
The gravitational billion body problem : Het miljard deeltjes probleem
Bédorf, J.

Citation
Bédorf, J. (2014, September 2). The gravitational billion body problem : Het miljard deeltjes
probleem. Retrieved from https://hdl.handle.net/1887/28464

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/28464

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/28464

Cover Page

The handle http://hdl.handle.net/1887/28464 holds various files of this Leiden University
dissertation

Author: Jeroen Bédorf
Title: The gravitational billion body problem / Het miljard deeltjes probleem
Issue Date: 2014-09-02

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/28464

3|Gravitational tree-code on
graphics processing units:
implementation in CUDA

We present a new very fast tree-code which runs on massively parallel Graphical Processing Units
(GPU) with NVIDIA CUDA architecture. e tree-construction and calculation of multipole mo-
ments is carried out on the host CPU, while the force calculation which consists of tree walks and
evaluation of interaction list is carried out on the GPU. In this way we achieve a sustained perfor-
mance of about 100GFLOP/s and data transfer rates of about 50GB/s. It takes about a second to
compute forces on a million particles with an opening angle of θ ≈ 0.5. e code has a convenient
user interface and is freely available for use1.

Evghenii Gaburov, Jeroen Bédorf and Simon Portegies Zwart
Procedia Computer Science, Volume 1, Issue 1, p.1119-1127, May 2010.

1http://castle.strw.leidenuniv.nl/software/octgrav.html

38 Octgrav

3.1 Introduction

Direct force evaluation methods have always been popular because of their simplicity and
unprecedented accuracy. Since the mid 1980’s, however, approximation methods like the
hierarchical tree-code (Barnes and Hut 1986) have gained enormous popularity among re-
searchers, in particular for studying astronomical self-gravitatingN-body systems (Aarseth
2003) and for studying softmatter molecular-dynamics problems (Frenkel and Smit 2001).
For these applications, direct force evaluation algorithms strongly limit the applicability,
mainly due to the O(N2) time complexity of the problem.

Tree-codes, however, have always had a dramatic set back compared to direct methods,
in the sense that the latter benefits from the developments in special purpose hardware, like
the GRAPE and MD-GRAPE family of computers Makino and Taiji (1998); Makino
(2001), which increase workstation performance by two to three orders of magnitude. On
the other hand, tree-codes show a better scaling of the compute time with the number
of processors on large parallel supercomputers Warren and Salmon (1993); Warren et al
(1997) compared to direct N-body methods Harfst et al. (2007); Gualandris et al. (2007).
As a results, large scale tree-code simulations are generally performed on Beowulf-type
clusters or supercomputers, whereas direct N-body simulations are performed on work-
stations with attached GRAPE hardware.

Tree-codes, due to their hierarchical and recursive nature are hard to run efficiently on
dedicated Single Instruction Multiple Data (SIMD) hardware like GRAPE, though some
benefit has been demonstrated by using pseudo-particle methods to solve for the higher-
order moments in the calculation of multipole moments of the particle distributions in
grid cells Kawai et al. (2004).

Recently, the popularity of computer games has led to the development of massively
parallel vector processors for rendering three-dimensional graphical images. Graphical
Processing Units (or GPUs) have evolved from fixed function hardware to general pur-
pose parallel processors. e theoretical peak speed of these processors increases at a rate
faster than Moores’ law (Moore 1965), and at the moment top roughly 200GFLOP for
a single card. e cost of these cards is dramatically reduced by the enormous volumes in
which they are produced, mainly for gamers, whereas GRAPE hardware remains relatively
expensive.

e gravitational N-body problem proved to be rather ideal to port to modern GPUs,
and the first success in porting theN-body problem to programmable GPUs was achieved
by Nyland et al. (2004), but it was only after the introduction of the NVIDIA G80 archi-
tecture that accurate force evaluation algorithms could be implemented Portegies Zwart
et al. (2007) and that the performance became comparable to special purpose computers
Belleman et al. (2008); Gaburov et al. (2009).

