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abstract

aim  Although cb¡ antagonists are less widely studied due to market 
withdrawal of rimonabant, this drug class is still very interesting due to 
a the therapeutic potential. The severe psychiatric side effects might be 
overcome due to careful management of drug development, including 
improved studies in healthy volunteers by using cb¡ agonist challenge 
tests and thorough pk/pd analyses. We aimed to build pk/pd models suit-
able for direct comparisons of pharmacological compounds in complex 
clinical setting using a pharmacological challenge test. Secondly, we 
wanted to apply the model to make a direct comparison between four cb¡ 
antagonists.

methods  The pharmacokinetic models of multiple thc administra-
tions and the four antagonists drinabant, surinabant, rimonabant and 
tm38837 were built separately. Next, the thc-induced effects in healthy 
volunteers, including changes on heart rate and the visual analogue scale 
of feeling high were modelled by a pk/pd model linked to the thc pk 
model. Then, the inhibition of the thc-induced effects by the antagonists 
was quantified by incorporating components representing the inhibi-
tory effect. The delay between drug concentration and drug effect was 
described using a biophase compartment. A benchmark simulation was 
then used based on a constructed model to evaluate the reduction rate 
of each antagonist on the reversal of the thc-induced effect in a unified 
simulation scenario. 

results   The final pk model of thc and antagonists was a two-com-
partment model with first order absorption and first order elimination. 
An Emax model and logistic regression model were used as effect mea-
sures and the antagonist effect was added in these models in a competi-
tive binding manner. T¡/™ke0 ranged from 0.00462 to 63.7 hours for 

heart rate and from 0.964 to 150 hours for vas. ic∞º ranged from 6.42 to 
202 ng/ml for heart rate and from 12.1 to 376 ng/ml for vas. rses were 
‹100% for heart rate, and ‹65% for feeling high, except for a 193% rse on 
t∞º after rimonabant administration. After the benchmark simulation, 
drinabant and tm38837 showed relatively larger effects on heart rate 
than feeling high compared to surinabant and rimonabant.

conclusions  Our pk/pd modelling and simulation approach was 
suitable for modelling and simulation of heart rate and feeling high for 
four cb¡ antagonists in a thc challenge test. We were able to directly 
compare four antagonists and we found differences in efficacy profiles 
that might be translated to differences in therapeutic efficacy in future 
studies.
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introduction

Obesity is one of the world wide, emerging, serious, life threatening 
diseases (World Health Organization, 2011). The lack of efficient and 
well-tolerated drugs to treat obesity has led to an increased interest in 
new targets for the development of new drugs (Patel and Pathak, 2007; 
Barth, 2005). A specifically interesting target is the cb¡ receptor, which is 
located in the central nervous system (cns) and at peripheral sites such 
as the heart, liver, pancreas and adipose tissue (Bermudez-Silva et al., 
2008; Bermudez-Silva et al., 2010). At these sites, the cb¡ receptor has a 
modulatory role in the regulation of a variety of complex physiological 
systems, such as the nervous system, and the digestive and endocrine 
system in metabolism (for a review, see Melamede (2005)). Activation of 
the cb¡ receptor leads to effects including feeling high and altered time 
perception, increased body sway and getting hungry (‘the munchies’) (for 
a review, see (Zuurman et al., 2009)).

This widespread involvement of the cb¡ receptor and its ligands 
provides numerous opportunities for the development of new 
medicines for neuronal and metabolic disorders including movement 
disorders, diabetes mellitus, and dyslipidemia. In the late 1990’s 
the pharmaceutical industry became particularly interested in the 
metabolism effects of cb¡ receptors and focused on new chemical entities 
that could decrease appetite by cb¡ receptor antagonism. It was found 
that cb¡ antagonists were indeed able to block feeding behaviour and 
they also showed other characteristics (including decreased gastric 
emptying and increased insulin sensitivity (Patel and Pathak, 2007; Xie 
et al., 2007)) that underlined the potential of cb¡ antagonist in obesity 
treatment.

In 2006, the first cb¡ antagonist rimonabant (formerly known as 
sr141716) was registered for the treatment of obesity and overweight 
with obesity-associated disorders (Wathion, 2009). Besides rimonabant, 

Sanofi developed more cb¡ antagonists, such as drinabant (formerly 
known as ave1625 with possible inverse agonism properties) and 
surinabant (sr147778). However, in 2008, rimonabant was withdrawn 
from the market due to unacceptable psychiatric adverse effects. Almost 
all pharmaceutical companies, including Sanofi, terminated all studies 
involving cb¡ receptor antagonists (such as rimonabant, otenabant and 
taranabant).

