Mph2 but not with pro-inflammatory Mph1 induces FoxP3 expression by these T cells. **(B)** T cells primed with Mph2 but not when primed with Mph1 suppress proliferation of responder T cells in a ROS dependent fashion. Apocynin (apo) was present during priming to inhibit the Nox2 complex.

from CGD patients. Importantly, we show that Mph induces Tregs in a ROS-dependent fashion both *in vitro* and *in vivo*.

ROS can inhibit T cell activation (14,15,26). For example, in cancer patients, granulocyte-derived H₂O₂ mediates impairment of T cell function (27). The mechanism how ROS affect T-cell responses is still quite unclear. Rats with defective ROS production because of an SNP in *Ncf1*, have more reduced proteins at their T-cell surfaces. The functional implications of these high cell-surface thiol levels were shown by arthritis transfer experiments; decreasing the number of thiols on CD4⁺ T cell surfaces abrogated their ability to transfer disease from sick DA.*Ncf1*^{DA/DA} rats to naïve DA.*Ncf1*^{E3/E3} rats (12). Alternatively, ROS may pass the cell membrane and affect signal transduction proteins such as ζ -chain-associated protein kinase 70 (ZAP70) and linker of activation of T cell (LAT) (28). Another role for ROS has been suggested in the kynurenine pathway of tryptophan catabolism. In ROS-deficient mice with aspergillosis an O₂⁻ dependent step in the kynurenine pathway was blocked, contributing to the observed acute lung inflammation and unrestrained $\gamma\delta$ T-cell activity (29).

Figure S3: The number of activated T cells during DTH remains similar between groups. **(A, B)** The percentage of CD25+ cells amongst CD3+CD4+ cells 11 days (A) or 26 days (B) after priming the rats with DA.Ncf1DA/DA Mph, DA.Ncf1E3/E3 Mph or PBS is comparable between groups.

On the other hand, CGD Mph previously have been shown to have a normal tryptophan metabolism (30) and recently the microsomal cytochrome b_5 rather than O_2^- was recently indicated to activate indoleamine 2,3 dioxygenase (31). (However, this may vary among species.) Finally, it has been reported that ROS can induce apoptosis in T cells (32,33), thereby decreasing the number of activated T cells. In our studies we did not see increased levels of apoptosis upon coincubation of Mph and T cells, so it is unlikely that increased apoptosis is the reason for the observed inhibition of activation. APC may affect T cells during antigen presentation through the production of ROS. This activity may take place in the immunological synapse, hence creating a micromilieu that allows oxidation of specific proteins; however, this notion has yet to be investigated. DC generally are considered to be the most powerful APC (34). We show here, as was shown previously (20)(35), that DC are not very efficient at producing ROS. In contrast, the Mph we investigated were very efficient in producing ROS. These Mph are differentiated from monocytes with M-CSF and have an antiinflammatory phenotype (36,37,38). Our Mph2 and Mph1 may not represent exactly all Mph occurring *in vivo*, but they provided good polar models to answer our research question (39). We already showed that these Mph, unlike proinflammatory type Mph, are able to induce potent Tregs (24). Tregs play a critical role in the prevention of autoimmunity and resolution of inflammation (40). Because Mph prevented T cell-mediated autoimmunity in the mouse by producing ROS, we here studies the effect of ROS produced by Mph on T cell activation and Treg induction, both in CGD patients and in an *Ncf1*-mutated rat model. Although ROS may have direct effects on T cells by oxidation of certain intracellular or membrane-bound proteins important for T cell signaling, ROS may also induce Tregs through Mph. We chose to use T-cell activation by Mph in an allogeneic setting, to exclude effects of ROS on antigen processing and presentation, which have been described before (19). We showed that Mph induce Tregs from a CD4+CD25- population only when they were able to produce ROS. Both pharmacologic and genetic inhibition of ROS production abrogated the ability of Mph to induce Tregs. Interestingly, the percentages of Treg in peripheral blood of CGD patients vs control subjects or in DA.Ncf1^{DA/DA}

vs DA.*Ncf1*^{E3/E3} rats were comparable. This observation suggests that, in contrast to peripheral Treg induction, the number of natural Treg induced in the thymus, is not affected by Mph ROS, although expansion of natural Tregs in the Lewis rats in the DTH experiments could not be excluded. Previously we have shown that Tregs induced by antiinflammatory Mph use membrane-bound TGF- β for suppression (24). Although we did not address the role of TGF- β in this study, it has been reported previously that ROS can activate TGF- β (41,42). However, these ROS were not cell-derived, so it is unknown whether ROS produced by Mph upon interaction with a T cell has similar effects on membrane-bound TGF- β , and if such activation would affect Treg induction. It has also been shown that T cells themselves can produce ROS after anti-CD3/28 Ab activation and that these ROS activate TGF- β , leading to Treg induction (43). However, this ROS is produced intracellular and this mechanism probably is not comparable to our system. The exact mechanisms, however, still need to be investigated. It is an attractive idea that, as long as activation signals remain below a certain threshold level, Mph prevent unwanted inflammation and autoimmunity by regulating T-cell responses via the production of ROS (3). Upon potent immune activation (e.g. efficient antigen presentation by DC), the immune suppressive effect of Mph may be overwhelmed. This hypothesis is in line with the observation that both patients with CGD and mice with a nonfunctional Nox2 are more prone to develop autoimmunity (8,10,44,29,45). This observation suggests that Mph-derived ROS may protect against (auto-) immune activation. Indeed, altered monocyte function due to aberrant inflammatory gene expression has been observed in CGD patients (46,47). It would be interesting to investigate if the increased autoimmunity and defective granuloma resolution in CGD patients result from a defect in Treg induction. Recently, a role for Treg in granuloma clearing was described in Wegener's granulomatosis. Treg number and function were reduced in patients with this disease, and the reduction was most pronounced in subjects with most active disease (48).

To investigate if ROS production by Mph could also inhibit allogeneic T-cell responses *in vivo*, DTH experiments were performed in a rat model. These experiments showed that Mph can prevent T cell responses and induce Tregs in a ROS-dependent fashion *in vivo*, thereby decreasing the allogeneic response. We thus demonstrated that the ability to produce ROS by APC plays a critical role in determining whether these APC will activate or suppress T cells. In conclusion, we show that Mph, by producing ROS, suppress T-cell activation and induce Tregs both *in vitro* and *in vivo*.

Methods

Animals

Rats were from Harlan (DA or Lewis; Horst, the Netherlands) or own breeding (DA.*Ncf1*^{E3/E3}; founders originating from Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden)(9). For DTH experiments littermates

were used (DA.Ncf1^{DA/DA} and DA.Ncf1^{E3/E3}). Rats were used at 8-12 weeks of age and groups were sex and age matched. Rats were kept in polystyrene cages and fed standard rodent chow. Animal experiments were approved by the committee of medical ethics (CEM) of the Leiden University Medical Center.

Patients

Peripheral blood was obtained from 5 CGD patients with mutations identified in the genes encoding p47^{phox} (AR-CGD, homozygous Δ deletion in NCF1) or gp91^{phox} (X-linked CGD, mutations in CYBB). Patients signed informed consent. PBMC were isolated as described below. The number of viable monocytes was not different from healthy controls.

Myeloid cell culture & T cell isolation

Human: Monocytes were isolated from buffy coats by positive selection of CD14⁺ cells from the ficoll interphase by MACS (Miltenyi)(38). Monocytes were cultured for 7 days in either 10 ng/ml IL-4 plus 5 ng/ml GM-CSF (both from Biosource) to obtain DC or 5 ng/ml M-CSF or GM-CSF (R&D systems) to obtain Mph (38). Cells were cultured at 1.5x10⁶cells per well in 6 wells plates and medium containing cytokines was refreshed twice. For DC, the non-adherent cells were used. Macrophages were harvested by gentle scraping after short trypsin incubation (3 min, 37°C). T cells were isolated from buffy coats by sheep red blood cell rosetting. For Treg experiments CD4⁺ were isolated by MACS (negative selection kit, Miltenyi). CD25⁺ depletion was performed by panning on petridishes coated with goat-anti-mouse Ab and capturing T cells positively labeled with anti-CD25 Ab. These cells were >90% CD4⁺ and >99% CD25⁻.

Rat: For rat, bone marrow cells were cultured in rat GM-CSF + rat IL-4 (Biosource) to obtain DC or in human M-CSF (5 ng/ml) to obtain Mph and refreshed every other day. The culture medium contained additional L-glutamine (2 mM) and fungizone but no β -mercaptoethanol. Cells were used after 7 days. T cells were isolated from spleens by magnetic sorting for CD3⁺ cells (Dynabeads).

MLR

150.000 allogeneic T cells were cocultured with irradiated (40 Gy) myeloid cells in an MLR in different ratios, with soluble anti-CD3 and anti-CD28 (IxE; 1 μ g/ml and CLB-CD28/1; 0,25 μ g/ml, both kindly provided by Prof L.A. Aarden). After 5 days, supernatant was assayed for IFN- γ production (eBioscience) and cells were cultured for 16 hours in presence of ³H thymidine (0,5 μ Ci) and thymidine incorporation was determined as a measure for proliferation. Anti-CD28 alone had no effect and the Ab had no effect on myeloid cell proliferation in absence of T cells. Apocynin (Sigma) was used in concentration ranges up to 1 mM.

Flowcytometry

Expression levels of surface proteins were measured by flowcytometry (FACScalibur, BD) after staining with specific conjugated Ab or unconjugated Ab detected by conjugated secondary Ab. ROS production was determined

by incubating the cells with dihydrorhodamine123 (DHR123), 5 μ M in RPMI $^{++}$ at 37°C for 10 min. Subsequently, oxidative burst was induced by adding PMA (200 ng/ml for 20 min at 37°C). Human and rat Tregs were detected by staining with anti-CD25-PE, anti-CD3-PerCP and anti-CD4-APC (BD). Subsequently, cells were permeabilized, fixed (BD) and stained with anti-FoxP3-FITC, or FITC labeled isotype control, according to the manual to the used kit (eBioscience). The lymphocyte fraction was selected and the % of FoxP3 $^{+}$ amongst CD3 $^{+}$ CD4 $^{+}$ CD25 $^{\text{bright}}$ cells was determined. Apoptotic cells were determined by Annexin-V-FITC, propidium iodide (BD) double staining. Single and double positive cells were analyzed as being apoptotic and dead cells respectively. The expression levels of p47 $^{\text{phox}}$ and gp91 $^{\text{phox}}$ were also determined by intracellular staining as described above for FoxP3 staining using mouse-anti-human p47 $^{\text{phox}}$ and gp91 $^{\text{phox}}$ Ab (Santa Cruz Biotechnology), detected with goat-anti-mouse-PE (DAKO).

T cell suppression assay

CD4 $^{+}$ CD25 $^{-}$ T cells from one donor were cultured with macrophages from another donor for 5 days in a ratio of 6:1, in the presence of anti-CD3/28. After 5 days, T cells were harvested and depleted for HLA ClassII $^{+}$ cells and used as suppressor cells (S) (<1% Mph contamination). Freshly isolated CD4 $^{+}$ CD25 $^{-}$ T cells were used as responders, whereas CD4 $^{-}$ cells from the same donor were irradiated (40 Gy) and used as feeder cells. R:F:S was ranging from 8:16:32 to 8:16:1. A control condition with feeders and double the number of responder T cells (F2R) in stead of FR was taken along to correct for possible crowding effects in the absence of suppressor cells as present in experimental conditions. Cells were stimulated with a low dose of PHA (1 μ g/ml) or anti-CD3/28 (49). After 5 days cells were labeled for 8-16 hr with ^{3}H Thymidine and incorporated radioactivity was determined. Supernatant was subjected to cytokine analysis by ELISA or Luminex bead-based assay. In some experiments, responder cells were labeled with 5 μ M CFSE, and proliferation was determined by FACS analysis, by gating on the CFSE labeled population and quantifying the CFSE dilution.

mRNA isolation and Q-PCR

mRNA was isolated using a Qiagen kit . After making cDNA, semi quantitative PCRs were performed on a Biorad Icycler machine and the following primers were used: p47 $^{\text{phox}}$ (Forward: cctgacgagacggaagac; Reverse: gggaaagttagccgtgacg), gp91 $^{\text{phox}}$ (Forward: tagtgggagcaggattg; Reverse: tcaaaggcatgtgtc). The following GAPDH primers were used for normalization: Forward ttccaggagcgagatccct and reverse cacccatgacgaacatgg.

DTH experiments

Priming of Lewis rats at day 0 was done by i.v. injection of 5x10⁶ Mph generated from either DA.Ncf1 $^{E3/E3}$ or DA.Ncf1 $^{DA/DA}$. Rats were immunized 11 days later i.p. with irradiated DA.Ncf1 $^{DA/DA}$ splenocytes. At this day blood was drawn to

determine the percentage of Tregs. After another 14 days, at day 25, rats were challenged in the left ear with irradiated splenocytes in PBS. The right ears were injected with PBS only. Ear swelling was measured before challenge and after 24 hours and was expressed as the difference in thickness between the challenged and the control ear.

Statistics

Results of different independent, although similarly performed, experiments were pooled, and the averages of the values were subjected to statistical analysis. Significant differences were determined using the Mann Whitney U test. P<0.05 was considered as significantly different.

Acknowledgements

We thank Dr M. Hultqvist for genotyping and E. van Beelen for luminex assays. KAG was subsidized by the Dutch Kidney Foundation (KSPB07.0003) and the Dutch Organisation for Scientific Research (VENI 916.86.049). MDK was supported by the Dutch Kidney Foundation (KSPB07.0001). NDLS and THMO are supported by the Netherlands Leprosy Relief Foundation, the Turing Foundation and the European Commission. We are grateful for support from the Swedish Foundation for Strategic Research and the European Union grant Masterswitch (HEALTH-F2-2008-223404).

References

1. Hultqvist M, Olsson, LM, Gelderman KA, Holmdahl R (2009) The protective role of ROS in autoimmune disease. *Trends Immunol* 30: 201-208.
2. Ghezzi P, Bonetto V, Fratelli M (2005) Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulation. *Antioxid Redox Signal* 7: 964-972.
3. Gelderman KA et al (2007) Rheumatoid arthritis: the role of reactive oxygen species in disease development and therapeutic strategies. *Antioxid Redox Signal* 9: 1541-1567.
4. Kazama H et al (2008) Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. *Immunity* 29: 21-32.
5. Corzo CA et al (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. *J Immunol* 182: 5693-5701.
6. Chin TW, Stiehm ER, Falloon J, Gallin JL, (1987) Corticosteroids in treatment of obstructive lesions of chronic granulomatous disease. *J Pediatr* 111: 349-352.
7. Rosenzweig SD (2008) Inflammatory manifestations in chronic granulomatous disease (CGD). *J Clin Immunol* 28 Suppl 1: S67-S72.
8. Schappi MG, Jaquet V, Belli DC, Krause KH (2008) Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase. *Semin Immunopathol* 30: 255-271.
9. Olofsson P et al (2003) Positional identification of Ncf1 as a gene that regulates arthritis severity in rats. *Nat Genet* 33: 25-32.
10. Hultqvist M et al (2004) Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene. *Proc Natl Acad Sci U S A* 101: 12646-12651.
11. Holmberg J et al (2006) Pristane, a non-antigenic adjuvant, induces MHC class II-

restricted, arthritogenic T cells in the rat. *J Immunol* 176: 1172-1179.

12. Gelderman KA, Hultqvist M, Holmberg J, Olofsson P, Holmdahl R (2006) T cell surface redox levels determine T cell reactivity and arthritis susceptibility. *Proc Natl Acad Sci U S A* 103: 12831-12836.

13. Jackson SH, Devadas S, Kwon J, Pinto LA, Williams MS (2004) T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. *Nat Immunol* 5: 818-827.

14. Matsue H et al (2003) Generation and function of reactive oxygen species in dendritic cells during antigen presentation. *J Immunol* 171: 3010-3018.

15. Tse HM et al (2007) Disruption of innate-mediated proinflammatory cytokine and reactive oxygen species third signal leads to antigen-specific hyporesponsiveness. *J Immunol* 178: 908-917.

16. Forman HJ, Torres M (2001) Signaling by the respiratory burst in macrophages. *IUBMB Life* 51: 365-371.

17. DeYulia GJ Jr, Carcamo JM, Borquez-Ojeda O, Shelton CC, Golde DW (2005) Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling. *Proc Natl Acad Sci U S A* 102: 5044-5049.

18. Mantegazza AR et al (2008) NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. *Blood* 112: 4712-4722.

19. Savina A et al (2006) NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. *Cell* 126: 205-218.

20. Gelderman KA et al (2007) Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. *J Clin Invest* 117: 3020-3028.

21. Wing K, Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance and autoimmunity. *Nat Immunol* 11: 7-13.

22. Bluestone JA, Tang Q (2004) Therapeutic vaccination using CD4⁺CD25⁺ antigen-specific regulatory T cells. *Proc Natl Acad Sci U S A* 101 Suppl 2: 14622-14626.

23. Tang Q et al (2004) *In vitro*-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. *J Exp Med* 199: 1455-1465.

24. Savage ND et al (2008) Human anti-inflammatory macrophages induce Foxp3⁺ GITR⁺ CD25⁺ regulatory T cells, which suppress via membrane-bound TGFbeta-1. *J Immunol* 181: 2220-2226.

25. Xu W et al (2007) Human peritoneal macrophages show functional characteristics of M-CSF-driven anti-inflammatory type 2 macrophages. *Eur J Immunol* 37: 1594-1599.

26. Khan N et al (2006) Hydrogen peroxide inhibits IL-12 p40 induction in macrophages by inhibiting c-rel translocation to the nucleus through activation of calmodulin protein. *Blood* 107: 1513-1520.

27. Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. *Cancer Res* 61: 4756-4760.

28. Gringhuis SI et al (2000) Displacement of linker for activation of T cells from the plasma membrane due to redox balance alterations results in hyporesponsiveness of synovial fluid T lymphocytes in rheumatoid arthritis. *J Immunol* 164: 2170-2179.

29. Romani L et al (2008) Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. *Nature* 451: 211-215.

30. Murray HW et al (1989) Role of tryptophan degradation in respiratory burst-independent antimicrobial activity of gamma interferon-stimulated human macrophages. *Infect Immun* 57: 845-849.

31. Maghzal GJ, Thomas SR, Hunt NH, Stocker R (2008) Cytochrome b5, not superoxide

anion radical, is a major reductant of indoleamine 2,3-dioxygenase in human cells. *J Biol Chem* 283: 12014-12025.

- 32. Kuang DM et al (2008) Tumor-educated tolerogenic dendritic cells induce CD3epsilon down-regulation and apoptosis of T cells through oxygen-dependent pathways. *J Immunol* 181: 3089-3098.
- 33. Tripathi P, Hildeman D (2004) Sensitization of T cells to apoptosis--a role for ROS? *Apoptosis* 9: 515-523.
- 34. Ueno H et al (2007) Dendritic cell subsets in health and disease. *Immunol Rev* 219: 118-142.
- 35. Elsen S et al (2004) Cryptic O₂- -generating NADPH oxidase in dendritic cells. *J Cell Sci* 117: 2215-2226.
- 36. Verreck FA. et al (2004) Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. *Proc Natl Acad Sci U S A* 101: 4560-4565.
- 37. Porta C et al (2009) Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. *Proc Natl Acad Sci U S A* 106: 14978-14983.
- 38. Xu W et al (2006) IL-10-producing macrophages preferentially clear early apoptotic cells. *Blood* 107: 4930-4937.
- 39. Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ (2010) Unravelling mononuclear phagocyte heterogeneity. *Nat Rev Immunol* 10: 453-460.
- 40. Esensten JH, Wofsy D, Bluestone JA (2009) Regulatory T cells as therapeutic targets in rheumatoid arthritis. *Nat Rev Rheumatol* 5: 560-565.
- 41. Barcellos-Hoff MH, Dix TA (1996) Redox-mediated activation of latent transforming growth factor-beta 1. *Mol Endocrinol* 10: 1077-1083.
- 42. Pociask DA, Sime PJ, Brody AR (2004) Asbestos-derived reactive oxygen species activate TGF-beta1. *Lab Invest* 84: 1013-1023.
- 43. Amarnath S, Dong L, Li J, Wu Y, Chen W (2007) Endogenous TGF-beta activation by reactive oxygen species is key to Foxp3 induction in TCR-stimulated and HIV-1-infected human CD4⁺. *Retrovirology* 4: 57.
- 44. Liu Q et al (2009) p47^{phox} deficiency induces macrophage dysfunction resulting in progressive crystalline macrophage pneumonia. *Am J Pathol* 174: 153-163.
- 45. George-Chandy A et al (2008) Th17 development and autoimmune arthritis in the absence of reactive oxygen species. *Eur J Immunol* 38: 1118-1126.
- 46. Brown KL et al (2008) ROS-deficient monocytes have aberrant gene expression that correlates with inflammatory disorders of chronic granulomatous disease. *Clin Immunol* 129: 90-102.
- 47. Selmeczi Z, Szelenyi J, Nemet K, Vizi ES (2003) The inducibility of TNF-alpha production is different in the granulocytic and monocytic differentiated forms of wild type and CGD-mutant PLB-985 cells. *Immunol Cell Biol* 81: 472-479.
- 48. Morgan MD et al (2010) Patients with Wegener's granulomatosis demonstrate a relative deficiency and functional impairment of T-regulatory cells. *Immunology* 130: 64-73.
- 49. Wang J, van Dongen H, Scherer HU, Huizinga TW, Toes RE (2008) Suppressor activity among CD4⁺, CD25⁺⁺ T cells is discriminated by membrane-bound tumor necrosis factor alpha. *Arthritis Rheum* 58: 1609-1618.

Chapter 3

**Dexamethasone increases ROS production
and T cell suppressive capacity by
anti-inflammatory macrophages**

Marina D. Kraaij, Sandra W. van der Kooij, Marlies E.J. Reinders,
Karin Koekkoek, Ton J. Rabelink, Cees van Kooten,
and Kyra A. Gelderman^a

^aDepartment of Nephrology, Leiden University Medical Center,
Leiden, The Netherlands

Mol Immunol. 49:549-557 (2011)

Abstract

Macrophages have been demonstrated to suppress T cell responses by producing Reactive Oxygen Species (ROS) leading to the subsequent induction of T regulatory cells in a ROS-dependent manner. Macrophages may therefore be instrumental in down-regulating T cell responses in situations of exacerbated immune responses. Here we investigated the effect of immunosuppressive drugs on ROS production by macrophage subsets and the subsequent effects on T cell activation. Macrophage type 1 and 2 were differentiated with GM-CSF or M-CSF, in presence or absence of dexamethasone, cyclosporine A, FK506, rapamycin, or mycophenolic acid. The ROS producing capacity of fully differentiated Mph was highest in anti-inflammatory Mph2 and not affected by exposure to immunosuppressive drugs. However, presence of rapamycin during Mph2 differentiation decreased the ROS production of these cells. In contrast, other immunosuppressive drugs, with dexamethasone being the most potent, increased the ROS producing capacity of Mph2. Intriguingly although the ROS producing ability of Mph1 was unaffected, dexamethasone strongly increased the ROS producing capabilities of dendritic cells. Both at the mRNA and protein level we found that dexamethasone enhanced the expression of NOX2 protein p47^{phox}. Functionally, dexamethasone further enhanced the capacity of Mph2 to suppress T cell mediated IFN- γ and IL-4 production. *In vivo*, only in rats with normal ROS production (congenic DA.Ncf1^{E3/E3}) it was observed that dexamethasone injection resulted in long-lasting upregulation of ROS production by macrophages and induced higher levels of Treg in a ROS-dependent manner. In conclusion, we show that the anti-inflammatory drug dexamethasone increases the ROS producing capacity of macrophages.

Introduction

In recent years it has become evident that macrophages (Mph) can efficiently suppress T cell responses (Mantovani et al., 2004; Ricardo et al., 2008). Recently, we have shown that an important mechanism of this Mph induced T cell suppression is the production of Reactive Oxygen Species (ROS) by the phagocyte NADPH oxidase complex (NOX2 complex) (Hultqvist et al., 2009). In a mouse model for arthritis it was shown that mice were protected when macrophages expressing a functional NOX2 complex were present. In contrast littermates that did not express a functional NOX2 complex developed clinically overt disease (Gelderman et al., 2007). Subsequently, we showed in the human situation, that Mph with a potent ROS producing capacity suppress allogeneic T cell responses and induce Treg in a ROS dependent manner (Kraaij et al., 2010). This work was recently repeated in the mouse by others (Lee et al., 2011). Importantly, in a rat model ROS-producing Mph could, *in*

vivo, attenuate allogeneic delayed type hypersensitivity responses (Kraaij et al., 2010), suggesting that these Mph might induce specific T cell suppression. Patients with Chronic Granulomatous Disease (CGD) have mutations in various components of the NOX2 complex and suffer from recurrent bacterial infections, underlying the importance of the NOX2 complex in innate immunity (Segal et al., 2011). Interestingly, these patients are also characterized by chronic inflammation, increased autoimmunity and a hampered ability to control inflammation, thus suggesting a regulatory role for the NOX2 complex and the subsequent ROS production.

