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2|Sapporo2: A versatile direct
N-body library

Astrophysical direct N-body methods have been one of the first production algorithms to be imple-
mented using NVIDIAs CUDA architecture. Now, almost six years later, the GPU is the most used
accelerator device in astronomy for simulating stellar systems. In this paper we present the imple-
mentation of the Sapporo2 N-body library, which allows researchers to use the GPU for N-body
simulations with little to no effort. e first version, released five years ago, is actively used, but lacks
advanced features and versatility in used numerical precision and support for higher order integra-
tors. In this updated version we have rebuilt the code from scratch and added support for OpenCL,
multi-precision and higher order integrators. We show how to tune these codes for different GPU
architectures and present how to continue utilizing the GPU as optimally as possible even when
only a small number of particles is integrated. is careful tuning allows Sapporo2 to be faster than
Sapporo1 even with the added options and double precision data loads. e code shows excellent
scaling on a range of NVIDIA and AMD GPUs in single and double precision accuracy.
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2.1 Background

e class of algorithms, commonly referred to as direct N-body algorithms is still one
of the most commonly used methods for simulations in astrophysics. ese algorithms
are relative simple in concept, but can be applied to a wide range of problems. From the
simulation of few body problems, such as planetary stability to star-clusters and even small
scale galaxy simulations. However, these algorithms are also computationally expensive as
they scale as O(N2). is makes the method unsuitable for large N (> 106), for these
large N simulations one usually resorts to a lower precision method like the Barnes-Hut
tree-code method Barnes and Hut (1986) that scales as O(NlogN ) or the Particle Mesh
method that scales as O(N ) (e.g. Hohl and Hockney (1969); Hockney and Eastwood
(1981)). ese methods, although faster, are also notably less accurate and not suitable for
simulations that rely on the high accuracy that direct integration offers. On the other end
of the spectrum you can find even higher accuracy methods which use arbitrary precision
(Boekholt et al. in prep). e results of Boekholt et al. indicate that the accuracy offered
by the default (double precision) direct N-body methods is sufficient for most scientific
problems.

e direct N-body algorithm is deceivingly simple, in the basic form it performs N2

gravitational computations, which is an embarrassingly parallel problem that can be effi-
ciently implemented on almost any computer architecture with a limited amount of code
lines. A number of good examples can be found on the Nbabel.org website. is site
contains examples of a simple N-body simulation code implemented in a wide range of
programming languages. However, in practice there are many variations of the algorithms
in use, with up to 8th order integrations Nitadori and Makino (2008), algorithmic ex-
tensions such as block-time stepping McMillan (1986), neighbour-schemes Ahmad and
Cohen (1973), see Bédorf and Portegies Zwart (2012) and references therein for more ex-
amples. ese variations transform the simple O(N2) shared time-step implementation in
one with many dependencies and where the amount of parallelism can differ per time-step.
Especially the dynamic block time-stepping method adds complexity to the algorithm,
since the number of particles that participate in the computations change with each inte-
gration step. is variable number of particles involved in the computations forces the use
of different parallelisation strategies. In the worst case there is only one particle integrated
which eliminates most of the standard parallelisation methods forN2 algorithms. ere is
extensive literature on high performance direct N-body methods with the first being de-
scribed in 1963 Aarseth (1963). e method has been efficiently implemented on parallel
machines McMillan (1986), vector machines Hertz and McMillan (1988) and dedicated
hardware such as the GRAPEs Makino and Taiji (1998). For an overview we refer the
interested reader to the following reviews Bédorf and Portegies Zwart (2012); Heggie and
Hut (2003); Dehnen and Read (2011)

In this paper we present our direct N-body library, Sapporo2. e library contains
built-in support for second order leap-frog (GRAPE5), fourth order Hermite (GRAPE6)
and the sixth order Hermite integrators. e numerical precision can be specified at run
time and depends on requirements for performance and accuracy. Furthermore, the library
can keep track of the nearest neighbours by returning a list containing all particles within a
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certain radius. Depending on the available hardware the library operates with CUDA and
OpenCL, and has the option to run on multiple-GPUs if installed in the same system. e
library computes the gravitational force on particles that are integrated with block time-
step algorithms. However, the library can trivially be applied to any other N2 particle
method by replacing the force equations.

