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4|A sparse octree gravitational
N-body code that runs
entirely on theGPU processor

We present the implementation and performance of a new gravitational N-body tree-code that is
specifically designed for the graphics processing unit (GPU)1 . All parts of the tree-code algorithm
are executed on the GPU. We present algorithms for parallel construction and traversing of sparse
octrees. ese algorithms are implemented in CUDA and tested on NVIDIA GPUs, but they are
portable to OpenCL and can easily be used on many-core devices from other manufacturers. is
portability is achieved by using general parallel-scan and sort methods. e gravitational tree-code
outperforms tuned CPU code during the tree-construction and shows a performance improvement
of more than a factor 20 overall, resulting in a processing rate of more than 2.8 million particles per
second.

Jeroen Bédorf, Evghenii Gaburov and Simon Portegies Zwart
Journal of Computational Physics, Volume 231, Issue 7, p. 2825-2839, March 2012.

1e code is publicly available at:
http://castle.strw.leidenuniv.nl/software.html
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4.1 Introduction

A common way to partition a three-dimensional domain is the use of octrees, which recur-
sively subdivide space into eight octants. is structure is the three-dimensional extension
of a binary tree, which recursively divides the one dimensional domain in halves. One can
distinguish two types of octrees, namely dense and sparse. In the former, all branches con-
tain an equal number of children and the structure contains no empty branches. A sparse
octree is an octree of which most of the nodes are empty (like a sparse matrix), and the
structure is based on the underlying particle distribution. In this paper we will only focus
on sparse octrees which are quite typical for non-homogenous particle distributions.

Octrees are commonly used in applications that require distance or intersection based
criteria. For example, the octree data-structure can be used for the range search method
de Berg et al. (2000). On a set of N particles a range search using an octree reduces
the complexity of the search from O(N) to O(logN) per particle. e former, though
computationally expensive, can easily be implemented in parallel for many particles. e
later requires more communication and book keeping when developing a parallel method.
Still for large number of particles (∼ N ⩾ 105) hierarchical2 methods are more efficient
than brute force methods. Currently parallel octree implementations are found in a wide
range of problems, among which self gravity simulations, smoothed particle hydrodynam-
ics, molecular dynamics, clump finding, ray tracing and voxel rendering; in addition to
the octree data-structure these problems often require long computation times. For high
resolution simulations (∼ N ⩾ 105) 1 (Central Processing Unit) CPU is not sufficient.
erefore one has to use computer clusters or even supercomputers, both of which are
expensive and scarce. An attractive alternative is a Graphics Processing Unit (GPU).

Over the years GPUs have grown from game devices into more general purpose com-
pute hardware. With the GPUs becoming less specialised, new programming languages
like Brook Buck et al. (2004b), CUDA NVIDIA (2010) and OpenCL Khronos Group
Std. (2010) were introduced and allow the GPU to be used efficiently for non-graphics re-
lated problems. One has to use these special programming languages in order to be able to
get the most performance out of a GPU. is can be realized by considering the enormous
difference between today’s CPU and GPU. e former has up to 8 cores which can exe-
cute two threads each, whereas a modern GPU exhibits hundreds of cores and can execute
thousands of threads in parallel. e GPU can contain a large number of cores, because
it has fewer resources allocated to control logic compared to a general purpose CPU. is
limited control logic renders the GPU unsuitable for non-parallel problems, but makes
it more than an order of magnitude faster than the CPU on massively parallel problems
NVIDIA (2010). With the recent introduction of fast double precision floating point op-
erations, L1 and L2 caches and ECC memory the GPU has become a major component
in the High Performance Computing market. e number of dedicated GPU clusters is
steadily increasing and the latest generation of supercomputers have nodes equipped with
GPUs, and have established themselves in the upper regions of the top5003.

is wide spread of GPUs can also be seen in the acceptance of GPUs in computa-

2 Tree data-structures are commonly referred to as hierarchical data-structures
3Top500 Supercomputing November 2010 list, http://www.top500.org
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tional astrophysics research. For algorithms with few data dependencies, such as direct
N-body simulations, programming the GPU is relatively straightforward. Here various
implementations are able to reach almost peak-performance Portegies Zwart et al. (2007);
Hamada and Iitaka (2007); Belleman et al. (2008) and with the introduction of N-body
libraries the GPU has taken over the GRAPE (GRAvity PipE Makino and Taiji (1998))
4 as preferred computation device for stellar dynamics Gaburov et al. (2009). Although it
is not a trivial task to efficiently utilise the computational power of GPUs, the success with
direct N-body methods shows the potential of the GPU in practice. For algorithms with
many data dependencies or limited parallelism it is much harder to make efficient use of
parallel architectures. A good example of this are the gravitational tree-code algorithms
which were introduced in 1986 Barnes and Hut (1986) as a sequential algorithm and later
extended to make efficient use of vector machines Barnes (1990). Around this time the
GRAPE hardware was introduced which made is possible to execute direct N-body sim-
ulations at the same speed as a simulation with a tree-code implementation, while the
former scales as O(N2) and the latter as O(N logN). e hierarchical nature of the tree-
code method makes it difficult to parallelise the algorithms, but it is possible to speed-up
the computational most intensive part, namely the computation of gravitational interac-
tions.eGRAPEhardware, although unsuitable for constructing and traversing the tree-
structure, is able to efficiently compute the gravitational interactions. erefore a method
was developed to create lists of interacting particles on the host and then let the GRAPE
solve the gravitational interactions Fukushige et al. (1991); Makino (2004). Recently this
method has successfully been applied to GPUs Hamada et al. (2009c,a); Hamada and
Nitadori (2010). With the GPU being able to efficiently calculate the force interactions,
other parts like the tree-construction and tree-traverse become the bottleneck of the ap-
plication. Moving the data intensive tree-traverse to the GPU partially lifts this bottleneck
Gaburov et al. (2010); Yokota and Barba (2011); (Chapter 3). is method turns out to be
effective for shared time-step integration algorithms, but is less effective for block time-
step implementations. In a block time-step algorithm not all particles are updated at the
same simulation time-step, but only when required. is results in a more accurate (less
round-off errors, because the reduced number of interactions) and more efficient (less un-
necessary time-steps) simulation. e number of particles being integrated per step can be
a fraction of the total number of particles which significantly reduces the amount of paral-
lelism. Also the percentage of time spent on solving gravitational interactions goes down
and other parts of the algorithm (e.g. construction, traversal and time integration) become
more important. is makes the hierarchical treeN-body codes less attractive, since CPU-
GPU communication and tree-construction will become the major bottlenecks Belleman
et al. (2008); Gaburov et al. (2010). One solution is to implement the tree-construction on
the GPU as has been done for surface reconstruction Zhou et al. (2008) and the creation
of bounding volume hierarchies Lauterbach et al. (2009); Pantaleoni and Luebke (2010).
An other possibility is is to implement all parts of the algorithm on the GPU using atomic
operations and particle insertions Burtscher and Pingali (2011) here the authors, like us,
execute all parts of the algorithm on the GPU. When we were in the final stages of finish-