Nevertheless, there are studies suggesting that the beneficial 
metabolic effects of rimonabant might be regulated predominantly by 
peripheral cb¡ receptors, whereas the psychiatric side effects could be 
regulated by centrally located cb¡ receptors (Cluny et al., 2010; Nogueiras 
et al., 2008). There is considerable evidence to suggest that the beneficial 
metabolic effects of cb¡ antagonists are mediated by cb¡ receptors that 
are present at locations which are specifically associated with metabolic 
regulation, such as the liver, the pancreas, and fat cells (Bermudez-
Silva et al., 2008; Bermudez-Silva et al., 2010; Gomez et al., 2002). If the 
therapeutic effects of cb¡ antagonists have their target site in peripheral 
tissues and the (serious) side effects originate in certain regions of the 
cns, it is crucial to understand how the specific antagonist could affect 
the several central and the peripheral target sites.

One of the problems with the investigation of the different sites and 
effects of cb¡ antagonism is that there are now validated measurements 
of these effects after acute administration of cb¡ antagonists or in 
healthy subjects. To partly overcome this problem, challenge tests 
with the cb¡/™ partial antagonist Δ9-tetrahydrocannabinol (thc) 
were developed (Klumpers et al., 2013; Strougo et al., 2008; Zuurman 
et al., 2008). With this challenge test, the endocannabinoid system is 
stimulated using thc, which induces a range of dose- and concentration-
related responses. Several of these measures, such as the characteristic 
euphoric ‘high’ feeling, are clearly indicative of central nervous system 
effects. Other parameters like heart rate are more likely to be peripherally 
mediated (Strougo et al., 2008; Zuurman et al., 2008; Zuurman et al., 
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2008). The thc-challenge has been found to be an effective tool to 
demonstrate the pharmacological effects of a cb¡ antagonist, since co-
administration of a selective cb¡ antagonist causes a near-complete block 
of the acute thc-induced effects. The use of the variety of measures such 
as feeling high, body sway and heart rate allow us to create individual 
effect profiles for the different cb¡ antagonists.

Previously, our clinical research centre separately investigated the 
concentration-effect relationships of four different cb¡ antagonists: 
rimonabant, surinabant, ave1625 (drinabant) and tm38837 (Zuurman 
et al., 2010; Klumpers et al., 2013). This was performed in three separate 
studies by using thc-challenge tests, all with different thc dosages 
and dosing time intervals. This approach allowed us to analyse the 
pharmacological characterisation of the individual antagonists. 
However, a thorough comparison among the antagonists was hampered 
by the different dose regimes of the thc challenge tests. In the current 
study, we built an integrated pk/pd model for all antagonists that 
would compensate for these differences between the thc challenge 
tests, allowing a direct comparison of the different cb¡ antagonists with 
regards to pk and pd characteristics.

pk/pd modelling is an approach to characterize the concentration–
time profile and the relationship between concentrations and effects 
using a mathematical model. Model estimation can be based on both 
individuals and populations. The assumption that all individual 
concentration–effect relationships can be described with the same 
structural model is based on the notion that the drug activates the 
same pharmacological system in all subjects (or systems for different 
responses). pk/pd modelling is performed by using a non-linear mixed 
effect modelling approach which provides estimates of the population 
average parameters (assuming that each individual can be described 
using the same structural model) and their associated inter-individual 
variability, which allows individuals to differ from each other. Residual 
error describing the variability of the difference between predicted 

values and the observations is also estimated (Beal, 2013; Holford and 
Sheiner, 1981). Simulation is a subsequent step, following the modelling. 
It can be used to predict model outcomes using an existing model 
structure given different scenarios (model input), for instance with 
different dosages, sampling times and other covariates. 

