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ABSTRACT

Motivation: Large-scale genotyping relies on the use of unsuper-
vised automated calling algorithms to assign genotypes to hybrid-
ization data. A number of such calling algorithms have been recently
established for the Affymetrix GeneChip genotyping technology.
Here, we present a fast and accurate genotype calling algorithm for
the lllumina BeadArray genotyping platforms. As the technology
moves towards assaying millions of genetic polymorphisms simulta-
neously, there is a need for an integrated and easy-to-use software
for calling genotypes.

Results: We have introduced a model-based genotype calling
algorithm which does not rely on having prior training data or require
computationally intensive procedures. The algorithm can assign
genotypes to hybridization data from thousands of individuals
simultaneously and pecols information across multiple individuals to
improve the calling. The method can accommodate variations in
hybridization intensities which result in dramatic shifts of the position
of the genotype clouds by identifying the optimal coordinates to
initialize the algorithm. By incorporating the process of perturbation
analysis, we can obtain a quality metric measuring the stability of the
assigned genotype calls. We show that this quality metric can be
used to identify SNPs with low call rates and accuracy.
Availability: The C++ executable for the algorithm described here is
available by request from the authors.

Contact: teo@well.ox.ac.uk or tgc@well.ox.ac.uk

1 INTRODUCTION

The possibility of genome-wide studies hinges on advances
in genotyping technology to perform large-scale genotyping
quickly and cheaply, assaying up to a million single nucleo-
tide polymorphisms (SNPs) simultaneously. In this setting,
it is difficult and time consuming to determine genotypes
manually from the examination of fluorescent dye intensities
representing the presence or absence of alleles and automated
genotype calling procedures are necessary for such large-scale
genotyping.

*To whom correspondence should be addressed.
"The authors wish it to be known that, in their opinion, the first two
authors should be regarded as joint First Authors.

A number of genotype calling algorithms have been
established recently for the Affymetrix GeneChip and
ParAllele Molecular Inversion Probe genotyping technology
(Affymetrix Inc., 2006; Di ef al., 2005; Moorhead et al., 2006;
Plagnol et al., 2007, Rabbee and Speed, 2006; The Wellcome
Trust Case Control Consortium, 2007; Xiao et al., 2007). There
has been a confluence in the style and input of the calling
algorithms towards the use of multi-component mixture models
on hybridization intensities. These intensities are typically
normalized and transformed to coordinates which yield distinct
genotype clouds that are easier to call.

Generally speaking, the end-products of the genotyping
process yield hybridization intensities for the alleles and
genotypes are assigned by comparing the relative strength of
these intensities. While the genotype of a SNP for each sample
can be assigned independently, it has been shown that pooling
information across multiple samples at each SNP can enhance
the calling process and result in higher quality calls (Affymetrix
Inc., 2006). However, this requires non-biological differences of
intensities to be minimized. Various normalization schemes
have been explored and implemented although these schemes
are generally unique to each genotyping technology (Bolstad
et al., 2003; Carvalho et al., 2007; Rabbee and Speed. 2006;
Xiao et al., 2007). These normalized signal intensities are often
transformed to different coordinate scales for ease of calling,
and the contrast-strength transformation has been the preferred
scale for a number of algorithms (Affymetrix Inc., 2006;
Moorhead et al., 2006; Plagnol et al., 2007). The strength and
contrast can be respectively interpreted as the equivalent of r
and 8 in polar coordinates for the allelic signals (see Fig. 1).

While suitably normalized intensities generally result in
genotype clusters with similar location characteristics across
the SNPs, assigning genotypes for hundreds of thousands of
SNPs means that a calling algorithm has to be suitably flexible
to variations in the signal intensities. For most of the
genotyping technologies, a fraction of the SNPs can have
genotype clusters that are significantly shifted away from the
expected positions (see Fig. 2). This can potentially result in
erroneous genotype calls when the calling algorithm is unable
to account for such extreme shifts.