4 e GRAPE is a plug-in board equipped with a processor that has the gravitational equations programmed
in hardware.



52 Bonsai

ing the paper we were able to test the implementation by Burtscher et al. Burtscher and
Pingali (2011). It is difficult to compare the codes since they have different monopole ex-
pansions and multipole acceptance criteria (see Sections 4.3.2 and 4.3.3). However, even
though our implementation has higher multipole moments (quadrupole versus monopole)
and a more strict multipole acceptance criteria it is at least 4 times faster.

In this work we devised algorithms to execute the tree-construction on the GPU in-
stead of on the CPU as is customarily done. In addition we redesign the tree-traverse
algorithms for effective execution on the GPU. e time integration of the particles is also
executed on theGPU in order to remove the necessity of transferring data between the host
and the GPU completely. is combination of algorithms is excellently suitable for shared
and block time-step simulations. Although here implemented as part of a gravitational
N-body code (called Bonsai, Section 4.3), the algorithms are applicable and extendable
to related methods that use hierarchical data structures.

4.2 Sparse octrees on GPUs
e tree construction and the tree-traverse rely on scan algorithms, which can be efficiently
implemented onGPUs. (4.A).Here we discuss themain algorithms that can be found in all
hierarchical methods. Starting with the construction of the tree-structure in Section 4.2.1,
followed by the method to traverse the previously built tree-structure in Section 4.2.2. e
methods that are more specific for a gravitational N-body tree-algorithm are presented in
Section 4.3.

4.2.1 Tree construction
e common algorithm to construct an octree is based on sequential particle insertion
Barnes and Hut (1986) and is in this form not suitable for massively parallel processors.
However, a substantial degree of parallelism can be obtained if the tree is constructed layer-
by-layer5 from top to bottom. e construction of a single tree-level can be efficiently
vectorised which is required if one uses massively parallel architectures.

To vectorise the tree construction particles have to be mapped from a spatial repre-
sentation to a linear array while preserving locality. is implies that particles that are
nearby in 3D space also have to be nearby in the 1D representation. Space filling curves,
which trace through the three dimensional space of the data enable such reordering of
particles. e first use of space filling curves in a tree-code was presented by Warren and
Salmon (1993) Warren and Salmon (1993) to sort particles in a parallel tree-code for
the efficient distribution of particles over multiple systems. is sorting also improves the
cache-efficiency of the tree-traverse since most particles that are required during the in-
teractions are stored locally, which improves caching and reduces communication. We
adopt the Morton space filling curve (also known as Z-order) Morton (1966), because
of the existence of a one-to-one map between N-dimensional coordinates and the corre-
sponding 1D Morton-key. e Morton-keys give a 1D representation of the original ND

5A tree-structure is built-up from several layers (also called levels), with the top most level called the root,
the bottom levels leaves and in between the nodes.
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Root level: mask=000 000 000 000 000

Level 3: mask=111 111 111 000 000

Level 1: mask=111 000 000 000 000

Level 2: mask=111 111 000 000 000

tree-cell array

Figure 4.1: Schematic representation of particle grouping into a tree cell. (Left panel) The particles
Morton keys are masked6 with the level mask. Next the particles with the same masked keys are
grouped together into cells (indicated by a thick separator, such as in level 1). Cells with less than
Nleaf particles are marked as leaves (green), and the corresponding particles are flagged (black boxes
as in level 2 and 3) and not further used for the tree construction. The other cells are called nodes
(blue) and their particles are used constructing the next levels. The tree construction is complete as
soon as all particles are assigned to leafs, or when the maximal depth of the tree is reached. (Right
panel) The resulting array containing the created tree cells.