Our first aim was to build an integrated pk/pd model that would 
be suitable for direct comparisons of pharmacological compounds in 
complex clinical setting using a pharmacological challenge test. We 
would do this for four different cb¡ antagonists (drinabant, surinabant, 
rimonabant and tm38837) and a thc-challenge test for efficacy 
parameters feeling high and heart rate. Our second aim was to apply the 
model for direct comparisons of the different pharmacokinetic profiles 
and efficacy of the four different cb¡ antagonists to better understand 
the behaviour of cb¡ antagonists in healthy humans.
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methods

Study designs

From 2003 until 2009, three thc challenge studies were performed at 
chdr in healthy male volunteers, in which four cb¡ antagonists were 
administered: a study with drinabant (ave1625), one with surinabant 
(sr147778), and another study that investigated both rimonabant 
(sr141716) and tm38837 (referred to as ‘the rimonabant-tm38837 
study’) (Tonstad and Aubin, 2012; Zuurman et al., 2008). The three 
studies were all performed in a double-blind, randomized, placebo-
controlled, (partial) cross-over manner. The complete design and clinical 
results of these studies were published separately (Zuurman et al., 
2010b; Klumpers et al., 2013c; Klumpers et al., 2013). The treatments per 
study and subject demographics are summarized in Table 1 and Table 
2, respectively. In short, each cb¡ antagonist or placebo administration 
was followed by a series of inhaled doses of a vaporized solution of thc 
in ethanol or thc vehicle, which consisted only of vaporized ethanol. 
thc was vaporized using a Volcano vaporizer® (Storz & Bickel GmbH 
& co. kg, Tuttlingen, Germany). In each study, the first thc dose was 
administered around the expected tmax of the cb¡ antagonist. Blood 
sampling for pk and selected pd responses were taken accordingly after 
multiple thc challenge and/or antagonist administration and the last 
sampling time points were shortly after the last challenge dose of thc.

Pharmacokinetic and pharmacodynamic 
measurements

Blood samples of thc and four antagonists were analyzed as published 
before (Zuurman et al., 2010b; Klumpers et al., 2013c; Klumpers et al., 
2013). In short, thc samples were measured using tandem mass spec-

trometry with a lower limit of quantification of 0.1 ng/ml. Concentra-
tion of ave1625 was measured using Flow Chromatography – Mass 
Spectrometry/Mass Spectrometry (tfc-ms/ms) and the limit of quan-
tification was 0.2 ng/ml. Concentration of surinabant was measured us-
ing liquid chromatography coupled with tandem mass spectrometry 
(lc-ms/ms) method with a lower limit of quantification (lloq) of 1.0 ng/
ml. Concentrations of tm38837 and rimonabant were measured by liq-
uid chromatography with tandem mass spectrometry method with a 
lower limit of quantification of 0.1 ng/ml for tm38837, and 1.0 ng/ml for 
rimonabant. 

In all studies, Visual analogue scales (vas) according to Bowdle 
(psychedelic effects) and heart rate were assessed frequently (Bowdle et 
al., 1998; Zuurman et al., 2008). Heart rate was measured using Nihon-
Koden bsm-1101K monitor (Lifescope ec, Tokyo, Japan) blood pressure 
apparatus. The adapted version of the Bowdle scales consists of 100 mm 
visual analogue lines, to indicate subjective feeling high, and on a range 
of other subjective effects that cluster as factors internal perception and 
external perception, both composite scores that are affected differently 
by thc as previously described (Zuurman et al., 2008). 

Modelling and simulation

pk and pk/pd modelling was performed using population approach 
nonlinear mixed effect modelling program nonmem 7.1.0 (Beal, 2013). 
Nonlinear mixed effect modelling considers the repeated observations as 
a function of time in a population of individuals. The model to describe 
these observations adopts a common structural model and distribution 
of residuals, while allowing the parameters in the model to vary between 
individuals. The location (typical value or fixed effect) and spread be-
tween individuals (variability or random effect) of the model parameters 
are estimated by fitting the parameters to the data by minimizing an 
objective function based on the log likelihood (-2 x ll). Using the popu-
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lation values (both location and spread), individual specific empirical 
Bayes’ estimates (post hoc estimates of individual deviates (etas) from 
the random effects distributions) are determined that allow description 
of individual time profiles. 

Different models are compared with increasing complexity in the 
structural model and the number of random effects. The objective is to 
find the simplest model that describes the data adequately. Competing 
models are compared using the likelihood ratio test, which compares 
the difference between log-likelihoods for the models (difference in 
objective function value, ∆ ofv) to a Chi-square distribution with degrees 
of freedom corresponding to the difference in number of parameters 
between the two models (p-value used was less than 0.01: ∆ ofv = -6.63). 
Models were qualified by visual inspection for goodness of fit and check 
of weighted residuals.