Even in these implementations, the tree-code, though pioneered in Belleman et al.
(2008), still hardly resulted in a speed-up compared to general purpose processors. In this
paper we present a novel implementation of a tree-code on the NVIDIA GPU hardware
using the CUDA programming environment.

3.2 Implementation 39

Figure 3.1: Illustration of our tree-structure, shown
in 2D for clarity. Initially, the space is recursively sub-
divided into cubic cells until all cells contain less than
Nleaf particles (blue squares). All cells (including par-
ent cells) are stored in a tree-structure. Afterwards,
we compute a tight bounding box for the particles
in each cell (dotted rectangles) and cell’s boundary.
The latter is a cube with a side length equal to the
largest side length of the bounding box and the same
centre (green squares).

3.2 Implementation

In the classical implementation of the tree-code algorithm all the work is done on the
CPU, since special purpose hardware was not available at that time Barnes andHut (1986).
With the introduction of GRAPE special purpose hardware Ito et al. (1990); Fukushige
et al. (1991), it became computationally favourable to let the special purpose hardware,
instead of the CPU, calculate accelerations. Construction of the interaction list in these
implementations takes nearly as much time as calculating the accelerations. Since the lat-
est generation of GPUs allows more complex operations, it becomes possible to build the
interaction list directly on the GPU. In this case, it is only necessary to transport the tree-
structure to the GPU. Since the bandwidth on the host computer is about an order of
magnitude lower than on the GPU, it is also desirable to offload bandwidth intensive op-
erations to the GPU. e construction of the interaction list is such an operation. e
novel element in our tree-code is construction of the interaction list on the GPU. e
remaining parts of the tree-code algorithm (tree-construction, calculation of node prop-
erties and time integration) are executed on the host. e host is also responsible for the
allocation of memory and the data transfer to and from the GPU. In the next sections we
will cover the details of the host and device steps.

3.2.1 Building the octree
We construct the octree in the same way as done in the original BH tree-code. We define
the computational domain as a cube containing all particles in the system. is cube is
recursively divided into eight equal-size cubes called cells. e length of the resulting cells
is half the length of the parent cell. Each of these cells is further subdivided, until less than
Nleaf particles are left. We call these cells leaves, whereas cells containing more than Nleaf
particles are referred to as nodes. e cell containing all particles is the root node.

e resulting tree-structure is schematically shown in fig3.1. From this tree-structure
we construct groups for the tree walk (c.f. section 3.2.2), which are the cells with the num-

40 Octgrav

Figure 3.2: Illustration of the tree structure as stored in device memory.

ber of particles less than Ngroups, and compute properties for each cell, such as boundary,
mass, centre of mass, and quadrupole moments, which are required to calculate accelera-
tions McMillan and Aarseth (1993).

In order to efficiently walk the octree on the device, its structure requires some reor-
ganisation. In particular, we would like to minimise the number of memory accesses since
they are relative expensive (up to 600 clock cycles). In fig3.2, we show the tree-structure
as stored on the GPU. e upper array in the figure is the link-list of the tree, which we
call the main tree-array. Each element in this array (separated by blue vertical lines) stores
four integers in a single 128-bit words (dashed vertical lines). is structure is particularly
favourable because the device is able to read a 128-bit word into four 32-bit registers using
one memory access instruction. Two array-elements represent one cell in the tree (green
line) with indices to each of the eight children in the main tree-array (indicated by the
arrows). A grey filled element in this list means that a child is a leaf (it has no children
of its own), and hence it needs not to be referenced. We also use auxiliary tree-arrays in
the device memory which store properties of each cell, such as its boundary, mass, centre
of mass and multiple moments. e index of each cell in the main tree-array is directly
related to its index in the auxiliary tree-arrays by bitshift and addition operations.

e device execution model is designed in such a way that threads which execute the
same operation are grouped in warps, where each warp consists of 32 threads. erefore,
all threads in a warp follow the same code path. If this condition is not fulfilled, the di-
vergent code path is serialised, therefore negatively impacting the performance (NVIDIA
Corp. 2007). To minimise this, we rearrange groups in memory to make sure that neigh-
bouring groups in space are also neighbouring in memory. Combined with similar tree
paths that neighbouring groups have, this will minimise data and code path divergence for
neighbouring threads, and therefore further improves the performance.