coordinate space and are computed using bit-based operations (4.B). After the keys are
calculated the particles are sorted in increasing key order to achieve a Z-ordered parti-
cle distribution in memory. e sorting is performed using the radix-sort algorithm (see
for our implementation details 4.A), which we selected because of its better performance
compared to alternative sorting algorithms on the GPU Satish et al. (2009); Merill and
Grimshaw (2010). After sorting the particles have to be grouped into tree cells. In Fig. 4.1
(left panel), we schematically demonstrate the procedure. For a given level, we mask the
keys6 of non-flagged particles (non-black elements of the array in the figure), by assign-
ing one particle per GPU thread. e thread fetches the precomputed key, applies a mask
(based on the current tree level) and the result is the octree cell to which the particle should
be assigned. Particles with identical masked keys are grouped together since they belong to
the same cell. e grouping is implemented via the parallel compact algorithm (4.A). We
allow multiple particles to be assigned to the same cell in order to reduce the size of the
tree-structure. e maximum number of particles that is assigned to a cell is Nleaf, which
we set to Nleaf = 16. Cells containing up-to Nleaf particles are marked as leaves, other-
wise they are marked as nodes. If a particle is assigned to a leaf the particle is flagged as
complete (black elements of the array in the figure). e masking and grouping procedure
is repeated for every single level in serial until all particles are assigned to leaves or that
the maximal depth of the tree is reached, whichever occurs first. When all particles are
assigned to leaves all required tree cells have been created and are stored in a continuous
array (right panel of Fig. 4.1).

However, to complete the tree-construction, the parent cells need to be linked to their

6e masking is a bitwise operation that preserves the bits which are specified by the mask, for example
masking “1011b” with “1100b” results in “1000b”.
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Leaf cell

Node cell

Empty cell

Figure 4.2: Schematic illustration of the tree link process. Each cell of the tree, except the empty cells
which are not stored, is assigned to a GPU thread. The thread locates the first child, if it exists, and the
parent of the cell. The threads increment the child counter of the parent (indicated by the up arrows)
and store the first child in the memory of the cell. This operation requires atomic read-modify-write
operations because threads concurrently modify data at the same memory location.

children. We use a separate function to connect the parent and child cells with each other
(linking the tree). is function assigns a cell to a single thread which locates its parent
and the first child if the cell is not a leaf (Fig. 4.2). is is achieved by a binary search of the
appropriate Morton key in the array of tree-cells, which is already sorted in increasing key
order during the construction phase. e thread increases the child counter of its parent
cell and stores the index of the first child. To reduce memory, we use a single integer to
store both the index to the first child and the number of children (most significant 3 bits).
If the cell is a leaf, we store the index of the first particle instead of the index of the first
child cell, together with the number of particles in the leaf. During these operations many
threads concurrently write data to the same memory location. To prevent race conditions,
we apply atomic read-modify-write instructions for modifying the data. At the end of this
step, the octree is complete and can be used to compute gravitational attractions.

4.2.2 Tree traverse
To take advantage of the massively parallel nature of GPUs we use breadth first, instead
of the more common depth first, traversal. Both breadth first and depth first can be paral-
lelised, but only the former can be efficiently vectorised. To further vectorise the calculation
we do not traverse a single particle, but rather a group of particles. is approach is known
as Barnes’ vectorisation of the tree-traverse Barnes (1990). e groups are based on the
tree-cells to take advantage of the particle locality as created during the tree-construction.
e number of particles in a group is ⩽ Ncrit which is typically set to 64 and the total
number of groups is Ngroups. e groups are associated with a GPU thread-block where
the number of threads in a block is Nblock with Nblock >= Ncrit. Hereby we assume that
thousands of such blocks are able to run in parallel. is assumption is valid for CUDA-
enabled GPUs, as well as on AMD Radeon GPUs via OpenCL. If the code is executed
with shared time-steps, all particles are updated at the same time and subsequently all
groups are marked as active, for block time-steps this number varies between 1 andNgroups.
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a b c e f

current stack

next-level stack

cell-group list:        a,e,f

particle-group list:  ci,ci+1,ci+2,ci+3,ci+4

bi bi+1 bi+2 bi+3 bi+4

Figure 4.3: Illustration of a single level tree-traverse. There are five cells in the current stack. Those
cells which are marked with crosses terminate traverse, and therefore are added to the cell-group list
for subsequent evaluation. Otherwise, if the cell is a node, its children are added to the next-level
stack. Because children are contiguous in the tree-cell array, they are named as bi, bi +1, . . ., bi +4,
where bi is the index of the first child of the node b. If the cell is a leaf, its particles are added to the
particle-cell interaction list. Because particles in a leaf are also contiguous in memory, we only need
to know the index of the first particle, ci, and the number of particles in a leaf, which is 5 here.

Each thread block executes the same algorithm but on a different set of particles.
Each thread in a block reads particle data that belongs to the corresponding group as

well as group information which is required for the tree traverse. If the number of particles
assigned to a group is smaller than Nblock by a factor of two or more, we use multiple
threads (up to 4) per particle to further parallelise the calculations. As soon as the particle
and group data is read by the threads we proceed with the tree-traverse.

On the CPU the tree-traverse algorithm is generally implemented using recursion, but
on the GPU this is not commonly supported and hard to parallelise. erefore we use a
stack based breadth first tree-traverse which allows parallelisation. Initially, cells from one
of the topmost levels of the tree are stored in the current-level stack and the next-level
stack is empty; in principle, this can be the root level, but since it consists of one cell,
the root node, only one thread from Nblock will be active. Taking a deeper level prevents
this and results in more parallelism. We loop over the cells in the current-level stack with
increments of Nblock. Within the loop, the cells are distributed among the threads with no
more than one cell per thread. A thread reads the cell’s properties and tests whether or not
to traverse the tree further down from this cell; if so, and if the cell is a node the indexes
of its children are added to the next-level stack. If however, the cell is a leaf, the indexes of
constituent particles are stored in the particle-group interaction list. Should the traverse
be terminated then the cell itself is added to cell-group interaction list (Fig.4.3).

