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Chapter 2

How Noise Affects Quantum
Detector Tomography

We determine the full photon number response of a NbN super-
conducting nanowire single-photon detector via quantum detector
tomography, and the results show the separation of linear, effective
absorption efficiency from the internal detection efficiencies. In ad-
dition, we demonstrate an error budget for the complete quantum
characterization of the detector. We find that for short times, the
dominant noise source is shot noise, while laser power fluctuations
limit the accuracy for longer timescales. The combined standard
uncertainty of the internal detection efficiency derived from our
measurements is about 2%1.

2.1 Introduction

The detection of single photons plays an important role in quantum op-
tics [3] and quantum key distribution [50]. Superconducting single-photon
detectors (SSPDs) for near-infrared wavelengths are promising because they
combine high detection efficiency and high speed. In particular SSPDs made
out of NbN and related materials have received a lot of attention because these
detectors can be operated at relatively high temperatures of ∼ 4 K. Moreover,
these detectors are technologically interesting due to a combination of high
speed, low dark count rate, low jitter and high detection efficiency [17]. Typ-
ically, the detection efficiency and dark count rate are determined through

1Q. Wang, J. J. Renema, A. Gaggero, F. Mattioli, R. Leoni, M. P. van Exter, and M. J.
A. de Dood, accepted by J. Appl. Phys. for publication.
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14 CHAPTER 2. ACCURACY OF QDT

measurement of the count rate as a function of the incident photon flux and
detector bias current.

Further progress on characterizing SSPDs for applications in quantum op-
tics can be made by using quantum detector tomography (QDT) [28,34,51–53]
as a method to retrieve the complete quantum response of the detector. This
assumption-free method is based on the calculation of the Positive Operator
Valued Measure (POVM) [28,34,51–53], which mathematically determines the
operator {Πclick} of the detector. The probability of a click event is expressed
as:

Rclick = Tr(ρΠclick ), (2.1)

where ρ is the density matrix that describes the input state. Usually well-
defined coherent states from a laser are used as probe states. Coherent states
are a linear combination of photon number states (i.e., Fock states) with

ρ = |N〉〈N | and |N〉 =
∑∞

i=0N
i
2 exp(−N

2 )/
√
i!|i〉 (N is the mean photon

number of the coherent state and i indexes the photon number). In the
basis of photon number states, the operator of the detector is written as
{Πclick} =

∑∞
i=0 p̃i |i〉〈i |, where p̃i is the probability of a click event caused by

an input photon number state |i〉. Because the detection is not phase-sensitive
a description with only the diagonal elements of the POVM suffices. The de-
scription of SSPDs is further simplified by the fact that these detectors produce
a binary response of “click” or “no-click” that does not contain information
about the number of photons. We calculate first the no-click probability and
then compute the click probability for a coherent state as [29,36]:

Rclick(N) = 1−Rno−click(N)

= 1− e−N
m̃∑
i=0

(1− p̃i)
(N)i

i!
.

(2.2)

Equation (2.2) includes an assumption supported by experimental obser-
vations that at high input power the detector saturates with p̃i = 1 for i > m̃.
For detectors with very low optical coupling efficiency η, Eq. (2.2) involves
a large number of parameters p̃i, i.e., of order η−1 for an ideal single-photon
detector.

In our experiment we illuminate a meandering SSPD with an active area
of 5 × 5 µm2 with a ∼ 200 µm diameter optical beam, and we estimate an
optical coupling efficiency 10−3. Consequently, we would have to determine
103 parameters p̃i, making standard detector tomography an unrealistic task.
This difficulty can be partly resolved by introducing a smoothing of adjacent
p̃i, through Tikhonov regularization [28] to effectively reduce the number of
independent parameters. For very small values of optical coupling efficiency
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the effect of this regularization becomes more prominent and complicates the
interpretation of tomography. To alleviate these problems, we replace the mean
photon number in the input beam N by the mean number of absorbed photons
ηN , and replace Eq. (2.2) by [29]

R(N) = 1− e−ηN
m∑
i=0

(1− pi)
(ηN)i

i!
, (2.3)

where η is interpreted as the effective absorption efficiency to describe the
optical coupling process, and the parameters pi now have the significance of
representing the internal detection efficiency that an absorbed photon number
state |i〉 causes a click. The sum of Eq. (2.3) has much fewer terms and it is
possible to obtain the values of pi by performing a relatively simple experiment.

The introduction of Eq. (2.3) does not result in a loss of generality because
all solutions to Eq. (2.2) are solutions to Eq. (2.3) for η = 1. Cases with η 6= 1
result in an overdetermined system, where an additional assumption has to
be invoked to identify the solution of physical significance. In this case, we
use the sparsity in the pi to select the solution which has the fewest pi 6= 1.
We note that η and p1 are separable in the experiment [35] due to the fact
that η enters into the detection probability of higher-order photon numbers.
This modified tomography procedure is particularly well suited for detectors
where η � 1 [29] and has been used to study the intrinsic quantum response
of SSPDs to different photon number [29, 35–37] and to study the physics of
the detection mechanism [30,38].

