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MHC class II molecules (MHC-II) present antigenic 
fragments acquired in the endocytic route to the 
immune system for recognition and activation 
of CD4+ T cells. This ignites a series of immune 
responses. MHC-II strongly correlates to most 
autoimmune diseases. Understanding the biology 
of MHC-II is therefore expected to translate into 
novel means of autoimmunity control or immune 
response improvement. Although the basic cell 
biology of MHC-II antigen presentation is well 
understood, many novel aspects have been 
uncovered in recent years including means of 
antigen delivery, preparation for MHC-II loading, 
transport processes and vaccination strategies. 
We will discuss past, present and future of these 
insights into the biology of MHC-II. 

Introduction

Like all glycoproteins, MHC-II α- and β-chains are 
synthesized and assembled in the ER. Here they 
associate with Invariant Chain (Ii), which prevents 
premature binding of peptides to the MHC-II 
peptide-binding-groove and promotes exit from the 
ER and transport through the Golgi. The Ii contains 
a dileucine-based motif recognized by Adaptor 
Protein 2 (AP2) or AP3 complexes [1-3]. This motif 
is required for sorting at the Trans-Golgi-Network 
(TGN) and plasma membrane (PM) towards the 
MHC-II containing compartments (MIIC) [4-6] 
(pathway components discussed in this chapter 
are summarized in Figure 1). In the MIIC, residing 
proteases degrade antigens and Ii with the exception 
of a small fragment (called CLIP), protected by its 
embedding in the peptide-binding-groove of MHC-II. 
The CLIP fragment is exchanged for new (antigenic) 
peptides catalyzed by a unique and dedicated 
chaperone DM (H2-M in mice, HLA-DM in humans). 
DM is a MHC-II look-alike that interacts with MHC-
II, stabilizing it in a state devoid of peptides, which 
would otherwise be prone to aggregation and 
degradation [7]. The peptide exchange reaction is 
stimulated by acidic pH and occurs in subdomains of 
the MIIC [8]. 
Probably, the MIIC does not have a ‘Quality Control 
System’ like the ER that allows exit of properly 
folded and assembled proteins only. The expression 
of MHC-II/CLIP complexes at the PM in the absence 
of DM illustrates this point. The MIIC moves to the 
PM for surface deposition of MHC-II, most likely after 
a certain intracellular residency time. In addition, 
MHC-II-bearing exosomes might be released 
conveying immunological information beyond the 
initial antigen presenting cell (APC).   
The biology of antigen presentation by MHC-II has 
been studied for over 20 years by many groups and 

has yielded a fairly consistent view on the molecular 
basis underlying the successful acquisition of peptide 
fragments in the endocytic pathway for presentation 
at the PM. In general terms, assembly of MHC-II, 
their preparation for peptide loading, the generation 
of peptide fragments and transport processes are 
understood at almost atomic resolution. Yet many 
new findings complicate the initially simple biology. 
We will describe the state-of-art understanding 
based on recent insights. We will follow the general 
route of MHC-II from its birth in the endoplasmic 
reticulum (ER), through the endosomal pathway to 
the PM, exosomes and to their degradation. Along 
this path, we will not only describe new biological 
findings but also their application as new tools to 
manipulate MHC-II antigen presentation.