e cell-group interaction list is evaluated when the size of the list exceeds Nblock. To
achieve data parallelism each thread reads properties of an interacting cell into fast low-
latency on-chip memory that can be shared between the threads, namely shared memory
(CUDA) or local memory (OpenCL). Each thread then progresses over the data in the
on-chip memory and accumulates partial interactions on its particle. At the end of this
pass, the size of the interaction list is decreased byNblock and a new pass is started until the
size of the list falls below Nblock. e particle-group interaction list is evaluated in exactly
the same way, except that particle data is read into shared memory instead of cell data.
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is is a standard data-sharing approach that has been used in a variety of N-body codes,
e.g. Nyland et al. Nyland et al. (2007).

e tree-traverse loop is repeated until all the cells from the current-level stack are
processed. If the next-level stack is empty, the tree-traverse is complete, however if the
next-level stack is non-empty its data is copied to the current-level stack. e next-level
stack is cleaned and the current-level stack is processed.When the tree-traverse is complete
either the cell-group, particle-group or both interaction lists may be non-empty. In such
case the elements in these lists are distributed among the threads and evaluated in parallel.
Finally if multiple threads per particle are used an extra reduction step combines the results
of these threads to get the final interaction result.

4.3 Gravitational Tree-code
To demonstrate the feasibility and performance, we implement a version of the gravita-
tional Barnes-Hut tree-code Barnes and Hut (1986) which is solely based on the sparse
octree methods presented in the previous sections. In contrast to other existing GPU codes
Hamada et al. (2009a); Gaburov et al. (2010) and Chapter 3, our implementation runs en-
tirely on GPUs. Apart from the previous described methods to construct and traverse the
tree-structure we implement time integration (Section 4.3.1), time-step calculation and
tree-cell properties computation on the GPU (Section 4.3.2). e cell opening method,
which sets the accuracy and performance of the tree-traverse, is described in Section 4.3.3.

4.3.1 Time Integration
To move particles forward in time we apply the leapfrog predictor-corrector algorithm de-
scribed by Hut et al. (1995) Hut et al. (1995). Here the position and velocity are predicted
to the next simulation time using previously calculated accelerations. en the new accel-
erations are computed (tree-traverse) and the velocities are corrected. is is done for all
particles in parallel or on a subset of particles in case of the block-time step regime. For a
cluster of >∼ 105 particles, the time required for one prediction-correction step is less than
1% of the total execution time and therefore negligible.

4.3.2 Tree-cell properties
Tree-cell properties are a summarized representation of the underlying particle distribu-
tion. e multipole moments are used to compute the forces between tree-cells and the
particles that traverse the tree. In this implementation of the Barnes-Hut tree-code we
use only monopole and quadrupole moments McMillan and Aarseth (1993). Multipole
moments are computed from particle positions and need to be recomputed at each time-
step; any slowdown in their computation may substantially influence the execution time.
To parallelise this process we initially compute the multipole moments of each leaf in par-
allel. We subsequently traverse the tree from bottom to top. At each level the multipole
moments of the nodes are computed in parallel using the moments of the cells one level
below (Fig. 4.4). e number of GPU threads used per level is equal to the number of
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3

1

22

Figure 4.4: Illustration of the computation of the multi-
pole moments. First the properties of the leaves are cal-
culated (green circles). Then the properties of the nodes
are calculated level-by-level from bottom to top. This is
indicated by the numbers in the nodes, first we compute
the properties of the node with number 1, followed by the
nodes with number 2 and finally the root node.

nodes at that level. ese computations are performed in double precision since our tests
indicated that the NVIDIA compiler aggressively optimises single precision arithmetic
operations, which results in an error of at most 1% in the multipole moments. Double
precision arithmetic solved this problem and since the functions are memory-bound7 the
overhead is less than a factor 2. As final step the double precision values are converted back
to single precision to be used during the tree-traverse.

4.3.3 Cell opening criterion
In a gravitational tree-code the multipole acceptance criterion (MAC) decides whether
to use the multipole moments of a cell or to further traverse the tree. is influences the
precision and execution time of the tree-code. e further the tree is traversed the more
accurate the computed acceleration will be. However, traversing the tree further results in
a higher execution time since the number of gravitational interactions increases. erefore
the choice of MAC is important, since it tries to determine, giving a set of parameters,
when the distance between a particle and a tree cell is large enough that the resulting force
approximation error is small enough to be negligible. e MAC used in this work is a com-
bination of the method introduced by Barnes (1994) Barnes (1994) and the method used
for tree-traversal on vector machines Barnes (1990). is gives the following acceptance
criterion,

d >
l

θ
+ δ (4.1)

where d is the smallest distance between a group and the center of mass of the cell, l is
the size of the cell, θ is a dimensionless parameter that controls the accuracy and δ is the
distance between the cell’s geometrical center and the center of mass. If d is larger than
the right side of the equation the distance is large enough to use the multipole moment
instead of traversing to the child cells.

Fig. 4.5 gives an overview of this method. We also implemented the minimal distance
MAC Salmon and Warren (1994), which results in an acceleration error that is between

7On GPUs we distinguish two kind of performance limitations, memory-bound and compute-bound. In the
former the performance is limited by the memory speed and memory bandwidth, in the later the performance is
limited by the computation speed.
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Hardware model Xeon E5620 8800 GTS512 C1060 GTX285 C2050 GTX480
Architecture Gulftown G92 GT200 GT200 GF100 GF100
# Cores 4 128 240 240 448 480
Core (Mhz) 2400 1625 1296 1476 1150 1401
Memory (Mhz) 1066 1000 800 1243 1550 1848
Interface (bit) 192 256 512 512 384 384
Bandwidth (GBs) 25.6 64 102 159 148 177.4
Peak (GFLOPs)2 76.8 624 933 1063 1030 1345
Memory size (GB) 16 0.5 4 1 2.5 1.5

1All calculations in this work are done in single precision arithmetic.
2e peak performance is calculated as follows:

-Gulftown: #Cores × Core speed × 8 (SSE flops/cycle)
-G92 & GT200: #Cores × Core speed × 3 (flops/cycle)
-GF100: #Cores × Core speed × 2 (flops/cycle)

Table 4.1: Used hardware. The Xeon is the CPU in the host system, the other five devices are GPUs.