2.2 Methods
With Graphic Processing Units (GPUs) being readily available in the computational as-
trophysics community for over 5 years we will defer a full description of their specifics
and peculiarities Bédorf and Portegies Zwart (2012); Belleman et al. (2008); Nyland et al.
(2007); NVIDIA (2013a). Here we only give a short overview to stage the context for the
following sections. In GPU enabled programs we distinguish two parts of code. e ‘host’
code, used to control the GPU, is executed on the CPU; whereas the ‘device’ code, per-
forming the majority of the computations, is executed on the GPU. Each GPU consists of
a set of multiprocessors and each of these multiprocessors contains a set of computational
units. We send work to the GPU in blocks for further processing by the multiprocessors.
In general a GPU requires a large amount of these blocks to saturate the device in order to
hide most of the latencies that originate from communication with the off-chip memory.
ese blocks contain a number of threads that perform computations. ese threads are
grouped together in ‘warps’ for NVIDIA machines or ‘wavefronts’ on AMD machines.
reads that are grouped together share the same execution path and program counter.
e smaller the number of threads that are grouped the smaller the impact of thread di-
vergence. On current devices a warp consists of 32 threads and a wavefront contains 64
threads. is difference in size has an effect on the performance (see Section 2.3).

2.2.1 Parallelisation method
To solve the mutual forces for an N-body system the forces exerted by the j-particles
(sources) onto the i-particles (sinks) have to be computed. Depending on the used algo-
rithm the sources and sinks can either belong to the same or a completely different particle
set. Neither is it required that these sets have the same dimensions. In worst case situations
this algorithm scales as O(N2), but since each sink particle can be computed indepen-
dently it is also embarrassingly parallel. e amount of parallelism however depends on
the number of sink particles. For example, in high precision gravitational direct N-body
algorithms that employ block-time stepping the number of sink particles ranges between
1 and N . In general the number of sinks is ≪ than the number of sources, because only
the particles of which the position and velocity require an update are integrated McMil-
lan (1986). As aconsequence the amount of available parallelism in this algorithm is very
diverse, and depends directly on the number of active sink particles.

Currently there are two commonly used methods for solving N2 like algorithms using
GPUs. e first performs parallelisation over the sink particles Hamada and Iitaka (2007);
Belleman et al. (2008); Nyland et al. (2007) which launches a separate compute thread for
each sink particle. is is efficient when the number of sinks is large (> 104), because
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then the number of compute threads is sufficiently high to saturate the GPU. However,
when the number of sink particles is small (⩽ 104) there are not enough active compute
threads to hide the memory and instruction latencies. As a result the GPU will be under
utilized and only reaches a fraction of the available peak performance. We expect that
future devices require an even larger number of running threads to reach peak performance,
in which case the number of sink particles has to be even larger to continuously saturate the
device. However, adjusting the number of sink particles to keep parallel efficiency is not
ideal, because then one artificially increases the amount of work (and runtime) in favor
of efficiency. erefore, a second method was introduced in Sapporo1 Gaburov et al.
(2009) which takes a slightly different approach. In Sapporo1 we parallelize over the
source particles and keep the number of sink particles that is concurrently integrated fixed
to a certain number. e source particles are split into subsets, each of which forms the
input against which a set of sink particles is integrated. e smaller the number of sink
particles the more subsets of source particles we can make. It is possible to saturate the
GPU with enough subsets, so if the combined number of sink and source particles is large
enough1 you can reach high performance even if the number of sinks or sources is small.

Of the two parallelisation methods the first one is most efficient when using a shared-
time step algorithm, because fewer steps are involved in computing the gravity. However,
Sapporo1 is more suitable for block-time stepping methods commonly used in high pre-
cision gravitational N-body methods. Even though this method requires an extra step to
combine the partial results from the different subsets. e Sapporo1 method is also ap-
plied in this work. With Sapporo1 being around for 5 years we completely rewrote it and
renamed it to Sapporo2 which is compatible with current hardware and is easy to tune and
adapt to future generation accelerator devices and algorithms. e next set of paragraphs
describe the implementation and the choices we made.