In view of this unanticipated but critical role of NOX2 in immune regulation, it is important to investigate how the ROS producing capacity in Mph is regulated. Mph exist in different forms, including polarized Mph1 and Mph2 subsets with clearly distinct cytokine production and other functional characteristics (Mantovani et al., 2004; Ricardo et al., 2008). Monocytes differentiated in the presence of IFN- γ , LPS, or GM-CSF are known as the classical macrophages (Mph1) and are characterized by a high IL-12 production and the promotion of T helper cell type 1 (Th1) responses. On the other hand, Mph2 (alternatively activated macrophages) are induced by M-CSF, or IL-4/IL-13 among others, and generally have low pro-inflammatory cytokine levels and generate T helper cell type 2 (Th2) activation. Mph2 induced by M-CSF are known as anti-inflammatory Mph that express CD163 and downregulate costimulatory molecules upon activation (Verreck et al., 2006). Analysis of NOX2 expression and function in various Mph subsets will be relevant since ROS producing Mph may be instrumental in alleviating T cell responses in autoimmunity or by preventing allograft rejection in transplantation.

Immunosuppressive drugs (IS drugs) are commonly given to prevent T cell activation and graft rejection (Hansen et al., 2007; Nankivell and Chapman, 2006). However, the effects of these drugs extend far beyond suppressing T cells alone, and antigen presenting cells like dendritic cells and Mph have also been shown to be affected (Weichhart and Saemann, 2009). These IS drugs have severe side-effects including nephrotoxicity and an increased risk of infections and malignancies. Dosing should thus be minimized and the development of alternative therapies with fewer side-effects is essential. Cellular therapy, eg with myeloid cells such as dendritic cells and macrophages (Stax et al., 2008; Morelli and Thomson, 2007; van Kooten et al., 2011), or mesenchymal stromal cells (Reinders et al., 2010) could be such an alternative by inducing donor-specific immunosuppression. Since IS drugs may affect the immunosuppressive function of the cells administered, it is of major importance to unravel the effect of different IS drugs on potential therapeutical cells. In addition, these IS drugs may influence the phenotype and function of endogenous immunoregulatory cells and thereby affect the immune response (Hoogduijn et al., 2008).

In the current study we investigated the effect of several commonly used IS drugs on different macrophage types regarding ROS production and the subsequent effect on T cell responses. We show that dexamethasone increases the expression of NOX2 proteins and the ROS producing capacity of myeloid cells. In addition, dexamethasone has an enhancing effect on the

ROS producing capacity of monocytes/macrophages *in vivo*, associated with increased numbers of circulating Treg.

Materials and Methods

Animals

Littermates were obtained by intercrossing F1 animals from a DA (Harlan) x DA.Ncf1^{E3/E3} cross (DA.Ncf1^{E3/E3} founders originating from Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden) (Olofsson et al., 2003). Animals were used at 8-12 weeks of age. Animal experiments were approved by the committee of medical ethics (CEM) of the Leiden University Medical Center. Dexamethasone (0.15mg) (Pharmacy, LUMC) was injected intraperitoneally at day 0 and 4. Heparinized blood was drawn from the tail for FACS-analysis. At day 22 the rats were sacrificed with CO₂.

Macrophage / Dendritic cell culture

Monocytes were isolated from buffy coats by CD14+ MACS-bead selection (>95% purity) (Miltenyi Biotec) (Xu et al., 2007). Monocytes were cultured for 7d in 5 ng/ml GM-CSF (Biosource; Mph1), in 5 ng/ml M-CSF (R&D systems; Mph2), or in 5 ng/ml GM-CSF and 10 ng/ml IL-4 (Biosource; DC). Cells were cultured in 6 wells plates, 1.5x10⁶ cells per well in RPMI with 10% FCS and penicillin/streptomycin (RPMI++); medium and cytokines were refreshed twice. After short trypsinization, macrophages were harvested by gentle scraping. From the DC cultures only the floating cells were used. Cultures were performed with 1 µM dex, 5 nM rapamycin (Calbiochem), 100 ng/ml cyclosporine (Novartis), 100 ng/ml FK506 (Tacrolimus, Astellas), 50 ng/ml mycophenolic acid (MPA, Sigma Aldrich, diluted in ethanol), or 50 µg/ml prednisolone (PharmaChem) for 7 days or for 48 hours starting at day 6. Drug concentrations were chosen based on other studies and on trough levels in patients (Heidt et al., 2010; Woltman et al., 2000). At day 6 cells were stimulated with 200 ng/ml LPS for 16 hours to assess IL-6, IL-10, TNF-α (Sanquin) and IL-12p40 (Biologics) production by ELISA.

Flow cytometry

ROS production was determined by first staining with 5 µM dihydrorhodamine 123 (DHR123) for 10 min at 37°C in RPMI++ followed by stimulation with 200 ng/ml phorbol-12-myristate 13-acetate (PMA) for 20 min at 37°C. Expression of CD14 and CD163 was determined, using the appropriate isotype control, with anti-CD14-PE (BD) or anti-CD163-PE (DAKO). Protein levels of p47^{phox} and gp91^{phox} were determined by intracellular staining. Cells were permeabilized, fixed (BD), and followed by staining with anti-p47^{phox} (Santa Cruz), anti-gp91^{phox}, or an isotype control (BD) which was detected with GAM-PE (DAKO). Cell surface molecule expression was assessed by flow cytometry using a FACSCalibur and BD CellQuest software (BD Biosciences).

Whole peripheral blood from rat was stained with OX42 (anti-CD11b)

and detected with GaM-Alexa647. CD11b^{dim} cells were considered to be monocytes/macrophages and CD11b^{bright} cells as neutrophils, this compared well with the ROS-producing capacity of these two populations. Rat Tregs were determined by staining with anti-CD25-PE, anti-CD3-PerCP and anti-CD4-APC (BD). Subsequently, cells were permeabilized, fixed (BD) and stained with anti-FoxP3-FITC, or FITC labeled isotype control (both eBioscience). Cells were gated on the lymphocyte fraction and the percentage of FoxP3+ amongst CD3+CD4+CD25^{bright} cells was determined.

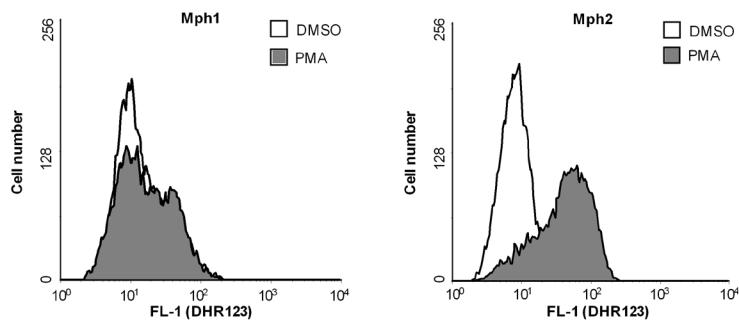
T cell suppression assays

T cells (150,000) were cocultured with different ratios of allogeneic Mph with 0.5 µg/ml anti-CD3 and 1 µg/ml anti-CD28 (IxE; 1 µg/ml and CLB-CD28/1; provided by Prof L.A. Aarden). After 5 days, the supernatants were harvested to evaluate IL-4 (Sanquin) and IFN-γ (Invitrogen) levels by ELISA. The cells were pulsed with 0.5 µCi ³H thymidine overnight and T cell proliferation was determined by measuring thymidine incorporation.

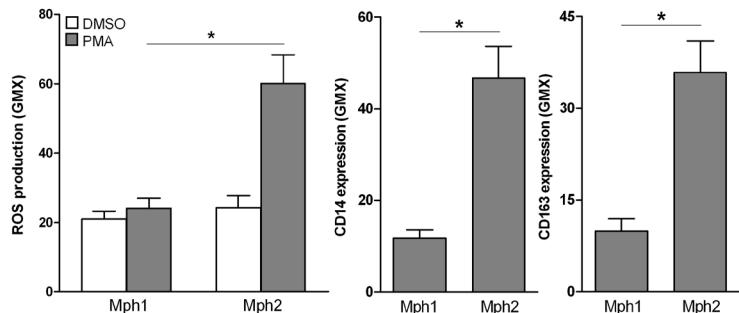
mRNA isolation and Quantitative PCR

mRNA was isolated using a Qiagen kit. After making cDNA, quantitative PCRs were performed on a Bio-Rad Icyler machine using the following primers: p47^{phox} (Forward: CCTGACGAGACGGAAGAC; Reverse: GGGAAAGTAGCCTGTG ACG), gp91^{phox} (Forward: TAGTGGGAGCAGGGATTG; Reverse: TCAAAGGCATGTGTGTCC). The following GAPDH primers were used for normalization: Forward TTCCAGGAGCGAGATCCCT and reverse CACCCATGACGAACATGGG.

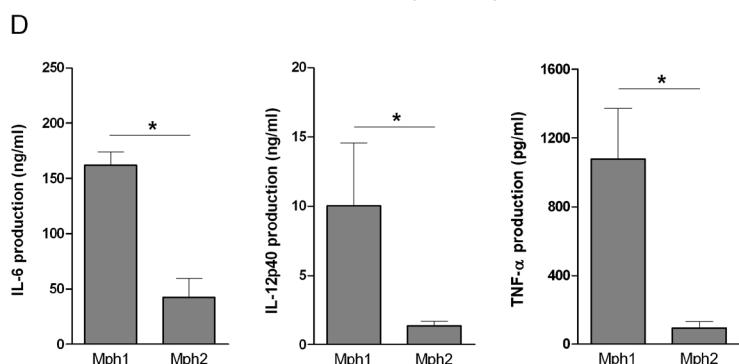
Statistics

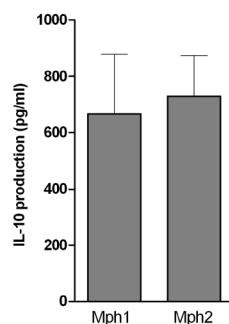

Results of different independent, although similarly performed, experiments were averaged and subjected to statistical analysis. Significant differences were determined using the Mann-Whitney test.

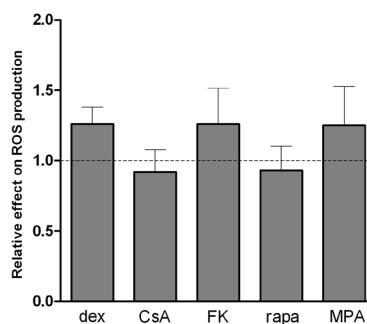
Results


3.1 Anti-inflammatory macrophages produce ROS

Pro-inflammatory Mph1 and anti-inflammatory Mph2 were differentiated from CD14+ human monocytes by cultivation for 7 days in GM-CSF or M-CSF respectively. Their capacity to produce ROS was determined by flow cytometry after staining with DHR123. Upon PMA stimulation, and in a side by side comparison, Mph2 were more efficient in producing ROS as compared to Mph1 (Fig. 1A,B) (Kraaij et al., 2010). In line with previous data, these Mph2 express higher levels of CD14 and CD163 as compared to Mph1 (Fig. 1C), and produce significantly lower amounts of IL-6, IL-12p40 and TNF-α upon LPS stimulation (Fig. 1D) (Xu et al., 2007). No difference was observed in IL-10


A


B


C

E

F

Figure 1: Anti-inflammatory Mph2 have higher ROS producing capacity. (A) FACS histograms of DHR123 fluorescence after staining of Mph1 (left) and Mph2 (right) to detect ROS production after PMA stimulation. (B) ROS production as induced by PMA or in absence of stimulation (DMSO; vehicle control) was determined for Mph1 and Mph2 by flow cytometry. The GeoMeanX of DHR123 fluorescence is depicted on the y-axis. (C) Mph1 and Mph2 were compared for the expression levels of CD14 and CD163 by flow cytometry. (D) IL-6, IL-12p40, and TNF- α production was determined for Mph1 and Mph2 by ELISA. (E) IL-10 production was determined for Mph1 and Mph2 by ELISA. (F) The effect of different immunosuppressive drugs (dexamethasone (dex), cyclosporine A (CsA), FK506 (FK), rapamycin (rapa), and mycophenolic acid (MPA)) were tested on Mph2; drugs were added for 48 hours after differentiation for 6 days. Mean and SEM of 17-25 (B), 3-6 (C,D,E), 2-8 (F) independent experiments are shown. * P<0.05.

production (Fig. 1E).

Next we investigated the effect of IS drugs on ROS production by Mph1 or Mph2. Differentiated Mph1 or Mph2 were exposed for 2 days to either dexamethasone (dex), cyclosporine A (CsA), FK506 (FK), rapamycin (rapa), or mycophenolic acid (MPA). The cell viability was not affected by these concentrations (not shown). Subsequently, PMA-induced ROS production was determined and directly compared with the ROS production by non-treated Mph. Of the drugs investigated, none elicited a remarkable effect on the ROS production by Mph2 (Fig. 1F). Also the low ROS producing capacity of Mph1 (Fig. 1A,B) was not affected by IS exposure (data not shown).

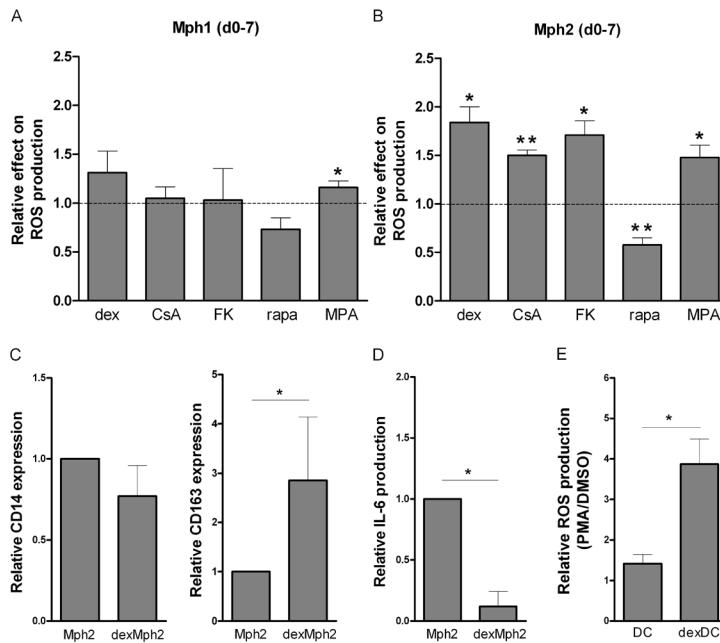
Immunosuppressive drugs influence the ROS producing capacity of Mph2

We further investigated whether the presence of these IS drugs during macrophage differentiation had an affect on their ROS. The amount of viable cells obtained after 7 days of culture was unaffected by the doses of drugs used in these experiments (not shown). On day 7, upon PMA stimulation, the ROS production by Mph 2 was ascertained. For all experiments described we made a direct comparison with Mph which were unexposed to the drugs. We observed a small enhancing effect of MPA on the ROS producing ability of Mph1 (Fig. 2A). It should be noted that this increase of MPA is minor in view of the already low ROS producing capacity of Mph1. Rapa was the only drug that significantly downregulated the ROS production by Mph2 (Fig. 2B). In contrast, the ROS producing capacity of Mph2 was significantly enhanced by dex, CsA, FK, and MPA, with dex being the most potent. A similar augmentary feature was observed for prednisolone, as cells cultured in the presence of this drug yielded a higher ROS production (data not shown). The expression of CD163 was increased when Mph2 were cultured in the presence of dex, as shown previously (Buechler et al., 2000), whereas no change was observed for CD14 levels (Fig. 2C). We also observed a decreased LPS-induced IL-6 production in the presence of dex (Fig. 2D). Thus, culturing monocytes in the presence of dex promoted the differentiation towards ROS-producing macrophages.

Previously we have shown that dexamethasone is a strong modulator of human monocyte-derived DC development, resulting in cells with tolerogenic properties (Woltman et al., 2000). Although immature DCs have a low ROS producing capacity upon PMA stimulation, a strong enhancement of ROS

production was observed in DCs when the cells were cultured in the presence of dex (Fig. 2E).

Dexamethasone increases the expression of components of the NOX2 complex


To explain the increased ROS producing capacity of Mph2 and DC, we investigated expression of the major components of the NOX2 complex. Generation of DC in the presence of dex was shown to increase mRNA expression of $p47^{phox}$ and $gp91^{phox}$, two essential NOX2 proteins (Fig. 3A). In line with this, we observed that also Mph2 cultured in the presence of dex showed increased expression of $p47^{phox}$ mRNA expression, although no change was observed for $gp91^{phox}$ (Fig. 3B). At the protein level we observed a trend with increased $p47^{phox}$ expression for both DC and Mph2 cultured in the presence of dex, although this was not statistically significant (Fig. 3C,D). No difference was observed with $gp91^{phox}$ protein levels (Fig. 3C,D). These results might contribute to the increased ROS producing capacity upon dex treatment.

Mph2 differentiated in presence of dex show decreased cytokine response

Previously we showed that Mph2 are able to suppress anti-CD3/28-induced T cell activation in a ROS-dependent manner (Kraaij et al., 2010). In view of the profound effects of dex we investigated if differentiation of Mph2 in the presence of dex affected their capacities to suppress T cells. T cells cocultured with increasing numbers of Mph2, showed slightly enhanced T cell proliferation at the lower ratios, whereas proliferation was suppressed by Mph2 at high ratios, as shown before (Fig. 4A) (Kraaij et al., 2010). However, this suppression was not amplified when Mph2 were generated in the presence of dex (Fig. 4A,D). In the same cocultures we also measured IFN- γ and IL-4 production. Mph2 inhibited IFN- γ and IL-4 production at high ratios, whereas at low ratios specifically the IFN- γ production was strongly increased. Mph cultured in dex did not show this increase in IFN- γ production (Fig. 4B) and showed more efficient inhibition of IFN- γ and IL-4 at higher ratios (Fig. 4B,C). Thus in contrast to the proliferative response, the T cell mediated IFN- γ and IL-4 production was significantly suppressed by Mph2 cultured in dex as compared to regular Mph2 (Fig. 4D).

Dex increases ROS production in vivo and induces Treg

We next studied the ability of dex to increase ROS production by Mph *in vivo*. We used the DA rat strain, which expresses two naturally occurring single nucleotide polymorphisms in the *Ncf1* gene encoding $p47^{phox}$, leading to a reduced ROS producing capacity (DA.*Ncf1*^{DA/DA}) (Hultqvist et al., 2011). We used these rats in comparison with its congenic strain which have a normal level of ROS production (DA. *Ncf1*^{E3/E3}) (Olofsson et al., 2003). Following injection of 0.15 mg dex (i.p.) at day 0 and day 4, the ROS producing capacity of monocytes/macrophages (CD11b^{dim}) in peripheral blood in DA.*Ncf1*^{E3/E3}

Figure 2: Dex increases ROS producing capacity. **(A, B)** The effects of different immunosuppressive drugs (dex, CsA, FK, rapa, and MPA) during Mph differentiation were tested on ROS producing capacity. ROS production after PMA stimulation for both Mph1 (A) and Mph2 (B) is shown. Figures A and B both depict the relative effect of the drug(s): the ROS producing capacity of Mph differentiated in presence of drugs is divided by the ROS producing capacity of Mph differentiated in absence of drugs (no effect gives a value of 1). Mean with SEM are shown in all cases, of 2-8 independent experiments. **(C)** The effect of dex during Mph2 differentiation was tested for CD14 and CD163 expression by flow cytometry. **(D)** The effect of dex during Mph2 differentiation on IL-6 production was determined by ELISA. Figures C and D both depict the relative effect of dex: expression/production of Mph2 differentiated in presence of dex is divided by the expression/production of Mph2 differentiated in absence of dex. Mean with SD are shown of 4-6 independent experiments. **(E)** Relative ROS production induced by PMA or in absence of stimulation (DMSO; vehicle control) was determined for DC and dexDC by flow cytometry. Mean with SEM are shown in all cases of 3-5 independent experiments. * $P<0.05$, ** $P<0.005$.

rats was significantly increased at days 5 and 7 (Fig. 5A). This trend, although not significant, was observed until day 22, showing a long-lasting effect of dex on the ROS producing capacity of these cells (Fig. 5A). No change in ROS producing capacity was seen in the DA.Ncf1^{DA/DA} rats (Fig. 5A). Interestingly, the ability of neutrophils to produce ROS at day 5 was unaffected by dex in the DA.Ncf1^{E3/E3} rats (Fig. 5B).

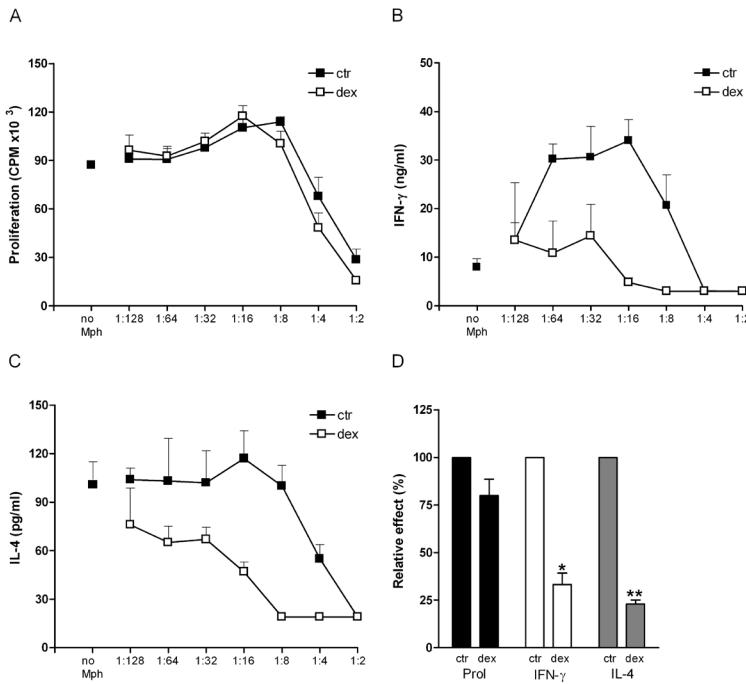

Since we previously found that macrophage-derived ROS contributes to Treg induction (Kraaij et al., 2010), we investigated the percentage of CD3+CD4+CD25^{bright}FoxP3+ cells after injection with dex in both rat strains. We observed that at day 5 the percentage of Tregs was increased in rats with normal ROS production, but not in the rats with low ROS producing capacity (Fig. 5D). Thus increased numbers of Tregs upon administration of dex coincided with the dex-induced increase in the ROS producing capabilities of monocytes/macrophages and was only observed in the rats with normal ROS-producing abilities.

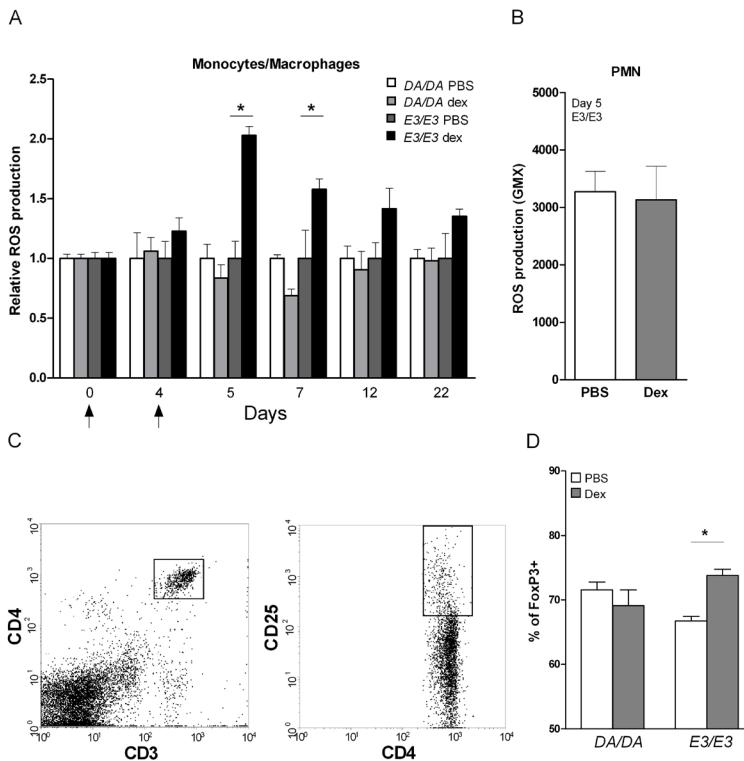
Figure 3: Dexamethasone increases the expression of components of the NOX2 complex. **(A, B)** mRNA levels for p47^{phox} and gp91^{phox} as determined by qPCR. In every experiment, normalized mRNA expression for DC and Mph2 was put on 1.0 and dexDC/dexMph2 expression was related to that value. **(C, D)** Protein levels for p47^{phox} and gp91^{phox} were determined by flow cytometry after intracellular staining. Mean with SEM are shown in all cases of 3-5 independent experiments. * P<0.05.