In an independent pursuit of a calling algorithm for Illumina
data, we formalize a calling strategy which is similar to the
approach by Moorhead et al. (2006) and Plagnol er al. (2007),
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Fig. 1. A typical clusterplot of the allelic hybridization signals for a
SNP: (a) after normalization; (b) after transformation of the same data
to yield the contrast-scale coordinates. Each point in the figures
represent the intensity data for an individual.
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Fig. 2. Clusterplot for a SNP with shifted genotype clusters. Points in
grey represent the observed signal data and the black ellipses represent
the expected positions of the three genotype clouds.

and has a number of features which are specifically designed
for the BeadArray genotyping technology. This strategy is
set within an Expectation-Maximization (ramework, which
is extremely fast without compromising on the quality of the
genotype calls. We also explored the use of perturbation
analysis to quantify the stability of the genotype calls, and
provide a metric for assessing the quality of the assigned
genotypes for each SNP as a whole. We emphasize the differ-
ence between the quality of the assigned genotype for each
individual at a SNP, versus the quality of the assigned geno-
types for each SNP across all the individuals. Our algorithm
also has the ability to accommodate noisier data from
whole-genome amplified DNA. It has been implemented in
a C++ program Illuminus and is available by request from
the authors.

2 METHODS
2.1 Chip design

Here, we provide a description of the chip design for the Illumina
HumanHap 550K SNP microarray. Other Illumina HumanHap
microarrays (e.g. the 650K and 1M versions) which assay different
number of SNPs are of similar technology and construction
(Gunderson e al., 2006; Steemers et al., 2007). Each microarray
consists of lateral stripes, each of which contains a beadpool of 55000
different beadtypes. Every beadtype assays a single SNP and is
represented by 20 beads on average. Each of these beads accommodates
locus-specific 50-mer probes which correspond to the nucleotide
sequence directly adjacent to the SNP. The single base extension
(SBE) biochemistry format allows each beadtype to assay both SNP
alleles, thus potentially providing 20 allele measurements per SNP on
average for each DNA sample. Visualization of bead hybridization
is achieved through the addition of hapten-labelled ddNTPs. If the
labelled dANTP corresponds to the complement of the assayed SNP,
it will be incorporated by the extending polymerase and, following
a staining step, the resultant fluorescent wavelength and intensity is
measure by a scanner.

2.2 Normalization

Each microarray is divided into a number of sub-bead pools
(25 sub-bead pools for the 550K chip) and normalization of the
bead intensities occurs at the sub-beadpool level. The normalization
algorithm uses a six-degree of freedom affine transformation which
oceurs in five steps (Kermani, 2005):

(1) outlier removal

(2) background estimation
(3
(4) shear estimation

rotational estimation

(5) scaling estimation.

A brief description of the algorithm is as follows: within each sub-
beadpool, outlier SNPs are removed if their allelic intensities are smaller
than either the 5th smallest or Ist percentile as compared to all SNPs,
or if their intensities are larger than the 5th largest or 99th percentile
as compared to all SNPs. Background estimation occurs by uniform
sampling of 400 points along each intensity axis to create a linear fitting
to candidate homozygotes. The intercept of the linear fittings from both
homozygotes then defines the origin. Rotation and shear of the data
points by the same uniform sampling then occurs with respect to this
defined origin. The final normalized intensities are then determined
by mean scaling via virtual control points. This procedure at present
oceurs automatically within the Illumina BeadStudio software and
outputs the normalized intensities, which provide a pair of coordinates
corresponding to the signals for the two alleles at each SNP.

2.3 Manual and automated Illumina calling

The automated GenCall proprietary algorithm which Iumina provides
with BeadStudio was initiated within the BeadStudio analysis on all
Iumina 550K SNPs. These genotypes are herein referred to as
*GenCall’ genotypes. Manual curation of the IHumina SNPs was
initiated on the GenCall clustered genotypes and are herein called
“GenCall-C" genotypes. Manual inspection and adjustment of the
genotype classifications was performed on all SNPs with: (a) call rates
<95.0% at a GC score cutoff of 0.20; (b) call rates >95.0% with cluster
separation scores <0.25 or average GC score <0.60: (¢) Hardy

Weinberg equilibrium xl P-values <0.0001. In addition, all mitochon-
drial and SNPs located on the X or Y chromosomes were inspected.

2742

24



A genotype calling algorithm

24 Mixture model
Let (xj. y;) denote the normalized signal intensities for the two alleles
which we generically define as 4 and B, respectively, for sample j at
SNP /. We define the contrast and strength respectively as
Xl = Vil
= X+ v
sii = loglxy + yi) 2)

)

We fit a three-component bivariate mixture model for X;=(c )
using multivariate truncated ¢ distributions, where the three compo-
nents correspond to the genotype classes of 44, AB and BB, respec-
tively. Let fix; g, X, v) denote the density funetion for data x at a
i distribution with location parameter g, variance-covariance matrix X
and v degrees of freedom. The density for Xj; can be written as

3
X)) = Z;\A—¢A(Xfri e Epov) )
=

where (A, 2. 43) corresponds to the mixture proportions obtained by
assuming Hardy-Weinberg equilibrium, and
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We also introduce a fourth bivariate Gaussian component with zero
covariance and significantly large variances such that the density is flat
across the possible range of values. This serves as an outlier class for
samples with intensity profiles which do not clearly belong to any of
the three valid genotypes.