In the experiment, the detector is illuminated with laser pulses that each
contains a coherent state of light. The total detection probability is recorded
as a function of average input power, which is proportional to the average
photon number. Based on Eq. (2.3), an algorithm that takes into account the
photon number distribution of the input states can be used to convert this
information to an internal detection efficiency pi in the photon number basis,
which completely describes the detector.

The amount of information that can be extracted via tomography depends
critically on the accuracy with which it is performed. For short measurement
times the measured photon count rates show fluctuations that define a fun-
damental lower limit to the accuracy of the tomography. It is thus a natural
question to ask how accurate QDT is in this limit and what other experimental
factors limit the accuracy. A first estimate of the error in the nonlinear response
of NbN superconducting detectors is reported in Ref. [30], and a calibration of
the overall detection probability of an SSPD at high bias currents is reported
in Ref. [54]. However, a discussion on the nature of the noise sources and how
each of these sources affects the nonlinear detection probabilities determined
by tomography has not been given.
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In this chapter, we investigate the accuracy of quantum detector tomogra-
phy on a meandering NbN SSPD. We consider five experimental factors: shot
noise, fluctuations in laser power, non-linearities in the optical power meter,
and fluctuations in bias current and temperature. We compare experimental
results to synthesized data in order to systematically analyze how each noise
factor influences QDT. By quantifying every type of noise in the measurement
we calculate the combined uncertainty of the QDT results.

This chapter is structured as follows: Sections 2.2 and 2.3 describe the
experiment and the method of quantum detector tomography, respectively.
Section 2.4 contains the experimental results of QDT on an SSPD. In Section
2.5 we perform simulations to unravel the contribution of each noise source to
QDT.

2.2 Experiment

The SSPD in this study is made out of a 4.5 nm thick NbN film deposited
on a silicon substrate with a 254 nm thick layer of thermally grown SiO2. The
NbN film is fabricated into a 100 nm wide, meandering wire, with 150 nm
spacing between the wires (fill factor is 40%). The total active area of the
device is 5× 5 µm2. The SiO2 layer serves as a λ/4 cavity optimized for 1550
nm wavelength. The critical current Ic of this device is measured to be 23.5 ±
0.5 µA at a temperature of 3.2 K corresponding to a critical current density
jc ≈ 5.2× 106A/cm2.

The detector is mounted in a pulse-tube cryostat with free-space optical
access (PRO-K-0274-00, Entropy GmbH), and is cooled down to a base tem-
perature of 3.2 K. A bias current Ib, which is a significant fraction of the critical
current Ic of the detector, is applied using a voltage source (Yokogawa GS200)
with a 100 Ω resistor in series with the detector to convert the applied voltage
to a bias current. Voltage pulses, which correspond to detection events, are
collected via the high-frequency port of a bias-T (Minicircuits ZNBT-60-1W+)
and are amplified via a cascade of high-frequency amplifiers (3 × Minicircuits
ZX60-3-18G+, 60 dB total amplification). The resulting pulses are sent to a
pulse counter (Agilent 53131A).

To measure the detector response, the detector is illuminated in free space
with picosecond laser pulses at a wavelength of λ = 1200 nm from a spectrally
filtered supercontinuum laser with a repetition rate of 20 MHz (Fianium FP
1060). For free-space illumination, the optical coupling efficiency (i.e., effec-
tive absorption efficiency η) is mainly determined by the alignment and the
ratio of the area of the meandering wire to the light spot size (diameter of
∼ 200 µm). The large beam diameter eliminates mechanical vibrations and
drift of the optical alignment, but compromises the optical coupling efficiency
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η. We find that these effects are more important than the dependence of η on
wavelength due to the enhanced absorption by the cavity resonance. We select
the wavelength of 1200 nm rather than the preferred 1550 nm to achieve larger
η and focus on the internal detection efficiency pi for physical interpretation.

To filter the incident light we use a combination of a long pass filter, that
transmits wavelengths beyond 1000 nm, and a band pass filter for 1200 nm
wavelength light with a full-width-at-half-maximum of 10 nm. The mean pho-
ton number per pulse can be varied by rotating a half-wave plate placed in
between two crossed polarizers. In this way, we tune the laser power (25
points) by a factor of ∼ 600 between the maximum and minimum while keep-
ing the polarization of the incident light on the detector unaltered [42]. The
observed count rate is recorded as a function of the mean photon number per
pulse and bias current from 6.5 µA to 16.8 µA. At low bias current compared
to the critical current, one can obtain the nonlinear response of the detector
with relative ease. In these experiments we observe no dark count events in
one second (i.e., dark count rate < 1 Hz) up to the highest applied bias current
of 16.8 µA; therefore, we neglect dark count rate for all bias currents. In order
to investigate the influence of noise on QDT and to discriminate between shot
noise and technical noise, we measure the count rate in 1000 consecutive inter-
vals of 0.1 second at each setting of the optical power and bias current. This
allows us to vary the integration time per point by averaging the data after
the measurement.