Discussion

In the present study we show that the corticosteroid dexamethasone, one of the strongest and widely used anti-inflammatory drugs, is able to enhance the ROS producing capacity of macrophages and dendritic cells. This increased ROS production was most pronounced in the anti-inflammatory Mph2 subset and was demonstrated in human cells *in vitro* as well as in rat monocytes/macrophages *in vivo*. Dex treatment coincided with an increased ability to suppress T cell activation *in vitro* and with the number of circulating Treg in rats. These findings provide an additional mechanism of the immunosuppressive action of steroids and further underline the recently described and unanticipated regulatory function of NOX2-mediated ROS when produced by antigen presenting cells

Figure 4: Mph2 differentiated in dex show decreased cytokine response. **(A, B, C, D)** Allogeneic T cells (150,000) were stimulated with anti-CD3/28 Ab in combination with Mph2 differentiated in presence of dex or no drugs, and added in a dose-dependent fashion in ratios as depicted on the x-axis. **(A)** Proliferation, **(B)** IFN- γ production, and **(C)** IL-4 production, were determined in the same well for all conditions after 5 days of coculture. A representative experiment out of 4 is shown. Depicted are averages and standard deviations of triplicates within this experiment. **(D)** The relative effect of dex treated Mph2 on proliferation, IFN- γ and IL-4 production at a 1:8 ratio; mean and SEM of 3-4 experiments. * P<0.05, **P<0.005.

(Kraaij et al., 2010).


Excessive ROS, as produced during oxidative stress and inflammation leads to increased inflammatory responses and oxidative damage. However, relatively low amounts of ROS as produced by macrophages are instrumental in cell signaling and can suppress inflammation as shown previously (Gelderman et al., 2007; Kraaij et al., 2010; Segal et al., 2010). We have shown an immune-modulating function of ROS and that in particular anti-inflammatory Mph use this function to exert their T cell suppressive properties (Kraaij et al., 2010). Others have also shown a ROS-mediated T cell suppression and ROS-mediated induction of Treg, as these effects were abrogated when NOX2 was functionally inhibited (Efimova et al., 2011). Moreover, it has been shown that myeloid-derived suppressor cells can also induce Treg via the production of ROS (Lee et al., 2011). These data indicate that the production of ROS by certain myeloid cells can possibly be of clinical importance.

Here we demonstrate that IS drugs do exert an effect on the ROS producing capacity of the anti-inflammatory Mph2, but, interestingly, has no apparent effect on the pro-inflammatory Mph1. Several IS drugs, especially dex, increase

the capability of anti-inflammatory Mph2 to produce ROS. Intriguing, this effect was only observed when IS drugs were present during differentiation of monocytes towards Mph, but not when drugs were added to already differentiated Mph. This indicates that IS drugs do not negatively influence the phenotype and function of anti-inflammatory myeloid cells, which is of great importance when considering these cells for cell therapy. In addition, dex also increased the ROS producing capacity of DCs, whereas only very little ROS production is observed in normal DCs. Dex is known to provide DC with tolerogenic properties (Morelli and Thomson, 2007;Stax et al., 2008;van Kooten et al., 2011). In earlier studies it was shown that during cultivation in dex, DCs are frozen in an immature state that is associated with lower levels of pro-inflammatory cytokine production and lower levels of T cell activation (Woltman et al., 2000). Additionally these cells also yielded lower donor-specific T cell responses in a kidney transplantation model in the rat (Stax et al., 2008). Apparently dex diverts the DC towards an immune modulating cell with decreased pro-inflammatory properties, among them is an increase in ROS producing capacity which can be an additional immune regulatory mechanism. Furthermore, dex increased the T cell suppressive ability of Mph2 with regard to IFN- γ and IL-4 production, even though dex did not enhance T cell suppression by Mph2. Thus dex further modulates the T cell function, indicating that dex indeed aids in augmenting the T cell suppression by Mph2.

Rapamycin, an inhibitor of the mTOR kinase, is clinically used as an immunosuppressive drug due to its interference with IL-2 signaling and subsequent inhibition of T cell activation, while at the same time enriching for Treg (Weichhart and Saemann, 2009). However, in monocytes/macrophages mTOR signaling seems to limit the pro-inflammatory response and treatment with rapa results in an increased cytokine response, including IL-12, TNF and IL-6 (Weichhart et al., 2008). We observed a similar enhanced LPS-induced IL-6 production upon rapa treatment (data not shown). In contrast IL-6 production was inhibited by dex. Interestingly we found that rapa decreased the ROS producing capacity of the anti-inflammatory Mph2. This would be in line with the hypothesis that ROS acts as a regulatory molecule in Mph2, and that this process is counteracted by inhibition of the regulatory mTOR pathway. It has been reported previously that rapa increased monocytic NOX2-dependent ROS production, but these cells were only treated for a short period, thereby not providing the time for functional alterations (Engelbrecht et al., 1994).

The effect of dex on ROS production by different cell types and in different settings has been studied before, with different results. An increase in ROS production has been described in dex-treated monocytes stimulated with N-formyl-methionine-leucine-phenylalanine (fMLP), whereas suppression was seen when stimulated with microbial agents (Zhu and Mrowietz, 2005). In addition, an increase in ROS was shown in adipocytes and insulin-producing cells after treatment with dex, whose effects could be inhibited with the use of ROS scavengers (Houstis et al., 2006;Roma et al., 2009). This has been shown *in vivo* as well, where it was observed that injection of dex induced hypertension in a ROS-dependent manner in rats (Hu et al., 2006). In contrast, in PMNs it was

Figure 5: Dex increases ROS producing capacity and ROS dependent Treg induction *in vivo*. **(A)** DA.Ncf1^{DA/DA} (DA/DA) rats that express alleles leading to low ROS producing capacity and DA.Ncf1^{E3/E3} (E3/E3) rats that express alleles conferring normal levels of ROS production were injected with 0.15 mg dex or PBS as control at day 0 and day 4 (arrows) and the capacity of their peripheral blood monocytes/macrophages to produce ROS was followed in time. The relative ROS producing capacity (PBS control on 1 for both groups) after PMA stimulation of circulating monocytes/macrophages is shown. **(B)** ROS producing capacity after PMA stimulation of neutrophils at day 5 in dex or PBS treated DA.Ncf1^{E3/E3} rats. **(C)** Treg gating strategy on peripheral blood. **(D)** The percentage of FoxP3+ cells amongst CD3+CD4+CD25^{bright} cells in the blood of these rats at day 22. Averages with SEM of 5 rats per group are shown. *P<0.05.

shown that short term dex treatment had no effect on p47^{phox} mRNA expression, but reduced gp91^{phox} mRNA expression (Amezaga et al., 1992). Other studies using the monocytic cell line THP-1 showed that a short treatment with dex downregulated gp91^{phox} protein levels (Ahmed et al., 2003), or decreased both p47^{phox} and gp91^{phox} RNA expression in THP-1 cells differentiated in IFN- γ and TNF- α (Condino-Neto et al., 1998). The pro-inflammatory cytokines IFN- γ and TNF- α increased the expression of both p47^{phox} and gp91^{phox}, which was then attenuated by the anti-inflammatory dex. Interestingly, CGD patients are also treated with IFN- γ , which may have similar effects in patients with some NOX2 rest function (Segal et al., 2011; Weening et al., 1995).

We here show both *in vitro* as well as *in vivo* in a rat model that dex increases the ROS producing capacity of circulating monocytes/macrophages. Others have shown a decrease in ROS production in rat peritoneal leukocytes when

dex was administered in the drinking water for 48 hours (Roshol et al., 1995). Interestingly, we see our effect only in monocytes/macrophages with normal ROS producing capacity, whereas no effect was observed in monocytes/macrophages with low ROS producing capacity and neutrophils from rats with a normal ROS production. The effect of dex may thus, at least partly, be mediated via ROS production by monocytes/macrophages. It is possible that dex treatment influences the NOX2 complex itself. The gp91^{phox} mRNA level in Mph2 was not changed, but p47^{phox} was increased by dex. In DCs an increase for both p47^{phox} and gp91^{phox} was observed, although it should be noted that these levels were lower in DC compared to Mph2. Since dex apparently does not change the NOX2 protein level in Mph2, it is most likely that other levels of regulation are involved, including phosphorylation or subcellular localization of the NOX2 complex. Even though we cannot directly link the activity of p47^{phox} with the increased ROS producing capacity of dex, it is important to note that the increased ROS producing capacity by dex in *Ncf1*^{E3/E3} rats was not observed in the *Ncf1*^{DA/DA} rats which have a polymorphism in p47^{phox}, thereby suggesting a mechanism involving p47^{phox}.

In conclusion, we show that dex increases the ROS producing capacity of anti-inflammatory Mph *in vitro* as well as *in vivo*. Since Mph2 may be instrumental in down-regulating T cell responses via the production of ROS, the addition of dex may then amplify this response. Therefore we propose an additional mechanism in which dex enhances T cell suppressive capacity of myeloid cells.

Acknowledgements

This study was financially supported by grants from the Dutch Organization for Scientific Research (NWO VENI- 016086049 (K.G.) and VENI-016086089 (M.R) and the Dutch Kidney Foundation (KPB07-0001 (M.K.)) and KSPB07-0003 (K.G.)).

We thank Karen Dixon and Joseph O'Flynn (Nephrology, Leiden University Medical Center) for kindly reviewing the manuscript.

References

- Ahmed, S., Adamidis, A., Jan, L.C., Gibbons, N., Mattana, J., 2003. Dexamethasone attenuates oxidation of extracellular matrix proteins by human monocytes. *Exp. Mol. Pathol.* 75, 137-143.
- Amezaga, M.A., Bazzoni, F., Sorio, C., Rossi, F., Cassatella, M.A., 1992. Evidence for the involvement of distinct signal transduction pathways in the regulation of constitutive and interferon gamma-dependent gene-expression of NADPH oxidase Components (gp91^{phox}, p47^{phox}, and p22^{phox}) and high-affinity receptor for IgG (Fc gamma-R-I) in human polymorphonuclear leukocytes. *Blood* 79, 735-744.
- Buechler, C., Ritter, M., Orso, E., Langmann, T., Klucken, J., Schmitz, G., 2000. Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. *Journal of Leukocyte Biology* 67, 97-103.
- Condino-Neto, A., Whitney, C., Newburger, P.E., 1998. Dexamethasone but not indomethacin inhibits human phagocyte nicotinamide adenine dinucleotide phosphate oxidase activity by down-regulating expression of genes encoding

oxidase components. *Journal of Immunology* 161, 4960-4967.

Efimova, O., Szankasi, P., Kelley, T.W., 2011. *Ncf1* (p47^{phox}) is essential for direct regulatory T cell mediated suppression of CD4+ effector T cells. *PLoS. One.* 6, e16013.

Engelbrecht, M.E., Oosthuizen, M.M., Myburgh, J.A., 1994. The effect of immunosuppressants on human leukocyte NADPH oxidase. *Ann. N. Y. Acad. Sci.* 723, 436-438.

Gelderman, K.A., Hultqvist, M., Pizzolla, A., Zhao, M., Nandakumar, K.S., Mattsson, R., Holmdahl, R., 2007. Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. *J. Clin. Invest* 117, 3020-3028.

Hansen, R., Seifeldin, R., Noe, L., 2007. Medication adherence in chronic disease: issues in posttransplant immunosuppression. *Transplant. Proc.* 39, 1287-1300.

Heidt, S., Roelen, D.L., Eijsink, C., Eikmans, M., van Kooten, C., Claas, F.H., Mulder, A., 2010. Calcineurin inhibitors affect B cell antibody responses indirectly by interfering with T cell help. *Clin. Exp. Immunol.* 159, 199-207.

Hoogduijn, M.J., Crop, M.J., Korevaar, S.S., Peeters, A.M.A., Eijken, M., Maat, L.P.W.M., Balk, A.H.M.M., Weimar, W., Baan, C.C., 2008. Susceptibility of Human Mesenchymal Stem Cells to Tacrolimus, Mycophenolic Acid, and Rapamycin. *Transplantation* 86, 1283-1291.

Houstis, N., Rosen, E.D., Lander, E.S., 2006. Reactive oxygen species have a causal role in multiple forms of insulin resistance. *Nature* 440, 944-948.

Hu, L., Zhang, Y., Lim, P.S., Miao, Y., Tan, C., McKenzie, K.U., Schyvens, C.G., Whitworth, J.A., 2006. Apocynin but not L-arginine prevents and reverses dexamethasone-induced hypertension in the rat. *Am. J. Hypertens.* 19, 413-418.

Hultqvist, M., Olsson, L.M., Gelderman, K.A., Holmdahl, R., 2009. The protective role of ROS in autoimmune disease. *Trends Immunol.* 30, 201-208.

Hultqvist, M., Sareila, O., Vilhardt, F., Norin, U., Olsson, L.M., Olofsson, P., Hellman, U., Holmdahl, R., 2011. Positioning of a polymorphic quantitative trait nucleotide in the *Ncf1* gene controlling oxidative burst response and arthritis severity in rats. *Antioxid. Redox Signal.* 14, 2373-2383.

Kraaij, M.D., Savage, N.D., van der Kooij, S.W., Koekkoek, K., Wang, J., van den Berg, J.M., Ottenhoff, T.H., Kuijpers, T.W., Holmdahl, R., van Kooten, C., Gelderman, K.A., 2010. Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. *Proc. Natl. Acad. Sci. U. S. A* 107, 17686-17691.

Lee, K., Won, H.Y., Bae, M.A., Hong, J.H., Hwang, E.S., 2011. Spontaneous and aging-dependent development of arthritis in NADPH oxidase 2 deficiency through altered differentiation of CD11b+ and Th/Treg cells. *Proc. Natl. Acad. Sci. U. S. A* 108, 9548-9553.

Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., Locati, M., 2004. The chemokine system in diverse forms of macrophage activation and polarization. *Trends Immunol.* 25, 677-686.

Morelli, A.E., Thomson, A.W., 2007. Tolerogenic dendritic cells and the quest for transplant tolerance. *Nat. Rev. Immunol.* 7, 610-621.

Nankivell, B.J., Chapman, J.R., 2006. Chronic allograft nephropathy: current concepts and future directions. *Transplantation* 81, 643-654.

Olofsson, P., Holmberg, J., Tordsson, J., Lu, S., Akerstrom, B., Holmdahl, R., 2003. Positional identification of *Ncf1* as a gene that regulates arthritis severity in rats. *Nat. Genet.* 33, 25-32.

Reinders, M.E., Fibbe, W.E., Rabelink, T.J., 2010. Multipotent mesenchymal stromal cell therapy in renal disease and kidney transplantation. *Nephrol. Dial. Transplant.* 25, 17-24.

Ricardo, S.D., van, G.H., Eddy, A.A., 2008. Macrophage diversity in renal injury and repair. *J. Clin. Invest* 118, 3522-3530.

Roma, L.P., Bosqueiro, J.R., Cunha, D.A., Carneiro, E.M., Gurgul-Convey, E., Lenzen, S., Boschero, A.C., Souza, K.L.A., 2009. Protection of insulin-producing cells against toxicity of dexamethasone by catalase overexpression. *Free Radical Biology and Medicine* 47, 1386-1393.

Roshol, H., Skrede, K.K., Aero, C.E., Wiik, P., 1995. Dexamethasone and methylprednisolone affect rat peritoneal phagocyte chemiluminescence after administration *in vivo*. *Eur. J. Pharmacol.* 286, 9-17.

Segal, B.H., Han, W., Bushey, J.J., Joo, M., Bhatti, Z., Feminella, J., Dennis, C.G., Vethanayagam, R.R., Yull, F.E., Capitano, M., Wallace, P.K., Minderman, H., Christman, J.W., Sporn, M.B., Chan, J., Vinh, D.C., Holland, S.M., Romani, L.R., Gaffen, S.L., Freeman, M.L., Blackwell, T.S., 2010. NADPH oxidase limits innate immune responses in the lungs in mice. *PLoS. One.* 5, e9631.

Segal, B.H., Veys, P., Malech, H., Cowan, M.J., 2011. Chronic granulomatous disease: lessons from a rare disorder. *Biol. Blood Marrow Transplant.* 17, S123-S131.

Stax, A.M., Gelderman, K.A., Schlagwein, N., Essers, M.C., Kamerling, S.W., Woltman, A.M., van Kooten, C., 2008. Induction of donor-specific T-cell hyporesponsiveness using dexamethasone-treated dendritic cells in two fully mismatched rat kidney transplantation models. *Transplantation* 86, 1275-1282.

van Kooten, C., Lombardi, G., Gelderman, K.A., Sagoo, P., Buckland, M., Lechler, R., Cuturi, M.C., 2011. Dendritic Cells as a Tool to Induce Transplantation Tolerance: Obstacles and Opportunities. *Transplantation* 91, 2-7.

Verreck, F.A.W., de Boer, T., Langenberg, D.M.L., van der Zanden, L., Ottenhoff, T.H.M., 2006. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. *Journal of Leukocyte Biology* 79, 285-293.

Weening, R.S., Leitz, G.J., Seger, R.A., 1995. Recombinant human interferon-gamma in patients with chronic granulomatous disease--European follow up study. *Eur. J. Pediatr.* 154, 295-298.

Weichhart, T., Costantino, G., Poglitsch, M., Rosner, M., Zeyda, M., Stuhlmeier, K.M., Kolbe, T., Stulnig, T.M., Horl, W.H., Hengstschlager, M., Muller, M., Saemann, M.D., 2008. The TSC-mTOR signaling pathway regulates the innate inflammatory response. *Immunity.* 29, 565-577.

Weichhart, T., Saemann, M.D., 2009. The multiple facets of mTOR in immunity. *Trends in Immunology* 30, 218-226.

Woltman, A.M., de Fijter, J.W., Kamerling, S.W., Paul, L.C., Daha, M.R., van Kooten, C., 2000. The effect of calcineurin inhibitors and corticosteroids on the differentiation of human dendritic cells. *Eur. J. Immunol.* 30, 1807-1812.

Xu, W., Schlagwein, N., Roos, A., van den Berg, T.K., Daha, M.R., van Kooten, C., 2007. Human peritoneal macrophages show functional characteristics of M-CSF-driven anti-inflammatory type 2 macrophages. *Eur. J. Immunol.* 37, 1594-1599.

Zhu, K.J., Mrowietz, U., 2005. Enhancement of antibacterial superoxide-anion generation in human monocytes by fumaric acid esters. *Archives of Dermatological Research* 297, 170-176.

Chapter 4

Subsets of Human type 2 Macrophages show differential capacity to produce Reactive Oxygen Species

Marina D. Kraaij^a, Karin M. Koekkoek^a, Sandra W. van der Kooij^a,
Kyra A. Gelderman^{a,b}, and Cees van Kooten^a

^aDepartment of Nephrology, Leiden University Medical Center,
Leiden, the Netherlands

^bDepartment of Pathology, VU University Medical Center,
Amsterdam, the Netherlands

Cell Immunol. 284:1-8 (2013)

Abstract

Reactive oxygen species (ROS) produced by macrophages have recently been shown to have immunosuppressive properties and induce regulatory T cells. Here we investigated the ROS producing capacity of well-defined human Mph2 subsets and studied the contribution of ROS in the Mph-T cell interaction. Mph were generated from monocytes using M-CSF (Mph2), IL-4 (Mph2a), or IL-10 (Mph2c). Upon PMA stimulation, Mph2 and Mph2c showed a high ROS producing capacity, whereas this was low for Mph2a. Mph2 and Mph2c displayed a reduced T cell stimulatory capacity compared to Mph2a. Addition of the ROS inhibitor DPI decreased the T cell proliferation and IFN- γ production. When testing directly on Mph, DPI dose-dependently decreased the IL-10 and IL-12p40 production of CD40L-stimulated Mph2 subsets. In conclusion, the ROS producing capacity is different among human Mph type-2 subsets. In all cases, DPI suppressed T cell proliferation and cytokine production, indicating a ROS-dependent mechanism of T cell activation.

Introduction

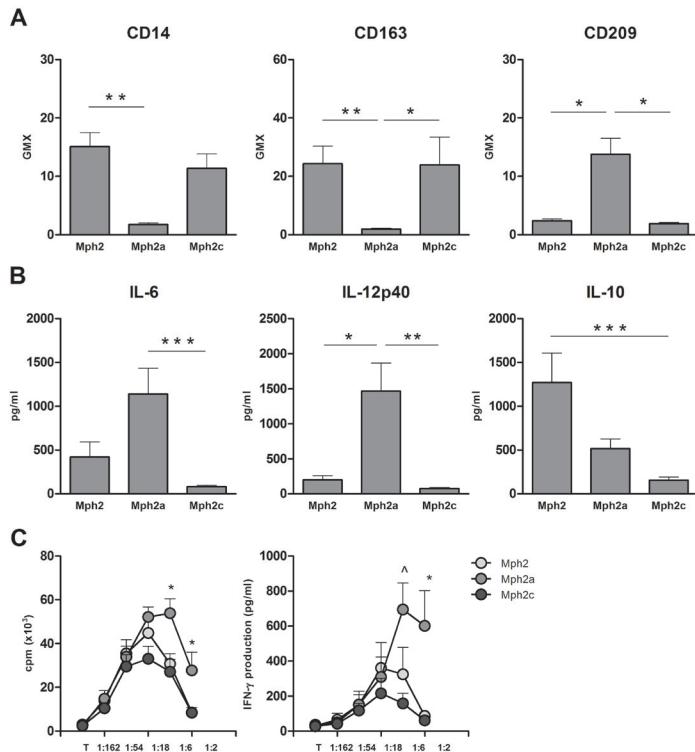
Macrophages (Mph) represent a heterogeneous group of myeloid cells, with a phenotypic and functional specialization and a high plasticity depending on the local cytokine milieu. Mph can be broadly divided into classically activated (Mph1) and alternatively activated macrophages (Mph2), with their cytokine production profile as an important functional difference [1]. Mph1 are characterized by production of pro-inflammatory cytokines like TNF- α and IL-12, whereas Mph2 produces large amounts of IL-10. In addition, Mph2 can be distinguished from Mph1 based on their expression of CD163 and CD206, although different expression levels have been reported depending on the Mph2 subtype [2-5]. For mouse, Mph2 specific markers, like FIZZ1 and Ym1, have been identified both *in vivo* and *in vitro* [6], but establishing specific phenotypic markers for human Mph2 is still an ongoing challenge. CD163 positive staining on resident tissue macrophages has been found dispersed throughout the body, indicating that *in vivo* Mph represent a Mph2 phenotype [7]. Placental Mph also display an Mph2-like phenotype, indicated by the expression of specific Mph2 markers, and their anti-inflammatory phenotype [8;9]. In addition, tumor-associated macrophages (TAMs) also have a phenotype and function similar to Mph2: high expression of CD206, poor antigen presentation, high IL-10, but low IL-12 production [10].

In vitro, Mph1 can be polarized by IFN- γ , LPS, and/or GM-CSF, thereby generating a pro-inflammatory phenotype. In addition, different Mph2 subsets have been described, depending on the different ways of generation, including culture in IL-4/IL-13, immune complexes, or IL-10/TGF- β , generating M2a, M2b, M2c respectively [4;11-14]. Recently, we and others have shown that also generation of Mph in the presence of M-CSF results in cells (Mph2) with

anti-inflammatory properties [4;13;15]. Since M-CSF is present constitutively in blood, this suggests that under homeostatic conditions macrophages will mostly acquire Mph2 properties [16].

One major characteristic which has been proposed to be different between Mph1 and Mph2 is their capacity to produce reactive oxygen species (ROS), which has been mostly linked to pro-inflammatory cells [3;12;17;18]. The importance of ROS in our immunity is demonstrated in patients with Chronic Granulomatous Disease (CGD) who have mutations in various components of the phagocytic NADPH oxidase (NOX2) complex, and suffer from recurrent infections. However, these patients are also characterized by chronic inflammation, increased autoimmunity and a hampered ability to control inflammation [19]. These latter findings have also been observed in mouse models with defects in NOX2 proteins and were shown to be macrophage dependent [20;21]. Recently, we showed that M-CSF differentiated Mph2 have a high ROS producing capacity, and were able to suppress T cell responses in a ROS-dependent manner [4;15].

In the current study we investigated whether there is a difference concerning the ROS producing capacity between various well defined human Mph2 subsets. Moreover, we studied the role of ROS in the Mph-T cell interaction. We show that Mph2 subsets display a differential capacity to produce ROS. However, the ROS inhibitor DPI inhibited the T cell stimulatory capacity and cytokine production by all Mph2 subsets, suggesting involvement of a ROS-dependent signaling pathway.


Materials and methods

Cell culture

Monocytes were isolated from buffy coats by CD14+ MACS-bead selection (Miltenyi Biotec) [22]. Monocytes were cultured for 7 days in 5 ng/ml M-CSF (R&D systems; Mph2), in 15 ng/ml IL-4 (Biosource; Mph2a), or in 15 ng/ml IL-10 (ITK; Mph2c). Cells were cultured in RPMI with 10% FCS and penicillin/streptomycin (RPMI++) in 6 wells plates with 1.5×10^6 cell per well; medium and cytokines were refreshed twice. Macrophages were harvested by gentle scraping after short trypsinization.

