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Chapter 3

Position-Dependent Detection
Efficiency of a Single NbN
Nanowire SSPD

We probe the local detection efficiency in a nanowire superconduct-
ing single-photon detector along the cross section of the wire with a
spatial resolution of 10 nm. We find a strong variation in the local
detection efficiency of the device. Our experimental results agree
with theoretical calculations based on a photon-assisted vortex en-
try model1.

3.1 Introduction

Nanowire superconducting single-photon detectors (SSPDs) consist of a
superconducting wire of nanoscale cross section [14], typically 5 nm by 100
nm. Photon detection occurs when a single quantum of light is absorbed and
triggers a transition from the superconducting to the normal state. SSPDs have
high efficiency, low jitter, low dark count rate and fast reset time [61], and are
therefore a key technology for, among others, quantum key distribution [50],
interplanetary communication [62] and cancer research [63].

Although considerable progress has been made recently, the underlying
physical mechanism responsible for photon detection on the nanoscale is still
under active investigation. A combination of theory [23, 60], experiments [30,

1This chapter is based on J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op’t Hoog, D.
Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. A. de Dood, Nano Lett.
15, 4541, (2015).
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36 CHAPTER 3. LOCAL DETECTION EFFICIENCY

38,40], and simulations [24,25] on NbN SSPDs indicates that the absorption of
a photon destroys Cooper pairs in the superconductor and creates a localized
cloud of quasiparticles that modifies the current distribution in the wire. This,
in turn, can make the wire susceptible to the entry of a magnetic vortex from
the edge of the wire by lowering the energy barrier for vortex entry; this barrier
depends on the superconducting electron density near the edge of the wire. A
photon being absorbed near the edge generates a substantial decrease in this
density near that edge and thus a quite large decrease in the energy barrier
for vortex entry. Contrarily, when a photon is absorbed in the middle of the
wire, the superconducting electron density decrease near the edge is small and
the energy barrier for vortex entry is only little affected by the absorption of
the photon. Energy dissipation by the vortex moving across the wire drives
the system to the normal state and causes the detector to “click”. The “click”
probability thus depends on the location of the photon-absorption within the
wire (edge or center). An important implication of this detection model is that
such a detector has non-uniform detection probability with photons absorbed
close to the edge having a higher local detection efficiency compared to photons
absorbed in the center of the wire [25].

This effect has practical implications for the operation of SSPDs, since it
represents a potential limitation on the detection efficiency [42]. In addition,
SSPDs have been proposed for nanoscale sensing, either in a near-field optical
microscope configuration [32] or as a subwavelength multiphoton probe [64],
where this effect would be of major importance for the properties of such a mi-
croscope. While this effect has been predicted theoretically, clear experimental
evidence is missing.

In this chapter, we experimentally explore the nanoscale variations in the
intrinsic response of the detector. We explore the spatial variations in the
detection efficiency with a resolution of approximately 10 nm, i.e., better than
λ/50, using far-field illumination only. We find that our results are qualitatively
consistent with numerical simulations [24,25].

The key technique used in this work is a differential polarization mea-
surement that probes the internal detection efficiency of the detector. The
technique is based on the fact that polarized light is preferentially absorbed at
different positions for the two orthogonal polarizations, due to differences in
boundary conditions. Using this technique, we achieve selective illumination of
either the edges or the middle of the wire. By doing so at different wavelengths,
we are able to probe the intrinsic photodetection properties of our device on
the nanoscale.
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3.2 Separation of optical absorption and internal de-
tection efficiency

Figure 3.1: Detection probability as a function of input photon number at a wavelength
of 1500 nm. The points represent experimental data with error bar. The red curve
represents the fit by quantum detector tomography. The data are shown for a bias
current equal to Ib = 22.7 µA; we find that η = 1.98×10−4 and p1 = 8.46×10−3. The
top inset provides a landscape picture of how the reduced χ2 varies with η and p1, and
the white circle indicates the minimum of χ2. The bottom inset shows the structure
of the SSPD, in which a single NbN nanowire is patterned in between two broader
parts on a GaAs substrate, and an 80 nm thick HSQ layer (not shown) is covered on
the NbN nanowire.

