
The gravitational billion body problem : Het miljard deeltjes probleem
Bédorf, J.

Citation
Bédorf, J. (2014, September 2). The gravitational billion body problem : Het miljard deeltjes
probleem. Retrieved from https://hdl.handle.net/1887/28464

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/28464

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/28464

Cover Page

The handle http://hdl.handle.net/1887/28464 holds various files of this Leiden University
dissertation

Author: Jeroen Bédorf
Title: The gravitational billion body problem / Het miljard deeltjes probleem
Issue Date: 2014-09-02

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/28464

7|Conclusions

e last few years have seen a huge increase in computational power in the form of spe-
cial purpose hardware and new supercomputers. is is the direct result of the increas-
ing amount of parallelism available in current day computer chips. However, in order to
use this computational power, the user — or better, the developer — is forced to rethink
the design and implementation of algorithms. Without taking advantage of the available
multi-core technology there will hardly be any advantage of buying a new computer. We
see this trend in the Central Processing Unit (CPU) and the Graphics Processing Unit
(GPU), but also for example in the mobile phone industry where quad-cores are the cur-
rent day standard and octo-cores are slowly being introduced.

is thesis presents how we can benefit from the available processing power of these
many-core chips, in our case GPUs, when performing astrophysical simulations. is can
either be by implementing expensive, but accurate, algorithms such as direct N-body
methods (see Chapter 2) or by taking it a step further and transforming the hierarchical
Barnes-Hut tree-code method into a version that is suitable for many-core architectures
(see Chapters 3, 4 and 6). e resulting simulation codes have a performance that is one
to two orders of magnitude higher than previous versions. is allows for new kinds of
science and wider parameter searches. For example, the work in Chapter 5 is the result of
hundreds of simulations, while other works about the same topic usually do not perform
more than a dozen simulations.

In this work we kept the direct N-body method and the tree-code method strictly
separate, but in the future it might be beneficial to make use of both methods or make one
of the methods part of a larger (existing) code. We will discuss this and more in the next
paragraphs.

7.1 BRIDGE; Combining direct and hierarchical N -
body methods

e difference between particle numbers used in collisional and collisionless methods has,
because of their difference in scaling complexity, over the years only increased. Depending
on the problem, scientists either choose for high precision direct N-body methods or for
large particle numbers using approximation methods like the tree-code. Recently, how-
ever, methods have been introduced that try to combine the best of both worlds: the high

116 Conclusions

Figure 7.1: Performance comparison of a
suite of N -body codes. These codes are
included in the AMUSE software pack-
age. Visible are direct N -body codes that
scale as O(N2) and hierarchical codes
that scale as O(Nlog(N)). (Figure taken
from (Portegies Zwart et al. 2013))

100 101 102 103 104 105 106 107

N

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

t w
a
ll
 [
s]

N2

Nlog(N)

Hermite
MI6
ph4
Huayno
ph4_GPU

Gadget2
BHTree
Fi_3

Bonsai

accuracy of direct methods and the speed of tree-codes. In the BRIDGE algorithm by Fu-
jii et al. (2007) a direct N-body method is combined with a tree-code to integrate the
evolution of star clusters (which requires direct N-body methods) embedded in their host
galaxy (which requires an approximation method because of the large number of particles).
is allows for detailed simulations in the area of interest while still being able to use large
particle numbers. Since the method is based on two well known algorithms it is possible
to use the methods presented in this thesis to accelerate BRIDGE with GPUs.