A general overview of the two-step modelling approach is displayed 
in Figure 1. First, pk models for thc and four antagonists were built 
separately for every compound to obtain estimated pk parameters 
based on ofv and goodness of fit. The pk model was only built to 
optimally describe the pk profile. Therefore, a separate thc model (if 
possible with a similar structure) was built for each of the three studies. 
Secondly, the pk/pd model was built. The integrated models only 
regard the pd models to enable direct comparison of the different cb¡ 
antagonists. Individual empirical Bayes’ estimates were determined 
to describe the concentration profile and used in the subsequent pk/pd 
analyses. Parameter estimation for population pk modelling of thc and 
antagonists was performed under advan 5 and the pk/pd modelling of 
all pd parameters was performed under advan6 tol 5. The rse (relative 
standard error) was calculated for all parameters. Inter-individual 
variability (iiv) and inter-occasion variability expressed as coefficient of 
Variation (%cv) using:

								      
	  (1)

First order conditional estimation (foce) with interaction was the stan-
dard method of estimation, with the exception of vas feeling high pd 
model, for which laplace was used. Within each model, additive and/or 
proportional residual error models were compared.

Pharmacokinetic and pharmacodynamic 
analyses

The population pk model of thc was based on the results of previous 
chdr studies with multiple thc inhalations, using a two-compartment 
model with bolus administration (Strougo et al., 2008) and first order 
elimination. pk analyses of four antagonists were performed in a similar 
way with compartmental model, including first order absorption and 
first order elimination. 

A biophase compartment is used when drug action is delayed by 
distribution from plasma to the site of action. The rate of equilibration 
of drug in the plasma with the site of action is denoted ke0, the rate 
constant for exit of drug from the biophase compartment (Groenendaal 
et al., 2008; Hull et al., 1978; Sheiner et al., 1979). 

A biophase compartment was first used to account for the delayed 
response of vas. To minimize the effect of over- and under-dispersion 
due to the subjectivity of the vas scale, and to include non-response in 
the model, the vas feeling high scale was translated into a binary scale, to 
accommodate the possibility to construct a probability model for feeling 
high (Klumpers et al., 2013). The anchor point for this translation was the 
median of all scores higher than 0 (on a 100 point scale) for the treatment 
arms where only thc was dosed. Inverse logit transformation is used for 
binary data:

 (2)

With								      
	  (3)
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In which cut was the anchor point that changed depending on the 
study; b¡ is the coefficient of thc effect; b is the coefficient of the shift 
of the thc effect caused by the antagonist. The effect of antagonists in 
the above equation reverses the thc induced increase in probability 
of scoring a vas›cut. Every subject receives multiple thc inhalations, 
causing a tolerability that affected the scores of the vas. To cope with 
this, kd, the elimination rate of tolerance, was included to decrease the 
possibility of feeling high caused by time factor tad, the time after the 
first dosing time point. 

A biophase compartment was used to account for the delayed 
response of heart rate as well. Because the all antagonists bind with 
the cb¡ receptor in competition with thc, the biophase compartment 
concentration of thc and respective antagonist was used for the pd 
analyses by using a maximum effect equation (Eq. 4). In this equation, 
the antagonist could cause a shift to the right of the apparent ec∞º 
depending on the impact of the thc challenge effect and the effect is 
described as:							     
	  (4)

Where E0 is the baseline of the effect; Emax is the maximal achievable 
effect; cthc is thc concentration in biophase compartment; ec∞º is 
the concentration that causes 50% of the Emax. b is the coefficient that 
describes the antagonist shift by the thc effect; cantagonist is the cb¡ 
antagonist concentration in the biophase compartment. 

Based on pd model parameters, ic∞º and t¡/™ke0 can be then be 
derived from parameter estimation by using equations 3 and 4. These 
two parameters describe the inhibition potential of cb¡ antagonists. ic∞º 
is a measure of the effectiveness of a compound in inhibiting biological 
function. It indicates how much of a particular antagonist is needed to 
inhibit a given effect of thc by half. t¡/™e0 is the apparent half life of a 
drug effect. It is derived from ke0, which indicates the rate constant of 
the elimination of a drug effect:

								      
	  (5)				     (6)

Visual predictive checks

Visual predictive checks (vpc) were performed for all pk and pd models 
using R version 2.12.0 (R: A Language and Environment for Statistical 
Computing, R Development Core Team, R Foundation for Statistical 
Computing, Vienna, Austria, 2010) with the lsoda (deSolve Package 1.8.1) 
and mvrnorm functions (mass Package v7.3-8). The visual predictive 
check encompassed a projection of the simulated dependent variable 
as a function of time using the final model on the observations. The 
simulations were performed considering the estimated population 
parameters (Q vector) as well as the covariance matrix describing 
iiv (W matrix). The residual variability (S matrix) was not included 
in the simulations. The simulations and the data were grouped by 
antagonists’ dose. Summary statistics of the simulations (median and 
the 95% prediction interval of the simulated iiv) enabled a comparison 
of the predicted and the observed variability. For each dose group 1000 
individuals were simulated. 