3.2.2 Construction of an interaction list
In the standard BH-tree algorithm, the interaction lists are constructed for each particle,
but particles in the same groups have similar interaction lists. We make use of this fact by
building the lists for groups instead of particles (Barnes 1990). e particles in each group,
therefore, share the same interaction list, which is typically longer than it would have been
by determining it on a particle basis. e advantage here is the reduction of the number of
tree walks by Ngroup. e tree walk is performed on the GPU in such a way that a single
GPU thread is used per group. To take advantage of the cached texture memory, we make
sure that neighbouring threads correspond to neighbouring groups.

Owing to the massively parallel architecture of the GPU, two tree walks are required
to construct interaction lists. In the first walk, each thread computes the size of the in-

3.2 Implementation 41

teraction list for a group. is data is copied to the host, where we compute the total size
of the interaction list, and memory addresses to which threads should write lists without
intruding on other threads’ data. In the second tree walk, the threads write the interaction
lists to the device memory.

List 3.1: A pseudo code for our non-recursive stack-based tree walk.
1 while (stack.non_empty)
2 node = stack.pop ;; get next node from the stack
3 one = fetch(children, node + 0) ;; cached fetch 1st four children
4 two = fetch(children, node + 1) ;; cached fetch 2nd four children
5 test_cell<0...4>(node, one, stack) ;; test sub-cell in octant one to four
6 test_cell<5...8>(node, two, stack) ;; test sub-cell in octant four to eight

List 3.2: Pseudo code for test_cell subroutine.
1 template<oct>test_cell(node, child, stack)
2 child = fetch(cell_pos, 8*node +oct) ;; fetch data of the child
3 if (open_node(leaf_data, child)) ;; if the child has to be opened,
4 if (child != leaf) stack.push(child) ;; store it in stack if it is a node
5 else leaf += 1 ;; otherwise increment the leaf counter
6 else cell += 1 ;; else, increment the cell counter

We implemented the tree walk via a non-recursive stack-based algorithm (the pseudo
code is shown in List 3.1), because the current GPU architecture does not support re-
cursive function calls. In short, every node of the tree, starting with the root node, reads
indices of its children by fetching two consecutive 128-bit words (eight 32 bit integers)
from texture memory. Each of these eight children is tested against the node-opening cri-
teria θ (the pseudo code for this step is shown in List 3.2), and in the case of a positive
result a child is stored in the stack (line 4 in the listing), otherwise it is considered to be
a part of the interaction list. In the latter case, we check whether the child is a leaf, and
if so, we increment a counter for the leaf-interaction list (line 5), otherwise a counter for
the node-interaction list (line 6). is division of the interaction lists is motivated by the
different methods used to compute the accelerations from nodes and leaves (c.f. section
3.2.3). In the second tree walk, we store the index of the cell in the appropriate interaction
list instead of counting the nodes and leafs.

3.2.3 Calculating accelerations from the interaction list
In the previous step, we have obtained two interaction lists: one for nodes and one for
leaves. e former is used to compute accelerations due to nodes, and the latter due to
leaves. e pseudo-code for a particle-node interaction is shown in List 3.3 and the mem-
ory access pattern is demonstrated in the left panel of fig3.3. is algorithm is similar to
the one used in the kirin and sapporo libraries for direct N-body simulations Belleman
et al. (2008); Gaburov et al. (2009). In short, we use a block of threads per group, such
that a thread in a block is assigned to a particle in a group; these particles share the same
interaction list. Each thread loads a fraction of the nodes from the node-interaction list
into shared memory (blue threads in the figure, lines 2 and 3 in the listing). To ensure
that all the data is loaded into shared memory, we put a barrier for all threads (line 4),
and afterwards each thread computes gravitational acceleration from the nodes in shared
memory (line 5). Prior loading a new set of nodes into the shared memory (green threads