Figure 4.5: Illustration of the computation
of the multipole moments. First the prop-
erties of the leaves are calculated (green
circles). Then the properties of the nodes
are calculated level-by-level from bottom to
top. This is indicated by the numbers in the
nodes, first we compute the properties of
the node with number 1, followed by the
nodes with number 2 and finally the root
node.

cell

group

d

i

d

center

c.o.m.

10% and 50% smaller for the same θ than the MAC used here. e computation time,
however, is almost a factor 3 higher since more cells are accepted (opened).

e accuracy of the tree-traverse is controlled by the parameter θ. Larger values of θ
causes fewer cells to be opened and consequently results in a shallower tree-traverse and a
faster evaluation of the underlying simulation. Smaller values of θ have the exact opposite
effect, but result in a more accurate integration. In the hypothetical case that all the tree
cells are opened (θ → 0) the tree-code turns in an inefficient direct N-body code. In
Section 4.4.1 we adopt θ = 0.5 and θ = 0.75 to show the dependence of the execution
time on the opening angle. In Section 4.4.2 we vary θ between 0.2 and 0.8 to show the
dependence of the acceleration error on θ.

4.4 Performance and Accuracy
In this section we compare the performance of our implementation of the gravitationalN-
body code (Bonsai) with CPU implementations of comparable algorithms. Furthermore,
we use a statistical test to compare the accuracy of Bonsai with a direct summation code.
As final test Bonsai is compared with a direct N-body code and a set of N-body tree-
codes using a production type galaxy merger simulation.

Even though there are quite a number of tree-code implementations each has its own
specific details and it is therefore difficult to give a one-to-one comparison with other
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tree-codes. e implementations closest to this work are the parallel CPU tree-code of
John Dubinski (1996) Dubinski (1996) (Partree) and the GPU accelerated tree-code
Octgrav Gaburov et al. (2010), also see Chapter 3. Other often used tree-codes either
have a different MAC or lack quadrupole corrections. e default version of Octgrav has
a different MAC than Bonsai, but for the galaxy merger simulation a version of Octgrav
is used that employs the samemethod as Bonsai (Section 4.3.3).We use phiGRAPE Harfst
et al. (2007) in combination with the Sapporo Gaburov et al. (2009) direct N-body GPU
library for the comparison with direct N-body simulations. Although here used as stan-
dalone codes, most of them are part of the AMUSE frameworkPortegies Zwart et al.
(2009), as will be a future version of Bonsai which would make the comparison trivial to
execute.

e hardware used to run the tests is presented in Table 4.1. For the CPU calcula-
tions we used an Intel Xeon E5620 CPU which has 4 physical cores. For GPUs, we used 1
GPU with the G92 architecture (GeForce 8800GTS512), 2 GPUs with the GT200 archi-
tecture (GeForce 285GTX and Tesla C1060), and 2 GPUs with the GF100 architecture
(GTX480 and Tesla C2050). All these GPUs are produced by NVIDIA. e Tesla C2050
GPU is marketed as a professional High Performance Computing card and has the option
to enable error-correcting code memory (ECC). With ECC enabled extra checks on the
data are conducted to prevent the use of corrupted data in computations, but this has a
measurable impact on the performance. erefore, the tests on the C2050 are executed
twice, once with and once without ECC enabled to measure the impact of ECC.

All calculations are conducted in single precision arithmetic except for the computation
of the monopole and quadrupole moments in Bonsai and the force calculation during the
acceleration test in phiGRAPE for which we use double precision arithmetic.

4.4.1 Performance
To measure the performance of the implemented algorithms we execute simulations using
Plummer Plummer (1915) spheres with N = 215 ( 32k) up to N = 224 ( 16M) parti-
cles (up to N = 222 ( 4M) for the GTX480, because of memory limitations). For the
most time critical parts of the algorithm we measure the wall-clock time. For the tree-
construction we distinguish three parts, namely sorting of the keys (sorting), reordering
of particle properties based on the sorted keys (moving) and construction and linking of
tree-cells (tree-construction). Furthermore, are timings presented for the multipole com-
putation and tree-traverse. e results are presented in Fig. 4.6. e wall-clock time spend
in the sorting, moving, tree-construction and multipole computation algorithms scales lin-
early with N for N ≳ 106. For smaller N , however, the scaling is sub-linear, because the
parallel scan algorithms require more than 105 particles to saturate the GPU. e inset
of Fig. 4.6 shows that the average number of particle-cell interactions doubles between
N ≳ 32k and N ≲ 1M and keeps gradually increasing for N ≳ 1M. Finally, more than
90% with θ = 0.75 and 95% with θ = 0.5 of the wall-clock time is spent on tree-traversal.
is allows for block time-step execution where the tree-traverse time is reduced by a fac-
tor Ngroups/Nactive, where Nactive is the number of groups with particles that have to be
updated.