Simulation

We selected a benchmark scenario to try to maximally cover the major 
part of the original study designs. Due to differences in tmax, the 
time points of the first thc administration relative to the antagonist 
administration were different among the different study designs. 
As original study designs, the time between administration of cb¡ 
antagonists and first thc was the same as the tmax of antagonist. In 
this way, the first thc inhalation would be administered at the expected 
tmax of cb¡ antagonists. We kept this the same in the benchmark 
scenario and we compensated for these differences by simulating the 
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thc challenge profile rather than using the actual challenges. During 
this simulated challenge, individuals received 4 doses (2, 4, 6 and 6 
mg) of thc inhalation at an hourly interval. Drinabant, surinabant, 
rimonabant and tm38837 were simulated as single dose administered 
at 3, 1.5, 2 and 4 hours before thc challenge, respectively, similar to the 
dose regimens in the actual studies. A wide dose range of the antagonists 
was simulated with dosages from 2mg to 1000mg to optimise the dose 
response curve. The reduction rate was used as drug response in the dose 
response curve and was calculated as the difference between the auc (area 
under the curve) of the pd response of the thc challenge only and the 
thc challenge + antagonist. For auc calculation observations were used 
from the first administration of thc until one hour after the 4th thc 
administration. The reduction rate was calculated as:

								      
	  (7)

Where rr is the reduction ratio, aucthc is the area under the curve 
of thc alone; aucantagonist+thc is the area under the curve of co-
administration of thc and the antagonist.

Simulations were performed in a similar way as for vpc by 
implementing the identified models and the estimated parameters in R 
using the function lsoda from the deSolve library (version 1.8.1) and the 
function mvrnorm from the mass library (version 7.3-8). The results of 
the simulations were used to plot the population-typical dose-response 
curves.

results

thc pharmacokinetic modelling 

In all three studies, a two-compartmental structure model with first-or-
der elimination was the best model to describe thc concentration-time 
curve. The pulmonary administration was implemented as a bolus input 
in the central compartment. 

The pk parameters of thc of the three separate studies are presented 
in Table 3. No significant differences were found among the studies for 
the model parameter estimations and they were also similar to the param-
eters from the models by Strougo et al. (2008). All rses of the estimations 
were smaller than 30% (from 5.19% to 14.3%). Inter-individual variability 
(iiv) was identified on the apparent central distribution volume, ranging 
from 10.3% to 40.8%. iiv on apparent clearance was 18.8% and 31.2% for the 
drinabant study and the rimonabant-tm38837 study, separately. For the 
surinabant study the iiv on the apparent clearance could not be identi-
fied. Additionally, inter-occasion variability on the apparent central dis-
tribution volume was included to account for differences in bioavailabil-
ity between individual dosing occasions in the surinabant study and the 
rimonabant-tm38837 study and was 78.0% and 25.1% respectively. The 
residual error model was only proportional to concentration.

Antagonist pharmacokinetic modelling 

The pk models of the four antagonists were built separately. All of them 
could be described using a two-compartmental model with first-order 
elimination and first-order absorption. Surinabant was found to have 
a lag time of 0.550 hours (rse = 5.7%) and its ka was dose-proportional 
with a dose effect of 0.00486 (rse = 14.4%) as defined by the following 
equation:
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 (8)	 ka (dose) = 0.448x (1 - αxdose)				  
				  
In wich α is the dose effect to ka. For each compound, the rses of the 
parameter estimations varied between 3.91% and 42.4% (Table 4). iiv and 
iov were incorporated in the model if it improved goodness of fit. iiv 
for the clearance of surinabant, rimonabant and tm38837 ranged from 
25.6% to 66.2%. For apparent central distribution volume, the iiv varied 
from 20.6% to 132%. The goodness of fit plot was improved by adding an 
iov of 24% for the central distribution volume of drinabant. Inspection 
of the data showed that the upswing of the concentration after 
administration of rimonabant was insufficiently detailed to estimate the 
first-order absorption rate constant. Therefore, this parameter was fixed 
to the value for the absorption rate constant as reported by Martinez 
(Martinez et al., 2007). The pk parameter estimations of the antagonists 
were presented separately in Table 4, including the rse, inter-individual 
variability and inter-occasion variability. vpcs and diagnostic plots were 
also performed for all four antagonists pk model for model validation.