Delivery of Antigens to MIIC 
Uptake of exogenous antigens can occur via several 
routes, reviewed by [9]. Each immune cell type has 
found its own one. B cells are poorly phagocytic, 
but they can take up IgM-coated Salmonella in 
a B cell receptor (BCR)-mediated pathway for 
antigen presentation in context of MHC-II [10]. The 
effectiveness of antigen presentation in dendritic 
cells (DC) depends on the cells’ origin, maturation-
stimulus and route of antigen uptake. These 
observations aid the understanding of immune 
response initiation and designing of vaccination 
strategies using DC and activated monocytes [11]. 
Recently it has been shown that DC continue 
to accumulate antigens via DEC205-mediated 
endocytosis and FcgR-mediated phagocytosis 
even after maturation, the latter involving the 
PIP5K isoforms a and g [12]. Freshly synthesized or 
recycled MHC-II is loaded with the newly acquired 
antigens [13]. Endocytosis of DEC205 antibody-
coupled peptides results in efficient uptake and 
delivery to the MIIC. This strategy has been applied 
to DC of melanoma patients resulting in effective 
peptide presentation. The stimulatory capacity of 
those DC was maintained after cryopreservation, 
which makes it an interesting approach for cancer 
immune therapy [14]. Antigen acquisition targeting 
Ig, Fc, complement or lectin receptors appears to 
be a feasible strategy to improve MHC-II antigen 
presentation and immune response outcome.
How cytosolic antigens reach MHC-II and why, 
although abundant, they only represent a minor 
fraction of all presented peptides (MHC ligand 
database; http://www.syfpeithi.de) [15], was 
unclear for a long time. Autophagy is a cell biological 
solution for the entry of cytosolic material into the 
lysosome. Membranes form and encapsulate parts 
of the cytosol forming autophagosomes, a process 
requiring ATG5 [16]. As reviewed by Nedjic and 



58

colleagues, cortical thymic epithelial cells contain 
many autophagosomes [17] generating an array of 
different peptides, thereby shaping the self-tolerant 
T cell repertoire, as became clear from studies in 
ATG5-/- thymi [18]. ATG5-/- DCs are defective in 
phagosome-to-lysosome fusion, thereby inhibiting 
processing and presentation of extracellular 
microbial antigens [19]. Particular proteins are more 
selectively targeted to the autophagosome when 
coupled to ATG8/LC3, which in turn enhances their 
MHC-II presentation rate [20].

Antigen Processing in the MIIC
Antigens have to be unfolded for efficient 
degradation and peptide formation. One recently 
identified endosomal protein (called GILT) oxidizes 
disulfide linkages found in many extracellular 
proteins [21] and is essential for the presentation of 
a series of antigens [22]. GILT activity can strongly 
enhance antigen presentation of a melanoma 
antigen [23]. Acidic pH and chaperones might 
participate in further unfolding before substrates are 
processed by resident proteases. Many of these are 

cysteine proteases of the cathepsin family and are 
involved in inflammation, autoimmunity and cancer 
(reviewed by [24] and [25]). Nowadays, various 
cathepsin inhibitors are tested in primary immune 
cells as tools for immune response modulation in 
autoimmune diseases (Table 1). 
	
Manipulating Peptide Loading of MHC-II 
in the MIIC
DM can stably associate with a unique co-chaperone 
DO (H2-O in mice, HLA-DO in humans), which is 
fairly selectively expressed in immature B cells and 
certain DC types. DO is also an MHC-II look-alike 
and functions as a pH sensor that alters the pH 
optimum of DM-mediated peptide loading of MHC-
II to more acidic conditions and thereby changes 
the peptide repertoire presented by MHC-II [26]. 
In fact, presentation of many peptides is prevented 
by DO yielding more MHC-II/CLIP expression at the 
PM. Consequently, T cell help for B cells is reduced 
when DO is expressed [27]. DO may skew the DM 
support of MHC-II peptide loading to late and more 