ELISA

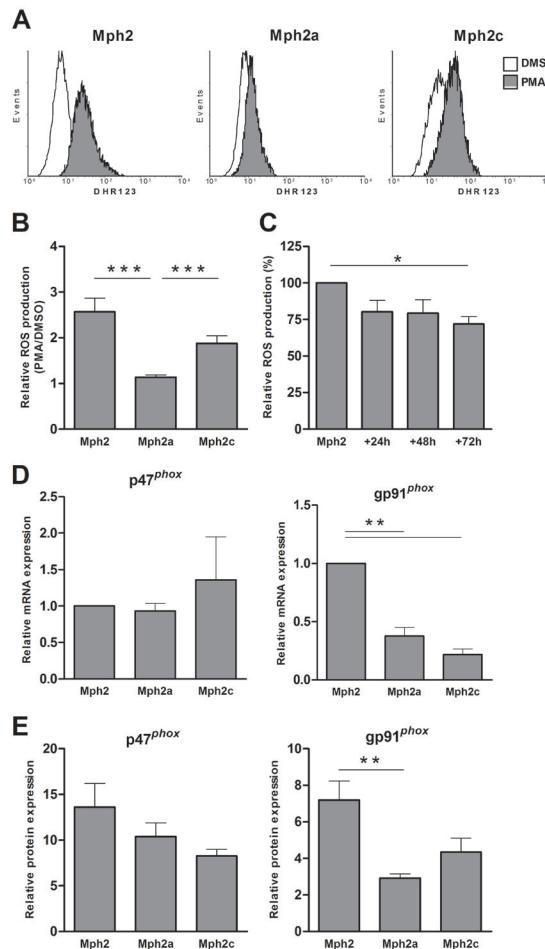

Macrophages were harvested, replated and stimulated with 200 ng/ml LPS for 16 hours and subsequently supernatants were collected. In the experiments with diphenyleneiodonium (DPI) (Sigma) the cells were cultured for 48 hours in the presence of 200 ng/ml LPS or L-CD40L cells [23], thereafter supernatants were harvested. In other experiments cells were incubated with 50 U/ml Catalase (Sigma) for 48 hours hereafter supernatants were harvested. The IL-6, IL-10 (Sanquin) and IL-12p40 (Biolegend) production was assessed by ELISA according manufacturer's instructions.

Figure 1: Mph2a are phenotypically and functionally distinct from Mph2 and Mph2c. **(A)** Expression levels of CD14 (left), CD163 (middle), and CD209 (right) for Mph2, Mph2a, and Mph2c as determined by flow cytometry. **(B)** IL-6 (left), IL-12p40 (middle), and IL-10 (right) production were determined for Mph2, Mph2a and Mph2c after 16 hours of LPS stimulation by ELISA. Mean and SEM are shown for 4-8 independent experiments. **(C)** Allogeneic T cells (150,000) were stimulated with respectively Mph2, Mph2a, or Mph2c in different ratios as depicted on the x-axis. Proliferation (left; * P<0.05 Mph2a vs Mph2 and Mph2c) and IFN-γ production (right; * P<0.05 Mph2a vs Mph2 and Mph2c, ^ P<0.05 Mph2a vs Mph2c) were determined after 5 days of coculture. Depicted are averages and SEM of 9-10 independent experiments. * P<0.05, ** P<0.01, *** P<0.001.

Flow cytometry

Cell surface molecule expression was assessed by flow cytometry using FACSCalibur and BD CellQuest software (BD Biosciences). ROS production was determined by staining the cells with 5 μ M dihydrorhodamine123 (DHR123) for 10 min at 37°C in medium and stimulation with 300 ng/ml phorbol-12-myristate13-acetate (PMA) for 20 min at 37°C. In certain cases the cells were stimulated for 1 hour with DPI before measuring ROS production. Expression levels of DC-SIGN (R&D), CD14-PE, CD163, CD86 (all BD Biosciences), and HLA-DR (clone B8.11.2; ATCC) with secondary Ab GaM-PE (DAKO) were determined. Protein levels of p47^{phox} and gp91^{phox} were determined by intracellular staining. The cells were permeabilized, fixed (BD Biosciences), and stained with anti-p47^{phox}, anti-gp91^{phox} (Santa Cruz), or an isotype control (BD Biosciences) and detected with GaM-PE (DAKO). Cell death was determined by incubating the cells with propidium iodide (Invitrogen).

Figure 2: Mph2a have a decreased ROS producing capacity. **(A)** FACS histograms of DHR123 fluorescence after staining of Mph2 (left), Mph2a (middle) and Mph2c (right) to detect ROS production after PMA stimulation (filled histogram) compared to the DMSO control. **(B)** The ratio of ROS production as induced by PMA or in absence of stimulation (DMSO; vehicle control) was determined for the Mph2 subsets in paired samples (N=20). **(C)** Fully differentiated day 6 Mph2 were incubated with IL-4 for indicated time points and the ROS production relative to untreated Mph2 was determined (N=4). **(D)** mRNA levels for p47^{phox} (left) and gp91^{phox} (right) as determined by qPCR. In every experiment, mRNA expression normalized for GAPDH and determined for Mph2 was put on 1.0 and Mph2a and Mph2c expression was related to that value. Mean and SEM of 4-9 individual experiments are shown. **(E)** Protein levels for p47^{phox} (left) and gp91^{phox} (right) were determined by flow cytometry after intracellular staining. Mean with SEM are shown for 6 individual experiments. * P<0.05, ** P<0.01, *** P<0.001.

Amplex Red Assay

Hydrogen peroxide levels were determined using the Amplex Red assay. Mph2 subsets were incubated with 12.5 μ M Amplex Red (Invitrogen) and 0.5 U/ml HRP (Sigma) for 20 min at 37°C. The reaction was measured for fluorescence intensity (excitation 530 nm, emission 590 nm) at a cytofluor (Perceptive Biosystems). Hydrogen peroxide levels determined in the presence of Cat were measured directly after adding Amplex Red and HRP.

T cell proliferation assay

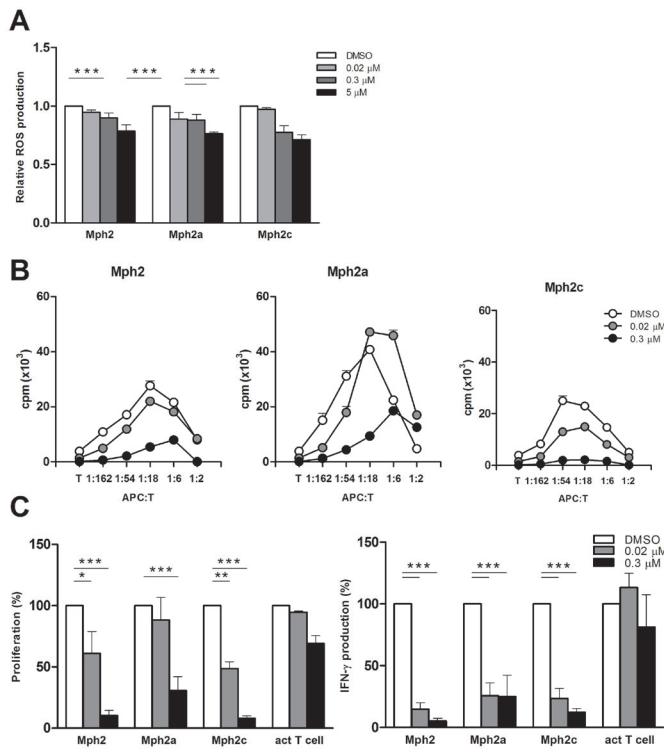
150.000 total T cells were cocultured with different ratios of allogeneic Mph. In some experiments this was done in the presence of Catalase (50 U/ml) or DPI (0.02/0.3 μ M). In other experiments T cells were activated with 0.25 μ g/ml anti-CD3 and 0.5 μ g/ml anti-CD28 (Sanquin) in the presence of different concentrations of Cat and DPI. After 5 days supernatants were harvested and IFN- γ (Biolegend) levels were determined by ELISA. T cell proliferation was measured by adding 0.5 μ Ci 3 H thymidine to the cocultures at day 5 for 16 hours.

L-CD40L cell activation assay

Mph were cultured in a 2:1 ratio with L-CD40L cells or its control L-Orient for 48 hours as previously described [23]. Different concentrations of DPI or diluent (DMSO) were added to the cultures and supernatants were harvested to detect marker expression and cytokine production.

mRNA isolation and Quantitative PCR

mRNA was isolated using a Qiagen kit. After making cDNA, quantitative PCRs were performed on a Bio-Rad Icyler machine using the following primers: p47^{phox} (Forward: CCTGACGAGACGGAAGAC; Reverse: GGGAAAGTAGCCTGTGACG), gp91^{phox} (Forward: TAGTGGGAGCAGGGATTG; Reverse: TCAAAGGCATGTGTGTCC). The following GAPDH primers were used for normalization: Forward TTCCAGGAGCGAGATCCCT and reverse CACCATGACGAACATGGG.


Statistics

Results of different independent experiments were averaged and subjected to statistical analyses. Significant differences were determined using either the Student's T-test, one-way or two-way ANOVA.

Results

Mph2a are phenotypically and functionally distinct from Mph2 and Mph2c

Different Mph2 subsets were generated by differentiating monocytes with M-CSF, IL-4 or IL-10 towards Mph2, Mph2a, and Mph2c, respectively. Phenotypic analysis showed that CD14 and CD163 were highly expressed by both Mph2 and Mph2c, whereas low CD209 (DC-SIGN) expression was observed (Figure 1A). The opposite pattern was observed for Mph2a, showing low CD14 and CD163, but high CD209 expression (Figure 1A). Functionally, upon LPS stimulation Mph2a had a higher IL-6 and IL-12p40 production compared to Mph2 and Mph2c (Figure 1B). High IL-10 production was observed for Mph2, while Mph2a and Mph2c produced only low amounts (Figure 1B).

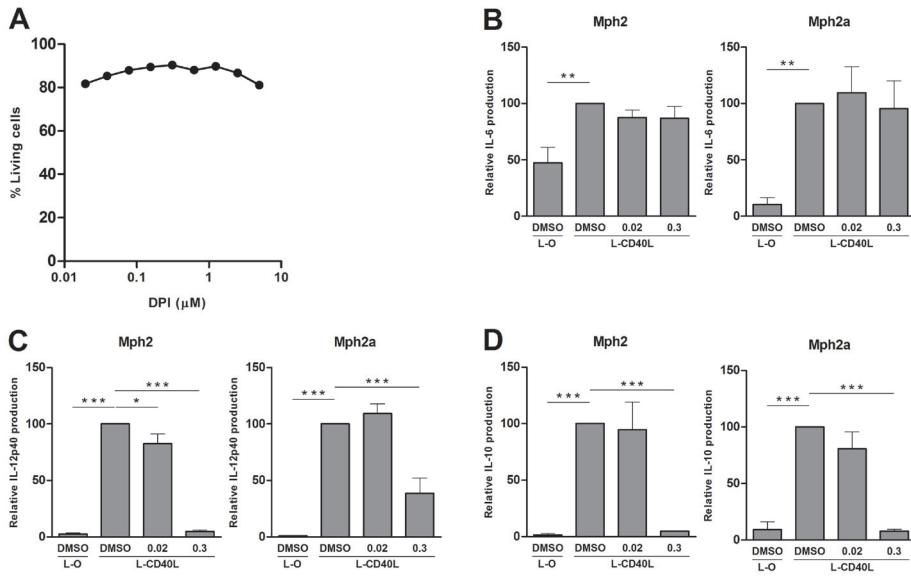
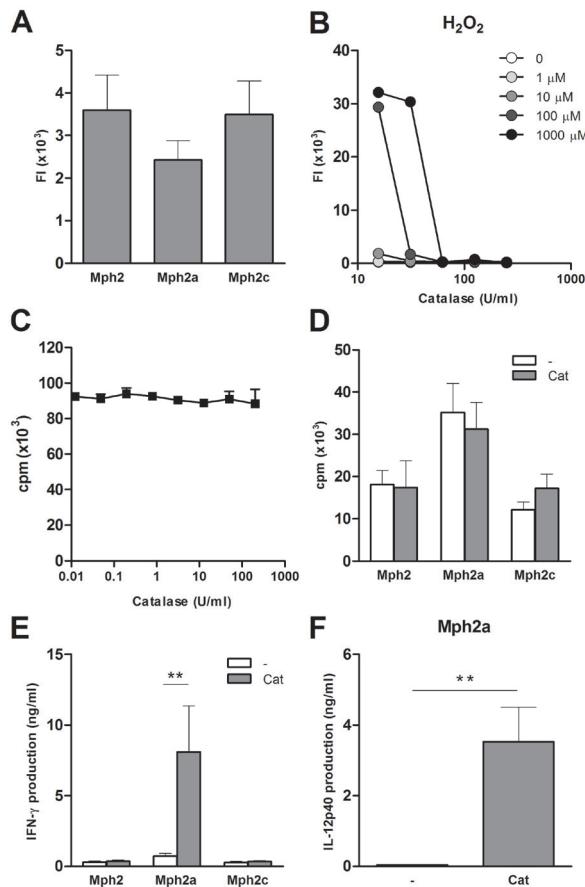


Figure 3: DPI decreases T cell proliferation in an MLR. **(A)** Flow cytometric analysis of the relative ROS producing capacity of Mph2, Mph2a, and Mph2c as induced by PMA stimulation in the presence of increasing concentrations of DPI. Mean and SEM are depicted from 5 independent experiments. **(B)** Allogeneic T cells (150,000) were stimulated with increasing amounts of Mph2, Mph2a, or Mph2c respectively in the presence of 0.02 or 0.3 µM DPI or DMSO as indicated, and proliferation was measured at day 5 of culture. A representative experiment is shown **(C)** Relative proliferation (left) and IFN-γ production (right) (DMSO at 100) is shown for Mph2, Mph2a, Mph2c at a ratio of 1:18, and anti-CD3/28-activated T cells in the presence of DPI. Mean and SEM are shown for 5-6 individual experiments. * P<0.05, ** P<0.01, *** P<0.001.

Next we investigated the T cell stimulatory capacity of the different Mph2 subsets in an MLR. Mph2a showed a higher T cell stimulatory capacity, especially at higher Mph:T cell ratios, with optimal activation at a 1:6 ratio (Figure 1C). A more pronounced, but similar result was observed for IFN-γ production. Thus Mph2a is both phenotypically and functionally different from Mph2 and Mph2c, showing a higher pro-inflammatory cytokine production and stronger T cell stimulatory capacity.

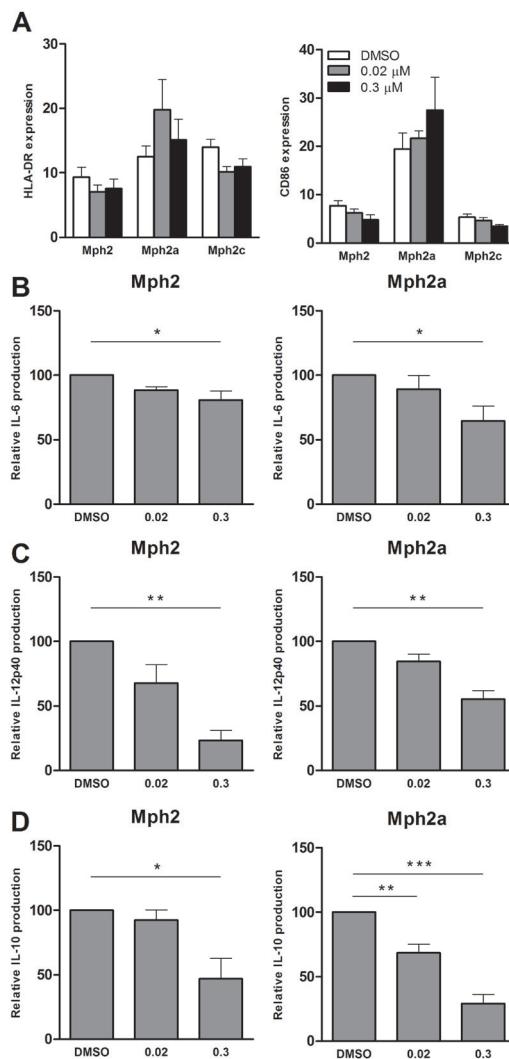
Mph2a have a decreased ROS producing capacity

Although anti-inflammatory Mph2 are usually described as non-ROS producing cell [3;17], we recently showed that ROS can be produced by Mph2 and has profound immunoregulatory effects [4;15]. Therefore, we investigated the ROS producing capacities of the different type 2 Mph as characterized above. In paired samples, upon PMA stimulation, Mph2a showed a significantly lower

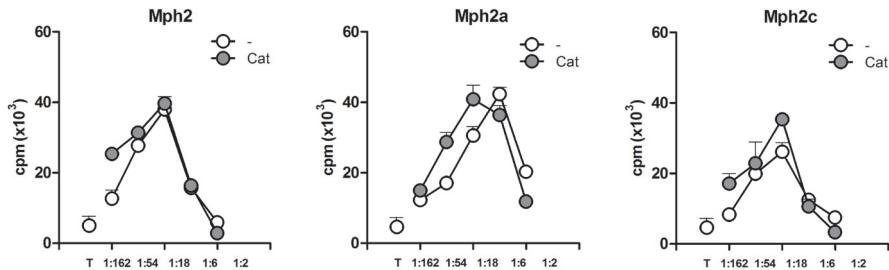

Figure 4: DPI affects IL-12p40 and IL-10 production of the Mph2 subsets. **(A)** Percentage living Mph2 in the presence of different concentrations of DPI as determined with PI staining by flow cytometry. A representative experiment out of 3 is shown. **(B)** Relative IL-6 production of Mph2 (left) and Mph2a (right) activated with L-CD40L cells (L-Orient as control) (L-CD40L DMSO set to 100) in the presence of DPI for 48 hours as determined by ELISA (L-CD40L DMSO, average production Mph2 241 pg/ml; Mph2a 315 pg/ml). **(C)** Relative IL-12p40 production of Mph2 (left) and Mph2a (right) (L-CD40L DMSO, average production Mph2 2846 pg/ml; Mph2a 4088 pg/ml). **(D)** Relative IL-10 Mph2 (left) and Mph2a (right) (L-CD40L DMSO, average production Mph2 609 pg/ml; Mph2a 501 pg/ml). Mean and SEM are shown for 5-6 independent experiments. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$.

ROS producing capacity compared to Mph2 and Mph2c (Figure 2A,B). We have shown before that monocyte-derived dendritic cells, differentiated with GM-CSF and IL-4, have low ROS producing capacity [15], whereas monocytes themselves have a high ROS producing capacity (data not shown). Therefore we investigated whether exposure to IL-4 directly affects the ROS producing capacity. When IL-4 was added to fully differentiated Mph2, we observed a time-dependent decrease in ROS producing capacity (Figure 2C).

Since Mph2 derived-ROS is produced by the NOX2 complex [15], we investigated the expression of two important proteins of the NOX2 complex as a possible explanation for the difference in ROS producing capacity. Both mRNA and protein expression of p47^{phox} was similar between Mph2 subsets (Figure 2D,E). In contrast, the mRNA levels of gp91^{phox} were lower in Mph2a and Mph2c compared to Mph2 (Figure 2D). Moreover, Mph2a also has diminished gp91^{phox} protein expression compared to Mph2 (Figure 2E). We conclude that the IL-4-generated Mph2a have a lower NOX2-mediated ROS production.


DPI decreases T cell proliferation in an MLR

In view of the immunosuppressive role of ROS, we hypothesized that the presence of ROS in Mph2 and Mph2c might contribute to their decreased T


Figure 5: Catalase has no effect on T cell proliferation in an MLR. **(A)** Extracellular hydrogen peroxide levels measured as fluorescence intensity (FI) of Mph2, Mph2a, and Mph2c as determined by AmplexRed assay. **(B)** FI of different concentrations of hydrogen peroxide in the presence of different concentrations of Cat as indicated. **(C)** Allogeneic T cells (150,000) were stimulated with anti-CD3/28 in the presence of different concentrations of Cat. Proliferation was determined after 5 days of culture. A representative experiment depicting averages and SEM of triplicates is shown. Allogeneic T cells (150,000) were stimulated at a ratio of 1:6 with respectively Mph2, Mph2a, or Mph2c in the presence of 50 U/ml Cat. **(D)** Proliferation and **(E)** IFN- γ production are depicted. **(F)** IL-12p40 production of Mph2a after 48 hours incubation in the presence of 50 U/ml Cat as determined by ELISA. In all cases mean and SEM are shown of 5-7 independent experiments. * $P < 0.05$, ** $P < 0.01$.

cell stimulatory capacity (Figure 1C). To investigate this we used the commonly used ROS inhibitor diphenyleneiodonium (DPI), which interacts with the C-terminal flavin-binding domain of gp91 $^{\text{phox}}$ [24]. DPI inhibited the ROS production of Mph2, Mph2a, and Mph2c (Figure 3A). At high concentrations DPI inhibited proliferation and IFN- γ production by anti-CD3/CD28-activated T cells (data not shown). Therefore we used low concentrations of DPI (0.02 μ M and 0.3 μ M) to investigate the role of ROS in the T cell stimulatory capacity within the MLR. For all three Mph subsets, DPI dose-dependently inhibited the proliferation of T cells over a wide range of T cell:APC ratio's (Figure 3B). When

Figure S1: (A) HLA-DR (left) and CD86 (right) expression after 48 hours incubation with DPI for Mph2, Mph2a, and Mph2c. (B) Relative IL-6 production of Mph2 (left; average production of 1048 pg/ml) and Mph2a (right; average production of 1045 pg/ml) stimulated with LPS (DMSO set at 100) in the presence of DPI for 48 hours as determined by ELISA. (C) Relative IL-12p40 production of Mph2 (left; average production of 1010 pg/ml) and Mph2a (right; average production of 3351 pg/ml). (D) Relative IL-10 production of Mph2 (left; average production of 741 pg/ml) and Mph2a (right; average production of 442 pg/ml). In all cases mean and SEM are shown for 3-5 individual experiments. * P<0.05, ** P<0.01, *** P<0.001.

quantifying the data, it appeared that Mph2a were less sensitive for inhibition, and higher concentrations were needed to reach a significant inhibition (Figure 3C). Similarly in all cases also the IFN- γ production was strongly inhibited by DPI. Under these conditions, proliferation and IFN- γ production by T cells activated by CD3/CD28 were not affected. These data show that, opposite to our hypothesis, ROS production by macrophages is essential for the T cell

Figure S2: Allogeneic T cells (150,000) were stimulated with respectively Mph2 (left), Mph2a (middle), or Mph2c (right) in the presence of 50 U/ml Cat in different ratios as depicted on the x-axis. A representative experiment is shown. Depicted are averages and SEM of triplicates within this experiment.

stimulatory capacity, and cannot explain the reduced T cell stimulation by Mph2 and Mph2c.

DPI affects the cytokine production of the Mph2 subsets

We next explored the potential mechanisms how NOX2 might be involved in the T cell stimulatory capacity. DPI up to a concentration of 5 μ M, showed no effect on the viability of Mphs (Figure 4A). The stimulation of T cells by APCs requires MHC class II and co-stimulatory molecule activation, as well as cytokine production. However, HLA-DR and CD86 expression on the Mph2 subsets were not affected by DPI (Supplementary Figure 1A).

Therefore we investigated the cytokine production of Mph2 subsets activated by CD40L to mimic the CD40-CD40L signal between APC-T cell as it occurs during the MLR reaction. IL-6 production by Mph2 and Mph2a was increased upon stimulation with L-CD40L cells, but no effect of DPI was observed (Figure 4B). In contrast, the strongly increased production of IL-12p40 (Figure 4C) and IL-10 (Figure 4D), was dose-dependently inhibited by DPI. In LPS-stimulated Mph2 and Mph2a, the IL-6, IL-12p40, and IL-10 production was suppressed by DPI (Supplementary Figure 1B,C,D). Similar trends were observed with the cytokine production of Mph2c (data not shown).

Catalase has no effect on T cell proliferation in an MLR

Although we identified an important role for ROS in Mphs for their T cell stimulatory capacity, this does not clarify the molecular mechanism. Hydrogen peroxide, a product of ROS generation is a known for its role as second messenger, its relatively long half-life and its ability to move through membranes [25;26]. Using the Amplex Red assay, which detects extracellular hydrogen peroxide, similar basal levels of extracellular hydrogen peroxide were observed for Mph2, Mph2a, and Mph2c (Figure 5A). The high signal in Mph2a indicates that apart from NOX2, also other sources produce ROS resulting in hydrogen peroxide. Catalase (Cat), a specific hydrogen peroxide-scavenger, is able to efficiently break down high concentrations of hydrogen peroxide (Figure 5B).

Neither the proliferation of anti-CD3/CD28-activated T cells (Figure 5C), nor the T cell proliferation induced by Mph2, Mph2a, or Mph2c (Figure 5D, Supplementary Figure 2) was affected by the addition of 50 U/ml of Cat. In addition, no effect on the IFN- γ production induced by Mph2 or Mph2c was observed (Figure 5E). However, when using Mph2a as T cell activator, addition of Cat strongly increased the IFN- γ production (Figure 5E). In line with this, when tested directly on Mph2a, Cat did also increase the IL-12p40 production (Figure 5F). Thus whereas hydrogen peroxide seems not involved in T cell proliferation, it does affect the quality of the T cell response induced by Mph2a.