It is well known that changing the polarization of the incident light results
in a change in overall optical absorption in an anisotropic structure such as a
wire or a meander [42, 47, 65–67]. Therefore, our first task is to separate the
probability that a photon is absorbed from the internal detection efficiency,
where the latter is defined as the conditional probability that an absorbed
photon causes a detection event. To make this separation, we use quantum
detector tomography (QDT) [28–30,34,36–38,53,68–70].

QDT records the detector response to a set of known quantum states of
light and distills from these measurements the detection probability for differ-
ent photon numbers for the detector as a whole. As shown in Chapter 2 and
Ref. [29], this procedure allows us to unambiguously separate the single-photon
detection probability p1 from the probability η that a photon is absorbed. We
find that η is almost independent of detector bias current for a nano SSPD and
that its value is consistent with the geometric area of the detector [29]. Hence,
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we identify p1 with the internal detection efficiency conditional on photon ab-
sorption, which we henceforth refer to as the internal detection efficiency or
IDE.

Figure 3.1 shows, on a log-log scale, the measured detection probability R
(points) as a function of mean photon number N for an illumination wavelength
of 1500 nm. The data have been taken at a detector bias current of Ib = 22.7
µA (Ib/Ic = 0.81, where Ic is the device critical current). The bottom right
inset shows the schematic structure of the SSPD in the experiment. A 150
nm wide, 100 nm long and 5 nm thick nanowire in between two tapered parts
is fabricated on a semi-infinite GaAs substrate. The NbN is deposited on the
GaAs substrate which is subsequently patterned by e-beam lithography and
reactive ion etching [27], leaving an 80 nm thick HSQ (Hydrogen silsesquioxane)
layer on top of the NbN nanowire for protection. The line through the data
corresponds to the result of our QDT analysis. From the fit we find an internal
detection efficiency p1 = 8.46 ± 0.17 × 10−3, p2 = 4.02 ± 0.08 × 10−1, and an
absorption efficiency η = 1.98± 0.04× 10−4. We note that the small value of η
is related to the ratio between the active area of the nanodetector and the area
of the optical beam. This ratio is small because the beam size was kept large
to become insensitive to small variations in optical alignment. The two dashed
lines in Fig. 3.1 indicate detection in the one-photon regime (green) and in
the two-photon regime (blue), displaying a clear distinction between the two
regimes.

Linear independence of fit parameters is illustrated in the top left inset,
which shows a false color plot of the reduced goodness-of-fit χ2 as a function of
η and p1. The white circle shows the minimum value of the reduced χ2, which
represents the best fit. As can be seen in the inset, p1 and η can be determined
with high accuracy (more details in Chapter 2).

3.3 Polarization-dependent internal detection effi-
ciency

We have repeated the QDT procedure for different input polarizations and
wavelengths of the incident light. Figure 3.2(a) shows the IDE and effective
absorption efficiency η as a function of polarization at a wavelength of 1500
nm. The error bars in the figures are calculated from the standard deviation of
a series of independent experiments. Note that the parameters obtained from
this QDT analysis are quantities that represent the detector as a whole. A
simple model of the detector would assume that only the effective absorption
efficiency η depends on the polarization of the incident light.

So, it comes as a surprise that Fig. 3.2(a) shows that not only η but also the
IDE is polarization dependent; actually they oscillate in phase as a function
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Figure 3.2: Polarization dependence of the internal detection efficiency at a wavelength
of 1500 nm. (a) shows the internal detection efficiency IDE or p1 (black squares) and
the effective absorption efficiency η (blue dots) as a function of the polarization of the
incident light. The internal detection efficiency points are fitted by a sine function
(red curve). The minimum and maximum of the fit are noted as perpendicular ⊥ and
parallel ‖. (b) shows polarization visibility of the IDE as a function of bias current.
The horizontal curve represents the current averaged visibility.

of the polarization direction relative to the nanowire. We therefore introduce
the visibility of the IDE as

VIDE = (p1,max − p1,min)/(p1,max + p1,min). (3.1)

To verify that our observation of a polarization-dependent IDE is robust
we repeated the experiment for different bias currents. We find that the val-
ues of pi depend strongly on bias current, as expected [38]. The visibility
VIDE , however, is independent of bias current and has an average value of
0.09 for the wavelength of 1500 nm, which is represented by the horizontal
line in Fig. 3.2(b). Furthermore, we observe that the maximal and minimal
IDE (p1,max and p1,min) occur when the polarization is parallel and perpen-
dicular to the nanowire, respectively. This indicates that under perpendicular
illumination the absorbed photon is less likely to cause a detection event.