The thc-induced effects were modelled using data from treatment 
arms with thc dosages only. To enable a direct comparison of the 
antagonists, an integrated thc pd model was applied on the three trials 
for the same set of pd parameters: heart rate and feeling high. An Emax 
model gave the best fit for heart rate. The baseline was estimated at 64.2 
bpm with a rse of 1.14%. Within the study, the highest heart rate observed 
was around 120 bpm. Although physiologically, higher heart rates are 
possible for higher thc dosages, we chose to fix the Emax of heart rate to 
two times the baseline, resulting in proper diagnostic plots and vpcs. iiv 
and iov were both incorporated at the baseline at 7.98% and 5.91%. rses 
of all heart rate model parameters were below 30%. 

A logistic regression model was used for modelling the vas feeling 
high, the parameters of which had a relatively low rse (smaller than 
20%). The estimated parameters of vas feeling high are shown in Table 5.

Antagonist pharmacodynamic modelling 

An effect compartment was built for thc and the antagonists to 
describe the time delay between the concentration effect profiles. 
An equilibration half-life (t¡/™ke0) was defined, which ranged from 
0.00462 (0.502%) to 63.7 (35.4%) hours for heart rate with all rses smaller 
than 100%; and 0.964 (193%) to 150 (16.8%) hours for vas. These wide cv 
ranges suggested a large variability in drug distribution rates to the 
target locations for the different antagonists. Rimonabant presented a 
relatively high rse, which was the only one that was bigger than 100%. 
This suggested a low uncertainty of the parameter estimation.

The range of ic∞º also ranged widely, from 6.42 (36.9%) to 202 (38.6%) 
ng /ml for heart rate, and from 12.1 (25.9%) to 376 (15.3%) ng /ml for vas 
feeling high with all rse smaller than 100%. 

All pd parameter estimates of the four different antagonists are 
presented in Table 6. Both diagnostic plot and vpc were performed, 
which confirmed that the proposed model fit the data properly with 
acceptable predictive ability. 

Dose-response curve simulations

The simulations of two dose-response curves (in this case dose-reduction 
rate curves) of the antagonists are graphically displayed in Figure 2. The 
dose range for the simulation ranged from 2 to 1000 mg. All antagonists 
caused a maximal reduction of thc-induced effects of 70% to 85%. 
The order and shape of the curves that depict the relations between 
dosages and reduction rates varied considerably among the different 
cb¡ antagonists and effects. For example, the reduction rates for heart 
rate were larger than for vas high in the case of drinabant and tm38837, 
whereas for surinabant and rimonabant, vas feeling high had a higher 
reduction rate than heart rate. This suggests that different antagonists 
can show different selectivity for various target sites. 
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discussion

Our aims were to build integrated pk/pd models for thc and four cb¡ 
antagonists and to apply them for direct comparison of the different 
antagonists to improve our understanding on the behaviour of cb¡ 
antagonists in healthy volunteers.

We found that our pk/pd modelling and simulation approach was 
suitable for direct comparisons of pharmacological compounds in 
complex clinical settings using a thc challenge test, even when the 
data came from different studies with different thc dosing regimens. 
Our integrated pk/pd models have a few advantages and disadvantages 
compared to the individual pk/pd models that we built in previous 
studies (Strougo et al., 2008; Klumpers et al., 2013a; Klumpers et al., 
2013b). Integration on the pd level enabled us to compare the different 
antagonists directly; however this approach resulted in enlarged 
inaccuracy of parameter estimation. The method of calculating the 
inhibition ratios of the antagonists as performed in the surinabant study 
and the rimonabant-tm38837 study was highly dependent on sampling 
time points and did not consider the whole effect-time profile (Strougo et 
al., 2008; Klumpers et al., 2013a; Klumpers et al., 2013b), while our study 
presented an improved method to calculate inhibition ratios based on 
the auc of pd responses. In this way, we were able to make estimations 
along the whole time-effect curve.