2.3 Quantum detector tomography

The purpose of tomography is to find the detection probability expressed
in the photon number basis. We apply the detector tomography protocol that
was originally demonstrated in Ref. [28] with the modifications proposed in
Ref. [29] for low system detection efficiency (see Eq. (2.3)). In the experiment,
the number of detection events is recorded as a function of the mean number
of photons per pulse, which is directly given by the average intensity of the
laser and can be measured to a high degree of accuracy with a conventional
power meter. Next, the tomography algorithm is applied, which processes the
measured count rates to find a precise detector response as detection efficiencies
expressed in the photon number basis.

In addition, in order to verify the separation of the effective absorption
efficiency η and the internal detection efficiency pi, we use two different settings
of the input laser power, referred to as high power and low power. The low
power was obtained by attenuating the high power using a neutral density
filter that lowers the average power on the detector by a factor 2.51. The idea
is that, according to the interpretation of Eq. (2.3), if the QDT for the data
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(measured R) with low laser power is performed by using the reference laser
power before the attenuator (i.e., values of high power), the attenuation factor
in the beam path will be attributed to the effective absorption efficiency η and
will not affect the internal detection efficiency pi.

Figure 2.1(a) shows a set of representative data used in tomography for both
high and low laser power. Count rates are shown as a function of mean photon
number per pulse for the two different input settings (solid curves for high
power and dashed curves for low power); they are represented as a detection
probability R by normalizing the count rate to the laser repetition rate (20
MHz). The mean photon number per pulse for the two settings of the laser
power is calculated as N = PL/(h̄ωf), where PL is the high or the low laser
power, ω is the angular frequency of the light at wavelength of 1200 nm, and
f is the laser repetition rate. The total data set comprises measurements at
57 different bias currents. For clarity, we only plot the data for 4 bias currents
in Fig. 2.1(a).

The data in Fig. 2.1(a) shows that the detector response is determined by
both the bias current and the mean photon number N . The straight line with
slope of 1 in the log-log plot for high bias currents (14.40 µA and 16.05 µA)
indicates that the detector behaves as a linear detector that saturates at large
values of the mean photon number. When biased with a lower current, the
detector shows a lower detection probability that increases more than linearly
with mean photon number. A direct way to make this visible is by calculating
the slope of the detection probability on a log-log scale as shown in Fig. 2.1(b).

At the highest bias current (16.05 µA) this slope is less than or equal to 1
and tends to 0 due to saturation of the detector at large N . For a lower bias
current (14.40 µA), the detector response increases more than linearly for N >
102 and then saturates. The higher-order nonlinear response is more prominent
at the lower bias currents (8.48 µA and 11.26 µA), where the derivative exceeds
2. Investigating these derivatives is a coarse method to identify the photon
number response, from which it is not possible to quantify the probability to
detect 1, 2 or 3 photons.

To quantify these probabilities, we implement the tomography as discussed
in the Introduction to yield the values of effective absorption efficiency η and
internal detection efficiency pi of the measured detector. We fit Eq. (2.3) to
the power dependent data at each current, and repeat the non-linear least-
squares fitting procedure for different values of maximum photon number m.
To determine the quality of the fit we calculate the reduced chi-squared χ2 =
χ2

rough/v, where v is the number of degrees of freedom.

An essential feature of our tomography is that we select the model that
minimizes the original, non-reduced χ2

rough and number of fit parameters, ac-

cording to the Akaike Information Criterion AIC = χ2
rough+2s (s is the number
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Figure 2.1: (a) Measured detection probability of the detector as a function of input
photon number per pulse normalized to the laser repetition rate of 20 MHz. Data
are shown for a high power setting (solid curves) and lower power (dashed curves) (b)
Slope of the normalized count rate R on a log-log scale as a function of mean photon
number N per pulse, giving a rough indication of the photon-number regime. At high
bias currents (14.40 µA and 16.05 µA) the detector response is close to linear. For low
bias currents (8.48 µA and 11.26 µA), the detector operates in a nonlinear regime.
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of fitting parameters) [30,55]. This criterion minimizes the number of parame-
ters needed to describe a detector and is particularly useful for detectors with
low efficiency [29]. We find that for the SSPD studied here, the dark count
rate associated with p0(∼ 0) can be ignored and a description with only three
parameters: η, p1 and p2 suffices for all the bias currents.