Figure 1 | The Transport Route of MHC Class II
After Ii binding in the ER, MHC-II is transported to the MIIC either directly (A) or via the PM (B) due to a dileucin 
motif in the associated Ii. In the MIIC, the Ii is degraded and the remaining CLIP fragment is exchanged for a new 
peptide in a process chaperoned by DM. After loading MHC-II is transported to the PM (C) or secreted on exosomes 
(D). MHC-II, MHC class II molecule; Ii, Invariant chain; AP2, Adaptor Protein 2; GILT, Gamma-interferon-inducible 
lysosomal thiol reductase precursor; DM, HLA-DM; DO, HLA-DO; ESCRT, Endosomal Sorting Complex Required for 
Transport; ATG, Autophagy related; ORP1L, oxysterol-binding protein; RILP, Rab7-interacting lysosomal protein; 
SLP4, Synaptotagmin-like protein 4;  EE, early endosome; MIIC, MHC-II containing compartment.
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acidic endosomes, which are preferentially accessed 
by antigens taken up by BCR-mediated endocytosis. 
It is believed that this is preventing autoimmune 
responses by controlling the activation of B cells 
present peptides corresponding to antigens taken 
up by the BCR [26]. Indeed, NOD mice (susceptible to 
develop Type 1 Diabetes) overexpressing DO present 
an altered self-peptide repertoire which prevents 
activation of diabetogenic T cells and hence diabetes 
onset. DO possibly shapes the overall MHC-II self-
peptide repertoire to improve T cell tolerance [28].
Small molecules affecting peptide loading of MHC-II 
can be of interest for autoimmunity (inhibitors) or 
vaccines (accelerators). Amines like chloroquine are 
known to neutralize MIIC and inhibit peptide loading 
[29]. Protease inhibitors affect the degradation of 
Ii or antigen (Table 1). More recently, a family of 
compounds was described to accelerate MHC-II 
peptide loading in vitro, without the help of DM, 
and promote peptide binding in APC in vivo [30]. 
Altered Peptide Ligands (APLs) are built to be more 
protease resistant, to reach the MIIC more easily and 
to be presented more efficiently (for review [31]). 
Manipulating MHC-II function becomes a realistic 
option to direct immune responses.

A topological Problem: Retrofusion or 
Exosomes?
MIIC consist of a limiting (outer) membrane and 
luminal vesicles (LV). It is still under debate whether 
LV are a stable structure or dynamically form and 
disappear again through retrofusion with the 
limiting membrane. The subdomains of MIIC differ. 
The LV contain tetraspanin molecules, cholesterol 
and the lipid LBPA, while the limiting membrane 
concentrates molecules like the GTPase RAB7, LAMP 
and the cholesterol transporter ABCA1. MHC-II and 
DM are detected on both membranes. Studies 
have shown that the LV are their preferred site of 
interaction [8]. MHC-II/DM complexes might be 
stabilized through association with the tetraspanin 
web (made of CD63, CD82 and others) [32, 33]. The 
interaction of MHC-II and DM on LV has interesting 

consequences for pathogens in phagosomes, such 
as Salmonella. Phagosomes do not have LV and MHC-
II located at their limiting membrane fails to acquire 
peptides due to lack of DM support, therefore 
allowing immune escape of intracellular bacteria [8]. 
The LV can be secreted to the extracellular 
environment as exosomes. Mass spectrometry 
analysis of protein and lipid content of purified 
B cell exosomes verifies their origin from LV of 
MIIC (albeit at a considerably higher resolution) 
[34, 35]. The turn-over of MIIC takes only hours, 
whereas the half-life of MHC-II (8-48 hours) [36] or 
CD63 (2 days) [37] is considerably longer implying 
that the proteins have to be recovered from the 
LV not to be lost through exosome secretion. To 
our opinion, exosomes are the result of inefficient 
retrofusion of the LV to the limiting membrane of 
MIIC before fusion with the PM. How the process of 
retrofusion occurs is unclear. Alternatively LV might 
be stable nanocomplexes that survive necrosis, 
like proteasome and ribosome, which can be easily 
detected in tissue culture medium and body fluids 
[38]. Nonetheless, exosomes can have interesting 
functions.