Discussion

In this study we showed a difference in ROS producing capacity among human Mph2 subsets; Mph2 and Mph2c have a higher ROS producing capacity compared to Mph2a. In addition, we observed decreased T cell proliferation with DPI for all Mph2 subsets, indicating that the ROS producing capacity of Mph2 and Mph2c is not directly associated with their reduced T cell stimulatory capacity. This decreased T cell proliferation could be explained by decreased IL-10 and IL-12p40 production in the presence of DPI. These data suggests a ROS-dependent mechanism of T cell activation via the cytokine production.

In vitro, monocytes can be differentiated in functionally different Mph2 subsets. We found that Mph2 and Mph2c, differentiated by M-CSF and IL-10 respectively, are both phenotypically and functionally similar. The expression of markers was in agreement with another study demonstrating similarity between M-CSF and IL-10 polarized Mph, but a difference with IL-4 [2]. Traditionally, the ROS producing capacity has been associated with pro-inflammatory type-1 Mph, but less with anti-inflammatory Mph2. However, we showed before that the M-CSF differentiated Mph2 are capable of producing ROS [4;15]. Therefore we investigated the ROS-producing capacity of different Mph2 subsets. Importantly, Mph2a, generated in the presence of IL-4, produce lower levels of ROS after PMA stimulation compared with Mph2 and Mph2c. This is in line with the observation that also monocyte-derived dendritic cells, generated in the presence of IL-4 and GM-CSF lack the ROS producing capacity [15]. We showed that Mph2a have lower gp91^{phox} protein expression, an effect previously shown in IL-4-treated porcine and mouse Mph [27;28]. In addition we showed that IL-4 directly affects the ROS producing capacity, also in fully polarized Mph2 cells. Finally also in patients treated with IL-4 *in vivo*, a reduced capacity of monocytes to produce superoxide was observed [29]. Therefore, IL-4 signaling seems a key factor in myeloid cells to regulate their ROS producing capacity. T cell proliferation was not affected in the presence of Cat, although the IFN- γ production was increased with Mph2a-stimulated T cells, indicating that hydrogen peroxide decreases the T cell activation capacity of Mph2a. This might be explained by the increase in IL-12p40 levels of Mph2a when Cat is present. In agreement, hydrogen peroxide inhibited the IL-12p40 induction in

murine Mph [30].

In contrast, DPI did affect the T cell activation, as shown by the suppressed proliferation and IFN- γ production in an MLR. There appears to be a discrepancy between the concentrations of DPI required to inhibit ROS production by the Mph and the T cell suppression by DPI. However, we did observe a trend with decreased ROS production by the Mph also with low concentrations of DPI. It should be noted that the measurement of ROS is a very short term experiment, whereas T cell proliferation concerns a 5 day assay. Attempt to monitor generation of ROS over longer periods was hampered by an increase of background staining using the ROS indicator DHR (data not shown). Moreover, DPI is not exclusive for the inhibition of NOX2, and is also able to inhibit nitric oxide synthase, xanthine oxidase or cytochrome P450 reductase [31]. This might explain the observation that Mph2a are significantly affected by DPI, even though they are very low in NOX2 expression. DPI has been shown to decrease the proliferation of different cell types both *in vitro* as *in vivo* [32-34]. In addition, T cell proliferation was decreased in response to antigen presentation in the presence of ROS inhibitors including DPI, whereas no effect was observed with Cat [35]. ROS are thus pivotal for T cell activation. This was also shown by experiments with an anti-oxidant, where decreased proliferation and IFN- γ production was observed, whereas a deficient ROS scavenger increased proliferation [36-38].

We showed that DPI diminished the IL-10 and IL-12p40 production of the Mph2 subsets, but showed no effect on IL-6 production. Thus although we observed a ROS-dependent component for the cytokine production, not all cytokines have the same dependence with regard to their production. The pro-inflammatory IL-12p40 is a known T cell activator, whereas the anti-inflammatory IL-10 diminishes the production of inflammatory mediators and favors Th2 T cell development [39;40]. DPI had no effect on the pro-inflammatory cytokine production, including IL-12, with LPS-stimulated dendritic cells [41]. However, mouse Mph stimulated with LPS did show decreased pro- and anti-inflammatory cytokine production with DPI [42], which we observed as well. Interestingly, in CGD patients it has been shown that ROS negatively regulates cytokine production during infection, indicating deregulated cytokine production due to dysfunctional NOX2 [43;44].

Conclusions

In conclusion, we here showed that the ROS producing capacity is different for different Mph2 subsets; Mph2 and Mph2c have a higher ROS producing capacity compared to Mph2a, which is most likely related to a reduced gp91 $^{\text{phox}}$ protein expression. The difference in T cell stimulatory capacity of Mph2 subsets is not directly linked with their differential ROS producing capacity. In contrast, DPI inhibited T cell proliferation, possibly through decreasing the cytokine production of all Mph2 subsets, indicating a ROS-dependent mechanism of T cell activation.

Acknowledgements

This study was financially supported by grants from the Dutch Organization for Scientific Research (NWO VENI-016086049 (K.G.) and the Dutch Kidney Foundation (KPB07-0001 (M.K.) and KSPB07-0003 (K.G.)).

References

1. F.O. Martinez, A. Sica, A. Mantovani, M. Locati, Macrophage activation and polarization. *Front Biosci.* 13 (2008) 453-461.
2. C.A. Ambarus, S. Krausz, E.M. van, J. Hamann, T.R. Radstake, K.A. Reedquist, P.P. Tak, D.L. Baeten, Systematic validation of specific phenotypic markers for *in vitro* polarized human macrophages. *J. Immunol. Methods* 375 (2011) 196-206.
3. C. Bogdan, C. Nathan, Modulation of Macrophage Function by Transforming Growth-Factor-Beta, Interleukin-4, and Interleukin-10. *Annals of the New York Academy of Sciences* 685 (1993) 713-739.
4. M.D. Kraaij, S.W. van der Kooij, M.E. Reinders, K. Koekkoek, T.J. Rabelink, C. van Kooten, K.A. Gelderman, Dexamethasone increases ROS production and T cell suppressive capacity by anti-inflammatory macrophages. *Mol. Immunol.* 49 (2011) 549-557.
5. F.A.W. Verreck, T. de Boer, D.M.L. Langenberg, L. van der Zanden, T.H.M. Ottenhoff, Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. *Journal of Leukocyte Biology* 79 (2006) 285-293.
6. G. Raes, P. De Baetselier, W. Noel, A. Beschin, F. Brombacher, G. Hassanzadeh, Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. *Journal of Leukocyte Biology* 71 (2002) 597-602.
7. M.M. Van den Heuvel, C.P. Tensen, J.H. van As, T.K. van den Berg, D.M. Fluitsma, C.D. Dijkstra, E.A. Dopp, A. Droste, F.A. Van Gaalen, C. Sorg, P. Hogger, R.H.J. Beelen, Regulation of CD163 on human macrophages: cross-linking of CD163 induces signaling and activation. *Journal of Leukocyte Biology* 66 (1999) 858-866.
8. C. Gustafsson, J. Mjosberg, A. Matussek, R. Geffers, L. Matthiesen, G. Berg, S. Sharma, J. Buer, J. Ernerudh, Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. *PLoS One*. 3 (2008) e2078.
9. B. Mues, D. Langer, G. Zwadlo, C. Sorg, Phenotypic Characterization of Macrophages in Human Term Placenta. *Immunology* 67 (1989) 303-307.
10. A. Mantovani, A. Sica, P. Allavena, C. Garlanda, M. Locati, Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. *Human Immunology* 70 (2009) 325-330.
11. A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, M. Locati, The chemokine system in diverse forms of macrophage activation and polarization. *Trends in Immunology* 25 (2004) 677-686.
12. S.D. Ricardo, H. van Goor, A.A. Eddy, Macrophage diversity in renal injury and repair. *Journal of Clinical Investigation* 118 (2008) 3522-3530.
13. F.A.W. Verreck, T. de Boer, D.M.L. Langenberg, M.A. Hoeve, M. Kramer, E. Vaisberg, R. Kastelein, A. Kolk, R. de Waal-Malefyt, T.H.M. Ottenhoff, Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2, macrophages subvert, immunity to (myco)bacteria. *Proceedings of the National Academy of Sciences of the United States of America* 101 (2004) 4560-4565.
14. W. Xu, A. Roos, N. Schlagwein, A.M. Wolzman, M.R. Daha, C. van Kooten, IL-10-

producing macrophages preferentially clear early apoptotic cells. *Blood* 107 (2006) 4930-4937.

15. M.D. Kraaij, N.D. Savage, S.W. van der Kooij, K. Koekkoek, J. Wang, J.M. van den Berg, T.H. Ottenhoff, T.W. Kuijpers, R. Holmdahl, C. van Kooten, K.A. Gelderman, Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. *Proc.Natl.Acad.Sci.U.S.A* 107 (2010) 17686-17691.
16. F.O. Martinez, S. Gordon, M. Locati, A. Mantovani, Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: New molecules and patterns of gene expression. *Journal of Immunology* 177 (2006) 7303-7311.
17. S.K. Biswas, A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. *Nature Immunology* 11 (2010) 889-896.
18. S.L. Abramson, J.I. Gallin, IL-4 Inhibits Superoxide Production by Human Mononuclear Phagocytes. *Journal of Immunology* 144 (1990) 625-630.
19. B.H. Segal, P. Veys, H. Malech, M.J. Cowan, Chronic granulomatous disease: lessons from a rare disorder. *Biol.Blood Marrow Transplant.* 17 (2011) S123-S131.
20. K.A. Gelderman, M. Hultqvist, A. Pizzolla, M. Zhao, K.S. Nandakumar, R. Mattsson, R. Holmdahl, Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. *J.Clin.Invest.* 117 (2007) 3020-3028.
21. M. Hultqvist, P. Olofsson, J. Holmberg, B.T. Backstrom, J. Tordsson, R. Holmdahl, Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the *Ncf1* gene. *Proc.Natl.Acad.Sci.U.S.A.* 101 (2004) 12646-12651.
22. W. Xu, N. Schlagwein, A. Roos, T.K. van den Berg, M.R. Daha, C. van Kooten, Human peritoneal macrophage show functional characteristics of M-CSF-driven anti-inflammatory type 2 macrophages. *European Journal of Immunology* 37 (2007) 1594-1599.
23. A.M. Woltman, S.W. van der Kooij, J.W. de Fijter, C. van Kooten, Maturation-resistant dendritic cells induce hyporesponsiveness in alloreactive CD45RA(+) and CD45RO(+) T-cell populations. *American Journal of Transplantation* 6 (2006) 2580-2591.
24. B.V. O'Donnell, D.G. Tew, O.T. Jones, P.J. England, Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. *Biochem.J.* 290 (Pt 1) (1993) 41-49.
25. J.R. Stone, S. Yang, Hydrogen peroxide: a signaling messenger. *Antioxid.Redox.Signal.* 8 (2006) 243-270.
26. M. Reth, Hydrogen peroxide as second messenger in lymphocyte activation. *Nature Immunology* 3 (2002) 1129-1134.
27. D.R. Balce, B. Li, E.R. Allan, J.M. Rybicka, R.M. Krohn, R.M. Yates, Alternative activation of macrophages by IL-4 enhances the proteolytic capacity of their phagosomes through synergistic mechanisms. *Blood* 118 (2011) 4199-4208.
28. Y.L. Zhou, G.F. Lin, M.P. Murtaugh, Interleukin-4 Suppresses the Expression of Macrophage NADPH Oxidase Heavy-Chain Subunit (Gp91_{Phox}). *Biochimica et Biophysica Acta-Molecular Cell Research* 1265 (1995) 40-48.
29. H.L. Wong, M.T. Lotze, L.M. Wahl, S.M. Wahl, Administration of Recombinant IL-4 to Humans Regulates Gene-Expression, Phenotype, and Function in Circulating Monocytes. *Journal of Immunology* 148 (1992) 2118-2125.
30. N. Khan, S.S. Rahim, C.S. Boddupalli, S. Ghousunnissa, S. Padma, N. Pathak, D. Thiagarajan, S.E. Hasnain, S. Mukhopadhyay, Hydrogen peroxide inhibits IL-12 p40 induction in macrophages by inhibiting c-rel translocation to the nucleus through activation of calmodulin protein. *Blood* 107 (2006) 1513-1520.
31. K. Bedard, K.H. Krause, The NOX family of ROS-generating NADPH oxidases:

physiology and pathophysiology. *Physiol Rev* 87 (2007) 245-313.

- 32. A.K. Bhunia, H. Han, A. Snowden, S. Chatterjee, Redox-regulated signaling by lactosylceramide in the proliferation of human aortic smooth muscle cells. *Journal of Biological Chemistry* 272 (1997) 15642-15649.
- 33. J.H. Kim, S.H. Park, S.G. Park, J.S. Choi, Y. Xia, J.H. Sung, The Pivotal Role of Reactive Oxygen Species Generation in the Hypoxia-Induced Stimulation of Adipose-Derived Stem Cells. *Stem Cells and Development* 20 (2011) 1753-1761.
- 34. I. Rusyn, S. Yamashina, B.H. Segal, R. Schoonhoven, S.M. Holland, R.C. Cattley, J.A. Swenberg, R.G. Thurman, Oxidants from nicotinamide adenine dinucleotide phosphate oxidase are involved in triggering cell proliferation in the liver due to peroxisome proliferators. *Cancer Research* 60 (2000) 4798-4803.
- 35. K. Maemura, Q.Z. Zheng, T. Wada, M. Ozaki, S. Takao, T. Aikou, G.B. Bulkley, A.S. Klein, Z.L. Sun, Reactive oxygen species are essential mediators in antigen presentation by Kupffer cells. *Immunology and Cell Biology* 83 (2005) 336-343.
- 36. H. Matsue, D. Edelbaum, D. Shalhevett, N. Mizumoto, C.D. Yang, M.E. Mummert, J. Oeda, H. Masayasu, A. Takashima, Generation and function of reactive oxygen species in dendritic cells during antigen presentation. *Journal of Immunology* 171 (2003) 3010-3018.
- 37. E.Y. Moon, Y.W. Noh, Y.H. Han, S.U. Kim, J.M. Kim, D.Y. Yu, J.S. Lim, T lymphocytes and dendritic cells are activated by the deletion of peroxiredoxin II (Prx II) gene. *Immunology Letters* 102 (2006) 184-190.
- 38. M.M. Sklavos, H.M. Tse, J.D. Piganelli, Redox modulation inhibits CD8 T cell effector function. *Free Radical Biology and Medicine* 45 (2008) 1477-1486.
- 39. K. Abdi, IL-12: the role of p40 versus p75. *Scand.J.Immunol.* 56 (2002) 1-11.
- 40. K. Asadullah, W. Sterry, H.D. Volk, Interleukin-10 therapy--review of a new approach. *Pharmacol.Rev.* 55 (2003) 241-269.
- 41. M. Donini, L. Marongiu, E. Fontana, S. Dusi, Prostate carcinoma cells LNCaP and glucan cooperate in induction of cytokine synthesis by dendritic cells: Effect on natural killer cells and CD4(+) lymphocytes activation. *Prostate* 72 (2012) 566-576.
- 42. J. Deng, X. Wang, F. Qian, S. Vogel, L. Xiao, R. Ranjan, H. Park, M. Karpurapu, R.D. Ye, G.Y. Park, J.W. Christman, Protective Role of Reactive Oxygen Species in Endotoxin-Induced Lung Inflammation through Modulation of IL-10 Expression. *J.Immunol.* 188 (2012) 5734-5740.
- 43. A. Warris, M.G. Netea, J.E. Wang, P. Gaustad, B.J. Kullberg, P.E. Verweij, T.G. Abrahamsen, Cytokine release in healthy donors and patients with chronic granulomatous disease upon stimulation with *Aspergillus fumigatus*. *Scandinavian Journal of Infectious Diseases* 35 (2003) 482-487.
- 44. A. George-Chandy, I. Nordstrom, E. Nygren, I.M. Jonsson, J. Postigo, L.V. Collins, K. Eriksson, Th17 development and autoimmune arthritis in the absence of reactive oxygen species. *European Journal of Immunology* 38 (2008) 1118-1126.

Chapter 5

The NOX2-mediated ROS producing capacity of recipient cells is associated with reduced T cell infiltrate in an experimental model of chronic renal allograft inflammation

Marina D. Kraaij^a, Karin M. Koekkoek^a, Kyra A. Gelderman^{a,b},
and Cees van Kooten^a

^aDepartment of Nephrology, Leiden University Medical Center,
Leiden, the Netherlands

^bDepartment of Pathology, VU University Medical Center,
Amsterdam, the Netherlands

Transpl Immunol. 30:65-70 (2014)

Abstract

We previously showed that anti-inflammatory Mph (Mph2) can both *in vitro* and *in vivo* induce regulatory T cells (Tregs) in a reactive oxygen species (ROS)-dependent fashion. As influx of Mph is an important characteristic of chronic inflammatory responses, we investigated the impact of NOX2-mediated ROS production by recipient cells in an experimental model of chronic allograft inflammation. We used a kidney transplantation (Tx) model with Lewis (Lew) rats as donor and congenic DA.*Ncf1*^{DA/DA} (low ROS) and DA.*Ncf1*^{E3/E3} (normal ROS) rats as recipients. At day 7 the contralateral kidney was removed, and the animals were sacrificed four weeks after Tx. Renal function and injury was monitored in serum and urine and the composition of the infiltrate was analyzed by immunohistochemistry. Four weeks after Tx, large leukocyte clusters were observed in the allograft, in which signs of ROS production could be demonstrated. These clusters showed no difference regarding composition of myeloid cells or the number of FoxP3 positive cells. However, T cell infiltrate was significantly reduced in the DA.*Ncf1*^{E3/E3} recipients having normal ROS production. Therefore, this study suggests a regulatory effect of ROS on T cell infiltration, but no effect on other inflammatory cells in the allograft.

Introduction

Loss of renal function will ultimately result in the need for a renal transplantation. Despite significant improvement, especially in the early post-transplantation period, the occurrence of allograft rejection remains a problem, which negatively affects the function and survival of transplanted organs. Allograft rejection is characterized by the influx of recipient immune and inflammatory cells in the transplanted organ [1;2]. Although initial attention focused on T cell infiltrates, it has become clear that also other cells, including B cells, macrophages, dendritic cells are part of this infiltrate. However, not all infiltrating cells actively contribute to the rejection process, and there is accumulating evidence that some of these cells have regulatory functions [3]. Macrophages appear in different subsets like the pro-inflammatory Mph (Mph1) which maintain inflammation, and the anti-inflammatory Mph (Mph2) that will clear up cell debris and repair the tissue [4]. Regulatory T cells (Tregs) can also be part of the infiltrate, and have been considered a protective biomarker of graft outcome [5-7]. Therefore, it is of great importance to characterize cellular infiltrates and the local inflammatory conditions, since these will contribute to the composition of the infiltrate within the graft.

The inflammatory response at time of rejection is characterized by the presence of reactive oxygen species (ROS), which are generated amongst others by the Mph [8;9]. Next to oxidative stress, also a role for reactive oxygen species (ROS) in immune regulation has been observed [10;11]. Recently we showed that ROS produced by type 2 Mph contribute to the generation of Tregs [12].

Mph from chronic granulomatous disease (CGD) patients, who have a deficient ROS production due to mutations in the phagocytic NADPH oxidase (NOX2) complex, were shown to be less efficient in the induction of Tregs. Considering that CGD patients are characterized by chronic inflammation, these findings point towards a role for ROS in dampening inflammation. In line with this, rats and mice with a decreased ROS production have increased T cell activation and more severe arthritis, which, in the mouse, was shown to be dependent on the ROS producing capacity of Mph [13;14].

Here we studied the impact of NOX2-mediated ROS production by recipient cells on the inflammatory response in the transplanted kidney. For this we used the model of Lewis-to-DA kidney transplantation, resulting in a model of chronic inflammation. As recipients we used the congenic rat strains DA.*Ncf1*^{DA/DA} and DA.*Ncf1*^{E3/E3} genotypes, which only differ in their phagocytic NOX2-derived ROS-producing capacity. In this way, we were able to investigate the role of ROS produced by infiltrating inflammatory cells, in chronically inflamed kidneys. When sacrificed at 4 weeks, we observed a decreased T cell infiltration in grafts derived from recipients with a normal ROS production (DA.*Ncf1*^{E3/E3}), compared with the congenic DA.*Ncf1*^{DA/DA} recipients.

Objective

To study the impact of NOX2-mediated ROS production by infiltrating cells on the inflammatory response in the transplanted kidney.

Materials and Methods

Animals

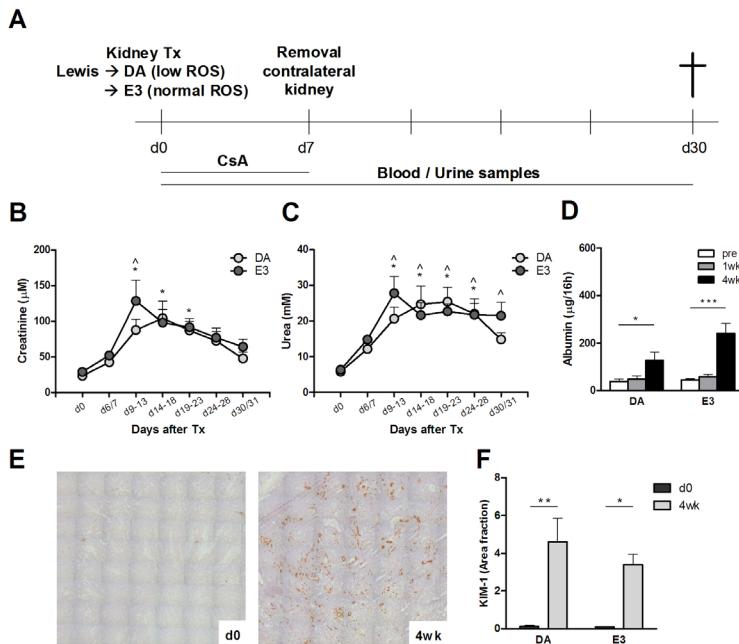
Littermates (DA.*Ncf1*^{DA/DA} and DA.*Ncf1*^{E3/E3}) were obtained by intercrossing F1 animals from a DA (Harlan, Horst, The Netherlands) x DA.*Ncf1*^{E3/E3} cross (DA.*Ncf1*^{E3/E3} founders originating from Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden) [15]. Lewis rats were purchased from Harlan (Horst, The Netherlands). The animals were housed in IVC cages and had free access to water and standard rat chow. Animal care and experimentation were performed in accordance with the Dutch law and the local committee of animal experiments of the Leiden University Medical Center.

Kidney transplantation model

Lewis rats were used as donors and DA.*Ncf1*^{E3/E3} (N=5) and DA.*Ncf1*^{DA/DA} (N=5) rats (190-350 g) were used as recipients. Kidney transplants were performed under isoflurane anesthesia and 0.02 mg/kg buprenorphine (Temgesic®, Schering-Plough). The left kidney from the donor was perfused using cold ringer (Fresenius Kabi) with 400 U/ml Heparin (LEO, Pharma BV) and kept on ice. The left kidney from the recipient was removed and the donor kidney was transplanted in the abdominal cavity from the recipient. The donor renal artery and vein were anastomosed end-to-site to respectively the

recipient aorta and vena cava using running sutures. The donor urether was anastomosed end-to-end to the urether of the recipient using loose stitches. Postoperatively, 10 mg/kg of cyclosporine (Sandimmune®, Novartis) was given daily s.c. and provided up till day 7. Seven days after Tx the contralateral kidney was removed. Blood samples were collected at several time points after Tx by tail vein puncture. The rats were twice a week placed in metabolic cages to collect urine samples. The animals were sacrificed four weeks after Tx. Creatinine and urea in serum samples were measured using standard autoanalyzer methods by our hospital diagnostic services. In addition, rocket immuno-electrophoresis (protocol modified from [16]) was used to quantify albumin levels in urine.