2.2.2 Implementation

CUDA and OpenCL

When NVIDIA introduced the CUDA framework in 2007 it came with compilers, run-
time libraries and examples. CUDA is an extension to the ‘C’ programming language and
as such came with language changes. ese extensions are part of the device and, more
importantly, part of the host code2. e use of these extensions requires that the host code
is compiled using the compiler supplied by NVIDIA. With the introduction of the ‘driver
API’ this was no longer required. e ‘driver API’ does not require modifications to the
‘C’ language for the host code. However, writing CUDA programs with the ‘driver API’
is more involved than with the ‘runtime API’, since actions that were previously done by
the NVIDIA compiler now have to be performed by the programmer.

When the OpenCL programming language was introduced in 2009 it came with a set
of extensions to the ‘C’ language to be used in the device code. ere are no changes to the
language used for writing the host code, instead OpenCL comes with a specification of

1e exact number required to reach peak performance depends on the used architecture, but if the total
number of gravitational interactions is ⩾ 106 it is possible to saturate the GPU

2e most notable addition is the `<<<>>>' construction to start compute kernels.
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functions to interact with the device. is specification is very similar to the specification
used in the CUDA driver API and follows the same program flow.

In order to support both OpenCL and CUDA in Sapporo2 we exploited the simi-
larity between the CUDA driver API and the OpenCL API. We developed a set of C++
classes on top of these APIs which offer an unified interface for the host code. e classes
encapsulate a subset of the OpenCL and CUDA functions for creating device contexts,
memory buffers (including functions to copy data) and kernel operations (loading, com-
piling, launching). en depending on which class is included at compile time the code is
executed using OpenCL or CUDA. e classes have no support for the more advanced
CUDA features such as OpenGL and Direct3D interoperability.

Kernel-code With the wrapper classes the host-code is language independent. For the
device code this is not the case, even though the languages are based on similar principles
the support for advanced features like C++ templates, printing and debugging functionality
in CUDA makes it much more convenient to develop in pure CUDA. After that we port
the working code to OpenCL. e use of templates in particular reduces the amount of
code. In the CUDA version all possible kernel combinations are implemented using a sin-
gle file with templates. For OpenCL a separate file has to be written for each combination
of integrator and numerical precision.
e method used to compute the gravitational forces is comparable to the method used
in Sapporo1 with only minor changes to allow for double precision data loads/stores and
more efficient loop execution.

Numerical Accuracy

During the development of Sapporo1 GPUs lacked support for IEEE-754 double preci-
sion computations and therefore all the compute work was done in either single or double-
single precision3. e resulting force computation had similar precision as the, at that time,
commonly used GRAPE hardware Makino and Taiji (1998); Gaburov et al. (2009). is
level of accuracy is sufficient for the fourth order Hermite integration scheme Makino and
Aarseth (1992); Portegies Zwart and Boekholt (2014). Currently, however there are inte-
grators that accurately solve the equations of motions of stars around black-holes, planets
around stars and similar systems that encounter high mass ratios. For these kind of simu-
lations one often prefers IEEE-754 double precision to solve the equations of motion. e
current generation of GPUs supports IEEE-754, which enables computations that require
this high level of accuracy. erefore the data in Sapporo2 is always stored in double pre-
cision. e advantage of this is that we can easily add additional higher order integrators
that require double precision accuracy computations without having to rewrite major parts
of the host code. Examples of such integrators are the 6th and 8th order Hermite integra-
tors Nitadori and Makino (2008). e performance impact of double precision storage on
algorithms that do not require double precision computations is limited. Before the actual
computations are executed the particle properties are converted to either float or double-
single and the precision therefore does not influence the computational performance. e

3In this precision, the number of significant digits is 14 compared to 16 in IEEE double precision
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penalty for loading and storing double the amount of data is relative small as can be seen
in the result section where Sapporo1 is compared to Sapporo2.

multiple GPUs

Our new N-body library can distribute the computational work over multiple GPUs, as
long as they are installed in the same system. While in Sapporo1 this was implemented
using the boost threading library, this is now handled using OpenMP. e multi-GPU
parallelisation is achieved by parallelisation over the source particles. In Sapporo1 each
GPU contained a copy of all source particles (as in Harfst et al. (2007)), but in Sapporo2
the source particles are distributed over the used devices using the round-robin method.
Each GPU now only holds a subset of the source particles which reduces memory require-
ments, transfer time and the time to execute the prediction step on the source particles.
However, the order of the particle distribution and therefore the addition order is changed
when comparing Sapporo1 and Sapporo2. is in turn can lead to differences in the least
significant digit when comparing the computed force of Sapporo1 to Sapporo2.