It is important to stress again that the tomography put forward through
Eq. (2.3) is completely general as it defines an (over)complete set of functions
to describe the response of the detector. Alternative, more complex models
can be defined that contain more detailed assumptions about the operation of
the detectors. Such assumptions will alter the interpretation of the parameters
in the model, but will not lead to a lower value of χ2. Therefore, we limit the
discussion to the parameters that follow from the simplest possible complete
model as defined through Eq. (2.3).

2.4 Overall noise and tomography results

In this section we analyze the noise in the measured data before starting a
discussion on the influence of noise on the results of QDT. A straightforward
way to show the noise is to quantify the statistical fluctuations of the data.
We calculate the standard error of the mean (SEM) of the measured detection
probability R for different integration times as a function of R, and normalize
the SEM to the expected shot noise limit of the experimental data with an
integration of 0.5 second. We normalize the SEM to this value, because a
0.5 second integration time together with the repetition rate f = 2× 107/s of
our laser is comparable to the setting used in other tomography experiments
on SSPDs [30, 37]. The shot noise limit is given by

√
R(1−R)/tf , with the

integration time t, as predicted by the binomial distribution for a sequence of
tf independent experiments.

We take the experimental data of high laser power setting as an example.
Figure 2.2 shows the SEM of the data at all values of bias current for different
integration times. The four drawn curves serve to guide the eye and are ob-
tained by averaging every 100 points in each data set. As the integration time
increases the overall SEM of the data decreases, as expected with a factor
of 1/

√
n, where n is the ratio of the integration time to the reference of 0.5

second.

For larger integration times, typically beyond ∼ 1 second per point, it
becomes most clearly apparent that the total noise in the measurements ex-
ceeds the shot noise level (horizontal lines) by a factor 4–5 when the detection
probability R is above 10−2. This means that at longer integration times the
experimental tomography is limited by both shot noise and technical noise.
At very high count rates, close to saturation, the detector response may be
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Figure 2.2: The ratio of the standard error of the mean of the data (high laser power
setting) to the shot noise of the data with integration time of 0.5 second at all values
of the bias current for different integration times.

influenced by heating effects [33, 56], which are not included in the detector
response given by Eq. (2.3). Experimentally, we observe that the outcome of
the tomography depends on the maximum photon count rate that is included
in the fit procedure.

In order to exclude physical effects that go beyond the description from
Eq. (2.3) we limit the data analysis to detection probabilities R below the value
of 10−2 (the left region of the vertical line in Fig. 2.2). This also excludes a
large portion of the technical noise from the analysis. For practical tomography
it is important to identify this threshold and find a tradeoff (10−2 in our case)
between the error introduced by a too high threshold value and statistical
errors introduced by a too low threshold value.

Figure 2.3 shows the quality of our fit χ2 (based on the data of high laser
power setting) on the left vertical axis as a function of the bias current for
different maximum number of photons m in Eq. (2.3) up to 4. The figure
indicates that a model with m = 2 yields a good description of the data with
a minimal set of fitting parameters (η, p1 and p2), indicating that for i ≥ 3,
the internal efficiency pi equals to 1, as desired.

In Fig. 2.3 the reduced χ2 can be obtained only below the bias current of
∼ 14 µA, this is due to the fact that the data of R above 10−2, corresponding
to the shadowed data at bias currents > 14 µA in Fig. 2.1, are cut off and do
not contribute to the QDT.

In the calculation of the reduced χ2 we use the standard deviation σR of
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Figure 2.3: The reduced χ2 and normalized χ̂2 from fitting the data to Eq. (2.3) at
values of the detection probability R below 10−2. The reduced χ2 is calculated based
on the standard deviation of the raw data of R, while the normalized χ̂2 is based on
the corrected standard deviation of R by including the long timescale fluctuations of
the laser power.

the selected measured detection probability R. We find that the value of χ2 is
around ∼ 10 for currents from 8 µA to 11 µA while a good fit is supposed to
have a χ2 of 1.

The larger value of χ2 can be interpreted as an underestimation of the
standard deviation σR of the measured data. The standard deviation σR only
shows the fluctuations in the data over a relatively short timescale of 100
seconds for each data point and ignores fluctuations or drifts in laser power on
a longer timescale. In the next section we will show that a realistic estimate of
this long term drift enlarges the σR by a factor of 3.3. Normalizing χ2 by this
value of σR leads to a χ̂2 ∼1, as shown in the right vertical axis in Fig. 2.3.

