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Chapter 3

Holographic phase diagram
of quark-gluon plasma
formed in heavy-ions
collisions

3.1 Introduction

For the last decade, since the publication of fascinating papers [1–3], it
was realized that supersymmetric and non-supersymmetric theories in the
strong coupling limit in principle could be pretty close in their properties
[4]. The AdS/CFT correspondence, which appeared as a formal duality
between the N = 4 super Yang-Mills theory and a quantum gravity in
AdS background, has become powerful tool for studying various properties
of real physical systems in the strong coupling [5].

Important branch of these investigations is the analysis of the Quark
Gluon Plasma (QGP) from the point of view of AdS-holography, see for
example, review [6]. These applications of the AdS/CFT correspondence
to strongly coupled QGP have been mostly related to equilibrium proper-
ties of the plasma, or to its’ kinetics/hydrodynamics near the equilibrium.

A particular application of AdS/CFT to the strongly coupled QGP,
is the analysis of thermalization of matter and early entropy production
instantly after the collision of relativistic heavy ions. RHIC experiments
have shown that a QGP forms at a very early stage just after the heavy ion
collision, i.e. a rapid thermalization occurs, and QGP produced in RHIC
is believed to be strongly coupled as evidenced by its rapid equilibration.
Strong collective flows well reproduced by hydrodynamics, and strong jet
quenching [7–9]. This obviously requires a calculation of the strongly
coupled field theory in non-equilibrium process.

Not long ago Gubser, Yarom and Pufu [11] have proposed the gravi-
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tational shock wave in AdS5 as a possible holographic dual for the heavy
ion and have related the area of the trapped surface formed in a collision
of such waves to the entropy of matter formed after collision of heavy
ions. Early papers where has been mentioned an analogy between collid-
ing heavy ions and colliding gravitational shock waves in anti-de Sitter
space include [12]-[16]. This AdS-holographic model has been also used
to find the stress-energy tensor of the QGP formed by ion collision. In
accordance with AdS/CFT dictonary this stress-energy tensor is dual to
the metric of spacetime after collision of shock waves [16].

The main result of [11, 17], confirmed by numerical calculations per-
formed in [18, 19], is that in the limit of a very large collision energy E
the multiplicity (the entropy S) grows as

S > CE2/3, (3.1)

C is a numerical factor (see Sect.3.2.1).
Alvarez-Gaume, Gomez, Sabeo Vera, Tavanfar, and Vazquez-Mozoand

[20] have considered central collision of shock waves sourced by a nontrivial
matter distribution in the transverse space and they have found critical
phenomenon occurring as the shock wave reaches some diluteness limit.
This criticality may be related to criticality found in [18]. The numerical
results of [18] show the existence of a simple scaling relation between the
critical impact parameter and the energy of colliding waves.

The size of colliding nuclei is introduced via the distance of those
objects from the boundary along the holographic coordinate z.

The model of infinite homogenous wall has been proposed and analyzed
by Shuryak and Lin [18]. The advantage of this model is the essential
simplicity of calculations. However, the legitimacy of these calculations
requires some additional examinations (see our discussion in Sect. 3.2.2).

In heavy ion collisions not only the energy per nucleus is important
variable. One can try to associate different nuclei with different kinds of
shock waves. There are several proposal in literature on this subject. For
example, in [21] the holographic model with cutting off the UV part of the
bulk geometry, has been proposed. Formation of trapped surfaces (TS)
in head-on collisions of charged shock waves in the (A)dS background
has been considered in [22] and it has been shown that the formation
of trapped surfaces on the past light cone is only possible when charge
is below certain critical value - situation similar to the collision of two
ultrarelativistic charges in Minkowski space-time [23]. This critical value
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depends on the energy of colliding particles and the value of a cosmological
constant. The formation of trapped surfaces in head-on collisions of shock
waves in gravitational theories with more complicated bulk dynamics, in
particular with the Einstein-dilaton dynamics, pretended to describe holo-
graphic physics that is closer to QCD than the pure AdS theory [24, 21],
has been considered recently by Kiritsis and Taliotis [25]1 and they have
found that the multiplicity grows as