Other differences

e final difference between Sapporo1 and Sapporo2 is the way the partial results of
the parallelisation blocks are combined. Sapporo1 contains two computational kernels
to solve the gravitational forces. e first computes the partial forces for the individual
blocks of source particles, and the second sums the partial results. With the use of atomic
operators these two kernels can be combined, which reduces the complexity of maintaining
two compute kernels when adding new functionality at a minimal performance impact.
e expectation is that future devices require more active threads to saturate the GPU,
but at the same time offer improved atomic performance. e single kernel method that
we introduced here will automatically scale to future devices and offers less overhead than
launching a separate reduction kernel.

2.3 Results
In astrophysics the current most commonly used integration method is the fourth order
Hermite Makino and Aarseth (1992) which requires per particle the nearest neighbour
and a list of neighbours within a certain radius. is is what Sapporo1 computes and how
the GRAPE hardware operates Makino and Taiji (1998). e used numerical precision
in this method is the double-single variant. In order to compare the new implementation
with the results of Sapporo1, all results in this section, unless indicated otherwise, refer
to the double-single fourth order Hermite integrator.

For the performance tests we used different machines, depending on which GPU was
used. All the machines with NVIDIA GPUs have CUDA 5.5 toolkit and drivers installed.
For the machine with the AMD card we used toolkit version 2.8.1.0 and driver version
13.4.

e full list of used GPUs can be found in Tab. 2.1, the table shows properties such
as clock speed and number of cores. In order to compare the various GPUs we also show
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the theoretical performance, relative with respect to the GTX480. Since, theoretical perfor-
mance is not always reachable we also show the relative practical performance as computed
with a simpleN-body kernel that is designed for shared-time steps, similar to theN-body
example in the CUDA SDK Nyland et al. (2007).

Cores Core MHZ Mem MHZ Mem bw TPP PPP
GTX480 480 1401 3696 384 1 1
GTX680 1536 1006 6008 256 2.3 1.7
K20m 2496 706 5200 320 2.6 1.8
GTX Titan 2688 837 6144 384 3.35 2.2
HD7970 2048 925 5500 384 2.8 2.3

Table 2.1: GPUs used in this work. The first column indicates the GPU, the second column the number
of computational cores and the third their clock speed. The fourth and fifth column show the memory
clock speed and memory bus width. The sixth and seventh column indicate the relative performance,
when using single precision, where we set the performance of the GTX480 to 1. For the sixth column
these numbers are determined using the theoretical peak performance (TPP) of the chips. The seventh
column indicates the relative practical peak performance (PPP) which is determined using a simple
embarrisingly parallel N -body code.

2.3.1 Thread-block configuration
Since Sapporo2 is designed around the concept of a fixed number of blocks and threads
(see Section 2.2) the first thing to determine is the optimal configuration of threads and
blocks. We test a range of configurations where we vary the number of blocks per multi-
processor and the number of threads per block. e results for four different GPU ar-
chitectures are presented in Fig. 2.1. In this figure each line represents a certain number
of blocks per multi-processor, Nblocks. e x-axis indicates the number of threads in a
thread-block, Nthreads. e range of this axis depends on the hardware. For the HD7970
architecture we can not launch more than Nthreads = 256, and for the GTX480 the limit
is Nthreads = 576. For the two Kepler devices 680GTX and K20m we can launch up to
Nthreads = 1024 giving these last two devices the largest set of configuration options.
e y-axis shows the required wall-clock time to compute the forces using the indicated
configuration, the bottom line indicates the most optimal configuration.