In Fig. 4.7 we compare the performance of the tree-algorithms between the three gen-
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Figure 4.6: The wall-clock time spent by various parts of the program versus the number of par-
ticles N . We used Plummer models as initial conditions Plummer (1915) and varied the number
of particles over two orders of magnitude. The solid black line, which is offset arbitrarily, shows
the theoretical O(N logN) scaling Barnes and Hut (1986). The asymptotic complexity of the tree-
construction approaches O(N), because all the constituent primitives share the same complexity. The
tree-construction timing comes from the GTX480. To show that the linear scaling continues we added
timing data for the C1060, which allows usage of larger data sets. For the GTX480 we included the
results of the tree-traverse with θ = 0.5 and the results of the tree-traverse with θ = 0.75. The inset
shows the average number of particle-particle and particle-cell interactions for each simulation where
θ = 0.75.

erations of GPUs as well as against tuned CPU implementations8. For all algorithms the
CPU is between a factor of 2 (data reordering) to almost a factor 30 (tree-traverse) slower
than the fastest GPU (GTX480). Comparing the results of the different GPUs we see that
the GTS512 is slowest in all algorithms except for the data moving phase, in which the
C1060 is the slowest. is is surprising since the C1060 has more on-device bandwidth,
but the lower memory clock-speed appears to have more influence than the total band-
width. Overall the GF100 generation of GPUs have the best performance. In particular,
during the tree-traverse part, they are almost a factor 2 faster than the GT200 series. is
is more than their theoretical peak performance ratios, which are 1.1 and 1.25 for C1060
vs. C2050 and GTX285 vs. GTX480 respectively. In contrast, the GTX285 executes the
tree-traverse faster than the C1060 by a factor of 1.1 which is exactly the peak perfor-
mance ratio between these GPUs. We believe that the difference between the GT200 and
GF100 GPUs is mainly caused by the lack of L1 and L2 caches on GT200 GPUs that are
present on GF100 GPUs. In the latter, non-coalesced memory accesses are cached, which
occur frequently during the tree-traverse, this reduces the need to request data from the

8 e tree-construction method is similar to Warren and Salmon (1993), and was implemented by Keigo
Nitadori with OpenMP and SSE support. e tree-traverse is, however, from the CPU version of the MPI-
parallel tree-code by John Dubinski Dubinski (1996). It has monopole and quadrupole moments and uses the
same multipole acceptance criterion as our code. We ran this code on the Xeon E5620 CPU using 4 parallel
processes where each process uses one of the 4 available physical cores.
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relatively slow global memory. is is supported by auxiliary tests where the texture cache
on the GT200 GPUs is used to cache non-coalesced memory reads, which resulted in a
reduction of the tree-traverse execution time between 20 and 30%. Comparing the C2050
results with ECC-memory to those without ECC-memory we notice a performance im-
pact on memory-bound functions that can be as high as 50% (sorting), while the impact
on the compute-bound tree-traverse is negligible, because the time to perform the ECC
is hidden behind computations. Overall we find that the implementation scales very well
over the different GPU generations and makes optimal use of the newly introduced fea-
tures of the GF100 architecture. e performance of the tree-traverse with θ = 0.75 is
2.1M particles/s and 2.8M particles/s on the C2050 and GTX480 respectively for N =
1M.

4.4.2 Accuracy
Tomeasure the accuracy of the tree-code we use two tests. In the first, the accelerations due
to the tree-code are compared with accelerations computed by direct summation. In the
second test, we compared the performance and accuracy of three tree-codes and a direct
summation code using a galaxy merger simulation.

Acceleration

To quantify the error in the accelerations between phiGRAPE and Bonsai we calculate

∆a/a = |atree − adirect|/|adirect|, (4.2)
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where atree and adirect are accelerations obtained by tree and direct summation respectively.
e direct summation results are computed with a double precision version of Sapporo,
while for tree summation single precision is used. For both methods the softening is set to
zero and a GTX480 GPU is used as computation device.

In Fig. 4.8 the error distribution for different particle numbers and opening angles is
shown. Each panel shows the fraction of particles (vertical-axis) having a relative accel-
eration error larger than a given value (horizontal-axis). e three horizontal dotted lines
show the 50th, 10th and 1st percentile of the cumulative distribution (top to bottom). e
results indicate that the acceleration error is slightly smaller (less than an order of mag-
nitude) than Octgrav and comparable to CPU tree-codes with quadrupole corrections
Dehnen (2002); Springel et al. (2001); Stadel (2001). In Octgrav a different MAC is
used than in Bonsai which explains the better accuracy results of Bonsai.

e dependence of the acceleration error on θ and the number of particles is shown in
Fig. 4.9. Here the median and first percentile of the relative acceleration error distributions
of Fig. 4.8 are plotted as a function of θ.e figure shows that the relative acceleration error
is nearly independent of N , which is a major improvement compared to Octgrav where
the relative acceleration error clearly depends on N (Figure 5 in Gaburov et al. (2010)).
e results are consistent with those of Partree Dubinski (1996) which uses the same
MAC.

Galaxy merger

A realistic comparison between the differentN-body codes, instead of statistical tests only,
is performed by executing a galaxy merger simulation. e merger consists of two galaxies,
each with 105 dark matter particles, 2 × 104 star particles and one super massive black
hole (for a total of 240.002 bodies). e galaxies have a 1:3 mass ratio and the pericenter
is 10kpc. e merger is simulated with Bonsai, Octgrav, Partree and phiGRAPE.
e used hardware for Bonsai and Octgrav was 1 GTX480, Partree used 4 cores of
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the Intel Xeon E5620 and phiGRAPE used 4 GTX480 GPUs. With each tree-code we ran
two simulations, one with θ = 0.5 and one with θ = 0.75. e end-time of the simulations
is T = 1000 with a shared time-step of 1

64 (resulting in 64000 steps) and a gravitational
softening of ϵ = 0.1. For phiGRAPE the default time-step settings were used, with the
maximum time-step set to 1

16 and softening set to ϵ = 0.1. e settings are summarised
in the first four columns of Table 4.2.