Function and Application of MHC-II-
bearing Exosomes
Exosomes are shed by almost all cell types and differ 
in content accordingly (reviewed in [39]). Exosomes 
contain cytosol. How the cytosolic contents are 
selected, is unknown. Exosomes resemble their 
cell of origin’s topology and expose proteins like 
MHC-I  and  -II,  CD1, tetraspanins, costimulatory 
molecules and adhesion molecules, such as ICAM-1. 
In fact, MHC-II-bearing exosomes can be considered 
‘nano immune cells’ and have been found to exert 
both immune stimulatory and regulatory functions 
in intercellular communication (Figure 2). When shed 
by DC, exosomes can present antigen in context of 
MHC-II to activated T cells or T cell lines directly [40] 
or indirectly to naïve T cells when recaptured by 
recipient APCs [41]. Such recapture requires binding 
to host membranes mediated by LFA-1 and its ligand 

Table 1 | Recently developed Cathepsin Inhibitors and their Effects

Inhibitor Target Effect

ZRLR Cathepsin B Enhances presentation of Tetanus Toxin-C (TTC) fragment to T-cells [70].

CatG Inhibitor Cathepsin G
Reduces processing of TTC and Hemagglutenin (HA) peptides and their 
presentation to CD4+ T-cells [71].

Suc-VPF Cathepsin G
Reduces processing of TTC and Hemagglutenin (HA) peptides and their 
presentation to CD4+ T-cells [71].

Compound 47 Cathepsin S Inhibits processing of invariant chain [72, 73].

CAA0225 Cathepsin L Involved in degradation of autophagosomal membrane markers [74].
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the PM [53]. How movement to the PM by kinesin 
motors is controlled, is unclear. Finally, MIIC have to 
fuse to the PM which probably requires the activity 
of RAB27A and its effector SLP4. This is directly 
correlated to the secretion of exosomes in HeLa cells 
[54]. Sorting of MHC-II to exosomes was shown to be 
ubiquitination-independent. Forced ubiquitination 
of MHC-II induces a decrease of MHC-II at the PM, 
but no enrichment on exosomes [55]. In the study 
of Buschow et al. it was shown that coculturing of 
DC with cognate T cells induced DC activation and 
exosome secretion independent of ubiquitination 
[56]. Although parts of MHC-II transport control 
are understood in detail, regulation of most other 
steps remains obscure and may be uncovered in the 
coming years.
 
Finally at the PM; Internalization and 
Recycling
It has been known for some time that the half-life 
of MHC-II at the PM is cell type dependent. When 
MHC-II associated to Ii arrives at the PM, they are 
internalized because of the dileucine motif in the 
Ii [57]. MHC-II, devoid of Ii, does not contain such 
internalization motifs and remains at the PM. Still, 
MHC-II has a longer lifespan on B cells than on 
monocytes, which is even further reduced following 
IL-10 exposure [36]. IL-10 upregulates a ubiquitin 
ligase called MARCH1, which modifies MHC-II and 
reduces its half-life [58]. The downregulation of 
MARCH1 expression in mature DC compared to 
immature DC corresponds to an increase in MHC-
II half-life at the PM of the former [59]  (Figure 3). 
Viruses and bacteria can use the ubiquitination 
machinery to manipulate MHC expression [60]. 

ICAM-1 on the exosome [42, 43]. Tumors are known 
to shed exosomes. Szajnik et al. have recently 
defined a new escape mechanism in cancer based on 
the activation of regulatory T cells (Tregs) in tumor 
patients [44]. Whether exosomes enter the recipient 
cells’ MIIC for retrofusion, fuse with the PM or act 
as ‘nano immune cells’ is a fascinating subject and 
still unclear. 
 The immunogenetic potential of DC-derived 
exosomes has been demonstrated for vaccines 
against Leishmania major [45] and as cancer therapies 
in vivo in the past (reviewed in [46]). An alternative 
to the isolation of exosomes from patient-derived 
DCs might be the generation of artificial exosomes 
[47]. The advantage of exosome-based vaccines 
over other vaccination strategies remains to be 
proven in side by side comparative studies.