We emphasize that the QDT for both laser power settings was done using
the reference power before the attenuator in order to verify that pi and η can
be determined as independent variables and that the value of η is lowered by
the attenuation factor in the experiment. Figure 2.4(a) shows the internal
detection efficiency p1 and p2 for a wavelength of 1200 nm as a function of bias
current via tomography. We find that p1 and p2 for the two different powers are
identical and are not influenced by the laser power setting, which confirms the
separation between the internal detection process (pi) and the optical coupling
process (η). Meanwhile, the data of pi shows the photon number regime that
the detector operates in, e.g., below bias current of 11 µA corresponding to
1-photon detection regime and above 12 µA to 2-photon detection regime.
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Figure 2.4: (a) Probabilities p1 and p2 of the NbN detector as a function of bias
current determined by detector tomography. The horizontal line is used to calculate
the relation between bias current and input photon energy in Section 2.5.6. (b) Ef-
fective absorption efficiency η for a photon participating in a detection event. Two
sets of results are shown, corresponding to measurements at the two different input
powers. The η for the low power is multiplied by 2.51, which is the attenuation factor
in the beam path for the low power or the ratio of the high power to the low power
input. The overlap between the curves (pi and η) demonstrates that the tomographic
procedure retrieves the internal detection efficiencies that are intrinsic to the nature
of the SSPD and separates them from the effective absorption efficiency.
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The data in Fig. 2.4(b) shows the effective absorption efficiency η as a
function of bias current, where the curve of η of the lower power setting is
multiplied by the attenuation factor 2.51 for comparison. As we expected,
linear loss or attenuation in the optical coupling is equivalent to rescaling the
value of η, which confirms one of the main assumptions made in Ref. [29] to
adapt detector tomography to detection systems with low efficiency.

In a straightforward interpretation of the detector tomography model a
change in the value of η should not affect the retrieved values of p1 and p2,
because the values of pi are interpreted as internal efficiencies that are related
to the intrinsic detection mechanism of the NbN detector, while η is related to
the coupling efficiency of a photon in the whole measurement system.

For an extended detector such as a meandering wire, the linear efficiency in
the multiphoton regime is decreased because of the effect that two or more pho-
tons need to be absorbed close together to form a detection event [36, 57, 58].
Moreover η contains the optical absorption, inhomogeneities in the detector,
the effect of bends and other factors that complicates further interpretation of
this parameter. We restrict ourselves to the more straightforward interpreta-
tion to these intrinsic probabilities pi.

2.5 Uncertainty budget and accuracy of tomogra-
phy

2.5.1 Method of analyzing the uncertainty

Both shot noise and technical imperfections lead to fluctuations in the
measured count rate that affect the value of pi retrieved from tomography. We
focus on the intrinsic detection probabilities pi, quantify the fluctuations in the
experiment, and discuss their origin and their consequences for the uncertainty
of the pi obtained from tomography. To simplify this task we will assume that
all fluctuations are independent so that the uncertainty of pi can be estimated
by adding the uncertainty from each source.

We consider the effect of shot noise, fluctuations in laser power, non-
linearities in the optical power meter, instabilities of bias current and tem-
perature. We use the tomography results at a bias current of 10.33 µA and
14.00 µA as an example, corresponding to a current setting where the detector
operates in the two-photon regime and the one-photon regime, respectively.

We calculate the influence of the noise on the QDT results (pi) in two ways.
For fluctuations of current and temperature we perform analytical error propa-
gation based on the measured relation between pi and Ib. For shot noise, laser
power fluctuations and power meter instability, the relation between noise and
pi is more difficult to analyze due to the nonlinearity of Eq. (2.3). Therefore we
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Table 2.1: The noise sources and the combined relative uncertainty.

Uncertainty source Symbol @ 10.33 µA @ 14.00 µA
p1 = 0∗, p2 = 0.1 p1 = 0.1, p2 = 1∗

(η = 4.09× 10−4) (η = 1.71× 10−3)

Shot noise
(∝ 1/

√
n) uS 3× 10−4 0.4× 10−4

Laser power
(σL = 2.8%) uL 9× 10−4 16× 10−4

Power meter
(σM = 0.9%) uM 0.5× 10−4 0.3× 10−4

Bias current
(∆I = 5.0 nA) uI 6× 10−4 8× 10−4

Temperature
(∆T = 4 mK) uT 6× 10−4 9× 10−4

Combined

uncertainty u =
√∑

k=1 u
2
k 13× 10−4 20× 10−4

Relative
combined uncertainty U = u/pi 1.3% 2.0%

∗At current of 10.33 µA, the detector is in 2-photon regime, where p2 = 0.1 and p1 is too
low to be extracted from QDT; at current of 14.00 µA, the detector is in 1-photon regime
with p1 = 0.1, and p2 fixed to 1.

perform numerical simulations2: we produce synthetic data of Rs with initial
values of the tomography results (noted as Πi) at the two example currents.
In this process we add noise to the synthetic data; then we perform tomogra-
phy on these synthetic data and obtain the output (noted as Pi); finally we
obtain the uncertainty of the tomography results by calculating the difference
between the initial (Πi) and the output values (Pi). With these simulations
we are able to evaluate how each of the noise sources (shot noise, laser power
fluctuations and power meter instability) affects the tomography. The uncer-
tainty of pi caused by each noise source is summarized in Table 2.1. Details of
the calculations are in section 2.5.2–2.5.7.