We compared the density, cumulative mass and circular velocity profiles of the merger
product as produced by the different simulation codes, but apart from slight differences
caused by small number statistics the profiles are identical. As final comparisonwe recorded
the distance between the two black holes over the course of the simulation. e results of
which are shown in the bottom panel of Fig. 4.10, the results are indistinguishable up
to the third pericenter passage at t = 300 after which the results, because of numerical
differences, become incomparable. Apart from the simulation results we also compare the
energy conservation. is is done by computing the relative energy error (dE, Eq. 4.3) and
the maximal relative energy error (dEmax).

dE =
E0 − Et

E0
(4.3)

Here E0 is the total energy (potential energy + kinetic energy) at the start of the sim-
ulation and Et is the total energy at time t. e time is in N-body units.

e maximal relative energy error is presented in the top panel of Fig. 4.10, the tree-
code simulations with θ = 0.75 give the highest dEmax which occurs for both θ = 0.75
and θ = 0.5 during the second pericenter passage at t ≈ 280. For θ = 0.5, the dEmax is
roughly a factor 2 smaller than for θ = 0.75. For phiGRAPE dEmax shows a drift and does
not stay constant after the second pericenter passage. e drift in the energy error is caused
by the formation of binaries, for which phiGRAPE has no special treatment, resulting in
the observed drift instead of a random walk.
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Simulation Hardware dt θ dEend dEmax time
[×10−4] [×10−4] [s]

phiGRAPE 4x GTX480 block - −1.9 1.8 62068
Bonsai run1 1x GTX480 1

64
0.75 0.21 2.8 7102

Bonsai run2 1x GTX480 1
64

0.50 0.44 1.3 12687
Octgrav run1 1x GTX480 1

64
0.75 −1.1 3.5 11651

Octgrav run2 1x GTX480 1
64

0.50 −1.1 2.2 15958
Partree run1 Xeon E5620 1

64
0.75 −3.5 3.8 118424

Partree run2 Xeon E5620 1
64

0.50 0.87 0.96 303504

Table 4.2: Settings and results of the galaxy merger. The first two columns indicate the software
and hardware used, the third the time-step (dt) and the fourth the opening angle (θ). The last three
columns present the results, energy error at the time = 1000 (fifth column), maximum energy error
during the simulation (sixth column) and the total execution time (seventh column).

A detailed overview of the energy error is presented in Fig. 4.11 which shows the
relative energy error (dE) over the course of the simulation. Comparing the dE of the
tree-codes shows that Bonsai has a more stable evolution than Octgrav and Partree.
Furthermore if we compare the results of θ = 0.75 and θ = 0.5 there hardly is any
improvement visible for Octgrav while Bonsai and Partree show an energy error with
smaller per time-step variance of the energy error.

e last thing to look at is the execution time of the various codes, which can be found
in the last column of Tab. 4.2. Comparing Bonsai with Octgrav shows that the former
is faster by a factor of 1.6 and 1.26 for θ = 0.75 and θ = 0.5 respectively. e smaller
speed-up for θ = 0.5 results from the fact that the tree-traverse, which takes up most of
the execution time, is faster in Octgrav than in Bonsai. Comparing the execution time
of Bonsai with that of Partree shows that the former is faster by a factor of 17 (24) with
θ = 0.75 (θ = 0.5). Note that this speed-up is smaller than reported in Section 4.4.1 due
to different initial conditions. Finally, when comparing phiGRAPE with Bonsai, we find
that Bonsai completes the simulation on 1 GTX480 faster than phiGRAPE, which uses 4
GTX480 GPUs, by a factor of 8.7 (θ = 0.75) and 4.9 (θ = 0.5).

4.5 Discussion and Conclusions
We have presented algorithms to construct and traverse hierarchical data-structures effi-
ciently. ese algorithms are implemented as part of a gravitational N-body tree-code. In
contrast to other existing GPU tree-codes, this implementation is executed on the GPU.
While the code is written in CUDA, the methods themselves are portable to other mas-
sively parallel architectures, provided that parallel scan-algorithms exist for such architec-
tures. For this implementation a custom CUDA API wrapper is used that can be replaced
with an OpenCL version. As such the code can be ported to OpenCL, by only rewriting
the GPU functions, which is currently work in progress.

e number of particles processed per unit time, is 2.8 million particles per second
with θ = 0.75 on a GTX480. Combined with the stable energy evolution and efficient
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scaling permits us to routinely carry out simulations on the GPU. Since the current version
can only use 1 GPU, the limitation is the amount of memory. For 5 million particles ±1
gigabyte of GPU memory is required.

Although the the tree-traverse in Octgrav is ±10% faster than in Bonsai, the latter
is much more appropriate for large (N > 106) simulations and simulations which employ
block-time steps. In Octgrav the complete tree-structure, particle array and multipole
moments are send to the GPU during each time-step. When using shared-time steps this
is a non-critical amount of overhead since the overall performance is dominated by the
tree-traverse which takes up more than 90% of the total compute time. However, this
balance changes if one uses block time-steps. e tree-traverse time is reduced by a factor
Ngroups/Nactive, whereNactive is the number of groups with particles that have to be updated.
is number can be as small as a few percent of Ngroups, and therefore tree-construction,
particle prediction and communication becomes the bottleneck. By shifting these compu-
tations to the GPU, this ceases to be a problem, and the required host communication is
removed entirely.

Even though the sorting, moving and tree-construction parts of the code take up
roughly 10% of the execution time, these methods do not have to be executed during
each time-step when using the block time-step method. It is sufficient to only recom-
pute the multipole moments of tree-cells that have updated child particles. Only when
the tree-traverse shows a considerable decline in performance the complete tree-structure
has to be rebuild. is decline is the result of inefficient memory reads and an increase
of the average number of particle-cell and particle-particle interactions. is quantity in-
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creases because the tree-cell size (l) increases, which causes more cells to be opened by the
multipole acceptance criterion (Eq. 4.1).