S & E 0.24, (3.2)

that is rather close to the experimental data.
In this chapter we propose to incorporate the study of collisions of

charged shock gravitational waves [22] into the description of colliding nu-
clei with non-zero baryon chemical potential. In the holographic context,
the chemical potential of strongly coupled QGP on the gravity side is re-
lated to temporal component At of the U(1) gauge field [27]-[34]. The
asymptotic value of this gauge field component in the bulk is interpreted
as the chemical potential in the gauge theory

µ = At|boundary. (3.3)

We use the same identification (3.3) for colliding ions. It would be in-
teresting to perform calculations for the off-center collision of charged
gravitational waves or generally smeared charged shock waves. Postpon-
ing this problem for further investigations, here we consider the head-on
collision of charged point shock waves and charged wall shock waves. This
will give us the holographic picture for QPG phase diagram in the first
moment after collisions of heavy ions. This phase diagrams, chemical po-
tential (charge) µ versus temperature (energy) T , are displayed in Fig.
5 and Fig. 11. The colored lines separate the TS-phase from the phase
free of TS. Let us note that the obtained diagrams differ from the phase
diagram for equilibrium QGP (see Fig.3.1 in Sect. 3.2.1).

The chapter is organized as follows. In Sect.2 we present our set up of
the problem. In Sect.2.1.1 we describe the role of black holes in AdS/CFT
description of strongly coupled QGP. In Sect. 2.1.2. we present the de-
scription of the chemical potential of QGP within the AdS/CFT corre-
spondence. In Sect. 2.1.3 we remind the main facts about shock waves in

1Collision of dilatonic shock waves in the flat background has been considered in
[26].
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AdS5 related to the trapped surface formation. In Sect.2.1.4 we describe in
details the dual conjecture proposed in [11]. In Sect.2.2 we pay a special
attention to the problem of regularization that appears within the wall
shock waves approach. In Sect. 3 we present the phase diagram, temper-
ature vs chemical potential, for QGP formed in the heavy-ions collisions
by using the holographic approach with the central collision of charged
shock waves. In Sect. 4 we present our calculations of the same prob-
lem by using the regularized version of the charged wall shock waves. We
summarize our calculations in Sect. 5 and present here also further direc-
tions related to holographic description of quark-gluon plasma formed in
heavy-ions collisions.

3.2 Set up

3.2.1 Dual conjectures

Black holes and AdS/CFT correspondence for strongly coupled
QGP

The idea of AdS/CFT applications to description of the QGP is based
on the possibility to make an one to one correspondence between phe-
nomenological/termodynamical parameters of plasma – T ,E,P ,µ – and
parameters that characterize deformations of AdS5. In the dual gravity
setting the source of temperature and entropy are attributed to the grav-
itational horizons. The relation between energy density and temperature
typical for the BH in AdS according [35, 36] is

E =
3π3 L3

16G5
T 4 (3.4)

In the phenomenological model of QGP, such as the Landau or Bjorken
hydrodynamical models [37, 38], the plasma is characterized by a space-
time profile of the energy-momentum tensor Tµν(xρ), µ, ν, ρ = 0, ...3. This
state has its counterpart on the gravity side as a modification of the ge-
ometry of the original AdS5 metric. This follows the general AdS/CFT
line: operators in the gauge theory correspond to fields in SUGRA. In the
case of the energy-momentum tensor, the corresponding field is just the
5D metric. It is convenient to parameterize corresponding 5-dimensional
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geometry as

ds2 = L2 gµν(x
ρ, z)dxµdxν + dz2

z2 , (3.5)

that is the 5D Fefferman-Graham metric [39]. The flat case gµν = ηµν
parametrizes AdS5 in Poincaré coordinates. The conformal boundary of
space-time is at z=0 and

gµν(x
ρ, z) = ηµν + z4g(4)µν (x

ρ) + . . . (3.6)

The AdS/CFT duality leads to the relation

g(4)µν (x
ρ) ∼< Tµν(x

ρ) > (3.7)

Applications of AdS/CFT correspondence to hydrodynamical descrip-
tion of the GQP is based on the fact that the energy momentum tensor
can be read off from the expansion of the BH in AdS5 metric (3.6) corre-
sponding to simple hydrodynamical model