The parameters p; and T, are estimated from the data, while v, are
pre-determined. As the Illumina BeadArray technology yields extremely
sharp and uniform signals for the homozygotes as compared to
the heterozygotes at bulk of the SNPs, the variance profiles for the
distributions of the contrast for the A4 and BB genotype clusters are
significantly peaked (see Fig. 3). This can potentially bias the genotype
calling since any homozygote samples with contrast intensities which
are marginally different from the uniform signals may be assigned
heterozygous genotypes. The use of ¢ distributions means we can model
this feature with heavier-tails for the homozygous clusters as compared
to the heterozygous cluster. In practice, this means we fit v = vy < for
most SNPs, and where the variance profiles for the contrast of the three
genotype clusters are similar, we [it a constant degree of freedom for
all three components.

An  Expectation-Maximization procedure is implemented which
alternates between recalibrating the parameters pe. Eyx and Ap using
maximum-likelihood estimation conditional on the assigned genotypes
(the M-step), and reassigning the genotypes to the intensity data
conditional on the recalib d cluster characteristics (the E-step).
We iterate between the process of recalibration and r
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Fig. 3. The clusterplot of a typical SNP on the Illumina array which
yields highly homogencous signals for the homozygous clusters,
resulting in significantly peaked variance profiles for the homozygous
clusters. Lines in black represent the kernal densities of the observed
data (in grey).

posterior probability is below the threshold will be assigned a NULL
genotype.

Initialization of the EM procedure for each SNP is performed using
a one-dimension three-component Gaussian mixture model with equal
mixing for the contrast axis, and searches across five guided starts
to identify the optimal set of parameters which best fits the data.
Of the five starting sets of parameters, two are guided by the data
and this modification allows genotype clusters which are shifted to
be accommodated accordingly. The spread of the Gaussian distribu-
tions are similarly pre-determined for the initialization and are
assumed to be identical across all three genotype classes for each of
the five guided starts. As with the location parameters, the SDs
for the first three starts are pre-determined, and are calculated from
the data for the last two starts. A NULL ecomponent with a flat
density is introduced to accommodate samples with contrast scores
which are ambivalent to cluster membership. The EM algorithm
is initialized with the set of starting parameters which yields the largest
likelihood.

2.5 Chromosome X

For SNPs on chromosome X which are not located in the pseudo-
al regions, the genotype calling procedure is modified 1o

until the reassignment yields exactly the same genotype configuration
as that of the previous iteration. Al every reassignment siep, we
introduce an additional step which reflects the natural decision-making
process of assigning genotypes. Samples with contrast values that
are larger than the mean contrast of the heterozygous cluster will never
be assigned an A4 genotype, while samples with contrast values that
are smaller than the mean contrast of the heterozygous cluster will
never be assigned a BB genotype. The genotype for the j sample can
be assigned to the genotype class with the maximum posterior
probability, subject to the constraint that the maximum posterior
probability is above some threshold. Samples where the maximum

incorporate gender information as males contain only one copy ol
chromoseme X and thus will never be heterozygous at these SNPs.
As we expect only the strength coordinates to differ between males and
females with similar distribution for the contrast coordinates, there is
no change to the calling procedure for females, whereas

$2(Xr gy, Ea. v2, male) = 0
in Equation (5). The mixture proportions utilizing Hardy Weinberg
equilibrium is calculated such that males only contribute one allele copy

when evaluating the allele frequencies and females contribute two allele
copies as usual.
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2.6 Modelling parameters

The parameters used for our implementation of the calling algorithm
are listed in detail here:

2.6.1  Initialization
starts are

The location parameters for the five guided

+ (—0.9.0.0,09)

o (=09, —0.5,0.9)

e (=09.05.09)

¢ (—0.9,0.5 (max (¢)+min (¢)), 0.9 max (c))

« (0.9 min (c), 0.5 (max (¢)+ min (c)), 0.9).
The SDs for the three genotype classes are identical for each guided
start, and they are:

e 0.1

e 0.1

e 0.1

o 0.05 (max (c) +min (c))

« 0.05 (max (¢) +min (c)).
The location and SD of the NULL component are 0 and 100000,

respectively for genomic DNA, and 0 and 1000, respectively for whole-
genome amplified DNA.