42 Octgrav

List 3.4: Body-leaf interaction
1 for (i = 0; i < list_len; i += block_size) {
2 leaf = leaf_interaction_list[i + threads_id]
3 shared_leaves[threadIdx] = cells_list[leaf] ;; read leaves to the shared memory
4 __syncthreads()
5 for (j = 0; j < block_size; j++) ;; process each leaf
6 shared_bodies[thread_id] = bodies[shared_leaves[j].first + thread_id]
7 __syncthreads();
8 interact(body_in_a_thread, shared_bodies, shared_leaves[j].len);
9 __syncthreads();

Node interaction list

Shared nodes

Figure 3.3: Memory access pattern in a body-node (left) and body-leaf (right) interaction.

in the figure), we ensure that all the threads have completed their calculations (line 6). We
repeat this cycle until the interaction list is exhausted.

List 3.3: Body-node interaction
1 for (i = 0; i < list_len; i += block_size)
2 cellIdx = cell_interact_lst[i + thread_id]
3 shared_cells[threadIdx] = cells_lst[cellIdx] ;; read nodes to the shared memory
4 __syncthreads() ;; thread barrier
5 interact(body_in_a_thread, shared_cell) ;; evaluate accelerations
6 __syncthreads() ;; thread barrier

Calculations of gravitational acceleration due to the leaves differs in several ways. e
pseudo-code of this algorithm is presented in List 3.4, and the memory access pattern is
displayed in the right panel of Fig. 3.3. First, each thread fetches leaf properties, such as
index of the first body and the number of bodies in the leaf, from texture memory into
shared memory (red lines in the figure, lines 2 and 3 in the listing). is data is used to
identify bodies from which the accelerations have to be computed (black lines). Finally,
threads read these bodies into shared memory (blue and green lines, line 6) in order to
calculate accelerations (line 8). is process is repeated until the leaf-interaction list is
exhausted.

3.3 Results
In this section we study the accuracy and performance of the tree code. First we quantify
the errors in acceleration produced by the code and then we test its performance. For
this purpose we use a model of the Milky Way galaxy (Widrow and Dubinski 2005). We
model the galaxy with N = 104, 3 · 104, 105, 3 · 105, 106, 3 · 106 and 107 particles, such
that the mass ratio of bulge, disk and halo particles is 1:1:4. We then proceed with the

3.3 Results 43

Figure 3.4: Each panel displays a fraction of particles having relative acceleration error (vertical axis)
greater than a given value (horizontal axis). In each panel, we show errors for various opening angles
from θ = 0.2 (the leftmost curve in each panel), 0.3, 0.4, 0.5, 0.6 and 0.7 (the rightmost curve).
The number of particles are 3 · 104, 105, 106 for panels from left to right respectively. The dotted
horizontal lines show 50%, 10% and 1% of the error distribution.

measurements of the code performance. In all test we use Nleaf = 64 and Ngroup = 64
which we find produce the best performance on both G80/G92 and GT200 architecture.
e GPU used in all the tests is a GeForce 8800Ultra.

3.3.1 Accuracy of approximation
We quantify the error in acceleration in the following way:
∆a/a = |atree − adirect|/|adirect|, where atree and adirect are accelerations calculated by the
tree and direct summation respectively. e latter was carried out on the same GPU as
the tree-code. is allowed us to asses errors on systems as large as 10 million particles2.
In fig3.4 we show error distributions for different numbers of particles and for different
opening angles. In each panel, we show which fraction of particles (vertical-axis) has a
relative error in acceleration larger than a given value (horizontal axis). e horizontal
lines show 50th, 10th and 1st percentile of cumulative distribution. is data shows that
acceleration errors in this tree-code are consistent with the errors produced by existing
tree-codes with quadrupole corrections (Dehnen 2002; Springel et al. 2001; Stadel 2001).