< Tµν >∝ g(4)µν = diag(3/z4
0 , 1/z4

0 , 1/z4
0 , 1/z4

0) (3.8)

The BH in AdS5 in the Fefferman-Graham coordinates has the form (3.5)
with the following nonzero components of gµν(xρ, z) (see [6] and refs
therein)

g00 = −

(
1− z4

z4
0

)2

(
1+ z4

z4
0

) , gii =

(
1+ z4

z4
0

)
(3.9)

A change of coordinates z̃ = z/(1 + z4/z4
0)

1/2 transforms (3.5) to the
standard metric form of the AdS-Schwarzschild static black hole

z̃2ds2 = −
(

1− z̃4

z̃4
0

)
dt2+ d~x2+

1
1− z̃4

z̃4
0

dz̃2, (3.10)

with z̃0 = z0/
√

2 being the location of the horizon.

Chemical potential in QGP via AdS/CFT correspondence

The Reissner-Nordström metric in AdS has the following form:

ds2 = −g(R)dT 2 + g(R)−1dR2 +R2dΩ2
D−2, (3.11)

91



g(R) = 1− 2M
R2 +

Q2

R4 +
Λ
3 R

2, (3.12)

where Λ is cosmological constant, Λ/3 ≡ 1/a2, M and Q are related to
the ADM (Arnowitt-Deser-Misner) mass m and the charge σ

M =
4πG5m

3π2 , Q2 =
4πG5σ

2

3 . (3.13)

σ is a charge of the electromagnetic field (pure electric) with only one
non-zero component

A = ATdT =

(
−
√

3
4
Q

R2 + Φ
)
dT , (3.14)

here Φ is a constant Φ =

√
3

2
Q

R2
+

, where R+ is the largest real root of g(R).

Thermodynamics of the charged BH is described by the grand canonical
potential (free energy) W = I/β, the Hawking temperature T = 1/β,
and the chemical potential [40, 41] that are given by

I =
πβ

8G5a2

(
a2R2

+ +R4
+ −

Q2a2

R2
+

)
, T =

1
4πg

′(R+), µ =

√
3Q

2R2
+

, (3.15)

here R+ is outer horizon, g(R+) = 0, I is given by the value of the action
at (3.12) and (3.14). The relation with the first low of thermodynamics,
dE = TdS + µdQ is achieved under identification

W = E − TS −ΦQ, E = m, S =
SH
4G5

, Q = q, µ = Φ (3.16)

Note that just the asymptotic value of a single gauge field component gives
the chemical potential [27]-[34]

µ = lim
r→∞

At(r) (3.17)

The QGP is characterized at least by two parameters: temperature
and chemical potential. Generically speaking, quantum field theories may
have non zero chemical potentials for any or all of their Noether charges.
Within the AdS/CFT context two different types of chemical potential
are considered, namely related to the R charge and to baryon number.

Baryon number charge can only occur when we have a theory con-
taining fundamental flavours. Introduction flavours into the gauge theory
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Figure 3.1. Phase diagram from [27]: Quark chemical potential µq/Mq, in
versus temperature T/M̄ . The red line separates the phase of Minkowski em-
beddings (small temperatures, small µq/Mq) from black hole embeddings (see
details in [27]). Figure (b) zooms in on the region near the end of this line.
Different lines in (b) correspond to different embedding geometries.

by means of a D7 brane leads to appearance of a U(Nf ) global flavour
symmetry. The flavour group contains a U(1)B, that is a baryon number
symmetry, and for this baryon number one adds a chemical potential µb
[28]. To calculate the free energy one has to calculate the DBI action for
a D7 brane. Note that there is a divergence in formal definition, so we
must go through the process of renormalization, see for example lectures
[42] and for yearly discussion [43].

R charge chemical potential appears for SUSY models [34]. In the N
= 1 case there is a U(1) R symmetry group. As to extended SUSY, say
N=2, the quark mass term breaks R symmetry.

The typical phase diagram the chemical potential vs the temperature
is presented in Fig. 3.1 (the diagram is taken from [27]). In the phase
diagram: µq =

µb
Nc

, µq is the quark chemical potential and M̄ ∝ mq is a

mass scale defined as M̄ = 2Mq/
√
λ and λ = g2

YMNc.