With simulation codes becoming more complex and containing more advanced fea-
tures it becomes difficult to add new physics to existing codes without breaking other parts
of the codes. is is a common problem in computational sciences and software develop-
ment in general. Ideas often start off simple, but when something works you want to extend
it, which complicates matters. In AMUSE (Portegies Zwart et al. (2009)) a different ap-
proach is taken. Codes that are written for different specific purposes are combined into
one framework. is simplifies the development of the separate software products. e
other advantage is that you can combine simulation codes that have support for GPUs
with codes that do not and therefore still have the speed advantage of using GPUs. With
AMUSE it is possible to use the same script using different simulation codes and thereby
have the choice between speed, accuracy or available hardware. An example of this is shown
in Fig. 7.1 where the execution speed of a set ofN-body integration codes is demonstrated.
e figure shows the results of 4 direct N-body codes (Hermite, PhiGRAPE, Huayno
and ph4) and 3 tree-codes (Gadget2, Octgrav, Bonsai). Clearly visible is the dif-
ference in speed and scaling between the direct codes(O(N2) scaling) and the tree-codes
(O(N logN) scaling).

7.2 The future
With focus shifting to more complex methods and algorithms we see the advantage of the
versatility of GPUs and the shift from fixed function methods in the early 90s (like the
GRAPE) to programmable chips like GPUs. Even though Field Programmable Gate Ar-
rays (FPGAs) have been around for decades, their programming is difficult and expensive,

7.2 e future 117

certainly compared to chips that are programmable by software. It is much easier to de-
velop and acquire chips like GPUs, since they can be bought in many consumer computer
stores. e availability and price makes the GPU one of the most attractive high perfor-
mance computing devices currently available. It is of course still possible to develop faster
chips that require less energy if you make them dedicated, but the development cost and
specialized knowledge to build a chip that is competitive against the multi-billion dollar
gaming industry is higher than a university research team can afford (Makino and Daisaka
(2012)).

Also, simulation algorithms become more advanced and incorporate different tech-
niques to overcome, for example, the painful O(N2) scaling. An example of this is the
Pikachu code by Iwasawa et al. (in preparation). In the BRIDGE method one has to indi-
cate which particles will be integrated using the direct algorithm and which particles with
the tree-code algorithm when the initial conditions are created. e Pikachu code im-
proves on this by dynamically deciding which particles can be integrated using a tree-code
and which need direct N-body integration.

Even though approximation methods (tree-codes, FMM and Particle Mesh) are much
faster than directN-body methods, they do not reach the same level of accuracy. With the
increase in computational power, directN-body methods will always be used for new sim-
ulations with increasing N either to compare to previous results (e.g. performed with ap-
proximate methods) or for new science. e same is valid for the methods used to improve
the performance of directN-body simulations (block time-steps, neighbour schemes, etc.;
see Section 1.3). ese all have an influence on the precision. Although the difference is
smaller than the difference between direct methods and approximation based methods it
still might be of influence, especially considering the chaotic nature of the N-body prob-
lem (Miller (1964); Goodman et al. (1993)). erefore, with the increased compute per-
formance we will not only perform simulations with largerN , but also much more detailed
simulations with relatively small N to validate previously obtained results. Simulations of
globular clusters using high precision shared time-step algorithms are still far out of reach,
but one day we will have the computational power to perform exactly this kind of simula-
tion.

e increasing availability of GPUs in supercomputers and in small dedicated GPU
clusters shows the potential, increased usage and the faith of researchers in GPUs over the
last few years. And especially with the installation of GPUs in ordinary desktop computers,
as is done, for example, at the Leiden Observatory, this computational power is available
at everyone’s fingertips without having to request time on expensive supercomputers.

However, as we demonstrated inChapter 6, supercomputers are not obsolete. Formany
scientific questions we can increase the problem size indefinitely and by doing so we will
run out of the available resources of our desktop computer and small scale clusters. At
that point we have to transition to supercomputers. To make this transition as easy as
possible for the user it is fundamental that supercomputers represent architectures that
are popular in desktop and cluster-sized machines. is allows researchers to develop and
optimize their single and multi-node implementations on their local hardware and then
try to scale this up to thousands of nodes. is scaling is not trivial, but if you already have
an optimized single-node implementation you only have to focus on the multi-node aspect
of your code.