2.5.2 Shot noise

The fluctuations (or standard error of the mean) of a measured probability
are fundamentally limited by statistical fluctuations of the discrete photon
counting events. The standard error of the mean is predicted by binomial
theory. To estimate how shot noise influences the final QDT results in our
case, we perform tomography on synthetic data. As an example we use the
experimental data at a bias current of 10.33 µA, where p1 = 0, p2 = 0.1 and

2Matlab 2014b 64bits, The MathWorks, Inc.
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η = 4.09×10−4. In the simulation we take these initial values of pi to be exact
and denote these probabilities as Π1 and Π2.

We first calculate the synthetic detection probability Rs as a function of
the measured laser power by using Eq. (2.3), setting the Πi and η values. We
then add a noise term of r ×

√
Rs(1−Rs)/tf to Rs with tf = 2× 106; r is a

random number drawn from a Gaussian distribution with mean 0 and standard
deviation 1. Then we repeat L = 1000 times to produce L sets of detection
probability.

On each set of synthetic data we perform tomography to retrieve values Pi
for the internal detection efficiency pi. We find that the value of P1 is indeed
equal to 0, and we estimate the set of nonlinear parameters P2, which may be
different from the initial value Π2 that we set in the simulation. From these
tomography simulations we extract the standard deviation σpS of the simulated
P2:

σpS =

√√√√ 1

L

L∑
j=1

(P2,j − P2)2, (2.4)

and we find that σpS = 7.9 × 10−3. The calculated mean value P2 defined as
1
L

∑L
j=1 P2,j , is found to be equal to Π2, indicating that the shot noise does

not cause a bias, as expected. The shot noise affects the measurements in all
L sets of measurements, and we need to consider the amount (L sets) of the
synthetic data in uncertainty calculation: the uncertainty of P2 given by shot
noise is calculated as uS=σpS/

√
L = 3× 10−4.

2.5.3 Laser power fluctuations

To estimate the magnitude and timescale of laser power fluctuations, we
measure the laser power for 10 hours with a commercial Ge-based power meter
(PH20-Ge, Gentec-EO).

Both short timescale fluctuations and long timescale drift in measured laser
power are observed as shown in Fig. 2.5(a). The relative standard deviation
of the measured laser power over the measurement of 10 hr is calculated to
be σL = 2.8% of the mean power. Figure 2.5(b) shows the autocorrelation
function of the measured laser power of Fig. 2.5(a), and it demonstrates a
long-timescale (of hours) fluctuation or drift of the laser power.

In the experiment of QDT, we vary laser power input using two polarizers,
and fix a certain power (i.e., a fixed angle between two polarizers) into the
cryostat and measure count rates as a function of detector bias current. We
then repeat the measurement as a function of current for all input powers and
convert the measured data to count rates as a function of input power at a fixed
current. This data is then fed to the tomography algorithm. A consequence of
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Figure 2.5: (a) Fluctuations in laser power output at 1200 nm wavelength as a function
of time showing both fast fluctuations and long term drift with an amplitude of ∼ 0.2
mW over the whole timescale of 10 hours. (b) Corresponding autocorrelation function
of laser power fluctuations.



28 CHAPTER 2. ACCURACY OF QDT

this approach is that two adjacent points in the dataset are recorded approxi-
mately 1.6 hr after each other. At this timescale the autocorrelation function
of the laser power fluctuations is close to zero, which means that laser power
values are uncorrelated, and their fluctuations can be approximated as random.
Each measured curve of count rate as a function of input power at constant
current contains 25 points. During the measurement of each data point (100
seconds), the laser power is relatively constant because of the small standard
deviation of 0.15% over this short time interval. Between the adjacent points
with time interval of 1.6 hr, the long-timescale fluctuations of laser power are
important (2.8%).

We assume that the power fluctuations are uncorrelated because the time
interval between measurements is comparable to the timescale of the slow vari-
ations in laser power. To investigate to what extent the random laser fluc-
tuations influence the tomography, we perform numerical simulations to take
into account the nonlinear dependence of detection probability as a function
of laser power as expressed by Eq. (2.3).

We use the data at the bias current of 10.33 µA as an example. We first
simplify the calculation by assuming that the fluctuations in the 25 laser power
values are random. We add the random fluctuations to the calculation by
multiplying each value with a factor of (1+ σL × r).

We then calculate one set of synthetic detection probability Rs by using
Eq. (2.3), which involves the fluctuated laser power and the Πi and η value. Fi-
nally, we do tomography to get the estimated Πi. After repeating the procedure
L times we have a set of simulated P2 with the mean value P̄2 (P1 is equal to
0), and we calculate the bias of P2 as ∆P2L = P̄2−Π2 = 9×10−4, so we get the
uncertainty of P2 given by laser power fluctuations uL = ∆P2L = 9.4× 10−4.