Shock waves in AdS5

Shock waves propagating in AdS have the form

ds2 = L2−dudv+ dx2
⊥ + φ(x⊥, z)δ(u)du2 + dz2

z2 , (3.18)
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where u and v are light-cone coordinates, and x⊥ are coordinates transver-
sal to the direction of motion of the shock wave and to z-direction. This
metric is sourced by the stress-energy momentum tensor TMN with only
one non-zero component TSWuu

TSWuu = Juu(z,x⊥)δ(u) (3.19)

and the Einstein E.O.M. reduces to

(�H3 −
3
L2 )Φ(z,x⊥) = −16πG5

z

L
Juu(z,x⊥) (3.20)

where
Φ(z,x⊥) ≡

L

z
φ(z,x⊥) (3.21)

and
�H3 =

z3

L2
∂

∂z
z−1 ∂

∂z
+
z2

L2 (
∂2

∂x2
⊥
) (3.22)

Different forms of the shock waves correspond to different forms of the
source Juu(z,x⊥). The most general O(3) invariant shock wave in AdS
located at u = 0 corresponds to

ΦO(3)(z,x⊥) = F (q). (3.23)

where q is the chordal distance

q =
(x1
⊥)

2 + (x2
⊥)

2 + (z − z0)2

4zz0
, (3.24)

In this case ρ, related to Juu as
z

L
Juu(z,x⊥) ≡ ρ(z,x⊥), (3.25)

has the form
ρO(3)(z,x⊥) = ρ(q), (3.26)

and the Einstein E.O.M takes the form

(�H3 −
3
L2 )F = −16πG5 ρ(q) (3.27)

or explicitly

q(q+ 1)F ′′qq + (3/2)(1 + 2q)F ′q − 3F = −16πG5L
2 ρ(q), (3.28)
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The shape of point shock wave F p is given by the solution to (3.20)
with

Juu = Eδ(u)δ(z −L)δ(x1)δ(x2) (3.29)

and has the form is given by

F p(z,x⊥) =
8L2G5Ez

3

(x2
⊥ + (z −L)2)3 (3.30)

This point shock wave shape is in fact equal to F p(q), Φpoint(z,x⊥) =
F p(q), that is a solution to (3.28) with

ρp(q) =
E

L3
δ(q)√
q(1 + q)

. (3.31)

It has the form

F p =
2G5E

L

 (8q2 + 8q+ 1)− 4(2q+ 1)
√
q(1 + q)√

q(1 + q)

 (3.32)

The shape of the charged point shock wave is a sum of two components

F = F p + FQ (3.33)

where F p is given by (3.32) and FQ is the solution to (3.28) with

ρpQ =
5Q̄2

32 · 64L5G5

1
[q(q+ 1)]5/2 =

5Q2
n

π24 · 64L5
1

[q(q+ 1)]5/2 , (3.34)

explicitly

FQ =
5G5Q

2
n

48L3

144q2 + 16q− 1 + 128q4 + 256q3 − 64(2q+ 1)q(q+ 1)
√
q(1 + q)

q(1 + q)
√
q(1 + q)

(3.35)
To establish the connection with [22] let us note the relations of nota-

tions
M̄ =

4G5E

3π (3.36)

Q̄2 =
4G5Q

2
n

3π (3.37)
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and

3πM̄
2a =

2G5E

L
(3.38)

5πQ̄2

64a3 =
5G5Q

2
n

48L3 (3.39)

More complicated shock waves in AdS and dS have been considered in
[44–49].

GYP dual conjecture

Gubser, Yarom and Pufu (GYP) [11] have proposed the following dual to
QCD holographic picture for colliding nuclei:

• the bulk dual of the boundary nuclei is the shock waves propagating
in AdS of the form (3.18);

• the bulk dual of two colliding nuclei in the bulk is the line element
for two identical shock waves propagating towards one another in
AdS

ds2 = L2−dudv+ dx2
⊥ + φ1(x⊥, z)δ(u)du2 ++φ2(x⊥, z)δ(v)dv2 + dz2

z2 ;
(3.40)

• when the shock waves collide in the bulk, a black hole should form,
signifying the formation of a quark-gluon-plasma.