And out we go… MHC-II Transport to the 
Plasma Membrane
MHC-II is transported from the MIIC to the PM 
along microtubules in at least two different ways; 
1. MIIC can move to the PM followed by fusion of 
the limiting membrane with the PM [48] 2. Tubules 
extend from MIIC towards the PM [49, 50],  and 
vesicles may bud off to fuse with the PM [51]. This 
has been detected mainly in activated DC and not 
in other cell types. Close inspection of both routes 
shows that MIIC move in a bidirectional and stop-
and-go manner by the activities of the dynein and 
kinesin motor proteins. Cholesterol, shown to 
influence MHC-II PM expression [52], controls the 
RAB7 effector ORP1L that controls RILP and the 
dynein motor. High cholesterol prevents the release 
of the dynein motor, inhibiting MIIC delivery to 

Figure 2 | Exosome Functions 
Exosomes derived from dendritic cells can exert 
immune activating functions. Naïve T cells can be 
primed in an antigen-specific manner. Exosomes 
derived from tumor cells can exhibit immune 
regulatory functions by activating regulatory T cells. 
ICAM-1, intercellular adhesion molecule 1; LFA-1, 
lymphocyte function-associated antigen 1; TCR, T cell 
receptor; IL-10, interleukin-10; TGFb, tumor growth 
factor b; TAA, tumor associated antigen
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Conclusion

The cell biology of MHC-II has been studied for over 
two decades starting with the work of Unanue 
et al., who demonstrated inhibition of antigen 
presentation by chloroquine [29]. Since then many 
steps have been solved at the cell biological and 
atomic level. MHC-II antigen presentation comprises 
of processes like transport via various endosomal 
compartments, synthesis, ubiquitination and 
degradation. The routes of MHC-II involve many 
targets for manipulation to affect MHC-II expression 
and peptide loading, which is relevant for disease 
states like autoimmunity, infection and cancer.  

Salmonella typhimurium inhibits PM expression of 
MHC-II in DCs by ubiquitinating the HLA-DRb chain 
using bacterial type III secretion system effectors 
rather than MARCH1 to directly modify HLA-DRb [61-
63]. HIV-Nef affects MHC-II expression and peptide 
loading by a different mechanism. The Nef protein 
triggers MHC-II internalization in a cholesterol 
dependent and clathrin- and dynamin-independent 
manner [64], but the exact details are unknown. 
Upon internalization MHC-II has two options: 1. 
return to the PM prior to or after peptide exchange 
or 2. become degraded. In recycling endosomes, 
MHC-II can be loaded with new peptides in a DM-
dependent [65] or independent manner [66] and 
transported back to the PM. This process involves at 
least ARF6, RAB35 and EHD1 [67]. Uptake of antigens 
in early endosomal compartments (that are relatively 
poor in proteases [68]) will allow presentation of 
other peptides than those generated in MIIC, hence 
broadening the peptide repertoire for the good or 
bad, which is unpredictable. Where MHC-II ends-up, 
when recycling fails, remains unclear. The reductase 
GILT (breaking disulfide bonds in the Ig domains 
of MHC-II) and cathepsins, such as cathepsin G, 
which degrades the MHC-II b-chain in vitro [69], 
might be involved. How the life of MHC-II is exactly 
terminated, however, remains an open question. 
Clearly, MHC-II is a cannibal presenting fragments of 
its deceased brothers or sisters. In fact, such MHC-II 
derived peptides are major constituents of the MHC-
II peptide repertoire.

Figure 3 | MHC Class II Internalization, Recycling and Degradation
At the PM of immature DC, MHC-II can be ubiquitinated by MARCH1 and is transported via ARF6/RAB35/EHD1-
positive tubular structures towards Recycling Endosomes (RE). After internalization, MHC-II may return to the 
PM (A) or proceed to degradation (B). In mature DC, MARCH1 expression is downregulated, resulting in decreased 
internalization, a long cell surface half-life and elongated presentation of antigen. PM, plasma membrane
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