For the 680GTX and the K20m the Nblocks configurations reach similar performance
whenNthreads > 512. is indicates that at that point there are so many active threads per
multi-processor that there are not enough resources (registers and/or shared-memory) to
accommodate multiple thread-blocks per multi-processor at the same time. To make the
code suitable for block time-steps the configuration with the least number of threads that
gives the highest performance would be the most ideal. For the HD7970 this isNthreads =
256 while for the Kepler architectures Nthreads = 512 gives a slightly lower execution
time than Nthreads = 256 and Nthreads = 1024. However, we chose to use Nthreads =
256 for all configurations and use 2D thread-blocks on the Kepler devices to launch 512 or
1024 threads. For each architecture the optimal configuration is indicated with the circles
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in Fig. 2.1.
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Figure 2.1: The figure shows the required integration time (y-axis) for N = 131072 source particles
using different number of sink particles (number of threads, x-axis). Each line indicates a different
configuration. In each configuration we changed the number of blocks launched per GPU multi-
processor for different GPU architectures. Shown in panel A NVIDIAs Fermi architecture, in panel
B the NVIDIA Kepler, GK104 architecture in panel C the NVIDIA Kepler, GK110 and the AMD
Tahiti architecture in panel D. The AMD architectures are limited to 256 threads. The configurations
that we have chosen as our default settings for the number of blocks are the lines with the filled circle
markers.

2.3.2 Block-size / active-particles
Now we inspect the performance of Sapporo2 in combination with a block-time step
algorithm. We measured the time to compute the gravitational forces using either the
NVIDIA GPU Profiler or the built-in event timings of OpenCL. e number of active
sink particles, Nactive, is varied between 1 and the optimal Nthreads as specified in the
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previous paragraph. e results are averaged over 100 runs and presented in Fig. 2.2. We
used 131072 source particles which is enough to saturate the GPU and is currently the
average number of particles used in direct N-body simulations.

e straight striped lines in Fig. 2.2 indicate the theoretical linear scaling from (0, 0)
to (256, X) where X is the execution time of the indicated GPU when Nactive = 256.
Visible in the figure are the jumps in the execution time that coincide with the warp (wave-
front) size of 32 (64). For NVIDIA devices we can start 2D thread-blocks for all values of
Nactive, since the maximum number of threads that can be active on the device is ⩾ 512.
e effect of this is visible in the more responsive execution times of the NVIDIA devices
when decreasing Nactive compared to the AMD device. Each time Nactive drops below a
multiple of the maximum number of active threads, the execution time will also decrease.
Up toNactive

<∼ 64 after which the execution time goes down linearly, because of the mul-
tiple blocks that can be started for any value of Nactive. e lines indicated with ‘1D’ in
the legend show the execution time if we would not subdivide the work further using 2D
thread-blocks. is will under-utilize the GPU and results in increased execution times
for Nactive < 128.

e performance difference between CUDA and OpenCL is minimal which indicates that
the compute part of both implementations inhabits similar behavior. For most values of
Nactive the timings of Sapporo1 and Sapporo2 are comparable. Only for Nactive < 64
we see a slight advantage for Sapporo1 where the larger data loads of Sapporo2 result in
a slightly longer execution time. However, the improvements made in Sapporo2 result in
higher performance and a more responsive execution time compared to Sapporo1 when
Nactive ⩾ 128. For the HD7970, there is barely any improvement when Nactive decreases
from 256 to 128. ere is a slight drop in the execution time at Nactive = 192 which
coincides with one less active wavefront compared to Nactive = 256. When Nactive ⩽
128 we can launch 2D blocks and the performance improves again and approaches that
of the NVIDIA hardware, but the larger wavefront size compared to the warp size causes
the the execution times to be less responsive to changes of Nactive.

2.3.3 Range of N
Now that we selected the thread-block configuration we continue with testing the perfor-
mance when computing the gravitational forces using Nsink particles and Nsource parti-
cles, resulting in Nsink×Nsource force computations. e results are presented in the left
panel of Fig. 2.3. is figure shows the results for the five GPUs using CUDA, OpenCL,
Sapporo1 and Sapporo2. e execution time includes the time required to send the input
data and retrieve the results from the device.