We have found that surinabant and rimonabant induced larger effects 
on inhibition of thc-induced vas feeling high than on inhibition of 
thc-induced heart rate rising effect, whereas drinabant and tm38837 
showed an opposing behaviour. This was consistent when (graphically) 
comparing the findings from previous studies (Zuurman et al., 2010; 
Klumpers et al., 2013a; Klumpers et al., 2013b). The different effect 
profiles in healthy humans of drinabant and tm38837 compared to 
surinabant and rimonabant suggest differences in clinical efficacy in 

patient groups. Considering the previously suggested associations 
of heart rate effects and peripheral effectivity, it would be tempting 
to imply that drinabant and tm38837 have a larger preference for 
peripheral target sites, resulting in larger peripheral effects compared 
to centrally induced effects. This would be a more desired effect profile, 
considering the severe unwanted psychiatric side effects as previously 
observed in clinical rimonabant dosages. However, patient studies 
are needed to investigate the efficacy of compounds with increased 
peripheral selectivity and their translation to efficacy parameters in 
healthy volunteers.

Despite the market withdrawal of rimonabant, it would still be very 
interesting to investigate the efficacy and tolerability of rimonabant as 
well as surinabant in more detail. From our previous research (Klumpers 
et al., 2013a) we analysed that the clinically used cb¡ antagonist dosages 
and steady state plasma concentrations were well above the dosage and 
concentration that maximally blocked thc-induced effects. The analyses 
were performed over specific time periods during which the antagonist 
concentrations where at maximum reaching maximum inhibition of 
thc-induced effects. This implies that the clinically applied rimonabant 
dosage might have been higher than needed to induce favourable 
therapeutic effects and high enough to induce severe unwanted 
side effects. We hypothesise that a lower dose and concentration of 
rimonabant (and the right dose for surinabant) might result in an 
acceptable balance between efficacy and side effects, which could be 
different for different patient groups. To confirm this, future research 
should perform additional patient studies and carefully translate our 
model (i.e. the results from studies in healthy subjects) to patient groups.

In conclusion, we were able to build suitable pk/pd models in which 
cb¡ antagonists drinabant, surinabant, rimonabant and tm38837, 
and the agonist thc were integrated. We found that the effects of the 
antagonists showed different profiles, with drinabant and tm38837 
showing relatively larger heart rate effects than effects on vas feeling 
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high compared with surinabant and rimonabant. We suggest that 
drinabant and tm38837 might have a larger therapeutic potential than 
rimonabant and surinabant, due to the potential higher risk of severe 
psychiatric side effects for the latter two compounds, which is based on 
their relatively large central effects (i.e. feeling high). 
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table 1 	 Subject demographics. Mean with standard deviation (sd). bmi: Body Mass Index.

Name of study Subject number Age Weight (kg) Height (cm) bmi (kg/m2)

Drinabant 36 22 (3) 76 (11) 183 (6) 23 (3)

Surinabant 30 23.2 (5.3) 78.94 (8.23) 187.7 (6.7) 22.39 (1.94)

Rimonabant-tm38837 36 21.2 (3.8) 77.25 (10.18) 183.42 (6.99) 22.9 (2.1)

table 2 	 Treatments per study. 

Name of study Treatment Time of thc administra-
tion after antagonist 
administration (hr)

thc challenge 
administration dosage 
(mg)

Drinabant Placebo drinabant+ thc vehicle

3, 4, 5, 6 2, 4, 6, 6

Placebo drinabant + thc challenge

20 mg drinabant + thc challenge

60 mg drinabant + thc challenge

120 mg drinabant + thc challenge

120 mg drinabant + thc vehicle

Surinabant Placebo surinabant + thc vehicle

1.5, 2.5, 3.5, 4.5 2, 4, 6, 6

Placebo surinabant + thc challenge

5 mg surinabant + thc challenge

20 mg surinabant + thc challenge

60 mg surinabant + thc challenge

60 mg surinabant + thc vehicle

Rimonabant-
tm38837

Placebo tm38837 + Placebo 
rimonabant+ thc vehicle

2, 4.5, 7, 22, 24.5* 4, 4, 4, 4, 4
Placebo tm38837 + Placebo 
rimonabant+ thc challenge

100 mg tm38837 + Placebo 
rimonabant+ thc challenge

500 mg tm38837 + Placebo 
rimonabant+ thc challenge

4, 6.5, 9, 24, 26.5** 4, 4, 4, 4, 4
Placebo tm38837 + 60 mg 
rimonabant+ thc challenge

Placebo tm38837 + Placebo 
rimonabant+ thc challenge

* 	 Time of thc administration after rimonabant administration

** 	 Time of thc administration after tm38837 administration
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table 5 	 pk/pd parameter estimates of thc alone for heart rate and vas feeling high with percentage coefficient 

of variation (cv). t50 = equilibration half-life of the elimination from the biophase compartment; Emax = maximal 

effect; ec50 = concentration at 50% of maximal effect; iiv = inter individual variability; iov = inter occasion variability; 