2.6.2  EM mixture model
class k is updated by:

o L
o= (55 = (nki’::f,. " Z’:\b)

where ;. denote the number of samples assigned to genotype class &,
and the superseript refers to the points which have been assigned to
genotype class k.

The variance covariance matrix for genotype class k, E,, is
updated by:
(DGR R -

zrrr:(t}{-f _ (—_J.)(‘ﬁ — 50 Z;"(-‘f: — 5k

For most of the SNPs, we (it multivariate ¢ distributions with heavier
tails for the two homozygous classes. This is represented by v, =v; =6,
m=20. For a fraction of the SNPs where the variance profiles for
the contrast of the three genotype clusters are similar, we fit
M= =v;=20.

The location and variance-covariance matrix for the NULL
component are

The location parameter for genotype

-1

100000 0
0.0)  and ( 0 mnnnn)
respectively for genomic DNA, and
1000 0
(0.0) and ( 0 1000)

respectively for whole-genome amplified DNA.

2.7 Perturbation analysis

In the process of calling the genotypes for hundreds of thousands of
SNPs, it is inevitable that there will be SNPs with high-confidence and
yet erroneous calls which will filter through despite stringent thresholds
on the maximum posterior probabilities. As it is impossible to manually
curate the assigned genotypes for all the SNPs, we implemented a

perturbation analysis step, which provides a metric for quantifying
the stability of the assigned genotypes to minor perturbations in the
normalized intensities (submitted). This works on the remit of compar-
ing the genotype calls obtained from two independent runs of the
algorithm using the original and perturbed intensities respectively,
where a high rate of discordance between the two runs implies that the
genotype assignments are less reliable for the particular SNP. While this
means that every SNP needs to be called twice, once on the original
intensities (. 1) and once on the perturbed intensities (x4 €1, v+ €2)
where €, and e» are independent and identically N(O, 0.052)‘ the
algorithm within the EM framework is extremely fast and the time
taken to run the analysis with perturbation analysis is realistic.

3 RESULTS

We compared the performance of Iluminus on genotype
data for 1409 samples with genomic DNA which have been
genotyped on both the Illumina 550K and the Affymetrix
500K GeneChip genotyping arrays. These samples are from
the 1958 British Birth Cohort which have been genotyped
as part of the Wellcome Trust Case Control Consortium
(The Wellcome Trust Case Control Consortium, 2007). Of
these data, we identified 82981 SNPs which overlap on the two
chips, and the genotypes for the Affymetrix data are available.
Genotypes for the Affymetrix data have been called using
the automated program Chiamo (The Wellcome Trust Case
Control Consortium, 2007). Four metrics are used in assessing
the performance of Illuminus against the genotype calls
obtained using the GenCall algorithm from the BeadStudio
software (Version 3): (i) call rate, defined as the percentage of
valid genotype calls (excluding the NULL calls); (ii) con-
cordance, defined as the percentage of valid calls made by each
method which are identical to the genotypes from the
Affymetrix GeneChip technology (see Discussion Section);
(iii) overall concordance, defined as the percentage of concor-
dant genotype calls out of all possible calls—essentially a
product of the concordance and the call rate (iv) filtered SNPs,
defined as the number of SNPs which have been dropped from
further analysis due to low SNP-wise call rates, defined at 0.95
for samples with genomic DNA and 0.90 for whole-genome
amplified samples. GenCall genotypes have been thresholded at
a confidence score of 0.20. and any genotype with a score less
than 0.2 is assigned as a NULL genotype. The BeadStudio
software comes with the flexibility of manually curating the
calls made by GenCall. We also assess the performance of
Hluminus against GenCall genotypes which have undergone
manual curation. We calculated the call and concordance rates
for genotypes by Iluminus at thresholds of 0.95. We also run
[luminus with perturbation analysis, flagging and excluding
SNPs with more than 5% discordant genotypes between two
runs of Iuminus with the original and perturbed intensities.
The results are summarized in Table 1.