To find a physical explanation of the observed polarization dependence the
simple model that we have used so far needs to be extended. While the QDT
analysis yields an effective absorption efficiency η, it is well known that the
optical absorption is position dependent, because of different boundary condi-
tions for electric fields parallel and perpendicular to the nanowire. A possible
interpretation of the polarization-dependent IDE is thus to assume that the
observed internal detection efficiency itself depends on position. Therefore, we
introduce a new quantity, namely the local detection efficiency LDE(x) to take
these spatial variations into account. The observed polarization dependence
is a combination of the position-dependent absorption distribution A(x) and
a position-dependent local detection efficiency LDE(x), where the latter can
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be interpreted as the conditional probability that the detector produces a click
given that a photon is absorbed at position x.

Figure 3.3: Plot of the visibility of the internal detection efficiency. For each wave-
length the current-averaged value of the visibility is displayed.

Both the absorption efficiency and the local detection efficiency depend on
wavelength. A description of the polarization and wavelength dependent IDE
as measured by QDT is then given by:

IDEk(λ) =

∫
Ak(λ, x)LDE(λ, x)dx∫

Ak(λ, x)dx
, (3.2)

where λ is the wavelength of illumination, and the subscript k = {‖,⊥} refers
to the polarization. The optical absorption distribution Ak(λ, x) can be ob-
tained by numerically solving Maxwell’s equations (see Section 3.4), and the
LDE(λ, x) can be considered as fitting parameters, in which x is the variable
and λ is a well described constraint (see Section 3.5).

We have measured the visibility VIDE of the internal detection efficiency
at a large wavelength range from 400 nm to 1500 nm. Figure 3.3 shows the
measured visibility VIDE as a function of wavelength. As a result, LDE(λ, x)
at a particular wavelength can be determined by the fit. The results of LDE(x)
and details of the fit are introduced in the following sections.

3.4 Optical absorption

Before discussing the local detection efficiency LDE(λ, x) we report on
the calculated absorption distribution A(λ, x). The aim of this section is to
reduce the complexity of the problem by replacing the 3D absorption with an
approximate 2D calculation of A(λ, x) that only depends on the transverse
coordinate x.
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(a) (b) 

(c) (d) 

Figure 3.4: Absorption distribution by FDTD simulation at the wavelength of 1500
nm for parallel (left) and perpendicular (right) polarization. For each polarization,
(a) and (b) obtained from 3D simulation show the absorption density across the wire
(x-direction) at different y positions from the center (y = 0 nm) to the ends (y = ±
50 nm) of the nanowire. (c) and (d) compare the 3D absorption density averaged on
y position (solid line) and 2D absorption density (dashed line).
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(a) 

(c) 

(b) 

(d) 

Figure 3.5: Dielectric constant of our NbN film as obtained by ellipsometry by assum-
ing different values for the film thickness. (a) and (b) show the real and imaginary part
of the dielectric constant. (c) and (d) show calculated absorption spectra for parallel
and perpendicular polarization using the value of the dielectric constant shown in (a)
and (b).
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The absorption in the NbN nanowire is calculated using a commercial finite-
difference-time-domain method (FDTD, FullWave package, RSoft [71]). We
take a 3D simulation at a wavelength of 1500 nm for example. In the simula-
tion, we describe the materials as shown in Fig. 3.1 (with an 80 nm layer of
HSQ on top of NbN nanowire). Figures 3.4(a) and 3.4(b) show the 1D absorp-
tion distribution across the nanowire from center (y = 0 nm) to the boundaries
between the nanowire and the tapered parts (y = ± 50 nm) obtained from the
3D simulations. For both parallel and perpendicular illumination, the absorp-
tion profiles do not depend much on the coordinate y, which demonstrates that
the tapered parts have minimal influence on the absorption of the nanowire.
This allows us to perform a simpler and more efficient 2D simulation of the
cross section of the nanowire to describe the absorption distribution in the
nanowire.

Figures 3.4(c) and 3.4(d) show the comparison of simulations for a 2D infi-
nite wire (dashed) and the 3D geometry (solid). The 3D absorption curve is ob-
tained by averaging the absorption curves at different y positions in Figs. 3.4(a)
and 3.4(b). The absorption curves from 2D and 3D simulations are normalized
to their maximum because we are interested in the relative difference between
the curves. We find that in case of perpendicular illumination the absorption
mainly occurs in the middle of the nanowire while for the parallel case the
absorption is roughly uniform over the entire nanowire. There is very little
difference between 2D and 3D simulations for both parallel and perpendicu-
lar illumination in our geometry, justifying the use of much more efficient 2D
simulations for other wavelengths.