To estimate the BH formation one usually use the TS technic [50, 51].2
A trapped surface is a surface whose null normals all propagate inward
[53]. There is no rigorous proof that the TS formation in asymptotically
AdS spacetime provides the BH formation, however there is an common
belief that trapped surfaces must lie behind an event horizon and that a
lower bound on entropy SAdS of the black hole is given by area of the TS,
Atrapped,

SAdS ≥ Strapped ≡
Atrapped

4G5
(3.41)

2This estimation can be also performed using so-called capture arguments [52, 26].
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To make the proposed duality prescription more precise one has to fix
the relations between the bulk parameters, G5,L,E and the phenomeno-
logical parameters of QGP. According to [21], one of these relations is

L3

G5
=

16E · T 4

3π3 =
11 · 16

3π3 ≈ 1.9 (3.42)

The arguments supporting (3.42) are following. Lattice calculations in
QGP [57] have shown that ET 4 is a slowly varied quantity and

ET 4 ≈ 11. (3.43)

Just to match the black hole equation of state (3.4) with (3.43), Gubser,
Yarom and Pufu [11] have assumed (3.42). It is important to note that
here is assumed an identification of the total energy of each nucleus with
the energy of the corresponding shock wave. One can modify this identi-
fication and assume that only a part of energy of the gravitational shock
wave is related to the total energy of nucleus.

To fix the dimensionless parameter EL the AdS/CFT dual relation
(3.7) between the expectation value of the gauge theory stress tensor and
the AdS5 metric deformation by the shock wave has been used [11],

〈Tuu〉 =
L2

4πG5
lim
z→0

1
z3 Φ(z,x⊥)δ(u) (3.44)

For the point shock wave Φpoint given by (3.30), one gets the following
stress tensor in the boundary field theory:

〈Tuu〉 =
2L4E

π(L2 + (x1)2 + (x2)2)3 δ(u) (3.45)

The r.h.s. of (3.45) depends on the total energy E and L, and L has a
meaning of the root-mean-square radius of the transverse energy distri-
bution. It has been assumed [11] that L is equal to the root-mean-square
transverse radius of the nucleons, that is in according with a Woods-Saxon
profile for the nuclear density [54, 55] is of order of few fm. In particular
for Au it is equal to L ≈ 4.3 fm. For Pb it is L ≈ 4.4 fm.

The RHIC collides Au nuclei, (A=197), at √sNN = 200 GeV. This
means that each nucleus has energy E = 100 GeV per nucleon, for a total
of about E = Ebeam = 19.7 TeV for each nucleus.

LHC will collide Pb nuclei, (A=208) at √sNN = 5.5 TeV, that means
E = Ebeam = 570 TeV.
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Estimations of [11] for dimensionless values EL for Au-Au and Pb-Pb
collisions are

EL|Au−Au,√sNN=200 GeV ≈ 4.3× 105 , (3.46)
EL|Au−Au,√sNN=5.5 TeV ≈ 1.27× 107 , (3.47)

Note, that in [18] has been proposed to tune the scale L or z0 of the
bulk colliding object to the size of the nucleus, or to the “saturation scale”
Qs in the “color glass” models.

Calculations in [11] show that in the limit of a very large collision
energy E the entropy grows as E2/3,

Strapped ≈ π
(
L3

G5

)1/3

(2EL)2/3, (3.48)

Considerations of off-center collisions of gravitational shock waves in AdS
do not change the scaling E2/3. However, a critical impact parameter,
beyond which the trapped surface does not exist has been observed [18]
(compare with result of [20]). Experimental indications for similar critical
impact parameter in real collisions have been noted [18].

The relation of the total multiplicity, SQGP , given by experimental
data, and the entropy produced in the gravitational waves collision in
AdS5, SAdS has some subtleties [21]. Phenomenological considerations
[56, 58, 11], estimate the total multiplicity SQGP by the the number of
charged particles Nch times the factor ∼ 7.5.