Immunohistochemistry

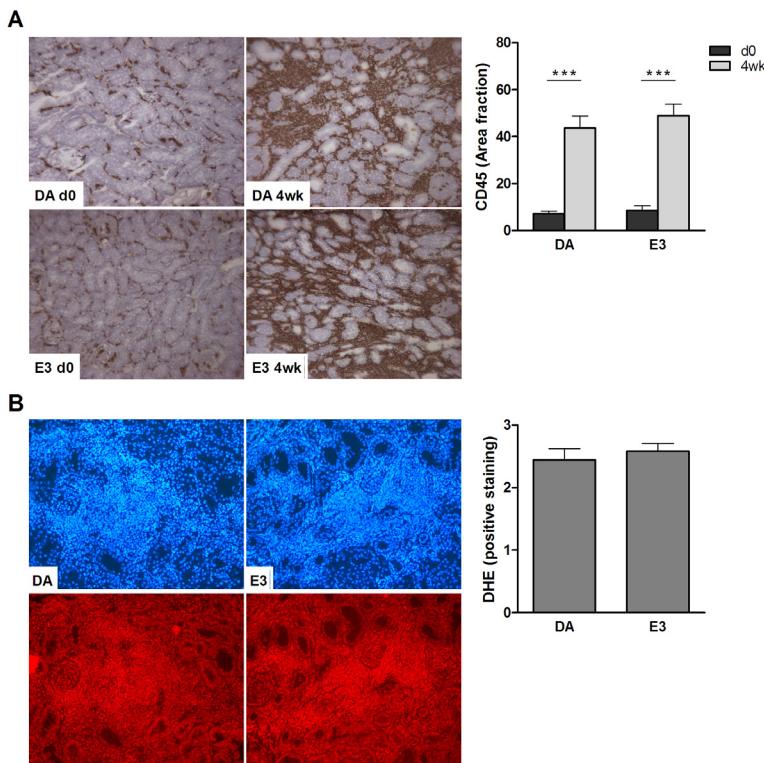

Snap frozen rat kidney sections (4 µm) were air dried and acetone fixed. Sections were stained for OX-42 (anti-CD11b/c, kindly provided by Dr. P. Kuppen, LUMC, Leiden)), ED-1 (anti-CD68; kindly provided by Dr. C.D. Dijkstra, VU, Amsterdam), ED-2 (anti-CD163), R73 (anti-TCR; both kindly provided by Dr. E. de Heer, LUMC, Leiden), and CD45 (BD Biosciences), followed by horseradish peroxidase (HRP)-conjugated goat anti-mouse (Jackson). Goat anti-rat KIM-1 (TIM-1; R&D) staining was assessed by HRP-conjugated rabbit anti-goat (DAKO) as secondary antibody. In addition, the sections were incubated with Tyramide-fluorescein isothiocyanate (FITC). FoxP3 (eBioscience) staining was followed by secondary rabbit anti-fluorescein HRP antibody (Abcam). All stainings were visualized by 3,3'-Diaminobenzidine tetrahydrochloride hydrate (DAB, Sigma), followed by nuclear counterstaining with Mayer's hematoxylin (Merck). Quantification of immunohistochemistry was performed by assessing 10 consecutive fields on each section. Using image J software, the positive area in each image (expressed in area fraction) was quantified, except for the FoxP3 staining where analysis was performed by counting the number of positive cells.

Immunofluorescence

Snap frozen rat kidney sections (10 µm) were air dried. Sections were stained with 10 µM dihydroethidium (DHE; Invitrogen) for 30 min at 37°C in the dark. After washing the sections were incubated with 1.6 µM Hoechst (Invitrogen) for 1 min. Quantification was performed by assessing 15 consecutive fields on each section. The positivity of the staining was semi-quantified by assigning 1 (weak), 2 (positive), or 3 (strong) to each field. The average of all fields was taken as measurement of positivity per section.

Statistical analysis

All data were presented as mean ± standard error of the mean (SEM) and subjected to statistical analysis with one- or two-way ANOVA and the Mann-Whitney U-test using GraphPad Prism software. A value of $p < 0.05$ was considered statistically significant.

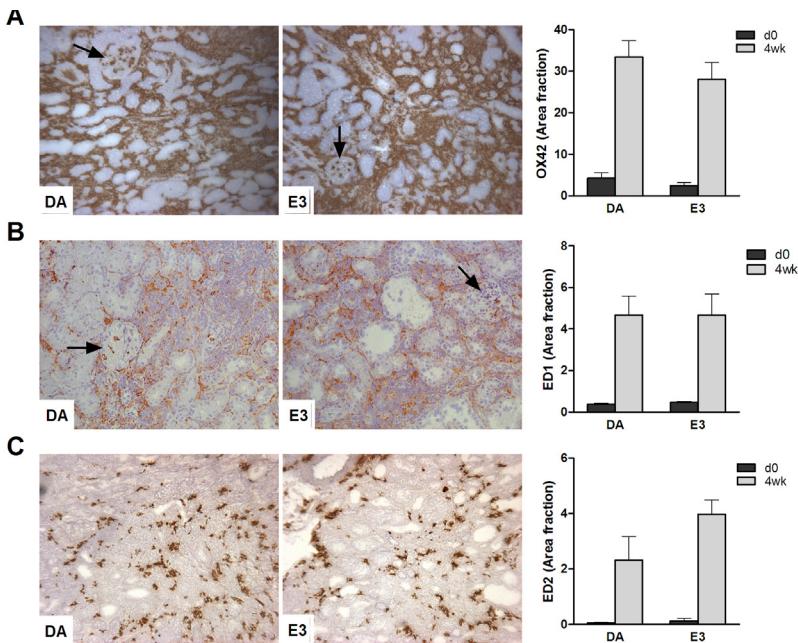

Figure 1: The ROS producing capacity of recipients does not affect the injury of chronically inflamed transplanted kidneys. **(A)** Experimental model with donor Lewis kidney transplanted into either DA.Ncf1^{DA/DA} (DA) or DA.Ncf1^{E3/E3} (E3) rats. Creatinine **(B)** and urea **(C)** levels measured in serum from DA rats (N=5) and E3 rats (N=5) at different time points after Tx. * p<0.05 compared to d0 for DA, ^ p<0.05 compared to d0 for E3. **(D)** Albumin levels measured in urine and correlated with urine out-put before, at one week and four weeks after Tx. **(E)** KIM-1 staining in kidney tissue of control kidney (d0) and four weeks after Tx (4wk). **(F)** Analysis of KIM-1 staining in cortex at d0 and 4wk. * p<0.05, ** p<0.01, *** p<0.001.

Results

Dysfunctional and damaged kidney four weeks after Tx

In an experimental rat model we transplanted Lewis kidneys into either a DA.Ncf1^{DA/DA} (low ROS) or DA.Ncf1^{E3/E3} (normal ROS) recipient (Fig. 1A). To assess renal function, we measured serum creatinine and urea levels and observed that both slightly increased at day 6/7 after Tx, but showed a steep increase following removal of the remaining native kidney (Fig. 1 B,C). Until sacrifice at week 4, a descending trend was observed with creatinine, but urea levels remained significantly elevated compared with the pretransplant situation. For both parameters, there was no difference between DA.Ncf1^{DA/DA} and DA.Ncf1^{E3/E3} recipients.

Albumin levels in urine were measured as a sign of injury and were significantly increased four weeks after Tx, but no difference was observed between DA.Ncf1^{DA/DA} and DA.Ncf1^{E3/E3} recipients (Fig. 1D). It should be noted that the albuminuria in this model is low compared to other strain combinations, where 8-10 mg/24h have been measured [17;18]. In addition, damage to the kidney


Figure 2: Chronically inflamed kidneys are characterized by leukocyte clusters and presence of ROS. **(A)** Representative picture from CD45 staining for both a DA and E3 rat at d0 and 4wk (left). Digital image analysis of CD45 staining in of the cortex at d0 and 4wk (right). **(B)** DHE (upper) and Hoechst (lower) staining of kidney tissue from a representative DA and E3 rat at 4wk (left), and semi-quantitative analysis of DHE staining at 4wk (right).* p<0.05, **p <0.01, *** p<0.001.

four weeks after Tx was confirmed by strong expression of the tubular the injury marker KIM-1, but again no difference was observed between DA.Ncf1^{DA/DA} and DA.Ncf1^{E3/E3} recipients (Fig. 1E,F).

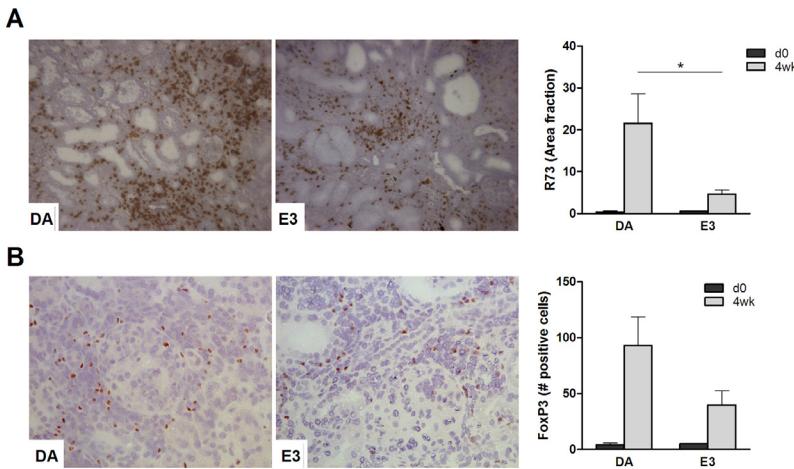
Leukocyte clusters and ROS present in infiltrate

We next investigated the number of infiltrating cells by staining with the leukocyte marker CD45. In the cortex of control kidneys, small numbers of CD45 positive cells were observed located in the peritubular space, most likely representing resident myeloid cells. In contrast, four weeks after Tx the cortex was characterized by a strong increase of CD45 positive cells, observed in large leukocyte clusters (Fig. 2A). Both in distribution and quantity, no difference was observed between DA.Ncf1^{DA/DA} and DA.Ncf1^{E3/E3} recipients.

To monitor the contribution of ROS in the graft inflammation, we stained the tissue with the ROS marker dihydroethidium (DHE). DHE staining was observed, and most prominently in the leukocyte clusters as indicated by the high cell density observed with Hoechst staining, although there was no difference

Figure 3: The ROS producing capacity of recipients does not affect the composition of myeloid cell populations. (A) OX42, (B) ED-1, (C) and ED-2 staining in the cortex at d0 and 4wk after Tx. On the left side a representative picture of the cortex at 4wk from both a DA and E3 rat, and quantification of positive area fraction on the tissue on the right side. Arrows indicate positive staining in glomeruli.

between the rats (Fig. 2B).


Similar composition of myeloid cell populations

As Mph have an important role in graft rejection [4] and are a major cell type expressing NOX2, we investigated the presence of myeloid cells in the kidney tissue. A high number of OX42 (CD11b/c) positive cells were seen distributed throughout the entire cortex (Fig. 3A). ED-1 (CD68) positive Mph were observed both in leukocyte clusters and the peritubular area, whereas ED-2 (CD163) positive Mph, most likely representing Mph2, were mostly located in the leukocyte clusters (Fig. 3B,C). However, the quantity of ED1 and ED2 positive cells was lower compared with the OX42 staining.

We also observed OX42 and ED1 positive cells in the glomeruli (indicated by arrows), which has been shown before [19]. No difference in DA.Ncf1^{E3/E3} and DA.Ncf1^{DA/DA} rats was shown regarding the number of myeloid cells, although a trend towards higher numbers of ED2 positive Mph was observed in recipients with normal ROS-producing cells.

Decreased T cell infiltrate with ROS-producing cells

T cells are an essential cell involved in graft rejection [2]. Therefore we stained the kidney with R73, a pan T cell marker specifically detecting the TCR. T cells

Figure 4: Decreased T cell infiltrate in recipients with a normal ROS-producing capacity. **(A)** A representative picture of the cortex 4wk after Tx (left) and analysis of R73 staining at d0 and 4wk (right). **(B)** FoxP3 positive cells observed in the cortex at d0 and 4wk after Tx. On the left side a representative picture of the cortex at 4wk from a DA and E3 rat, and quantification of the tissue on the right side. * $p < 0.05$

were mostly observed in the leukocyte clusters throughout the cortex, but some positive cells were also located in the interstitium (Fig. 4A). The number of T cells was significantly lower in DA.*Ncf1*^{E3/E3} rats compared to DA.*Ncf1*^{DA/DA} rats (Fig. 4A).

Since the presence of Tregs can be beneficial for graft outcome [5], we investigated the presence of these cells in the kidney tissue. We observed FoxP3 staining especially in the leukocyte clusters in the cortex, with a trend towards lower numbers observed in DA.*Ncf1*^{E3/E3} recipients compared to DA.*Ncf1*^{DA/DA} rats (Fig. 4B). In view of the reduced T cell infiltrate, the relative amount of FoxP3 positive cells (ratio FoxP3: R73 cells) appeared higher in DA.*Ncf1*^{E3/E3} rats (43 positive cells/ 5 % positive area fraction) compared to DA.*Ncf1*^{DA/DA} rats (22 positive cells/ 5 % positive area fraction).

Discussion

In this study we investigated the contribution of NOX2-derived ROS in a model of chronic renal inflammation. Lewis rat kidneys were transplanted into recipients with either normal or reduced NOX2-derived ROS, making use of the congenic DA rat strain DA.*Ncf1*^{E3/E3} and DA.*Ncf1*^{DA/DA}. Four weeks after Tx, the allografts were still dysfunctional and damage to the kidney tissue was observed. Moreover, large leukocyte clusters were observed in the kidney, characterized by CD45 and CD11b/c expression. For these parameters, there was no difference between DA.*Ncf1*^{E3/E3} and DA.*Ncf1*^{DA/DA} recipients. However, a decreased number of T cells infiltrated the Tx kidney when recipients had a

normal ROS producing capacity.

The transplant model using DA rats as donor and Lewis rats as recipient has been more widely described in the literature [17;20]. In this study we wanted to specifically address the contribution of ROS by infiltrating inflammatory cells. Therefore we used the congenic DA rats as recipients. We observed ROS staining in the kidney tissue, especially in the leukocyte clusters. Making use of DHE staining, we observed that also DA.Ncf1^{DA/DA} rats still have ROS producing capacity [12;21], indicating that next to NOX2, also other sources of ROS are present. ROS produced during oxidative stress (high levels) has been implicated in chronic kidney diseases or kidney Tx in a negative way [22;23]. In contrast, it has been shown that ROS produced in the immunological synapse or produced in lower amounts can inhibit T cell activation and has been indicated in various signaling pathways as well [24-27].

Mph2 have been shown to induce Tregs via the production of ROS [12]. In the current experiments we found no difference in absolute numbers of FoxP3 positive cells in the cortex of transplanted kidneys between DA.Ncf1^{DA/DA} and DA.Ncf1^{E3/E3} recipients. However, the reduction in Tregs was not as prominent as the reduction in total T cells. Therefore it is tempting to speculate that in DA.Ncf1^{E3/E3} recipients the relative amount of FoxP3 positive cells was higher, thereby tilting the balance towards more regulation. This relative increase may be important since it has been assumed that the ratio between effector T cells and Tregs is a main determinant in allograft outcome [28]. *In vitro*, Tregs can steer monocyte differentiation towards CD163 positive Mph [29], whereas *in vivo* Tregs expansion increased the number of CD163 positive Mph in the infiltrate and decreased pro-inflammatory cytokine production [30]. This further indicates that Tregs might exert an immune regulatory role on the infiltrating cells [31]. However, in the current study this altered balance did not affect any of the other inflammatory, injury or functional markers.

When investigating the renal tissue for different myeloid cells, we observed OX42 staining throughout the entire cortex located both in the leukocyte clusters and between the tubuli. There was considerably less ED1 and ED2 staining in the cortex compared with OX42. This might suggest that apart from Mph also granulocytes (which abundantly express OX42) were present in the kidney tissue four weeks after Tx. However, the presence of neutrophils at this late stage after Tx is unlikely, although a constant influx of these cells due to chronic inflammation is possible. An alternative explanation is that OX42 identifies another myeloid population not recognized by ED1 or ED2, or that the OX42 expression is higher and therefore more easily detected in immunohistochemistry. Similarly, the abundant expression of OX42 can explain why reduced amount of T cell infiltrate (as shown by R73 staining) was not reflected by a difference in CD45 staining.

ED1 is considered to be a general Mph marker, whereas ED2 is more specific for Mph2. Since, compared to ED1, there was less ED2 staining present in the infiltrate, it is likely that also Mph1 were present. This indicates that both pro-inflammatory mechanisms and tissue repair were simultaneously taking place at this stage after Tx. Since no difference was observed between DA.Ncf1^{E3/E3}

and DA.*Ncf1*^{DA/DA} rats, this suggests that the ROS producing capacity of the recipient's immune cells is not involved in the active process of Mph recruitment and function after Tx. However a trend towards more Mph2 was observed in the grafts from DA.*Ncf1*^{E3/E3} recipients. The presence of the diverse immune cells in the lymphoid clusters would allow interactions between these cells and therefore also allow for the possibility of ROS signaling within the graft. Nevertheless, diminished numbers of R73 positive T cells were observed in the cortex of the Lew kidney with DA.*Ncf1*^{E3/E3} rats as recipients. By performing the renal transplantation and analyzing the tissue of this chronically inflamed allograft (with infiltrating macrophages having a difference in ROS producing capacity), we hypothesized to pick up differences in the 'local' inflammatory response (ie in the graft). However, we cannot exclude that part of the difference we ultimately found has its origin at other locations (like in the lymphoid organs). This will be the place where most T cell activation will be initiated, and also here signaling through ROS might take place. Since these molecules only act on a short distance it could be hypothesized that the immunological synapse could be important for this process. The reduced T cell infiltrate could potentially hint towards an immunosuppressive role of NOX2-derived ROS. In a collagen-induced arthritis model Mph-derived ROS was clearly shown to be beneficial in suppressing T cell responses [13]. It most likely that the subtle ROS producing capacity by Mph in our model was insufficient to overcome the high inflammatory state in the kidney after Tx, which only showed a decreased T cell infiltrate. Due to the nature of our model, we believe that the amount of ROS produced here by Mph was insufficient to have an impact on the inflammatory response in the allograft. We recently showed that inhibition of ROS can under some conditions also suppress T cell proliferation [32]. In that study we used a human *in vitro* model of monocyte-derived macrophages and used the inhibitor DPI for blocking ROS-mediated effects. Unfortunately, DPI is not specific for NOX2, and therefore this can explain the inhibitory effects of DPI on T cell activation. In the current study the difference is based on a genetic polymorphism in one of the NOX2 gene, and therefore can specifically address differences in NOX2-mediated ROS. A partially protective role of ROS under such conditions is in line with various auto-immune diseases where Mph-derived ROS has been shown to be essential for protection [13;14].

In conclusion, in the Lew-to-DA renal Tx model we observed leukocyte clusters four weeks after Tx. In these clusters the presence of myeloid cells and FoxP3 positive Tregs were observed, but no difference was shown between DA.*Ncf1*^{E3/E3} and DA.*Ncf1*^{DA/DA} rats. Although a decreased number of infiltrating T cells was shown in allografts of DA.*Ncf1*^{E3/E3} recipients having a normal ROS-producing capacity, in this experimental model no effect was observed on other inflammatory cells or signs of injury.

References

1. Sayegh MH, Turka LA. The role of T-cell costimulatory activation pathways in transplant rejection. *N Engl J Med* 1998; 338: 1813-21.
2. Nankivell BJ, Alexander SI. Rejection of the kidney allograft. *N Engl J Med* 2010;

363: 1451-62.

3. Wood KJ, Bushell A, Hester J. Regulatory immune cells in transplantation. *Nat Rev Immunol* 2012; 12: 417-30.
4. Wyburn KR, Jose MD, Wu H, Atkins RC, Chadban SJ. The role of macrophages in allograft rejection. *Transplantation* 2005; 80: 1641-7.
5. Bestard O, Cunetti L, Cruzado JM, Lucia M, Valdez R, Olek S, et al. Intragraft Regulatory T Cells in Protocol Biopsies Retain Foxp3 Demethylation and Are Protective Biomarkers for Kidney Graft Outcome. *Am J Transplant* 2011; 11: 2162-72.
6. Dummer CD, Carpio VN, Goncalves LFS, Manfro RC, Veronese FV. FOXP3(+) regulatory T cells: From suppression of rejection to induction of renal allograft tolerance. *Transpl Immunol* 2012; 26: 1-10.
7. Taflin C, Nochy D, Hill G, Frouget T, Rioux N, Verine J, et al. Regulatory T Cells in Kidney Allograft Infiltrates Correlate With Initial Inflammation and Graft Function. *Transplantation* 2010; 89: 194-9.
8. Duffield JS. Macrophages and immunologic inflammation of the kidney. *Semin Nephrol* 2010; 30: 234-54.
9. Jose MD, Ikezumi Y, van RN, Atkins RC, Chadban SJ. Macrophages act as effectors of tissue damage in acute renal allograft rejection. *Transplantation* 2003; 76: 1015-22.
10. Droege W. Free radicals in the physiological control of cell function. *Physiol Rev* 2002; 82: 47-95.
11. Hultqvist M, Olsson LM, Gelderman KA, Holmdahl R. The protective role of ROS in autoimmune disease. *Trends Immunol* 2009; 30: 201-8.
12. Kraaij MD, Savage ND, van der Kooij SW, Koekkoek K, Wang J, van den Berg JM, et al. Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. *Proc Natl Acad Sci U S A* 2010; 107: 17686-91.
13. Gelderman KA, Hultqvist M, Pizzolla A, Zhao M, Nandakumar KS, Mattsson R, et al. Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. *J Clin Invest* 2007; 117: 3020-8.
14. Hultqvist M, Olofsson P, Holmberg J, Backstrom BT, Tordsson J, Holmdahl R. Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the *Ncf1* gene. *Proc Natl Acad Sci U S A* 2004; 101: 12646-51.
15. Olofsson P, Holmberg J, Tordsson J, Lu SM, Akerstrom B, Holmdahl R. Positional identification of *Ncf1* as a gene that regulates arthritis severity in rats. *Nat Genet* 2003; 33: 25-32.
16. Tran TN, Eubanks SK, Schaffer KJ, Zhou CYJ, Linder MC. Secretion of ferritin by rat hepatoma cells and its regulation by inflammatory cytokines and iron. *Blood* 1997; 90: 4979-86.
17. Denecke C, Reutzel-Selke A, Sawitzki B, Boenisch O, Khalpey Z, Seifert M, et al. Low-dose cyclosporine mediates donor hyporesponsiveness in a fully mismatched rat kidney transplant model. *Transpl Immunol* 2012; 26: 176-85.
18. Joosten SA, van Dixhoorn MGA, Borrias MC, Benediktsson H, van Veelen PA, van Kooten C, et al. Antibody response against perlecan and collagen types IV and VI in chronic renal allograft rejection in the rat. *Am J Pathol* 2002; 160: 1301-10.
19. Heemann UW, Tullius SG, Tamatami T, Miyasaka M, Milford E, Tilney NL. Infiltration Patterns of Macrophages and Lymphocytes in Chronically Rejecting Rat-Kidney Allografts. *Transpl Int* 1994; 7: 349-55.
20. Martins PN, Reutzel-Selke A, Jurisch A, Denecke C, Attrot K, Pascher A, et al. Induction of carbon monoxide in donor animals prior to organ procurement reduces graft

immunogenicity and inhibits chronic allograft dysfunction. *Transplantation* 2006; 82: 938-44.

- 21. Kraaij MD, van der Kooij SW, Reinders ME, Koekkoek K, Rabelink TJ, van Kooten C, et al. Dexamethasone increases ROS production and T cell suppressive capacity by anti-inflammatory macrophages. *Mol Immunol* 2011; 49: 549-57.
- 22. Campise M, Bamonti F, Novembrino C, Ippolito S, Tarantino A, Cornelli U, et al. Oxidative stress in kidney transplant patients. *Transplantation* 2003; 76: 1474-8.
- 23. Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. *Kidney Int* 2004; 65: 1009-16.
- 24. Matsue H, Edelbaum D, Shalhev D, Mizumoto N, Yang CD, Mummert ME, et al. Generation and function of reactive oxygen species in dendritic cells during antigen presentation. *J Immunol* 2003; 171: 3010-8.
- 25. Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. *Cancer Res* 2001; 61: 4756-60.
- 26. Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. *Nat Immunol* 2002; 3: 1129-34.
- 27. Pillay J, Kamp VM, van HE, Visser T, Tak T, Lammers JW, et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. *J Clin Invest* 2012; 122: 327-36.
- 28. Salcido-Ochoa F, Yusof N, Hue SS, Haase D, Kee T, Rotzschke O. Are we ready for the use of foxp3(+) regulatory T cells for immunodiagnosis and immunotherapy in kidney transplantation? *J Transplant* 2012; 2012: 397952.
- 29. Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJC, John S, Taams LS. CD4(+)CD25(+)Foxp3(+) regulatory T cells induce alternative activation of human monocytes/macrophages. *Proc Natl Acad Sci U S A* 2007; 104: 19446-51.
- 30. Miyasato K, Takabatake Y, Kaimori J, Kimura T, Kitamura H, Kawachi H, et al. CD28 superagonist-induced regulatory T cell expansion ameliorates mesangioproliferative glomerulonephritis in rats. *Clin Exp Nephrol* 2011; 15: 50-7.
- 31. Graca L, Cobbold SP, Waldmann H. Identification of regulatory T cells in tolerated allografts. *J Exp Med* 2002; 195: 1641-6.
- 32. Kraaij MD, Koekkoek KM, van der Kooij SW, Gelderman KA, van Kooten C. Subsets of human type 2 macrophages show differential capacity to produce reactive oxygen species. *Cell Immunol* 2013; 284: 1-8

Chapter 6

General discussion and summary

Discussion

In recent years the view on the biological role of reactive oxygen species (ROS) has dramatically changed and a functional role for macrophage (Mph)-derived ROS in T cell activation and auto-immunity has been documented. Rats with a reduced ROS producing capacity showed an increased susceptibility to pristane-induced arthritis, which was mediated in a T cell-dependent fashion (1). In addition, mice expressing functional NOX2 protein p47^{phox} only in their Mph were protected against disease compared to mice with fully functional p47^{phox} in an arthritis model (2). Finally, T cell activation is inhibited by hydrogen peroxide and ROS have been implicated to play a role in the process of antigen presentation (3-5). Altogether, since especially Mph-derived ROS seems to play an important role, in the current thesis we aimed to explore this further by investigating different Mph subsets and the immune modulating potential of Mph-derived ROS. This chapter summarizes and discusses the contribution of the research described in this thesis in order to understand the role of ROS in the Mph-T cell interaction.