The optical absorption is determined by the dielectric constant of NbN,
which is obtained via ellipsometry [72]. In Ref. [72] a thickness of 4.9 nm was
estimated. We assume a conservative error bar of 0.3 nm on the thickness, and
recalculate epsilon via numerical inversion of the ellipsometry data for three
different thicknesses resulting in the curves shown in Figs. 3.5(a) and 3.5(b).

Based on the three sets of the dielectric constant we calculate the absorption
for perpendicular and parallel illumination, which are shown in Figs. 3.5(c)
and 3.5(d). For most wavelengths (600 nm –1500 nm), the film absorbs most if
we assume the film to be thinnest (4.6 nm), which is due to the larger imaginary
part of the dielectric constant. The variations in the dielectric constant are
treated as systematic error in the following sections.

3.5 Position-dependent local detection efficiency

In order to distill from Eq. (3.2) the local detection efficiency LDE(λ, x) a
relation between wavelength (photon energy) and local detection efficiency is
needed. This allows inversion of Eq. (3.2) to find LDE(λ, x) given the measured



44 CHAPTER 3. LOCAL DETECTION EFFICIENCY

IDE(λ) as a function of wavelength. Our experimental work in SSPDs [30,38]
shows that the photon-detection probability depends exponentially on bias cur-
rent, and that a linear relation exists between photon energy and bias current
for a certain internal detection efficiency [25, 38]. Based on these observations
we postulate a similar bias current dependence of the microscopic LDE(λ, x):

LDE(λ, x) = min{1, exp[(Ib − Ith(λ, x ))/I ∗]}, (3.3)

with a threshold current defined as

Ith(λ, x) = Ic − γ′(x)
hc

λ
. (3.4)

Here hc/λ is the photon energy and I∗ = 0.65 µA is an experimentally
determined current scale for our detector [38]. γ′(x) is the local energy-current
interchange ratio, which parameterizes the internal detection efficiency of the
nanowire at different excitation wavelengths, and translates to a threshold
current Ith(λ, x) that is sufficient to quantify this local internal efficiency [25]:
when the bias current Ib exceeds Ith(λ, x) with a photon absorbed at position
of x, the energy barrier for a vortex vanishes, leading to the entry of the vortex
and to a detection event.

In practice, instead of using LDE(λ, x) for fitting the measured visibility
VIDE we employ γ′(x) as fitting parameter. The outcome should be comparable
to the detailed calculation based on quasiparticle-diffusion and vortex-crossing,
as introduced in Appendix I.

Figure 3.6 shows the measured visibility VIDE as a function of wavelength
(squares), a best fit (red), a fit with a constraint (green) and the results of
a calculation using the function γ′(x) predicted by numerical modeling of the
detection process. The details of the fit procedure are given in Appendix II.
The original fit (red) is based on Eqns. (3.2) and (3.3) as discussed above with
fitting parameters γ′(x) at discrete positions x. Mirror symmetry of γ′(x) and
a parametrization with 9 points is sufficient to capture all details observed in
the experiment. The results for Ith(x) at λ = 1500 nm derived from the fitted
values of γ′(x) are shown in Fig. 3.7(a), the curve (red) contains a distinct
minimum at x = ± 40 nm.

To verify whether these minima are robust we constrain γ′(x) to mono-
tonically vary from the center of the nanowire to the edge. In Fig. 3.7(a),
the green curve shows the variation in Ith(x) under these constraints. How-
ever, Fig. 3.6 shows that the visibility (green) is only marginally affected by
constraining γ′(x). This analysis suggests that the spatial variations in the
threshold current close to the edge can not be extracted in great detail.