e difference between Sapporo1 and Sapporo2 (both the CUDA and OpenCL ver-
sions) on the K20m GPU are neglibible. Sapporo1 is slightly faster for N < 104, because
of the increased data-transfer sizes in Sapporo2, which influence the performance more
when the number of computations is relatively small. Sapporo2 is slightly faster than
Sapporo1 when N ⩾ 104, because of the various optimizations added to the new ver-
sion. e difference between the GTX680, K20m and the HD7970 configurations is relatively
small. While the GTX Titan is almost 1.5× faster and the GTX480 almost 2× slower than
these three cards. ese numbers are not unexpected when inspecting their theoretical per-
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Figure 2.2: Performance for different numbers of active sink particles. The x-axis indicates the number
of active particles and the y-axis the required time to compute the gravitational force using 131072
source particles (Nactive × N gravity computations). The presented time only includes the time
required to compute the gravity, the data transfer times are not included. In both panels the linear
striped line shows the ideal scaling from the most optimal configuration with 256 active particles to
the worst case situation with 1 active particle for one of the shown devices. The left panel shows the
effect on the performance when using 1D thread-blocks instead of 2D on AMD and NVIDIA hardware.
Furthermore we show the effect of using OpenCL instead of CUDA on NVIDIA hardware. When using
1D thread-blocks the GPU becomes underutilized when Nactive becomes smaller than ∼ 128. This
is visible as the execution time increases while Nactive becomes smaller. The right panel compares
the performance of the five different GPUs as indicated. Furthermore it shows that the performance
of Sapporo2 is comparable to that of Sapporo1.

formance (see Tab. 2.1). For N < 105 we further see that the performance of the HD7970
is lower than for the NVIDIA cards. is difference is caused by slower data transfer rates
between the host and device for the HD7970. Something similar can be seen when we
compare the OpenCL version of the K20m with the CUDA version. Close inspection of the
timings indicate that this difference is caused by longer CPU-GPU transfer times in the
OpenCL version when transfering small amounts of data (< 100 KB), which for small N
forms a larger part of the total execution time.

2.3.4 Double precision vs Double-single precision
As mentioned in Section 2.2.2 the higher order integrators require the use of double preci-
sion computations.erefore we test the performance impact when using full native double
precision instead of double-single precision. For this test we use the GTX680, K20m and
the HD7970. e theoretical peak performance when using double precision computations
is lower than the peak performance when using single precision computations. e double
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Figure 2.3: Time required to solve N2 force computations using different configurations. In both
panels the number of source particles is equal to the number of sink particles which is indicated on
the x-axis. The y-axis indicates the required wall-clock time to execute the gravity computation and to
perform the data transfers. Unless otherwise indicated we use CUDA for the NVIDIA devices. The left
panel shows the performance of Sapporo1 on a K20m GPU and Sapporo2 on 5 different GPUs using
a mixture of CUDA and OpenCL. The straight solid line indicates N2 scaling. The right panel shows
the difference in performance between double-single and double precision. We show the performance
for three different devices. The double-single timings are indicated by the filled symbols. The double-
precision performance numbers are indicated by the lines with the open symbols. The straight solid
line indicates N2 scaling.

precision performance of the K20m is one third that of the single precision performance.
For the GTX680 this is 1

24 th and for the HD7970 this is one fourth. As in the previous
section we use the wall-clock time required to performN2 force computations to compare
the devices. e results are presented in the right panel of Fig. 2.3, here the double preci-
sion timings are indicated with the open symbols and the double-single timings with the
closed symbols.

As in the previous paragraph, when using double-single precision the performance is
comparable for all three devices. However, when using double-precision the differences
become more clear. As expected, based on the theoretical numbers, the GTX680 is slower
than the other two devices. e performance of the K20m and the HD7970 are comparable
for N > 104. For smaller N the performance is more influenced by the transfer rates
between the host and the device than by its actual compute speed.

Taking a closer look at the differences we see that the performance of the GTX680 in
full double precision is about ∼ 10× lower than when using double-single precision. For
the other two cards the double precision performance is roughly ∼ 1.5× lower. For all
the devices this is roughly a factor of 2 difference from what can be expected based on the
specifications. is difference can be explained by the knowledge that the number of oper-
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ations is not exactly the same for the two versions4 and even in the double single method we
use the special operation units to compute the sqrt. Another reason for the discrepancy
between the practical and theoretical numbers is that we keep track of the nearest neigh-
bours which requires the same operations for the double single and the double precision
implementation. Combining this with the knowledge that we already execute a number
of double precision operations to perform atomic additions and data reads, results in the
observed difference between the theoretical and empirically found performance numbers.