ROS producing capacity of macrophages

The NOX2-derived ROS producing capacity is different between human Mph subsets, showing a high ROS producing capacity with pro-inflammatory Mph1, whereas most literature suggested that the anti-inflammatory Mph2 has little to no ROS producing capacity (6,7). Since we were interested in Mph-derived ROS, gaining knowledge about the ROS producing potential of these different Mph subsets would be essential. Comparing GM-CSF differentiated Mph1 with M-CSF differentiated Mph2 showed opposite results, with little ROS producing capacity of Mph1 and high ROS production for Mph2 (**Chapter 3**).

Mph2 display a high plasticity and can undergo phenotypic and functional changes due to the surrounding milieu (7,8). We therefore wanted to investigate certain Mph2 subsets in more detail. The most commonly described Mph2 in literature are Mph2a, which are differentiated with either IL-4 or IL-13. In addition, Mph2c are a well-known Mph2 subset and are differentiated with IL-10 or glucocorticoids. When comparing the phenotype of three different Mph2 subsets, namely M-CSF differentiated Mph2, Mph2a, and Mph2c, it is striking that Mph2 and Mph2c demonstrate a similar phenotype, whereas Mph2a are clearly distinct (**Chapter 4** and Table 1). The IL-4 differentiated Mph2a drives Th2 immune responses, predominantly mediated via STAT6 signaling, whereas Mph2c requires STAT3 signaling, which could in part explain the difference (9,10). Thus although they are all named anti-inflammatory Mph, phenotypically and functionally these Mph2 subsets are different. We showed this *in vitro*, where we observed differences in marker expression and cytokine production, and this was also observed *in vivo* by others (11,12).

As we showed that M-CSF-differentiated Mph2 had a high NOX2-derived ROS producing capacity, which is in contrast with the general opinion, we wanted to compare this Mph2 with Mph2a and Mph2c with regard to their ROS producing

	Mph2 (M-CSF)	Mph2a (IL-4)	Mph2c (IL-10)
markers	CD14	+	-
	CD163	+	-
	CD209	-	+
	HLA-DR	+	+
	CD86	+	++
cytokines	IL-6	+	++
	IL-12p40	-	+
	TNF- α	-	+
	IL-10	++	+
other	ROS producing capacity	++	-
	T cell stimulatory capacity	++	+++

Table 1: Characteristics of Mph2, Mph2a, and Mph2c regarding markers, cytokines, ROS producing capacity and T cell stimulatory capacity.

capacity (**Chapter 4**). Mph2a do not produce NOX2-derived ROS upon PMA stimulation, which is indeed in agreement with literature. In contrast Mph2c did show ROS-producing capacity, clearly demonstrating the functional diversity of diverse Mph2 subsets. Thus in addition of different expression of cell surface markers or cytokine production, the ROS producing capacity is also different among Mph2, Mph2a, and Mph2c. This indicates that ROS will most likely have different functions within the Mph subsets, related to the various effects observed on the immune system, and that subsets should be well described and characterized before results can be extrapolated.

Effect of immunosuppressive drugs on ROS

Immunosuppressive drugs (IS drugs) are commonly given to prevent T cell activation and graft rejection. When considering the side-effects of these drugs, developing an alternative therapy is essential. Mph2 have the potential to be used as cellular therapy, since they may be instrumental in diminishing T cell responses in autoimmunity or preventing allograft rejection in transplantation. Currently, cellular therapy with Mph has already been performed. Two patients required low-dose immunosuppressive therapy to preserve their grafts from rejection, after they received a transfusion with regulatory Mph a week prior to their kidney transplantation (13). In protocols where regulatory Mph will be used as cellular therapy, this will most likely be in combination with the current therapies therefore the effects observed can be potentially of significance. However, the IS drugs may affect the immunosuppressive function of the Mph2 administered and specifically the ROS producing capacity of Mph may be effected. Therefore we investigated in **Chapter 3** the effect of IS drugs on the ROS-producing capacity of Mph2. Interestingly, we observed that IS drugs did not affect the ROS-producing capacity of already differentiated

Mph, which is important when considering Mph2 for cell therapy. The ROS-producing capacity of Mph2 was augmented by a number of these drugs when present during differentiation, indicating that the drugs only influence the NOX2 complex as long as monocytes are differentiating into mature Mph2. Dexamethasone, which is experimentally one of the strongest and most widely used corticosteroid, was one of the IS drugs shown to increase the ROS-producing capacity of Mph2. In line with this, it was shown that dexamethasone could upregulate NOX2 proteins and *in vivo* increased ROS production was demonstrated (14,15). In addition, dendritic cells cultured in dexamethasone were frozen in an immature state associated with lower levels of T cell activation (16). Dendritic cells were shown to have a very low ROS production *in vitro*, but with the addition of dexamethasone, the ROS producing capabilities of dendritic cells were strongly increased (**Chapter 3**). In summary, in **Chapter 3** we describe an additional anti-inflammatory mechanism of dexamethasone, since dexamethasone amplified the down-regulation of T cell responses via the production of ROS in Mph2.

ROS in T cell activation

A role for ROS in activating T cells was previously shown in a rat model of pristane-induced arthritis (1). Suppressed T cell activation by ROS was also demonstrated for granulocyte-derived hydrogen peroxide and through the effect of catalase on lymphocytes (4,5). Therefore we wanted to investigate the role of human Mph-derived ROS on T cell activation (**Chapter 4**). Interestingly, differences in the T cell-stimulatory capacity by Mph2, Mph2a, and Mph2c were observed, which was inversely correlated with their ROS-producing capacity. Therefore we hypothesized that the ROS-producing capacity of Mph2 could be functionally important with regards to T cell activation. However, in contrast to this hypothesis, T cell activation by Mph2a did demonstrate ROS dependency, as T cell activation by Mph2a was inhibited by the ROS inhibitor DPI, even when we could not demonstrate any NOX2-derived ROS by Mph2a upon stimulation. This indicates that apart from ROS derived from NOX2, ROS are also being produced elsewhere in the Mph, although Mph rely primarily on NOX2 for ROS production (17). Since DPI not only inhibits NOX2, but also the other NOX, nitric oxide synthase, xanthine oxidase or cytochrome P450 reductase, this suggests involvement of ROS from above mentioned sources in T cell activation (18). It was recently shown that mitochondrial ROS are required for T cell activation and the subsequent IL-2 induction (19). The effect of ROS on T cell activation was independent on the ROS producing capacity of the Mph2 subsets observed in our studies.

To unravel this effect we searched for possible mechanisms how Mph-derived ROS affects T cell function (**Chapter 4**). We focused on the signals between Mph and T cell that allows for T cell activation. These signals involve the MHC class 2 molecules, co-stimulatory molecules and cytokines. By means of DPI we investigated the MHC class 2 molecule HLA-DR and the co-stimulatory molecule CD86 expression on Mph2, Mph2a, and Mph2c and observed no effect on the expression of these markers, indicating that there is no ROS dependency of

Gene	Ratio	Gene summary
IFIT3	0.61	Interferon-induced protein with tetratricopeptide repeats 3
IL1RN	0.68	Interleukin 1 receptor antagonist
IFIT1	0.73	Interferon-induced protein with tetratricopeptide repeats 1
IFIT2	0.74	Interferon-induced protein with tetratricopeptide repeats 2
TNFRSF4	0.76	Tumor necrosis factor receptor superfamily, member 4
<hr/>		
FOS	1.84	FBJ murine osteosarcoma viral oncogene homolog
DUSP1	1.69	Dual specificity phosphatase 1
JUN	1.66	Jun proto-oncogene
KLF9	1.56	Krueppel-like factor 9
CD69	1.49	Early T-cell activation antigen p60

Table 2: Genes changed in expression when exposed to hydrogen peroxide with the top 5 most downregulated genes and top 5 most upregulated genes. Ratio: CD4+ T cells exposed to 4 hours of hydrogen peroxide / CD4+ T cells without hydrogen peroxide.

these specific signals. Therefore we investigated the cytokine production of Mph2 subsets. The Mph2 subsets were activated by CD40L in order to mimic the CD40-CD40L signal between APC-T cell. When testing directly on the three different Mph2 subsets, DPI dose-dependently decreased the IL-10 and IL-12p40 production of CD40L-stimulated Mph2 subsets. However, the IL-6 production was not affected, which is interesting due to its pro-inflammatory nature. Interestingly, when stimulated with LPS, DPI suppressed the cytokine production in all three Mph2 subsets. In mouse Mph decreased IL-10, IL-6 and TNF- α production with DPI has been observed as well (20). Thus the decreased T cell proliferation in the presence of DPI could be linked to alterations in cytokine production, as clearly shown for IL-10 and IL-12p40 production. However, a more detailed analysis of the complete cytokine production profile, as well as information on other signaling pathways, will be required to fully explain the mechanism of ROS-dependent T cell activation.

ROS-dependent Treg induction

We observed a high ROS producing capacity in Mph2, but in contrast with literature no ROS production upon PMA stimulation was shown in GM-CSF-differentiated Mph1 (**Chapter 3**). We hypothesized that if Mph-derived ROS prevent T cell mediated immune responses, it could do so by inducing regulatory T cells (Tregs). It was already shown that anti-inflammatory Mph were capable of inducing potent Tregs, whereas in that setting the same was not observed with pro-inflammatory Mph (21). Induction of Tregs in a ROS-dependent manner could be demonstrated in an *in vivo* DTH model and an expansion in the number of Tregs after increasing the ROS producing capacity with dexamethasone. This confirmed that Mph-derived ROS can play a role in the induction of Tregs (Chapters 2 and 3). In addition, NOX2-derived ROS was shown to be involved in suppression of CD4 positive effector cells by Tregs (22). These data indicate diminished pro-inflammatory activities and thus less inflammation, showing that ROS affect the immune regulatory capacity. Regulatory immune cells promote tolerance and enhance graft survival *in vivo*

(23), which may include both natural and inducible Tregs. Natural Tregs are derived from the thymus, whereas inducible Tregs are derived from naïve T cell precursors in the periphery and upregulate FoxP3 expression (24). In grafts their number is limited and consequently when acute rejection takes place they will not be able to prevent rejection. However, the allograft itself has been shown to be able to induce or expand Tregs (25,26). Tregs affect immune cells in different ways. For example, they produce IL-10 or express cytotoxic T lymphocyte antigen 4 (CTLA4), causing decreased APCs activity, which will diminish the activity of effector immune cells and decreases the chance of graft rejection. Inhibition of CTLA4 or IL-10 *in vivo* indeed showed impaired Treg-mediated regulation in transplantation (27,28). These data show the importance of the presence of Tregs in an allograft. Based on our experiments, we believe that there may be a link between ROS and Treg induction *in vivo*. In **Chapter 5** we investigated the impact of NOX2-mediated ROS production by recipient cells in an experimental model of chronic allograft inflammation. We used the model of Lewis-to-DA kidney transplantation. As recipients we used the congenic rat strains DA.*Ncf1*^{DA/DA} and DA.*Ncf1*^{E3/E3} genotypes, which only differ in their phagocytic NOX2-derived ROS-producing capacity. DA rats are more prone to develop rheumatoid arthritis compared with other rat strains. A naturally occurring polymorphism of *Ncf1*, component of the NADPH oxidase complex, was found to regulate the severity of arthritis in rats (29). This polymorphism caused reduced ROS production and promoted the activation of arthritogenic T cells. Thus the congenic DA.*Ncf1*^{DA/DA} rats have a reduced NOX2-mediated ROS production compared to the DA.*Ncf1*^{E3/E3} rats. Large leukocyte clusters were observed in the allograft four weeks after transplantation. In addition, signs of ROS production was also demonstrated. The leukocyte clusters showed no difference regarding composition of myeloid cells or the number of FoxP3 positive Treg cells. However, T cell infiltrate was significantly reduced in the DA.*Ncf1*^{E3/E3} recipients having normal ROS production. As a consequence, this means that there are relatively more Tregs in the infiltrate. This could suggest a regulatory effect of ROS on T cell infiltration, but no effect on other inflammatory cells in the allograft.

Molecular mechanisms of ROS-mediated effects

NOX2-derived ROS from Mph can be produced intracellular, into the phagosome, or extracellular, at the plasma membrane (17). The intracellular produced ROS are associated with the killing of pathogens and inflammatory signaling, extracellular ROS are considered to be second messengers (17). We observed that NOX2-derived ROS from Mph affects T cells by inducing Tregs and are able to activate T cells in a ROS-dependent manner (Chapters 2 and 4). Signaling by ROS depends on the location, time, concentration and duration of the ROS being produced, contributing to homeostasis and physiological cell activation (30). There are several potential ways how ROS could work; 1) ROS could work intracellular in the Mph, thereby interfering with the signaling pathways determining the T cell stimulatory capacity, 2) ROS could be a molecule delivered at the contact between Mph and T cell causing a

Gene	Ratio	Gene summary
IFIT1	0.61	Interferon-induced protein with tetratricopeptide repeats 1
IFIT2	0.67	interferon-induced protein with tetratricopeptide repeats 2
CCL5	0.74	Chemokine (C-C motif) ligand 5
IFIT3	0.74	Interferon-induced protein with tetratricopeptide repeats 3
TNFRSF4	0.83	Tumor necrosis factor receptor superfamily, member 4
<hr/>		
JUN	1.95	Jun proto-oncogene
ZMZ1	1.76	Zinc finger, MIZ-type containing 1
FOS	1.61	FBJ murine osteosarcoma viral oncogene homolog
MAPK13	1.56	Mitogen-activated protein kinase 13
HMOX1	1.49	Heme oxygenase (decycling) 1

Table 3: Most differently expressed genes when exposed to hydrogen peroxide with top 5 most downregulated genes and top 5 most upregulated genes. Ratio: α CD3/ α CD28 activated CD4+ T cells exposed to 4 hours of hydrogen peroxide / α CD3/ α CD28 activated CD4+ T cells without hydrogen peroxide.

local change in the redox state of the cell surface molecules important in T cell activation, 3) ROS might end up in the T cells and there actively interfere with T cell signal transduction.

We investigated the effect of ROS on T cells at the level of gene and protein expression. Hydrogen peroxide was used as the ROS to conduct these experiments. We tried to establish potential mechanisms on how Mph-derived ROS could affect T cells by searching for genes and proteins that directly or indirectly could have an effect on T cell activation.

Molecular mechanisms of ROS-mediated effects on genetic level

In order to investigate gene expression we performed gene expression analysis on CD4+ T cells using microarrays (in collaboration with M Eikmans, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands). We hypothesized that we would find genes involved in transcriptional regulation of T cell activation and signaling pathways, including cell surface markers and cytokines, able to activate and differentiate the T cells. We studied both unstimulated and α CD3/ α CD28-stimulated T cells. First we examined whether our method was valid by comparing genes from unstimulated T cells with α CD3/ α CD28-stimulated T cells. Increased expression of well-known T cell activation genes including ICOS, CD69, IL1B, and NFKB1 was observed, confirming T cell activation by α CD3/ α CD28 (data not shown). Hydrogen peroxide-induced gene expression has already been investigated in among others the human HeLa cell line (31), and even though the focus in these studies was on oxidative stress, genes involved in apoptosis, cell cycle regulation, cell-cell communication, signal transduction, and transcriptional regulation were differentially regulated upon treatment (32).

In the microarray we investigated the effect of 4 hours incubation with hydrogen peroxide on CD4+ T cells and Table 2 summarizes the top 5 genes that changed in expression compared to the controls. Genes with decreased expression included type 1 IFN signaling genes IFIT1, IFIT2 and

IFIT3 which upon transcription, inhibit various cellular and viral processes like cell proliferation, cell migration and viral replication (33). Anti-inflammatory therapy negatively regulates the transcription of the IFIT genes (33), as we observed as well, indicating that ROS signaling affects these genes in an anti-inflammatory manner. IL1RN encodes the protein IL-1RA which inhibits the activity of the pro-inflammatory cytokines IL-1 α and IL-1 β . TNFRS4 (CD134, OX40) encodes a stimulatory receptor on T cells (34). The TNF receptor family is vital for regulation of T cell activation, differentiation and survival. Members of the TNFR family regulate TCR-independent NF- κ B activation. Genes with increased expression due to hydrogen peroxide included the genes JUN and FOS encoding proteins that dimerize forming the transcription factor complex AP-1. DUPS1 (MKP-1) dephosphorylates and inactivates MAPKs and can attenuate LPS-induced IL-6, IL-10, and TNF- α expression (35). In addition, the gene KLF9 encodes a member of the Krüppel-like family of transcription factors and CD69 is a T cell activation marker. The genes which are down- and upregulated by ROS indicate an increase of inflammatory events and activation of the T cells, and although the downregulation of TNFRS4 is not in agreement with this, these data indicate that ROS plays a role in TCR-dependent activation of T cells.

We investigated also whether ROS would change the gene expression of α CD3/ α CD28-activated T cells when simultaneously exposed to ROS. Activated cells could have a changed thiol group formation compared with unstimulated cells, therefore the effect of ROS on already activated cells might be different. Incubation with hydrogen peroxide showed several genes with changed expression (Table 3). We again observed decreased expression of IFIT1, IFIT2, IFIT3, and TNFRS4. In addition, expression of CCL5 was reduced. CCL5 is a chemoattractant secreted by T cells upon activation. Genes with increased expression included JUN and FOS. ZMIZ1 encodes a member of the protein inhibitor of activated STAT family of proteins (36). MAPK13 is involved in a variety of cellular processes, whereas HMOX1 has antioxidant, anti-inflammatory, and anti-apoptotic properties. The effect of ROS on the gene expression on activated T cells is inconsistent showing genes that indicate activation (IFIT genes, JUN, FOS, and MAPK13), but also inhibition (TNFRS4, CCL5, ZMIZ1, and HMOX1). These data indicate the complexity regarding the effect of ROS on T cells and will therefore need more investigation in order to begining to understand ROS signaling pathways.

Molecular mechanisms of ROS-mediated effects at the protein level

As an alternative mechanistic explanation, we investigated the effect of ROS at the protein level, since there is evidence for a functional role for cysteine modifications in response to redox signals. For example, it has been shown that ROS can affect cell surface thiols of the proteins integrin α -4, CD4 receptor and the virus envelope protein gp120 (37,38). However, the identity and significance of these alterations in the protein thiols are still largely unknown. For this purpose proteomics were performed by a newly developed method

of Isotope-coded affinity tag (ICAT) labeling put into a mass spectrometry (in collaboration with PA van Veelen and GMC Janssen, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands). In order to test this method and trying to validate it with known literature, we used Jurkat T cells and hydrogen peroxide as a simplified model for Mph and T cells.

Proteomics was performed using ICAT-labeled Jurkat cells which were incubated for a short period of time with hydrogen peroxide. We observed and identified several membrane and cytoplasmic proteins that upon hydrogen peroxide treatment changed their thiol groups. However, although the technical part of the CAT appeared to work fine, interpretation of the data was still difficult. For example, the period in which hydrogen peroxide could potentially change thiol groups of proteins was limited. In addition, when the cells were rested after incubation with hydrogen peroxide they would change back to their original state. Therefore, the technique and procedures need to be further optimized to identify ROS-sensitive proteins involved in T cell activation. However in the future this redox-proteomics will allow for a better understanding on how ROS may contribute to signaling.

Concluding remarks

Anti-inflammatory Mph have a high plasticity. Both *in vivo* and *in vitro* different types of Mph2 have been observed, all presenting an overlapping phenotype, but each having specific characteristics. Classifying Mph2 is difficult, especially since no specific markers for human Mph2 have yet been identified, as is the case for mouse Mph2. Currently, there are a number of markers being used, but these are all based on the distinction between Mph1 and Mph2. The expression of these specific Mph2 markers is diverse among different Mph2 subsets. Therefore it will be more important to perform functional characterization of the different Mph2 subsets. As a consequence molecules involved in these diverse functions could ultimately serve as specific markers.

At present, the full mechanism by which Mph-derived ROS affect T cell activation and signaling is unknown. We observed that Mph2 activate T cells in a ROS-dependent manner but also that the suppression of activated T cells by Mph2 was ROS-dependent. We made a first step in trying to identify proteins and genes which are redox-sensitive. We decided to make use of inhibitors and focus on the signals between Mph and T cell that involve the activation of T cells. We observed that some cytokines were affected by DPI: the IL-12p40 and IL-10 production were suppressed by DPI, whereas no effect was observed with IL-6, suggesting that ROS is specifically involved in the regulation of some cytokines that may exert its effect on T cells. Affected cytokine production in the absence of ROS was also observed by others (39). These results can be a new start point for further research in unraveling the mechanism, but how ROS affects T cell activation will need further investigations. In summary, T cells are activated by Mph-derived ROS and regulation of the cytokine production by the APC is a potential mechanism how ROS can affect T cell functions.

References

1. Holmberg, J., J. Tuncel, H. Yamada, S. M. Lu, P. Olofsson, and R. Holmdahl. 2006. Pristane, a non-antigenic adjuvant, induces MHC class II-restricted, arthritogenic T cells in the rat. *Journal of Immunology* 176: 1172-1179.
2. Gelderman, K. A., M. Hultqvist, A. Pizzolla, M. Zhao, K. S. Nandakumar, R. Mattsson, and R. Holmdahl. 2007. Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. *Journal of Clinical Investigation* 117: 3020-3028.
3. Matsue, H., D. Edelbaum, D. Shalhevett, N. Mizumoto, C. Yang, M. E. Mummert, J. Oeda, H. Masayasu, and A. Takashima. 2003. Generation and function of reactive oxygen species in dendritic cells during antigen presentation. *J. Immunol.* 171: 3010-3018.
4. Schmielau, J., and O. J. Finn. 2001. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. *Cancer Res.* 61: 4756-4760.
5. Sagone, A. L., Jr., R. Husney, H. Guter, and L. Clark. 1984. Effect of catalase on the proliferation of human lymphocytes to phorbol myristate acetate. *J Immunol* 133: 1488-1494.
6. Biswas, S. K., and A. Mantovani. 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. *Nature Immunology* 11: 889-896.
7. Ricardo, S. D., H. van Goor, and A. A. Eddy. 2008. Macrophage diversity in renal injury and repair. *J. Clin. Invest* 118: 3522-3530.
8. Verreck, F. A., T. de Boer, D. M. Langenberg, M. A. Hoeve, M. Kramer, E. Vaisberg, R. Kastelein, A. Kolk, R. de Waal-Malefyt, and T. H. Ottenhoff. 2004. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. *Proc. Natl. Acad. Sci. U. S. A* 101: 4560-4565.
9. Van Dyken, S. J., and R. M. Locksley. 2013. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. *Annu. Rev Immunol* 31: 317-343.
10. Lang, R., D. Patel, J. J. Morris, R. L. Rutschman, and P. J. Murray. 2002. Shaping gene expression in activated and resting primary macrophages by IL-10. *Journal of Immunology* 169: 2253-2263.
11. Gustafsson, C., J. Mjosberg, A. Matussek, R. Geffers, L. Matthiesen, G. Berg, S. Sharma, J. Buer, and J. Ernerudh. 2008. Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. *PLoS. One.* 3: e2078.
12. Van den Heuvel, M. M., C. P. Tensen, J. H. van As, T. K. van den Berg, D. M. Fluitsma, C. D. Dijkstra, E. A. Dopp, A. Droste, F. A. Van Gaalen, C. Sorg, P. Hogger, and R. H. J. Beelen. 1999. Regulation of CD163 on human macrophages: cross-linking of CD163 induces signaling and activation. *Journal of Leukocyte Biology* 66: 858-866.
13. Hutchinson, J. A., P. Riquelme, B. Sawitzki, S. Tomiuk, P. Miqueu, M. Zuhayra, H. H. Oberg, A. Pascher, U. Lutzen, U. Janssen, C. Broichhausen, L. Renders, F. Thaiss, E. Scheuermann, E. Henze, H. D. Volk, L. Chatenoud, R. I. Lechler, K. J. Wood, D. Kabelitz, H. J. Schlitt, E. K. Geissler, and F. Fandrich. 2011. Cutting Edge: Immunological Consequences and Trafficking of Human Regulatory Macrophages Administered to Renal Transplant Recipients. *Journal of Immunology* 187: 2072-2078.
14. Hu, L., Y. Zhang, P. S. Lim, Y. Miao, C. Tan, K. U. McKenzie, C. G. Schyvens, and J. A. Whitworth. 2006. Apocynin but not L-arginine prevents and reverses dexamethasone-induced hypertension in the rat. *Am J Hypertens.* 19: 413-418.

15. Varga, G., J. Ehrchen, A. Tsianakas, K. Tenbrock, A. Rattenholl, S. Seeliger, M. Mack, J. Roth, and C. Sunderkoetter. 2008. Glucocorticoids induce an activated, anti-inflammatory monocyte subset in mice that resembles myeloid-derived suppressor cells. *J Leukoc. Biol.* 84: 644-650.

16. Woltman, A. M., J. W. de Fijter, S. W. Kamerling, L. C. Paul, M. R. Daha, and K. C. van. 2000. The effect of calcineurin inhibitors and corticosteroids on the differentiation of human dendritic cells. *Eur. J Immunol* 30: 1807-1812.