A different point is how our results compare with theory. This comparison
is shown both in Figs. 3.6 and 3.7(a), where the blue curves represent the
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Figure 3.6: Visibility of internal detection efficiency and fit. For each wavelength the
visibility is averaged from all the currents. The red curve is the fit by considering
the distribution of absorption and internal detection efficiency, and the green curve is
the fit by considering a constraint to make the variance of local detection efficiency
monotonic from the center of the nanowire to the edge. The blue curve in the inset
shows the visibility calculated based on the photon detection theory [25].

predictions by the numerical model of the detector. We find that the visibility
is a factor of 10 larger (inset of Fig. 3.6), and that the threshold current from the
numerical calculation has a notably stronger edge/center contrast (Fig. 3.7)(a).

The comparison of the results from experiment and numerical modeling
brings up the following question: “Is there a link between the wavelength
averaged value of the VIDE and the width of the main feature of the threshold
current Ith(x) as shown in Fig. 3.7(a)?”

To answer this question we determine Ith(x) for various values of VIDE
assumed to be wavelength independent, with 0.03 < VIDE < 0.3. The results
are shown in Fig. 3.7(b), in support of our conjecture that a broader profile
of Ith(x) leads to a sharper contrast between the edge and the center of the
nanowire, and to a larger visibility consequently.

Finally, in Fig. 3.7(c) we show, using the results of Fig. 3.7(a) how the
LDE(x) varies with the location of the photon absorption. The results are
shown based on both the experimental data (solid, red) and the numerical
calculations (dashed, blue), for different values of the bias current. Note that
the relatively small spatial variations in the Ith(x) translate in much larger
variations in LDE(x), up to factors 10 – 20. Also note that the detector
saturates at the edges before saturating at the center.
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Figure 3.7: Threshold current and local detection efficiency at wavelength of 1500 nm.
(a) shows the threshold current obtained from experiments (open and closed squares)
and theory (dots). The grey area on the solid curve indicates the systematic error from
calculation of optical absorption. The monotonic fit is obtained by using a constraint
to make the fitting parameters monotonic from the center of the nanowire to the edge.
(b) shows the threshold current by fitting a set of constant visibility from 0.03 to 0.3.
(c) shows the local detection efficiency based on (a) : solid lines from experiment and
dashed lines from theory.
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3.6 Conclusions

We have separated the polarization-dependent internal detection efficiency
from the optical absorption of an SSPD via quantum detector tomography.
The internal detection efficiency is constructed by the optical absorption and
position-dependent local detection efficiency, which depends on the position
along the cross section at which the photon is absorbed. We have probed
this effect with a resolution of approximately 10 nm, and found agreement
with theoretical calculations done in the context of the quasiparticle-diffusion-
based vortex-crossing model. Compared to the theory, we have confirmed that
a narrower profile of threshold current is able to fit the experimental data.
Within a range of ∼ 30 nm close to the edge of the nanowire the local de-
tection efficiency is much higher than at the center, which is relevant to the
scale of the quasiparticle diffusion after photon absorption. These experimen-
tal conclusions support the model of quasiparticle diffusion and vortex entry,
and quantitatively describe the photon-detection process in the NbN nanowire
SSPD on the nanoscale.
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3.7 Appendix I: Photon detection mechanism

In the main text of Chapter 3, we use a quasiparticle-diffusion and vortex-
crossing model to describe the photon detection process in a NbN supercon-
ducting single-photon detector. This appendix summarizes the model origi-
nally presented in Ref. [24] with a few additions to make the model more real-
istic. This model assumes that the photon excites one electron with energy hc/
λ. The excited electron diffuses in the plane of the film with a diffusion constant
De, and thermalizes via inelastic scattering with other electrons, Cooper-pairs
and the lattice. Neglecting details of this thermalization process, an exponen-
tial increase of excess quasiparticles is assumed with a time constant τqp and an
overall efficiency ς [22]. The excess quasiparticles themselves are also subject
to diffusion with a temperature-dependent diffusion constant Dqp < De and
eventually recombine to form Cooper-pairs on a time-scale τr > τqp. The entire
process can be described by the following coupled differential equations [24]:

∂Ce(r, t)

∂t
= De∇2Ce(r, t) (A.1)

∂Cqp(r, t)

∂t
= Dqp∇2Cqp(r, t)− Cqp/τr +

ςhν

∆τqp
exp(−t/τqp)Ce(r, t) (A.2)

with ∆ the superconducting gap, Ce(r, t) the probability density to find the
excited electron at position r at time t after photon absorption and Cqp(r, t)
the quasiparticle density.