The long-timescale fluctuations (σL = 2.8%) of laser power are not included
in the standard deviation σR of the measured data, so it leads to an underes-
timation of the noise of the data and increases the reduced χ2. We calculate
the change in the measured detection probability R caused by fluctuations of
the laser power (the mean photon number N) as ∆R = ∂R

∂N∆N = ∂R
∂NN

∆N
N

via Eq. (2.3), where we use the values of pi and η at 10.33 µA, and ∆N
N

is 2.8%. The results show that ∆R is R dependent and is in a range of
1 × 10−4 − 4 × 10−4. We estimate the new overall fluctuations of the data

in a simple way as σ′R =
√
σ2
R + ∆R2 = 3.3σR by using the averaged value

∆R = 2.5 × 10−4. With this correction for the overall fluctuations the QDT
gives a lower χ̂2 of ∼ 3 at 10.33 µA, which is suppressed from the value (∼ 40)
in the original QDT (see χ2 in Fig. 2.3). We conclude that the long-timescale
drift (e.g., in laser power) causes the larger values of χ2.
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2.5.4 Accuracy of the power meter

The function of the power meter is to provide reference values of laser
power that are inserted in the tomography. The power meter has an absolute
accuracy that shifts all points equally and leads to a systematic error, which
can be simply attributed to a change of η. In addition, the relative uncertainty
of the power meter is limited by noise (e.g., dark count) of the power meter
itself.

We record the laser power with a commercial Ge-based power meter (PH20-
Ge, Gentec-EO) that has a specified relative uncertainty of ±0.3% to ±0.9%
given by NIST [59]. In our simulation we take the upper limit (0.9%) as a
conservative estimate of fluctuations in the readout of the power meter. To
study the fast-fluctuation influence on the final pi, we generate one set of
detection probabilities with the original measured laser power values as the
true values. Then in the fitting part we use a different calibration curve that
contains the fluctuations in power measurement by multiplying each point of
the original laser power with a factor of (1 + σM × r), where the σM equals
0.9%. We repeat this procedure L times and get a set of P2. The difference of
Π2 and P̄2 is ∆P2M = 0.5 × 10−4, and the uncertainty of P2 given by power
meter is uM = ∆P2M = 0.5× 10−4.

2.5.5 Current fluctuations

As can be seen in Fig. 2.4(a) the detection probabilities are strongly de-
pendent on bias current. Based on the outcome of the tomography we find an
empirical relation to describe the relevant part of the pi curve. This empirical
relation allows standard error propagation by calculating the sensitivity of the
pi to bias current fluctuations as the local derivative of the empirical curve.
As an example we take p2 at a bias current of 10.33 µA and fit the current
dependence to the function:

p2(Ib) = p2(10.33µA)eα(Ib−10.33µA). (2.5)

We obtain a value of p2 (10.33 µA) = 0.10, and the slope α = 1.121 ±
0.004 µA−1. The influence of current fluctuations on the accuracy of p2 can be
estimated from a Taylor expansion of Eq. (2.5) and yields

∆p2I =
∂p2(Ib)

∂Ib
∆Ib = αp2(10.33µA)∆Ib . (2.6)

The uncertainty of p2 given by bias current fluctuations ∆Ib = 5.0 nA
is uI = ∆p2I = 6 × 10−4. The value of ∆Ib is the average of the standard
deviations of all the measured bias currents in the experiment.
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2.5.6 Temperature fluctuations

The detection probabilities in our experiment are a function of temperature
because the working principle of SSPDs is based on a superconducting material
whose properties (e.g., critical current Ic and coherence length ξ) are functions
of temperature. We use a PID feedback control loop (Lake Shore model 350)
to actively stabilize the temperature to To = 3.2 K. The measured fluctuations
of the temperature in the cryostat are in the range of ± 4 mK, which we take
as the standard deviation of the temperature.

To calculate the influence of the temperature on p2 at 10.33 µA, we link T
and p2 via the bias current Ib. To estimate the fluctuations we use

∆p2T (T ) =
∂p2(Ib)

∂Ib

∂Ib
∂T

∆T, (2.7)

in which the term ∂p2(Ib)
∂Ib

has been given by Eq. (2.5), and ∂Ib
∂T can be obtained

from the observation that the detector is an energy detector [30]. Following
Ref. [30], for a certain observed p2, the bias current Ib of the SSPD has a linear
relation with the total excitation photon energy E:

Ib(T ) = Io(T )− γE. (2.8)