GenCall yielded high quality genotypes. successfully assign-
ing a valid genotype to 99.597% of the data, with high accuracy
as reflected by a concordance of 99.785% with genotypes
from a different platform. This yielded an overall concordance
of 99.383%. The process of manual curation appeared to be
conservative and chose to classify more potentially ambiguous
calls as NULL genotypes. This reduced the call rates
to 99.419%, but increases the concordance to 99.801%. While
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Table 1. Comparison of Hluminus against GenCall on 82981 SNPs
for 1409 samples genotyped using genomic DNA

Table 2. Comparison of Hluminus against GenCall on 95 578 SNPs for
252 samples genotyped using whole-genome amplified DNA

Method Call rates  Concordance Overall Number of Method Call rates Concordance Overall Number of

(%) (%) concordance  SNPs filtered (%) (%) concordance  SNPs filtered
(%) (%)

GenCall 99.597 99.785 99.383 1644 GenCall 82.207 95.867 78.809 41332

GenCall-C 99.419 99.801 99.221 636 Iuminus, 95.374 94.561 90.187 1607

Illuminus 99.873 99.729 99.603 215 Iuminus-PA 95,598 95.031 90.848 379(+ 7530)

Iluminus-PA 99.896 99.762 99.659 T1(+2805) GenCall-PA 82958 96.051 79.682 35697(+ 7530)

GenCall-PA  99.675 99.791 99.467 S21(+2805)

Numbers in the last column refer to the number of SNPs with per-SNP call rates
<95% which would have been excluded from further analyses. GenCall-C
refers to genotypes which have undergone manual curation. [lluminus-PA refers
to the use of perturbation analysis to exclude SNPs with unstable genotypes.
GenCall-PA refers to the genotype calls made by GenCall on the same SNPs
which remained after exclusion based on perturbation analysis on Illuminus.

this reduces the overall concordance to 99.221%, manual cura-
tion can increase the accuracy of the calls made, and also
reduce the number of SNPs with <90% call rate. At a threshold
of 0.95, Hluminus made around 0.28% more calls, and this
translated to 322699 genotypes which were assigned by
Iluminus but failed to be assigned by GenCall. The rate of
concordance for Illuminus was marginally lower but overall
IMuminus achieved a much higher concordance rate of
99.603%. Perturbation analysis identified 2805 SNPs to be
removed. These SNPs have mean call and concordance rates of
99302 and 98.787%, and removing these SNPs from the
analysis resulted in higher call and concordance rates of 99.896
and 99.762% for the remaining SNPs. This suggests that
perturbation analysis can correctly identify SNPs with higher
rates of erroneous calls. In order to provide a fair comparison
of GenCall and Illuminus, we also investigated the performance
of GenCall on the same set of remaining SNPs after exclusion
based on perturbation analysis on Illuminus. Our analysis
showed that removing SNPs identified by perturbation analysis
also improved the performance of GenCall, suggesting that the
SNPs removed were performing poorly. SNP-wise call rates
have often been used as a criterion for filtering SNPs
(Gudmundsson et al., 2007, Rioux et al, 2007; Saxena ef al,
2007; Scott et al, 2007; The Wellcome Trust Case Control
Consortium, 2007: Yeager et al, 2007), and a common
approach is to remove SNPs with <95% call rates. The use
of GenCall resulted in the loss of at least 636 SNPs, while
Iluminus achieved a better performance by removing only 215
SNPs.

We also investigated the performance of Illuminus on
252 samples which have been genotyped on both the Illumina
650K and the Affymetrix 500K GeneChip genotyping arrays
with whole-genome amplified DNA (Table 2). We analysed
95578 SNPs found on both platforms, and the genotypes for
the Affymetrix data has similarly been called using Chiamo.
Perturbation analysis with a discordance threshold of 5%
identified 7530 SNPs to be removed. These SNPs have mean
call and concordance rates from Illuminus of 92.624 and
88.819%, and removing these SNPs from the analysis resulted

Numbers in the column with the Filtered header refer to the number of SNPs with
per-SNP call rates <90% which would have been excluded from further analyses.
A lower threshold is used because of whole-genome amplification. Illuminus-PA
refers to the use of perturbation analysis to exclude SNPs with unstable
genatypes. GenCall-PA refers to the genolype calls made by GenCall on the
same SNPs which remained after exclusion based on perturbation analysis
on [Huminus.