An estimation of the Ginzburg-Landau relaxation time results in τGL < 1
ps. Therefore, we assume the current redistribution due to the spatial variation
of the density of superconducting electrons nse −Cqp(r, t) to be instantaneous
on time scales > 1 ps. To obtain a more realistic current-distribution than in
Ref. [24], we now apply the relation that the velocity of superconducting elec-
trons can be calculated from the gradient of the phase of the superconducting
condensate [25]:

vS =
h̄

m
∇ϕ (A.3)

with a corresponding current density

js = −ense
h̄

m
∇ϕ (A.4)

and the continuity equation that needs to be solved:

∇ · (−ense∇ϕ) = 0, (A.5)
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where we use the previously calculated quasiparticle distribution to obtain
nse. Additionally, we take into account that the density of superconducting
electrons depends on the velocity vs [73].

nse ∝ 1− (vs/vc)
2/3, (A.6)

with vc the critical velocity at the critical-current density jc. Thus Eq. (A.5)
becomes nonlinear. Once we know the current distribution, the potential en-
ergy experienced by a vortex can be calculated as suggested in Ref. [41]. More
details about the refined numerical model can be found in Ref. [25].

Figure A.1: Variation of reduced current density at the edge j(w/2)/jb, normalized
density of superconducting electrons ns(w/2)/ns,0, and rescaled threshold current for
photon detection as a function of the distance of the photon absorption position from
the center of the wire. The variation of the threshold current near the center of the
wire is dominated by the variation of the current density at the edge. For absorption
events closer to the edge the reduction of the density of superconducting electrons
becomes the dominating effect. In the inset we show the variation of the current
density across the wire for different absorption positions.

In the inset of Fig. A.1 we plot reduced current densities j/jb across the
strip for some absorption positions. At first, current densities increase with
decreasing distance of the absorption position to the near edge. If the distance
becomes less than 20 nm to the edge the current density near the edge is
reduced, eventually below the equilibrium bias current density jb.

In the main graph of Fig. A.1 the reduced current density at the edge j(w/
2)/jb is plotted as a function of absorption position, together with the density of
superconducting electrons at the edge ns(w/2) normalized to their equilibrium
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density ns,0, and the threshold current scaled by the threshold current for
absorption in the center Ith/Ith(0). For absorption events near the center, the
variation of the threshold current is mostly determined by the variation of the
current density at the edge, since the density of superconducting electrons at
the edge remains approximately constant. At close distances to the edge ns
is significantly reduced at the edge. This is the reason for a reduced current
density at the edge, but additionally leads to a reduction of the vortex self-
energy which is proportional to ns. This second effect is stronger than the effect
of the reduced current density and as a result we obtain a monotonic reduction
of the threshold current for vortex entry as a function of the distance from the
strip center.

Figure A.2: Calculated threshold current as a function of the distance of the photon
absorption position from the center of the wire for different photon wavelengths. The
relative reduction of the threshold current for absorption near the edge compared to
absorption in the center increases with increasing photon energy for the energy range
considered in this study.

We define the threshold current as that value of the bias current for which
the maximum potential energy for a vortex becomes zero. In this case we expect
an internal detection efficiency equal to one. With this criterion, we obtain the
energy dependence of the threshold current as a function of position, which is
plotted in Fig. A.2. The vortex-entry current without photon absorption is also
indicated by the horizontal line. This curve is symmetric with respect to the
center line of the wire due to the symmetry between vortices and antivortices
in zero applied magnetic field. There is a significant reduction of the threshold
current for photons absorbed near the edge of around 10% as compared to the
center of the wire. We would like to point out that for each position in the
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wire we find a linear relation between threshold current and photon energy,
consistent with previous experimental results [30,38,74].

As the photon energy increases and as absorption occurs closer to the edge,
the relation between the density of superconducting electrons and the current
distribution (Eqns. (A.5) and (A.6)) becomes more nonlinear. For absorptions
very close to the edge, the nonlinear solver produces systematic errors. For
all wavelengths, we do not calculate the detection current for absorption sites
closer than one coherence length (ξ ≈ 4–5 nm for NbN) to the edge of the wire.
For short wavelengths, the area in which this occurs increases, to approximately
12 nm from each edge at 800 nm. In our calculations, we assume that the
detection current this close to the edge of the wire is weakly dependent on the
absorption position and set it constant, with a value equal to the threshold
current in the point closest to the edge that we can still reliably compute. In
our experiment, we are operating below this threshold current. To convert
the threshold current into a local detection efficiency, we assume a functional
dependence of the form p ≡ IDE = exp((Ib − Ith)/I∗); where I∗ = 0.65 µA
is an experimentally determined scaling current. In this way, we obtain the
variation of the internal detection efficiency for a given bias current as shown
in the Fig. 3.7(c) in the main text.
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3.8 Appendix II: Fit to visibility