17. Bylund, J., K. L. Brown, C. Movitz, C. Dahlgren, and A. Karlsson. 2010. Intracellular generation of superoxide by the phagocytic NADPH oxidase: how, where, and what for? *Free Radic. Biol. Med* 49: 1834-1845.

18. Bedard, K., and K. H. Krause. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. *Physiol Rev* 87: 245-313.

19. Sena, L. A., S. Li, A. Jairaman, M. Prakriya, T. Ezponda, D. A. Hildeman, C. R. Wang, P. T. Schumacker, J. D. Licht, H. Perlman, P. J. Bryce, and N. S. Chandel. 2013. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. *Immunity*. 38: 225-236.

20. Deng, J., X. Wang, F. Qian, S. Vogel, L. Xiao, R. Ranjan, H. Park, M. Karpurapu, R. D. Ye, G. Y. Park, and J. W. Christman. 2012. Protective Role of Reactive Oxygen Species in Endotoxin-Induced Lung Inflammation through Modulation of IL-10 Expression. *J. Immunol.* 188: 5734-5740.

21. Savage, N. D., B. T. De, K. V. Walburg, S. A. Joosten, M. K. van, A. Geluk, and T. H. Ottenhoff. 2008. Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. *J. Immunol.* 181: 2220-2226.

22. Efimova, O., P. Szankasi, and T. W. Kelley. 2011. *Ncf1* (p47^{phox}) is essential for direct regulatory T cell mediated suppression of CD4+ effector T cells. *PLoS. One.* 6: e16013.

23. Wood, K. J., and R. Goto. 2012. Mechanisms of rejection: current perspectives. *Transplantation* 93: 1-10.

24. de Lafaille, M. A. C., and J. J. Lafaille. 2009. Natural and Adaptive Foxp3(+) Regulatory T Cells: More of the Same or a Division of Labor? *Immunity* 30: 626-635.

25. Graca, L., S. P. Cobbold, and H. Waldmann. 2002. Identification of regulatory T cells in tolerated allografts. *J Exp Med* 195: 1641-1646.

26. Hamano, K., M. A. Rawsthorne, A. R. Bushell, P. J. Morris, and K. J. Wood. 1996. Evidence that the continued presence of the organ graft and not peripheral donor microchimerism is essential for maintenance of tolerance to alloantigen *in vivo* in anti-CD4 treated recipients. *Transplantation* 62: 856-860.

27. Kingsley, C. I., M. Karim, A. R. Bushell, and K. J. Wood. 2002. CD25(+)CD4(+) regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. *Journal of Immunology* 168: 1080-1086.

28. Wing, K., Y. Onishi, P. Prieto-Martin, T. Yamaguchi, M. Miyara, Z. Fehervari, T. Nomura, and S. Sakaguchi. 2008. CTLA-4 control over Foxp3(+) regulatory T cell function. *Science* 322: 271-275.

29. Olofsson, P., J. Holmberg, J. Tordsson, S. M. Lu, B. Akerstrom, and R. Holmdahl. 2003. Positional identification of *Ncf1* as a gene that regulates arthritis severity in rats. *Nature Genetics* 33: 25-32.

30. Nathan, C., and A. Cunningham-Bussel. 2013. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. *Nat Rev Immunol* 13: 349-361.

31. Vandenbroucke, K., S. Robbens, K. Vandepoele, D. Inze, Y. Van de Peer, and B. F. Van. 2008. Hydrogen peroxide-induced gene expression across kingdoms: a

comparative analysis. *Mol. Biol. Evol.* 25: 507-516.

- 32. Weigel, A. L., J. T. Handa, and L. M. Hjelmeland. 2002. Microarray analysis of H2O2-, HNE-, or tBH-treated ARPE-19 cells. *Free Radic. Biol. Med* 33: 1419-1432.
- 33. Fensterl, V., and G. C. Sen. 2011. The ISG56/IFIT1 gene family. *J Interferon Cytokine Res* 31: 71-78.
- 34. So, T., and M. Croft. 2012. Regulation of the PKCtheta-NF-kappaB Axis in T Lymphocytes by the Tumor Necrosis Factor Receptor Family Member OX40. *Front Immunol* 3: 133.
- 35. Yu, H., Y. Sun, C. Haycraft, V. Palanisamy, and K. L. Kirkwood. 2011. MKP-1 regulates cytokine mRNA stability through selectively modulation subcellular translocation of AUF1. *Cytokine* 56: 245-255.
- 36. Lee, J., J. Beliakoff, and Z. Sun. 2007. The novel PIAS-like protein hZimp10 is a transcriptional co-activator of the p53 tumor suppressor. *Nucleic Acids Research* 35: 4523-4534.
- 37. Auwerx, J., O. Isacsson, J. Soderlund, J. Balzarini, M. Johansson, and M. Lundberg. 2009. Human glutaredoxin-1 catalyzes the reduction of HIV-1 gp120 and CD4 disulfides and its inhibition reduces HIV-1 replication. *Int J Biochem. Cell Biol.* 41: 1269-1275.
- 38. Laragione, T., V. Bonetto, F. Casoni, T. Massignan, G. Bianchi, E. Gianazza, and P. Ghezzi. 2003. Redox regulation of surface protein thiols: Identification of integrin alpha-4 as a molecular target by using redox proteomics. *Proceedings of the National Academy of Sciences of the United States of America* 100: 14737-14741.
- 39. Deffert, C., S. Carnesecchi, H. Yuan, A. L. Rougemont, T. Kelkka, R. Holmdahl, K. H. Krause, and M. G. Schappi. 2012. Hyperinflammation of chronic granulomatous disease is abolished by NOX2 reconstitution in macrophages and dendritic cells. *J Pathol* 228: 341-350.

Appendix

Nederlandse samenvatting

De afgelopen jaren is het inzicht in de biologische rol van zuurstofradicalen ('reactive oxygen species', ROS) dramatisch veranderd. Over het algemeen werd er gedacht dat ROS alleen maar schadelijk waren, maar intussen is duidelijk geworden dat ROS ook functioneren als belangrijke fysiologische regulatoren van intracellulaire signaaltransductie routes. ROS spelen een rol in antigenen presentatie en er is aangetoond dat waterstofperoxide, een belangrijke vorm van ROS, T cel activatie kan remmen. Ten slotte is aangetoond dat DA ratten met een verminderde ROS productie gevoeliger waren voor artritis, en dat ook dit gepaard ging met een veranderde T cel activatie. De reden voor deze verminderde ROS productie kwam door een polymorfisme in het *Ncf1* gen. Dit *Ncf1* gen codeert voor het eiwit p47^{phox}, wat een van de belangrijkste eiwitten is van het NADPH oxidase complex (NOX2). Dit NOX2 complex produceert de ROS superoxide. Muizen die een functioneel NOX2 eiwit p47^{phox} exclusief in hun macrofagen tot expressie konden brengen, waren beschermd tegen artritis. ROS afkomstig van macrofagen lijken dus een belangrijke rol te spelen en daarom wilden wij dit onderwerp in dit proefschrift verder bestuderen door verschillende macrofaag-subsets en het immuunmodulerende potentieel van ROS geproduceerd door macrofagen te onderzoeken.

Hoofdstuk 1 geeft algemene achtergrondinformatie met betrekking tot macrofagen. Daarnaast wordt er een overzicht van de verschillende soorten macrofagen gegeven. Ook wordt de activatie van macrofagen en de rol van macrofagen tijdens inflammatie besproken. Verder wordt er achtergrondinformatie over ROS gegeven. Ook wordt het NOX2 complex beschreven en de gevolgen van mutaties in dit complex. Ten slotte wordt in dit overzicht dieper ingegaan op de potentieel immuunmodulerende rol van ROS.

In **Hoofdstuk 2** onderzochten we de ROS-producerende capaciteit van humane macrofagen. De anti-inflammatoire macrofagen (gedifferentieerd met M-CSF; Mph2) hebben een hoge ROS productie na PMA stimulatie, terwijl dendritische cellen (gedifferentieerd met GM-CSF en IL-4) hoewelnaamd geen ROS produceren. In een 'mixed lymphocyte reaction' (MLR) waarin T cellen daarnaast geactiveerd werden met anti-CD3/anti-CD28, stimuleerden dendritische cellen de T cel proliferatie, terwijl Mph2 de T cel proliferatie juist onderdrukten. Deze remming bleek ROS-afhankelijk te zijn, want na toevoeging van de NOX2-remmer apocynin werd de remming opgeheven. De macrofagen induceerden regulatoire T cellen (CD4+CD25+FoxP3+) nadat CD4+CD25-T cellen aan deze cellen waren blootgesteld. Na toevoeging van apocynin bleek deze inductie ROS-afhankelijk te zijn. Dit konden we bevestigen met Mph2 afkomstig van patiënten met 'chronic granulomatous disease' (CGD) die een mutatie in NOX2 hebben, waarbij we in afwezigheid van ROS productie opnieuw verminderde inductie van regulatoire T cellen en meer T cel activatie

observeerden. Verder bestudeerden we de rol van ROS *in vivo* door de T cel activatie te bestuderen in een ratmodel met de 'delayed-type hypersensitivity' (DTH)-respons als uitleessysteem. Hieruit bleek dat het primen van naïeve Lewis ratten met Mph2 van DA ratten met een normale ROS-producerende capaciteit leidde tot een sterkere inductie van regulatoire T cel in vergelijking met het primen met Mph2 van DA ratten met een lage ROS productie. Bovendien was de T cel activatie lager met normaal ROS-producerende Mph2 gezien de verminderde DTH-respons in vergelijking met laag ROS-producerende Mph2. Deze data tonen aan dat ROS geproduceerd door Mph2 een rol spelen in de inductie van regulatoire T cellen.

In **Hoofdstuk 3** hebben we onderzocht of medicijnen die het immuunsysteem onderdrukken een negatief effect kunnen hebben op de ROS productie van macrofagen. Dit zou namelijk een nadelig effect kunnen hebben op de mogelijkheid om macrofagen als therapie te gebruiken in combinatie met de huidige therapieën. We vergeleken hierbij de pro-inflammatoire macrofaag (gedifferentieerd met GM-CSF; Mph1) met de anti-inflammatoire Mph2. Terwijl Mph2 een hoge ROS productie hebben na PMA stimulatie, vertoonden Mph1 juist een lage ROS-producerende capaciteit. Verschillende immuunsuppressiva (cyclosporine, tacrolimus, dexamethason, rapamycine, en mycofenolaat mofetil) werden aan de Mph1 en Mph2 toegevoegd. Wanneer de medicijnen werden toegevoegd op dag 6 van kweek, het moment dat de macrofagen gedifferentieerd zijn, was er geen effect op de ROS-producerende capaciteit aantoonbaar. Echter, de medicijnen hadden wel een effect op de ROS productie wanneer toegediend tijdens het differentiëren van monocytaar-macrofaag (gedurende de eerste 6 dagen). De medicijnen cyclosporine, tacrolimus, dexamethason en mycofenolaat mofetil verhoogden de capaciteit van Mph2 om ROS te produceren, terwijl rapamycine een remmend effect had. Hoewel de verschillende medicijnen geen effect hadden op de ROS-producerende capaciteit van Mph1, die om te beginnen al laag was, verhoogde dexamethason wel de ROS productie van dendritische cellen. Ook zorgde dexamethason voor een toename in de expressie van p47^{phox} op zowel mRNA als eiwit niveau. Functioneel versterkte dexamethason behandeling van Mph2 de suppressie van de productie van IFN-gamma en IL-4 door T cellen, hoewel er geen effect te zien was op de proliferatie van T cellen. Ten slotte zorgden dexamethason-injecties *in vivo* voor toename van ROS productie en tot verhoogde inductie van regulatoire T cellen, met name in de DA ratten met normaal ROS-producerende capaciteit. Hiermee tonen we een nieuw anti-inflammatoire mechanisme van dexamethason aan.

In **Hoofdstuk 4** onderzochten we de productie van ROS in verschillende Mph2 subsets en bestudeerden de rol van ROS geproduceerd door Mph2 op T cel activatie. Monocyten kunnen op diverse manieren gedifferentieerd worden tot Mph2. Deze Mph2 hebben overeenkomende kenmerken, maar zijn fenotypisch en functioneel toch verschillend van elkaar. In dit hoofdstuk hebben wij gekeken naar Mph2 gedifferentieerd met respectievelijk M-CSF (Mph2), IL-4

(Mph2a) en IL-10 (Mph2c). Mph2 en Mph2c lijken veel op elkaar: hoge CD14 en CD163 expressie, lage DC-SIGN expressie, lage productie van de pro-inflammatoire cytokines IL-6 en IL-12p40, terwijl Mph2a het tegenovergestelde laat zien. Ook functioneel zit er een verschil tussen de drie verschillende macrofagen: Mph2a is de meest potente T cel activator, terwijl Mph2c de slechtste is. De ROS-producerende capaciteit van Mph2 is het hoogst, Mph2c heeft een gemiddelde ROS producerende capaciteit, terwijl Mph2a nauwelijks in staat zijn om ROS te produceren. Om te onderzoeken of er een omgekeerde correlatie was tussen de ROS-producerende capaciteit en de T cel stimulatoire capaciteit, hebben we gebruik gemaakt van de NOX2-remmer DPI. Interessant genoeg zagen we dat DPI de T cel proliferatie en IFN-gamma productie remde. Verder onderzoek toonde aan dat het effect van DPI in de MLR niet op het niveau van de T cel plaats vond, maar juist bij de macrofagen. De interactie tussen de macrofaag en T cel, bepalend voor de activatie van de T cel, vindt plaats op verschillende niveaus waaronder MHC moleculen, co-stimulatoire moleculen en cytokine productie. DPI behandeling van Mph had geen effect op de expressie van MHC class 2 molecuul HLA-DR en ook geen effect op het co-stimulatoire molecuul CD86. Er was echter wel een remmend effect op de productie van de cytokines IL-12p40 en IL-10, maar niet IL-6, wanneer de Mph gestimuleerd werden met CD40L. DPI onderdrukte ook de IL-12p40 en IL-10 productie van Mph2, Mph2a, en Mph2c na LPS stimulatie. Deze remming van de cytokine productie door Mph kan bijdragen aan de verminderde capaciteit om T cellen te activeren. Dus we zien dat ROS een associatie heeft met de cytokine productie, maar meer experimenten zijn nodig om het volledige mechanisme te kunnen ontrafelen.

In **Hoofdstuk 5** hebben we de consequenties onderzocht van NOX2-gemedieerde ROS productie in een experimenteel model van chronische ontsteking in een transplantaat. Hiervoor hebben we een niertransplantatiemodel gebruikt met als donor Lewis ratten en als ontvanger DA.*Ncf1*^{DA/DA} en DA.*Ncf1*^{E3/E3} ratten, die alleen verschillen in de NOX2-producerende capaciteit van hun fagocyten. We waren hierdoor in staat het effect te onderzoeken van ROS op de inflammatoire respons in de getransplanteerde nier. Een week na de transplantatie van de nier werd de contralaterale nier verwijderd, waarna de ratten op dag 30 werden opgeofferd. We zagen dat 4 weken na transplantatie de creatinine en ureum waarden verhoogd waren ten opzichte van de normaalwaarden. Ook waren de albumine waarden in de urine significant verhoogd. Dit bevestigde dat we naar een model keken met een chronisch nierfunctie verlies. Schade in de getransplanteerde nier werd inderdaad bevestigd door op weefsel niveau een verhoogde mate van aankleuring van de schademarker KIM-1 aan te tonen. Daarnaast werd het weefsel gekarakteriseerd door een zeer sterke influx van ontstekingscellen, aangetoond met de leukocytenmarker CD45. Voor al deze parameters was er geen verschil aantoonbaar tussen de ontvanger stammen met een verschillende ROS producerende capaciteit.

Om een beter inzicht te krijgen hebben we ook gekeken naar verschillende

typen infiltrerende cellen. Verschillende subsets van myeloïde cellen waren aantoonbaar (aangetoond met antilichamen tegen OX42, ED1, ED2), maar de hoeveelheid aankleuring was niet verschillend. Er was ook geen significant verschil in de hoeveelheid regulatoire T cellen (aangetoond met een antilichaam tegen FoxP3). Wel was er een significant verschil in de T cel aankleuring (R73), waarbij er minder T cellen aanwezig waren in de DA.*Ncf1*^{E3/E3} ratten in vergelijking met DA.*Ncf1*^{DA/DA} ratten. Deze data suggereren een onderdrukkend effect van ROS op T cel infiltratie, terwijl er geen effect op de andere immuuncellen in het transplantaat werd gezien.

Tenslotte wordt in **Hoofdstuk 6** een overzicht gegeven van de studies beschreven in dit proefschrift waarin we verschillende facetten hebben bestudeerd hoe ROS een rol zouden kunnen spelen in de regulatie van een immuunrespons. Daarnaast bespreken we aanvullende gegevens over potentiele moleculaire mechanismen waarmee ROS zowel op eiwit- als op gen niveau hun effecten zouden kunnen bewerkstelligen. We hebben duidelijk aangetoond dat ROS-producerende Mph2 in staat zijn regulatoire T cellen te induceren, en identificeerden een ROS-gemedieerd effect op T cel infiltratie in een niertransplantatiemodel. Naast het feit dat ROS als boedschapper tussen antigen presenterende cellen en T cellen kan fungeren, toonden we ook duidelijk aan dat ROS een belangrijke plaats hebben in de functionele capaciteiten van verschillende Mph subsets. Naast de bestaande gegevens over de belangrijke plaats van ROS in oxidatieve stress en andere pro-inflammatoire processen, hebben de huidige studies nieuwe inzichten opgeleverd over de 'andere kant' van ROS en de betrokkenheid bij immuunregulerende processen. Het verder ontrafelen van deze complexe, en soms tegenstrijdige processen, zal een uitdaging zijn voor de komende periode.

Dankwoord

Tijdens mijn sollicitatiegesprek kreeg ik te horen dat ik was uitgekozen om te beginnen aan het promotieonderzoek wat beschreven is in dit proefschrift. Nu is het zover, mijn proefschrift is af! Dit heb ik niet alleen kunnen volbrengen en daarom wil ik graag een aantal mensen bedanken.

Allereerst wil ik Cees en Kyra bedanken. Kyra, jouw directe begeleiding in de eerste twee jaar van mijn promotieonderzoek en onze nauwe samenwerking heeft mij veel geholpen. Na je vertrek ben je steeds betrokken geweest bij het werk en ik wil je bedanken voor je altijd snelle reacties op de vele e-mails die zijn langsgekomen. Ook heb ik veel kunnen leren van jouw uitgebreide kennis. Cees, jou wil ik hartelijk bedanken voor het overnemen van mijn dagelijkse begeleiding in de laatste jaren. Jouw opbouwende kritiek heeft er aan bijgedragen dat alles toch tot een goed einde is gekomen.

Sandra en Karin, jullie wil ik bedanken voor de prettige samenwerking in de afgelopen jaren. Ik heb ontzettend veel van jullie geleerd! Uiteraard ook bedankt voor al jullie hulp met het voor elkaar krijgen van de resultaten.

Daarnaast wil ik Danielle, Ria en Nicole bedanken die mij met raad en soms met daad bijstonden. Verder wil ik ook de overige mensen van het nierziekten lab (Ethan, Karen, en alle anderen) en de vasculaire nefrologie lab (Eric, Ruben, Annemarie, en alle anderen) bedanken voor de hulp en de gezellige tijd op het werk.

Ik wil ook mijn kamergenoten Pieter, Hetty, Joe, Juha, Jeetindra en Jason bedanken voor alle lol en de vele grappen die plaatsvonden. Hierdoor was het altijd weer een verrassing wat er die dag zou gebeuren. Ook een speciaal bedankje voor mijn ex-kamergenoot Roelof die de lay-out verzorgd heeft van dit proefschrift.

Ook was er plezierige samenwerking met de afdeling Immunohematologie en Bloedtransfusie van het LUMC met Peter van Veelen, George Janssen en Michael Eikmans.

Tenslotte wil ik graag mijn familie bedanken. Suzanne en Deborah, bedankt voor alle ontspannende en leuke momenten naast het werk. Pap en mam, dat ik altijd mijn hart moest volgen en doen wat ik het liefst wilde, bedankt voor jullie steun.

Curriculum vitae

De schrijver van het proefschrift, Marina Kraaij, werd geboren op 28 december 1984 te Hillegom. In 2003 behaalde zij het VWO diploma aan het Fioretti college te Lisse. In datzelfde jaar begon zij met de studie Biomedische Wetenschappen aan de Universiteit Leiden. Tijdens deze studie verrichtte zij een Bachelor onderzoeksstage op de afdeling Infectieziekten van het LUMC te Leiden onder supervisie van Dr. P.H. Nibbering. Tijdens deze stage deed zij onderzoek naar de antimicrobiele en immuunmodulerende activiteiten van genetische varianten van humaan lactoferrine. De eerste Master onderzoeksstage tijdens deze opleiding verrichtte zij op de afdeling Pathologie van het LUMC te Leiden onder supervisie van Dr. N.F. de Miranda. Tijdens deze stage werd onderzoek gedaan naar de activatie van hypoxia in darmtumoren. De afsluitende Master onderzoeksstage tijdens deze opleiding verrichtte zij op de afdeling Cellular Medicine in de Musculoskeletal Research Group van de Newcastle University te Newcastle onder supervisie van Prof. Dr. J.M. van Laar. Tijdens deze stage werd onderzoek gedaan naar de rol van B-cellen in systemische sclerose. De studie Biomedische Wetenschappen werd afgesloten in 2008. Aansluitend hierop begon zij in september 2008 aan een Nierstichting-gefinancierd promotieonderzoek getiteld 'Inducing T cell tolerance via macrophage-derived radicals: a radical way to prevent transplant rejection' op de afdeling Nierziekten van het LUMC onder de supervisie van Dr. K.A. Gelderman en Prof. Dr. C. van Kooten. De resultaten van het promotieonderzoek zijn beschreven in dit proefschrift. In 2013 verrichtte zij postdoctoraal onderzoek op de afdeling Inwendige Geneeskunde, sectie Immunologie en Transplantatie, van het Erasmus MC te Rotterdam waar onderzoek werd gedaan naar de rol van monocyten in transplantatie in de onderzoeksgroep van Dr. A.T. Rowshani. Vanaf 2014 verricht zij postdoctoraal onderzoek op de afdeling Infectieziekten en Immunologie, sectie Moleculaire Afweer, op de faculteit Diergeneeskunde van de universiteit Utrecht te Utrecht met als onderwerp de immuunmodulerende mechanismes van de kip host defense peptide cathelicidin-2 in de onderzoeksgroep van Prof. Dr. H.P. Haagsman.

Bibliography

Kraaij MD, van Laar JM. The role of B cells in systemic sclerosis. *Biologics*. 2008.

Kraaij MD, Savage ND, van der Kooij SW, Koekkoek K, Wang J, van den Berg JM, Ottenhoff TH, Kuijpers TW, Holmdahl R, van Kooten C, Gelderman KA. Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. *Proc Natl Acad Sci U S A*. 2010.

Kraaij MD, van der Kooij SW, Reinders ME, Koekkoek K, Rabelink TJ, van Kooten C, Gelderman KA. Dexamethasone increases ROS production and T cell suppressive capacity by anti-inflammatory macrophages. *Mol Immunol*. 2011.

Hügle T, O'Reilly S, Simpson R, **Kraaij MD**, Bigley V, Collin M, Krippner-Heidenreich A, van Laar JM. Tumor necrosis factor-costimulated T lymphocytes from patients with systemic sclerosis trigger collagen production in fibroblasts. *Arthritis Rheum*. 2013.

Kraaij MD, Koekkoek KM, van der Kooij SW, Gelderman KA, van Kooten C. Subsets of human type 2 macrophages show differential capacity to produce reactive oxygen species. *Cell Immunol*. 2013.

Vereyken EJ*, **Kraaij MD***, Baan CC, Rezaee F, Weimar W, Wood KJ, Leenen PJ, Rowshani AT. A shift towards pro-inflammatory CD16+ monocyte subsets with preserved cytokine production potential after kidney transplantation. *PLoS One*. 2013.

* shared first author

Kraaij MD, Koekkoek KM, Gelderman KA, van Kooten C. The NOX2-mediated ROS producing capacity of recipient cells is associated with reduced T cell infiltrate in an experimental model of chronic renal allograft inflammation. *Transpl Immunol*. 2014.

Kraaij MD, Vereyken EJ, Leenen PJ, van den Bosch TP, Rezaee F, Betjes MG, Baan CC, Rowshani AT. Human monocytes produce interferon-gamma upon stimulation with LPS. *Cytokine*. 2014.

Vereyken EJF*, **Kraaij MD***, Hilbrands LB, Leenen PJM, Hesselink DA, van den Bosch TPP, Baan CC, Betjes MGH, Rowshani AT. Monocytic profiles in kidney transplant recipients: stable grafts vs. rejection. *Manuscript submitted*.

* shared first author

Kraaij MD, van den Bosch TPP, Caliskan K, Balk AH, Leenen PJM, Betjes MGH, Baan CC, Rowshani AT. Peripheral blood monocyte subsets in heart transplant recipients. *Manuscript in preparation*.