SQGP ≈ 7.5Ncharged. (3.49)

The trapped surface analysis does not give the produced entropy but
it provides a lower bound

Strapped ≤ SAdS . (3.50)

Taking into account that in calculations [11] the energy of the gravi-
tational shock wave is identified with the energy of colliding ions and L
with the nucleus size, one can introduce proportionality constants between
these quantities to get

M· Strapped < Ncharged (3.51)

where all proportionality factors are included into the overall factor M.
One can take M to fit the experimental data at some point. But the
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scaling Strapped ∝ s1/3
NN implied by (3.48) differs from the observed scaling,

which is closer to the dependence S ∝ s1/4
NN , that predicted by the Landau

model [37], see Fig.3.2. It is obvious, that if E < Emax one can avoid a
conflict between [11] and experiment, but if E can be arbitrary large the
conflict takes place.

In figure 3.2 we plot the dependence of the entropy bound (3.48) on the
energy, together with the curve that schematically represents the realistic
curve that fits experimental data [59]. We can see that by changing the
coefficientM one can avoid the conflict only for energy up to some Emax.
The overall coefficient of the numerical plot has been chosen in order to

Figure 3.2. (color on-line) Plots of the total number of charged particles vs. en-
ergy. The red lines present the estimation (2.45). Plots A and B differ by the
overall factor M. The blue lines correspond to the prediction of the Landau
model and the dotted green lines schematically present the curves that fit experi-
mental data. The dashed lines correspond to corrections to the GYP multiplicity
via non-zero chemical potential, see Sect.3.

fit the RHIC data [59]. Their are indicated by dots in Fig.3.2.
In the above estimation energy of each shock wave is identified with

the energy of colliding beams. As has been noted in [17] one can improve
fit to the data by identifying the energy of each shock wave with the
fraction of the energy of the nucleus carried by nucleus that participate in
the collision. This give an extra parameter to fit data. But still a conflict
will arise at large energies. In paper [17] it has been proposed to cure
the problem by removing a UV part of AdS bulk. In [25] shock waves
corresponding to the BH with non-zero dilaton field [24] were considered
and it has been shown that lower bound on Ncharged scales is rather closer
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to s1/4
NN .

3.2.2 Remarks about the regularization of TS calculations
in the case of wall-on-wall collisions

In [18] has been proposed a much simpler dual description of the colliding
nuclei that uses a wall-on-wall collision in the bulk. The Einstein equation
for the profile of the wall shock wave [18] has the form:

(∂2
z −

3
z
∂z)φ(z) = JWP

uu , JWP
uu = −16πG5

E

L2
z3

0
L3 δ(z − z0) (3.52)

To find a trapped surface that can be formed in the collision of two wall
shock waves one needs to find a solution to the Einstein eq.(3.52) that
satisfies two conditions. It is convenient to write these conditions in terms
of function ψ(z) related to φ via

φ(z) =
z

L
ψ. (3.53)

They have the form

ψ(za) = ψ(zb) = 0, (3.54)

ψ′(za)
za
L

= 2, ψ′(zb)
zb
L

= −2 (3.55)

where za, zb are supposed to be the boundaries of the trapped surface
[18]. But as we will see in the moment, strictly speaking, one cannot
call the solution to the equation (3.52) with b.c. (3.54) and (3.55) the
trapped surface, since by definition this surface supposed to be smooth
and compact meanwhile the solution [18] is non-smooth and noncompact.

By this reason we call the solution found in [18] a quasi-trapped sur-
face. Let us remind the construction presented in [18].

In [60], the solution to the Einstein equation (3.52) is written in such
a way that the property (3.54) is satisfied automatically. This solution
has the form

ψ(z) = ψa(z)Θ(z0 − z) + ψb(z)Θ(z − z0) (3.56)

ψa(z) = −
4GπE

(
z4

0
zb4
− 1

)
zb

4za
3
(
z3

za3 −
za
z

)
L4 (zb4 − za4)
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ψb(z) = −
4GπE

(
z0

4

za4 − 1
)
za

4zb
3
(
z3

zb3
− zb

z

)
L4 (zb4 − za4)

Let us first note that solution (3.56) is not smooth. There is a non-
smooth part of the solution (3.56)

Ξ =
K
z

(
− zb
z3
a

(Υ1)−
za
z3
b

(Υ2)