We show dependence of errors on both opening angle and number of particles in fig3.5.
In the leftmost panel of the figure, we plot the median and the first percentile of the relative
force error distribution as a function of the opening angle θ for various number of particles
N = 3 · 104 (the lowest blue dotted and red dashed lines), 3 · 105 and 3 · 106 (the upper
blue dotted and red dashed lines). As expected, the error increases as a function of θ with
the following scaling from the least-squared fit, ∆a/a ∝ θ4. However, the errors increase
with the number of particles: the error doubles when the number of particles is increased
by two orders of magnitude. is increase of the error is caused by the large number of
particles in a leaf, which in our case is 64, to obtain the best performance. We conducted
a test with Nleaf = 8, and indeed observed the expected decrease of the error when the

2We used the NVIDIA 8800Ultra GPU for this paper, and it takes ∼10 GPU hours to compute the exact
force on a system with 10 million particles with double precision emulation (Gaburov et al. 2009)

44 Octgrav

Figure 3.5: The median and the first percentile of the relative acceleration error distribution as a
function of the opening angle and the number of particles. In the leftmost panel we show lines for
3 · 104 (the bottom dotted and dashed lines) and 3 · 106 (the top dotted and dashed lines) particles.
The middle and the right panels display the error for θ = 0.2 (the bottom lines), 0.3, 0.4, 0.5, 0.6 and
0.7 (the upper lines).

Figure 3.6: Wall-clock timing results as function of the opening angle and number of particles. In
each panel, the solid line shows the time spent on the GPU. The dotted line on the top panel shows
the time spent on the host, and the total wall-clock time is shown with the dashed line.

number of particles increases; this error, however, is twice as large compared to Nleaf = 64
for N ∼ 106.

3.3.2 Timing
In fig3.6 we present the timing data as a function of θ and for variousN . e THost (dotted
line in the figure) is independent of θ, which demonstrates that construction of the octree
only depends on the number of particles in the system, with THost ∝ N logN . is time
becomes comparable to the time spend on the GPU calculating accelerations forN ≳ 106

and θ ≳ 0.5. is is caused by the empirically measured near-linear scaling of time spend
on GPU withN . As the number of particles increases, the GPU part of the code performs
more efficiently, and therefore the scaling drops from N logN to near-linear (fig3.7). We
therefore conclude, that the optimal opening angle for our code is θ ≈ 0.5.

3.3 Results 45

Figure 3.7: Timing results as a function of particle number. The leftmost panel displays time spent on
the GPU (black dash-dotted lines) and host CPU (blue solid line) parts as a function of the number
of particles. The expected scaling N log(N) is shown in the red solid line. The ratio of the time spent
on GPU to the total wall-clock time is given in the middle panel. The speed-up compared to direct
summation is shown in the rightmost panel. The expected scaling N/ log(N) is shown with a solid
red line.

In the leftmost panel of fig3.7 we showN dependence of the time spent on the host and
the device for various opening angles. In particular, TGPU scaling falls between N log(N)
and N , which we explained by the increased efficiency of the GPU part of our code with
larger number of particles. is plot also shows that the host calculation time is a small
fraction of the GPU calculation time, except for N ≳ 106 and θ ≳ 0.5. e middle panel
of the figure shows the ratio of the time spent on the device to the total time. Finally,
the rightmost panel shows the ratio between the time required to compute forces by direct
summation and the time required by the tree-code. As we expected, the scaling is consistent
with N2/(N log(N)) = N/log(N).

3.3.3 Device utilisation
We quantify the efficiency of our code to utilise the GPU resources by measuring both in-
struction and data throughput, and then compare the results to the theoretical peak values
provided by the device manufacturer. In fig3.8 we show both bandwidth and computa-
tional performance as function of θ for three different N . We see that the calculation of
accelerations operates at about 100GFLOPs3. is is comparable to the peak performance
of the GRAPE-6a special-purpose hardware, but this utilises only ∼ 30% of the compu-
tational power of the GPU4. is occurs because the average number of bodies in a group
is a factor of 3 or 4 smaller than the Ngroup, which we set to 64 in our tests. On average,
therefore, only about 30% of the threads in a block are active.