2.3.5 Sixth order performance

e reason to use sixth order integrators compared to lower order integrators is that, on
average, they are able to take larger time-steps. ey are also better in handling systems
that contain large mass ratios (for example when the system contains a supermassive black-
hole). e larger time-step results in more active particles per block-step which improves
the GPU efficiency. However, to accurately compute the higher order derivatives double
precision accuracy has to be used. is negatively impacts the performance and in Fig. 2.4
we show just how big this impact is. As in the previous figures we present the time to
compute N2 forces. Presented are the performance of the sixth order kernel using double
precision, the fourth order kernel using double-single precision and the fourth order kernel
using double precision. As expected, the sixth order requires the most time to complete as
it executes the most operations. e difference between the fourth order in double-single
and the sixth order in double precision is about a factor 4. However, if we compare the
performance of the double precision fourth order kernel with the sixth order kernel the
difference is only about a factor of 1.4. is small difference in performance shows that it
is beneficial to consider using a sixth order integrator when using high mass ratios or if,
for example, high accuracy is required to trace tight orbits.

2.3.6 Multi-GPU

As described in Section 2.2, Sapporo2 supports multiple GPUs in parallel. e paral-
lelised parts are the force computation, data transfer and prediction of the source particles.
e transfer of particle properties to the device and the transfer of the force computation
results from the device are serial operations. ese operations have a small but constant
overhead, independent of the number of GPUs. For the measurements in this section we
use the total wallclock time required to compute the forces on N particles (as in Sec-
tion 2.3.3). e speed-up compared to 1 GPU is presented in Fig. 2.5. e timings are
from the K20m GPUs which have enough memory to store up to 8 × 106 particles. For
N > 104 it is efficient to use all available GPUs in the system and for N ⩽ 104 all
multi-GPU configurations show similar performance. e only exception here is when
N = 103 at which point the overhead of using 4 GPUs is larger than the gain in compute
power. For large enough N the scaling is near perfect (Tsingle−GPU/Tmulti−GPU ), since
the execution time is dominated by the computation of the gravitational interactions.

4Double single requires more computations than single precision on which the theoretical numbers are based
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Figure 2.4: Performance difference
between fourth and sixth order ker-
nels. Shown is the time required to
solve N2 force computations using
different configurations. The num-
ber of source particles is equal to
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cated on the x-axis. The y-axis in-
dicates the required wall-clock time
to execute the gravity computation
and to perform the data transfers.
The fourth-order configuration using
double-single precision is indicated by
the dotted line with square symbols.
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double precision is indicated by the
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a sixth-order configuration using dou-
ble precision. The straight solid line
without symbols indicates the N2

scaling. Timings performed on a K20m
GPU using CUDA 5.5.
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2.4 Discussion and CPU support

2.4.1 CPU

With the availability of CPUs with 8 and more cores that support advanced vector in-
structions there is the recurring question if it is not faster to compute the gravity on the
CPU than on the GPU. Especially since there is no need to transfer data between the host
and the device which can be relatively costly when the number of particles is ⩽ 1024. To
test exactly for which number of particles the CPU is faster than the GPU we added a
CPU implementation to Sapporo2. is CPU version has support for SSE2 vector in-
structions and OpenMP parallelisation. e only kernel implemented is the fourth order
integrator, including support for neighbour lists and nearest neighbours (particle-ID and
distance). Because the performance of the GPU depends on the combination of sink and
source particles we test a grid of combinations for the number of sink and source particles
when measuring the time to compute the gravitational forces. e results for the CPU
(a Xeon E5620 @ 2.4Ghz), using a single core, are presented in Fig. 2.6a. In this figure
(and all the following figures) the x-axis indicates the number of sinks and the y-axis the
number of sources. e execution time is indicated by the colour from blue (fastest) to red
(slowest). e smooth transition from blue to red from the bottom left corner to the top
right indicates that the performance does not preferentially depend on either the source or
sink particles but rather on the combined number of interactions. is matches our expec-
tations, because the parallelisation granularity on the CPU is as small as the vector width,
which is 4. On the GPU this granularity is much higher, as presented in Fig. 2.6b, here
we see bands of different colour every 256 particles. Which corresponds to the number
of threads used in a thread-block (Nthreads). With 256 sink particles we have the most
optimal performance of a block, if however we would have 257 sink particles we process
the first 256 sinks using optimal settings while the 257th sink particle is processed rel-
ative inefficient. is granularity becomes less obvious when we increase the number of
interactions as presented in Fig. 2.6c. Here we see the same effect appearing as with the
CPU (Fig. 2.6a), where the granularity becomes less visible once we saturate the device
and use completely filled thread-blocks for most of the particles. e final panel, Fig. 2.6d,
indicates per combination of source and sink particles which CPU or GPU configuration
is the fastest. For the CPU we measured the execution time when using 1,2,4 or 8 cores.
In this panel the colours indicate the method which gives the shortest execution times.