Although the algorithms described herein are designed for a shared-memory architec-
ture, they can be used to construct and traverse tree-structures on parallel GPU clusters
using the methods described in Warren and Salmon (1993); Dubinski (1996). Further-
more, in case of a parallel GPU tree-code, the CPU can exchange particles with the other
nodes, while the GPU is traversing the tree-structure of the local data. In this way, it is
possible to hide most of the communication time.

e presented tree-construction and tree-traverse algorithms are not limited to the
evaluation of gravitational forces, but can be applied to a variety of problems, such as
neighbour search, clump finding algorithms, fast multipole method and ray tracing. In
particular, it is straightforward to implement Smoothed Particle Hydrodynamics in such a
code, therefore having a self-gravitating particle based hydrodynamics code implemented
on the GPU.
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4.A Scan algorithms

Both tree-construction and tree-traverse make extensive use of parallel-scan algorithms,
also known as parallel prefix-sum algorithms. ese algorithms are examples of computa-
tions that seem inherently sequential, but for which an efficient parallel algorithm can be
defined. Blelloch Guy E. Blelloch (1990) defines the scan operations as follows:

De nition: e all-prefix-sums operation takes a binary associative operator ⊕, and an ar-
ray of n elements

[a0, a1, ..., an−1],

and returns the ordered set

[a0,(a0 ⊕ a1), ...,(a0 ⊕ a1 ⊕ ... ⊕ an−1)].

Example: If ⊕ is the addition operator, then the all-prefix-sums operation on the array

[3 1 7 0 4 1 6 3],

would return

[3 4 11 11 15 16 22 25].

e prefix-sum algorithms form the building blocks for a variety of methods, including
stream compaction, stream splitting, sorting, regular expressions, tree-depth determina-
tion and histogram construction. In the following paragraphs, we give a concise account
on the algorithms we used in this work, however we refer the interested readers to the
survey by Blelloch Guy E. Blelloch (1990) for further examples and detailed descriptions.

4.A.1 Stream Compaction
Stream compaction removes “invalid” items from a stream of elements; this algorithm is
also known as stream reduction. In the left panel of the Fig.4.12 an example of a com-
paction is shown where invalid elements are removed and valid elements are placed at the
start of the output stream.

4.A.2 Split and Sort
Stream split is related to stream compaction, but differs in that the invalid elements are
placed behind the valid ones in the output stream instead of being discarded (right panel
of Fig.4.12). is algorithm is used as building block for the radix sort primitive. Namely,
for each bit of an integer we call the split algorithm, starting from the least significant bit,
and terminating with the most significant bit Knuth (1997).
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Figure 4.12: Example of compact and split algorithms. The “compact” discards invalid items whereas
the “split” places these behind the valid items. We use this “split” primitive for our radix sort imple-
mentation because it preserves the item ordering–a property which is fundamental for the radix sort
algorithm.

4.A.3 Implementation
All parts of our parallel octree algorithms use scan algorithms in one way or another.ere-
fore, it is important that these scan algorithms are implemented in the most efficient way
and do not become the bottleneck of the application. ere are many different implemen-
tations of scan algorithms on many-core architectures Mark Harris (NVIDIA) (2009);
Sengupta et al. (2008); Billeter et al. (2009). We use the method of Billeter et al. Billeter
et al. (2009) for stream compaction, split and radix-sort because it appears to be, at the
moment of writing, the fastest and is easily adaptable for our purposes.

Briefly, the method consists of three steps:

1. Count the number of valid elements in the array.

2. Compute output offsets using parallel prefix-sum.

3. Place valid elements at the output offsets calculated in the previous step.

We used the prefix-sum method described by Sengupta et al. Sengupta et al. (2008), for
all such operations in both the tree-construction and tree-traverse parts of the implemen-
tation.

4.B Morton Key generation
One of the properties of the Morton key is its direct mapping between coordinates and
keys. To generate the keys given a set of coordinates one can make use of look-up tables or
generate the keys directly. Since the use of look-up tables is relative inefficient on GPUs
(because of the many parallel threads that want to access the same memory) we decided
to compute the keys directly. First we convert the floating point positions into integer
positions.is is done by shifting the reference frame to the lower left corner of the domain
and then multiply the new positions by the size of the domain. en we can apply bit-
based dilate primitives to compute the Morton key (List.4.1, Raman and Wise (2008)).
is dilate primitive converts the first 10 bits of an integer to a 30 bit representation, i.e.
0100111011 → 000 001 000 000 001 001 001 000 001 001:
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List 4.1: e GPU code which we use to dilate the first 10-bits of an integer.
1 int dilate(const int value) {
2 unsigned int x;
3 x = value & 0x03FF;
4 x = ((x << 16) + x) & 0xFF0000FF;
5 x = ((x << 8) + x) & 0x0F00F00F;
6 x = ((x << 4) + x) & 0xC30C30C3;
7 x = ((x << 2) + x) & 0x49249249;
8 return x;
9 }

is dilate primitive is combined with bit-shift and OR operators to get the particles’
key. In our implementation, we used 60-bit keys, which is sufficient for an octree with the
maximal depth of 20 levels. We store a 60-bit key in two 32-bit integers, each containing
30-bits of the key. e maximal depth imposes a limit on the method, but so far we have
never run into problems with our simulations. is limitation can easily be lifted by either
going to 90-bit keys for 30 levels or by modifying the tree-construction algorithm when
we reach deepest levels. is is something we are currently investigating.