e novelty of this code is the GPU-based tree walk. Since there is little arithmetic
intensity in these operations, the code is, therefore, limited by the bandwidth of the device.
We show in fig3.8 that our code achieves respectable bandwidth: in excess of 50GB/s

3We count 38 and 70 FLOPs for each body-leaf and body-node interaction respectively.
4Our tests were carried out on a NVIDIA 8800Ultra GPU, which has 128 streaming processors each oper-

ating at clock speed of 1.5Ghz. Given that the GPU is able to perform up to two floating point operation per
clock cycle, the theoretical peak performance is 2× 128 = 384GFLOP/s.

46 Octgrav

,

Figure 3.8: Device utilisation as a function of the opening angle and number of particles. Each bottom
panel shows the bandwidth for the first tree walk (solid line) and the second tree walk (dotted line).
The top halves show the performance of the calculation of the accelerations for the node interaction
list (solid line) and the leaf interaction list (dotted line) in GFLOP/s.

during the first tree walk, in which only (cached) scatter memory reads are executed. e
second tree walk, which constructs the interaction list, is notably slower because there data
is written to memory–an operation which is significantly slower compared to reads from
texture memory. We observe that the bandwidth decreases with θ in both tree walks, which
is due to increasingly divergent tree-paths between neighbouring groups, and an increase
of the write to read ratio in memory operations.

3.4 Discussion and Conclusions

We present a fast gravitational tree-code which is executed on Graphics Processing Units
(GPU) supporting theNVIDIACUDA architecture.e novelty of this code is theGPU-
based tree-walk which, combined with the GPU-based calculation of accelerations, shows
good scaling for various particle numbers and different opening angles θ. e hereby pro-
duced energy error is comparable to existing CPU based tree-codes with quadrupole cor-
rections. e code makes optimal use of the available device resources and shows excellent
scaling to new architectures. Tests indicate that the NVIDIA GT200 architecture, which
has roughly twice the resources as the used G80 architecture, performs the integration
twice as fast. Specifically, the sustained science rate on a realistic galaxy merger simulation
with 8 · 105 particles is 1.6 · 106 particles/second. Our tests revealed our GPU imple-
mentation to be two order of magnitudes faster than the widely-used CPU version of the
Barnes-Hut tree-code from the NEMO stellar dynamics package (Teuben 1995). How-
ever, our code is only an order of magnitude faster compared to a SSE-vectorised tree-code
specially tuned for x86-64 processors and the Phantom-GRAPE library 5 Hamada et al
(Hamada et al. 2009a) presented a similarly tuned tree code, in which Phantom-grape is
replaced with a GPU library (Hamada and Iitaka 2007). In this way, it was possible to

5Private communication with Keigo Nitadori, the author of the Phantom-GRAPE library.

3.4 Discussion and Conclusions 47

achieve the 200 GFLOP/s, and science rate of about 106 particles/s. However, this code
does not include quadrupole corrections, and thereforeGFLOP/s comparison between the
two codes is meaningless. Nevertheless, the science rate of the two codes is comparable for
similar opening angles, which implies that our tree-code provides more accurate results for
the same performance.

As it generally occurs with other algorithms, the introduction of a massively parallel
accelerator usually makes the host calculations and non-parallelisable parts of the code, as
small as they may be, the bottleneck. In our case, we used optimised device code and for
the host code we used general tree-construction and tree-walk recursive algorithms. It is
possible to improve these algorithms to increase the performance of the host part, but it is
likely to remain a bottleneck. Even with the use of modern quad-core processors this part
is hard to optimize since its largely a sequential operation.

Acknowledgements
We thankDerekGroen, StefanHarfst andKeigoNitadori for valuable suggestions and reading of themanuscript.
is work is supported by NWO (via grants #635.000.303, #643.200.503, VIDI grant #639.042.607, VICI grant
#6939.073.803 and grant #643.000.802). We thank the University of Amsterdam, where part of this work was
done, for their hospitality.