When either the number of sinks or the number of sources is relative small (⩽ 100)
the CPU implementation performs best. However, when the number of sinks or sources is
> 100 the GPU outperforms the CPU. When using a CPU implementation that uses the
AVX or AVX2 instruction sets the borders of these regions would shift slightly upwards.
e CPU would then be faster for a larger number of source/sink particles, but that would
only be at most a factor of 2 to 4 more particles. e data of Fig. 2.6 confirms that our
choice to implement the Sapporo2 library for the GPU is an efficient method for realistic
data-set sizes.
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Figure 2.6: GPU and CPU execution times. In all the subplots the x-axis indicates the number of sink
particles and the y-axis the number of source particles used. For subplots a,b and c the raw execution
times are presented and indicated with the colours. Plot d does not present the execution time but
rather which of the configuration gives the best performance. The inset of plot d is a zoom-in of the
main plot. Note that the colours are scaled per plot and are not comparable between the different
subplots. All the GPU times include the time required to copy data between the host and device.

2.4.2 XeonPhi

Because the Sapporo2 library can be built with OpenCL it should, theoretically, be possible
to run on any device that supports OpenCL. To put this to the test, we compiled the library
with the Intel OpenCL implementation. However, although the code compiled without
problems it did not produce correct answers. We tested the library both on an Intel CPU
and the Intel XeonPhi accelerator. Neither the CPU, nor the XeonPhi produced correct
results. Furthermore, the performance of the XeonPhi was about 100× lower than what
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can be expected from its theoretical peak performance. We made some changes to the
configuration parameters such as Nthreads and Nblocks, however this did not result in any
presentable performance. We suspect that the Intel OpenCL implementation, especially
for XeonPhi, contains a number of limitations that causes it to generate bad performing
and/or incorrect code. erefore the Sapporo2 library is not portable to Intel architectures
with their current OpenCL implementation. is does not imply that the XeonPhi has bad
performance in general, since it is possible to achieve good performance on N-body codes
that is comparable to GPUs. However, this requires code that is specifically tuned to the
XeonPhi architecture (K. Nitadori, private communication 5).

2.5 Conclusion
e here presented Sapporo2 library makes it easy to enable GPU acceleration for direct
N-body codes. We have seen that the difference between the CUDA and OpenCL imple-
mentations is minimal when there are enough particles to make the simulation compute
limited. However, if many small data transfers are required, for example when the inte-
grator takes very small time-steps with few active particles, the CUDA implementation will
be faster. Apart from the here presented fourth and sixth order integrators the library also
contains a second order implementation. And because of the storage of data in double
precision it can be trivially expanded with an eight order integrator. e performance gain
when using multiple GPUs implies that it is efficient to configure GPU machines that
contain more than 1 GPU. is will improve the time to solution for simulations with
more than 104 particles.

e OpenCL support and built-in tuning methods would allow easy extension to other
OpenCL suported devices. However, this would require a mature OpenCL library that sup-
ports atomic operations and double precision data types. For the CUDA devices this is not
that a problem since the current CUDA libraries already have mature support for the used
operations and the library automatically scales to future architectures. e only property
that has to be set is the number of thread-blocks per multiprocessor and this can be easily
identified using the figures as presented in Section 2.3.1.
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