in higher call and concordance rates for the remaining SNPs.
We observed a drop in the performance of both GenCall and
Hluminus for whole-genome amplified samples. GenCall has
a lower call rate of 82%, but calls that were made generally are
highly concordant with Chiamo calls. Hluminus performed
significantly better with a much higher call rate of 95% while
achieving similar concordance rates as GenCall. Overall, this
means Illuminus made at least 2.5 million more concordant
calls across 252 samples, corresponding to 12% more concor-
dant calls on top of GenCall. While it appears that the numbers
are considerably low, we caution against over-interpreting these
figures since the performance of both GenCall and Illuminus
is necessarily bounded by the error rates of Chiamo and we
believe this may be substantial for whole-genome amplified
DNA (see Discussion Section). GenCall removed 41332 SNPs
with SNP-wise call rates of <90%. By comparison, Illuminus
experienced a more tolerable loss of 1607 SNPs.

4 DISCUSSION

We have introduced a model-based approach to call genotypes
for the Illumina BeadArray platforms and this has been
implemented within an Expectation-Maximization framework
in the program Illuminus. By comparing the performance of
Illuminus against GenCall on data where the genotypes for the
same SNPs from a different genotyping platform is available,
we see that Illuminus made more concordant calls and resulted
in a smaller number of SNPs which are excluded on the basis of
per-SNP call rates (see below). This improvement over GenCall
is significantly more substantial for DNA samples which have
undergone whole-genome amplification (see below). We have
also investigated the use of perturbation analysis to provide
a metric for assessing the stability of the assigned genotypes to
minor changes in the allelic signals. Empirical results suggest
that perturbation analysis correctly identified SNPs with lower
call and concordance rates.

In quantifying the performance of Illuminus, we have
compared the assigned genotypes against calls made on the
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Fig. 4. Clusterplots of a SNP which has been typed on both genomic
and whole-genome amplified DNA. Points in black correspond to
samples with genomic DNA while points in grey correspond to samples
with amplified DNA. The plots are made on the (a) normalized allelic
signal coordinates; (b) strength-contrast transformed coordinates.

same set of SNPs on the Affymetrix 500K genotyping array.
This is clearly not ideal as it assumes that the genotype calls
made by Chiamo on the Affymetrix 500K array are correct.
The concordance rates calculated through such comparisons
are naturally bounded above by the error rates of Chiamo.
We visually inspected the clusterplots for SNPs where the
discordance between Chiamo genotypes and GenCall or
HMluminus genotypes is =>90% and found that all these SNPs
have been correctly called using GenCall and Illuminus but the
genotypes are inconsistent with the Chiamo genotypes from
the Affymetrix data. As we expect such inconsistencies to be
more prevalent for whole-genome amplified DNA, we visually
verified the Chiamo calls on the Affymetrix data for a random
collection of 4000 SNPs and discarded 1481 (37%) SNPs with
suspect genotype calls. On the remaining set of 2519 SNPs
with ascertained accurate Chiamo calls, the concordance
rates of Illuminus and GenCall genotypes increased to 82.769
and 90.509%, respectively. This suggests that while the use of
genotypes from an independent platform can provide a measure
of comparative performance between GenCall and Illuminus,
the concordance rates calculated here tend to underestimate the
actual performance.

While whole-genome amplification allows the recovery of
DNA samples with inadequate concentration by performing
in vitro reproduction of quality template DNA, empirical
evidence suggests that amplified DNA suffers a reduction in
hybridization signals. In the context of genotyping large
number of samples simultaneously which is common in a
genome-wide association study, this can result in a proportion
of SNPs experiencing shifts in the positions of the genotype
clusters (see Fig. 4), resulting in indistinct clusters and
increasing the uncertainty of a call. While the performance of
both GenCall and Illuminus were less optimal for hybridization
data from whole-genome amplified DNA, Illuminus comes
with a modification for calling data from amplified DNA and
this provides a substantial improvement over GenCall.

Genotyping technology is moving towards assaying millions
of polymorphisms simultaneously. This requires automated
genotyping algorithms to be efficient and accurate. While the

use of computationally intensive algorithms may aim to maxi-
mize the potential of the hybridization data, they require the
use of large computing clusters which the typical laboratory
may not have access to. There is a need for an integrated,
simple-to-use and yet accurate genotype calling software.
The software for the algorithm comes equipped with a metric
for identifying SNPs with unstable genotypes. We have
presented a fast and accurate calling algorithm which is
designed to work with data from the Illumina BeadArray
genotyping platforms.
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