)
, where (3.57)

Υ1 = z4Θ(z0 − z) + z4
0Θ(z − z0) (3.58)

Υ2 = z4
0Θ(z0 − z) + z4Θ(z − z0) (3.59)

where
K =

4GπE
L4

z3
az

3
b

z4
b − z4

a

(3.60)

Thus, in order to smooth the solution we have to smooth the function
Ξ. We can do it by performing the regularization of the Heaviside step
function

Θ(z0 − z) ≈ Γ1 =
arctan (R (z0 − z))3

π
+

1
2 (3.61)

Θ(z − z0) ≈ Γ2 =
arctan (R (z − z0))

3

π
+

1
2 : (3.62)

and considering the regularized functions Υ̃1 and Υ̃2

Υ̃1 = z4
(

arctan (R (z0 − z))3

π
+

1
2

)
+ z4

0

(
arctan (R (z − z0))

3

π
+

1
2

)

Υ̃2 = z4
0

(
arctan (R (z0 − z))3

π
+

1
2

)
+ z4

(
arctan (R (z − z0))

3

π
+

1
2

)
For derivatives we have

dΥ1
dz
≈ 4z3Θ(z0 − z),

dΥ̃1
dz
≈ 4z3 (arctan(R(z0 − z))3 + π

)
π

;(3.63)

dΥ2
dz
≈ 4z3Θ(z − z0),

dΥ̃2
dz
≈ 4z3 (arctan(R(z − z0))3 + π

)
π

.(3.64)

In Fig.3.3 we present the derivatives of functions Υ1, Υ2 as well as
derivatives of the smoothed functions Υ̃1, Υ̃2.
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For R = 104 (see below) the differences between derivatives dΥ̃i
dz

and
their approximations given by (3.63) and (3.64)

∆1(z) =
dΥ̃1
dz
−
(
dΥ̃1
dz

)
appr

, ∆2(z) =
dΥ̃2
dz
−
(
dΥ̃2
dz

)
appr

(3.65)

∆1(z) = −∆2(z) = −3 z4R3 (z0 − z)2(
1 +R6 (z0 − z)6

)
π
+ 3 z0

4R3 (z − z0)
2(

1 +R6 (z − z0)
6
)
π

are of order & 10−3 fm3 only in the interval z ∈ [z′0, z′′0 ], z′0 = 4.293 fm,
z′′0 = 4.307 fm.

Indeed, in our consideration (spread case) the largest value of za is
4.260706906 fm and the smallest value of zb is 4.340400579 fm. At the
points z′0 = 4.260706906 fm, z′′0 = 4.340400579 fm the quantity ∆1 is less
then ≤ 5 · 10−6 fm3.

At the points z′0 = 0.6948439783 fm, z′′0 = 1018.393720 fm the quan-
tity ∆1 is less then ≤ 2 · 10−12 fm3.

The schematic picture of locations of roots and a region there |∆i(z)| &
10−3 are presented in Fig.3.4. We see that the difference ∆i is not essential
in location of the roots and we can use the approximations (3.63) and
(3.64).

The regularized version of the the function ψ is

ψreg = ψa(z)Γ1 + ψb(z)Γ2. (3.66)

Now one has to put conditions (3.55) on the regularized functions

za
2L

d

dz
ψreg

∣∣∣∣
z=z̃a

= 1 (3.67)

zb
2L

d

dz
ψreg

∣∣∣∣
z=z̃b

= −1 (3.68)

and find z̃a and z̃a from these conditions. However it is difficult to perform
these calculations. Instead of finding z̃a from condition (3.109) we propose
to use such regularization that does not change za found from formal
conditions (3.55). We can check that the formal za in fact solves also the
regularized condition if the regularization is smooth enough. So, we take
za and substitute it in the LHS of regularized condition (3.109). We define
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A. B

C.

Figure 3.3. A. The functions dΥ1
dz

(red line), dΥ̃1
dz

∣∣∣∣∣
appr

(blue line) . B. The

functions dΥ2
dz

(red line), dΥ̃2
dz

∣∣∣∣∣
appr

(blue line). The regularization parameter

R = 10 at A and B cases. C. Functions dΥ2
dz

(red line), dΥ̃2
dz

∣∣∣∣∣
appr

(blue line)

and dΥ̃2
dz

(green line) at the regularization parameter R = 104.