Betathc = coefficient of the antagonist-induced shift of the thc effect; Kd = elimination rate of tolerance

Parameter Units Estimate (%rse) iiv iov

Heart rate t¡ /™ hr 0.33 (28.2) - -

Eº bpm 64.2 (1.14) 7.98 5.91

Emax bpm 64.2 (-) - -

ec50 ng/ml 73.7 (18.4) - -

Feeling high t¡ /™ hr 2.26 (16.3) - -

cut1 2.78 (2.98) - -

Betathc -0.519 (16.7) - -

Kd  0.131 (18.6) - -

table 6 	 pk-pd parameter estimates of antagonists for vas feeling high, body sway and heart rate with percentage 

coefficient of variation (cv). T¡/™e0 = equilibration half-life; ic50 = concentration of antagonist at 50% of maximal  

inhibition

Parameter Units Estimate 
(%rse)

Estimate (%rse) Estimate 
(%rse)

Estimate 
(%rse)

Drinabant Surinabant tm38837 Rimonabant 

Heart rate t¡ /™eo hr 6.25 (34.6) 0.00462 (0.502) 63.7 (35.4) 1.12 (26.3)

ic50 ng/ml 6.42 (36.9) 107 (34.4) 175 (36.6) 202 (38.6)

Feeling high t¡ /™eo hr 1.75 (34.7) 6.7 (62.9) 150 (16.8) 0.964 (193)

ic50 ng/ml 12.1 (25.9) 61.6 (44.9) 376 (15.3) 92.8 (65)

table 3 	 pk parameters of thc in the different studies, with the relative standard error (rse, %) and the inter-individ-

ual variability (iiv) as %cv. F=Bioavailability; iov=inter-occasion variability (%)

Drinabant Surinabant Rimonabant-tm38837

Parameter Estimate (%rse) iiv iov Estimate (%rse) iiv iov Estimate (%rse) iiv iov

Clearance/F (L/h) 228 (5.19) 18.8 - 228 (7.39) - - 200 (5.9) 31.2 -

Central volume/F (L) 35.5 (6.95) 10.3 - 35.2 (8.88) 38.9 78 28.5 (8.91) 40.8 25.1

Peripheral volume  
of distribution/F (L)

145 (6.45) - - 103 (6.79) - - 107 (14.3) - -

Intercompartmental 
clearance/F (L/h)

134 (6.08) - - 128 (7.16) - - 106 (6.9) - -

table 4 	 pk parameters of drinabant, surinabant, rimonabant and tm38837 with the relative standard error (rse, %) 

and the inter-individual variability (iiv) as %cv. F=Bioavailability; iov=inter-occasion variability (%)

Drinabant Surinabant Rimonabant tm38837

Parameter Estimate 
(%rse)

iiv iov Estimate 
(%rse)

iiv iov Estimate 
(%rse)

iiv iov Estimate 
(%rse)

iiv iov

Clearance/F (L/h) 32.5 
(14.8)

- - 4.4 (12.7) 62.5 - 9.30 
(6.87)

25.6 - 2.20 
(9.29)

66.2 -

Central  
volume/F (L)

213 
(9.57)

36.3 24 4.99 
(16.3)

66.4 - 39.3 
(15.5)

20.6 - 18.7 
(16.3)

132 -

Peripheral volume 
of distribution/F (L)

2170 (30) - - 515 
(12.5)

102. - 93.0 
(12.8)

- - 10.8 
(42.4)

- -

Intercompartmental 
clearance/F (L/h)

32.5 
(11.4)

- - 15.9 (6.5) 91.2 - 17.9 
(17.2)

- - 0.00975 
(22.0)

- -

Absorption rate 
constant (ka; h-1)

1.09 
(8.22)

39.8 - c0.448 
(3.91)

7.83 - 1.17 
(fixed)

- - 0.0789 
(9.72)

-
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figure 1 	 Schematic representation of the pk-pd models. 

figure 2 	 Simulated dose-effect relationship and the estimated reduction rate (i.e. antagonism of thc-induced effects) 

of heart rate (solid line) and vas feeling high (dashed line) of: (A) drinabant; (B) surinabant; (C) rimonabant; (D) tm38837. 

From the curves we observed that drinabant and tm38837 induce relatively larger heart rate effects than vas feeling 

high effects, whereas this is opposite for surinabant and rimonabant.
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