The photon detection mechanism in Appendix I shows that the probability
of vortex entry depends on the position of the photon absorption. Hence, we
use the position-dependent local detection efficiency LDE(λ, x) to quantify the
microscopic detection process. We assume that the internal detection efficiency
IDE as a function of wavelength can be constructed as follows:

IDEk(λ) =

∫
Ak(λ, x)LDE(λ, x)dx∫

Ak(λ, x)dx
, (A.7)

where k stands for either parallel or perpendicular polarization, Ak(λ, x) is
the absorption distribution obtained by FDTD simulation at an incident wave-
length of λ, and the LDE(λ, x) is the efficiency to trigger the detector for the
absorbed photon with energy hc/λ at position x. In the integral, the absorp-
tion profile Ak(x) is normalized in order to remove the dependence on average
absorption probability

∫
Ak(λ, x)dx, because the average absorption (effective

absorption efficiency) η is separated from the IDE via quantum detector to-
mography.

For a certain wavelength, we find that IDE depends exponentially on bias
current Ib, which is supported by experiment in this work and a previous
study [38]. Therefore we use a microscopic LDE(λ, x):

LDE(λ, x) = min{1, exp[(Ib − Ith(λ, x ))/I ∗]}, (A.8)

where I∗ = 0.65 µA is an experimentally determined current scale.
In order to combine the information from different wavelengths, we posit a

relation between photon energy and the threshold current Ith(λ, x) [25,30]:

Ith(λ, x) = Ic − γ′(x)
hc

λ
, (A.9)

where Ic is the critical current, hc/λ is the photon energy, and γ′(x) is the local
energy-current interchange ratio, which parameterizes the detection probability
of the wire at different excitation wavelengths. The assumption is based on
the fact of the linear relation of bias current and incident energy of photon.

The assumptions leading to Eqns. (A.8) and (A.9) make it possible to
perform a numerically inversion. From the measured wavelength dependence
we obtain the parameters γ′(x) via fitting the experimental data. We use
mirror symmetry about x = 0 and 9 points for γ′(x). We use the following
procedure:

1) The strongly position-dependent Ak(λ, x) is calculated with a spatial
resolution of 1 nm by FDTD simulation. Therefore, to calculate the integral
of Eq. (A.7) we linearly interpolate γ′(x) on a 1 nm grid, from the points at
which it is given. We assume mirror symmetry around point x = 0.
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2) For each wavelength, we compute Ith(λ, x) = I0 − γ′(x)hcλ , and take I0

to be Ic,exp = 28 µA, in accordance with the theoretical predictions of the
vortex-crossing model.

3) For each current and wavelength, we compute the local detection effi-
ciency: LDE(λ, x) = min{1, exp[(Ib − Ith(λ, x ))/I ∗]}.

4) Compute IDEk(λ) according to Eq. (A.7) and the visibility V = (IDE‖−
IDE⊥)/(IDE‖ + IDE⊥).

In order to fit the visibility to the experimental data, we use Tikhonov
regularization [75]. That is, to the usual function that is minimized in an
inversion problem

g(x) =
∑

(Vi(γ
′(x))− Vi,exp)2/σ2

i , (A.10)

where Vi,exp is the observed visibility and σ is the error on each visibility. We
add an extra term, replacing g(x) by

g(x) =
∑

(Vi(γ
′(x))− Vi,exp)2/σ2

i + s
∑

(γ′(xj)− γ′(xj+1))2, (A.11)

which has the effect of penalizing solutions where the difference between ad-
jacent points in the curve is large. We apply only weak regularization such
that the contribution to g(x) from the second term is approximately 20% of
the first. Furthermore, we apply the constraint that the sum γ′(x) should be
equal to the sum of the theoretical γ′(x) curve. We find that we can fit our
data if we set

∑
γ′(x)∆xi = 1.15

∑
γ′(x)theo∆xi. We varied the number of

points and value of s and verified that the solution presented in the main text
is robust against the small variation in the parameter s.
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