The slope γ is found to be temperature independent and is determined by
the properties and geometry of the NbN film [30]. By putting a horizontal line
pi = 0.10 onto Fig. 2.4(a) we get two crossover points: Ib1 = 14.00 µA for one
1200 nm photon with E1 = 1.033 eV, and Ib2 = 10.33 µA for two photons with
E2 = 2.066 eV. Using these two points (E1, Ib1) and (E2, Ib2) we estimate γ =
3.58 µA/eV and Io = 17.72 µA at 3.2 K. The temperature-dependent current
Io(T ) has an expression based on Ref. [30, 60]:

Io(T ) = Io(To)

√
1− T/Tc√
1− To/Tc

, (2.9)

where To =3.2 K and Tc =9.42 K. Using above, we calculate the bias of pi due
to temperature fluctuations around To = 3.2 K and 10.33 µA:

∆p2T = −1

2
p2(10.33µA) ∗ Io(3.2K)α

1

Tc − To
∆T . (2.10)

The uncertainty of p2 given by temperature is uT =| ∆p2T |= 6× 10−4.

2.5.7 Combined standard uncertainty

We have calculated the influence of all uncertainty sources on p2 for bias
current 10.33 µA, and we can compare these calculations to the observed fluctu-
ations in the raw data. We use Eq. (2.3) to create synthetic data that includes
all the technical fluctuations, and the contribution due to shot noise.
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Figure 2.6: The relative standard error of the mean of detection probability (SEM/
R) at the bias current 10.33 µA (a) and 14.00 µA (b). The symbols represent ex-
perimental values. The black dashed curve is the predicted shot noise limit. The red
curve takes into account additional fluctuations (laser power, current and temperature
fluctuations) present in the experiment.
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To incorporate fluctuations in laser power, we multiply the mean photon
N by a factor of (1+ σL × r). Both temperature and bias current fluctuations

affect the probabilities Π2. To simulate these effects, we add r×
√

∆p2
2I + ∆p2

2T

to Π2, in which p2I and p2T quantify the change in Π2. The value of Π1=0
remains constant in this example.

Next, we (we already used Eq. (2.3) to create the synthetic data Rs) add
shot noise given by the binomial distribution as r×

√
Rs(1−Rs)/tf to Rs, with

tf = 2×106. We repeat the process 1000 times to obtain a set of synthetic data
Rs, from which we calculate the averaged estimated Rs(Rs = 1

L

∑L
j=1Rs,j) and

the standard error of the mean SEM .

For bias current 14.00 µA we repeat the same procedure. Figure 2.6 com-
pares the normalized values of SEM/R for the measured data (blue points)
to the simulation (red line) at the two typical currents of 10.33 µA (a) and
14.00 µA (b). The black dashed curve corresponds to the shot noise level.
At each of the two currents, for low detection probabilities (R < 10−2) the
shot noise dominates the measurement, while for larger detection probabilities
(R > 10−2) the fluctuations due to technical noise sources (i.e., laser power,
bias current and temperature) exceed the shot noise. The agreement of the
measurement and simulations show that shot noise becomes more important
at lower bias current since the overall count rate is lower, and that our ex-
perimental tomography operates in the nontrivial regime where technical noise
becomes comparable to shot noise.

Table 1 shows all the noise sources and their influences on the internal
detection efficiencies. The relative combined uncertainty of p2 at 10.33 µA and
p1 at 14.00 µA are 1.3% and 2.0%, respectively, which reflects an high accuracy
of the QDT procedure in our work. In our experiment laser power fluctuations
contribute the most to the total uncertainty for both currents (or one-photon
and two-photon regimes). An improvement of the accuracy of the QDT would
result from using a more stable laser. However, if we eliminate laser power
fluctuations from the error budget, the final relative combined uncertainty is
only decreased to 0.9% (10.33 µA) and 1.1% (14.00 µA), because the other
noise sources have a comparable effect on the outcome of QDT. The accuracy
can only be significantly improved by minimizing the influences of all other
technical noise, e.g., by also optimizing the design of electronic circuit and
temperature feedback controlling of cryostat.

2.6 Conclusions

We have performed tomography at 1200 nm wavelength on an SSPD using
quantum detector tomography and obtained the internal detection efficiency
in different photon number regimes. We deliberately added optical loss to the
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setup to rigorously demonstrate the separation of overall macroscopic absorp-
tion efficiency from the intrinsic, microscopic detection probabilities pi.

We find that additional technical noise exists in the measurement, which
makes the fluctuations of the noise level higher than shot noise level at detection
probabilities R > 10−2. By limiting the data to this threshold of 10−2, we
improve the fit in tomography leading to a decreased value of χ2. The accuracy
of the tomography is limited by long time drift in laser power, while short time
fluctuations in bias current and temperature have a comparable effect.

We measured fluctuations including laser power, power meter accuracy,
bias current, and temperature. The sensitivity of tomography to each of these
factors is evaluated either via numerical simulation or via error propagation to
quantify the total uncertainty of the pi. We find that both p1 and p2 can be
determined with a small relative uncertainty of 1.3% and 2.0%.
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