Fa,reg

∣∣∣∣∣∣
z=za

=
za
2L

(
dψa
dz

Γ1 +
dψb
dz

Γ2

) ∣∣∣∣∣∣
z=za

= 1 + δ1,

Fb,reg

∣∣∣∣∣∣
z=zb

=
zb
2L

(
dψa
dz

Γ1 +
dψb
dz

Γ2

) ∣∣∣∣∣∣
z=zb

= −1 + δ2.

We can calculate Fa,reg. The deviation of Fa,reg from 1 will show
how the regularization changes conditions (3.55). In the following table
we present calculations of Fa,reg for the wide range of parameter of the
theory.

103



ð

ÛÛÛÛ

Æ

ÛÛÛÛ

ÛÛÛÛ

ÛÛÛÛ
ï

î

í

¾
ÆÆ

¿ ùù
ð

Æ
ð
ùþ

Figure 3.4. (color on-line) The schematic plots of locations of roots (solid black
lines) dependent on the energy (in the logarithmic scale) and the location of

differences |dΥ̃i
dz
− (

dΥ̃i
dz

)appr| & 10−3, i = 1, 2 (the magenta shaded region). The
magenta solid line shows the location of the wall. The dotted blue lines show
location of zeros for the charged wall.

We choose the parameter R as minimally needed to make δ1 and δ2
negligible at energies 10−4 < E < 102 TeV. Using the direct numerical
calculations we choose R = 104. We perform numerical calculations at
R = 104 and get the following table:

E, TeV Q, fm1/2 za, fm zb, fm, Fa Fb

118.2 0 0.044 4.015 · 106 1.00000 −1.00000

30 0 0.069 1.019 · 106 1.00000 −1.00000

0.03 0 0.695 1018.394 1.00000 −1.00000

0.00025 0 4.261 4.3404 0.99999 −0.99999

Thus, from the table evidently Fa ≈ 1, Fb ≈ −1.
As has been mentioned above, strictly speaking one may not consider

infinite surface as a trapped surface of any kind. Nevertheless it is possible
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to assume that transversal size of colliding objects is finite but very large,
and therefore boundary conditions do not affect the process of gravita-
tional interactions of inner parts of sources. If we are interested only in
the specific area of the formed trapped surface in respect to the unit of
shock wave area, we may define it as

A ≈ lim
L→∞

Atrap(L)

Asource(L)
, (3.69)

and the approximate equality takes place due to negligibility of boundary
effects. As often happens, we can get answers for finite physical systems
performing calculations for infinite non-physical objects.

3.3 Holographic QGP phase diagram for the cen-
tral heavy-ions collisions

In this section we construct the phase diagram for TS formed in the central
collision of two identical point-like charged shock waves [22].

The profile of point-like charged shock waves in AdS is given by (3.33)
with (3.32) and (3.35). Existence of the trapped surface in the central
collision of two point-like charged shock waves means the existence of a
real solution, q0, to the following equation (see [22] for details)

F ′(q0)−
2

1 + 2q0
F (q0) +

2L√
q0(1 + q0)

= 0 (3.70)

The left hand side of (3.70) can be written as

F(L,E, Q̄2, q) = N (L, M̄ , Q̄2, q)
D(a, q) . (3.71)

The numerator N (L,E, Q̄2, q) contains just one term with dependence on
Q̄2. This dependence is linear with a positive coefficient

N (a, M̄ , Q̄2, q) = N (a, M̄ , q) + 15π
a
Q̄2. (3.72)

The denominator in (3.71) does not take infinite values. To find solutions
to (3.70) for the shape function given by (3.33) we can draw the function

− N (a, M̄ , q) ≡ −(512a3q5 + 1280a3q4 −
− 96M̄πaq2 + 1024a3q3 − 96M̄πaq+ 256a3q2), (3.73)
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and see where this function can be equal to a given value 15Q̄2 π
a .

In order to find the maximal allowed Q̄2 at which solution to (3.70)
still exists we find the maximum of function N for fixed energy,

dN (a, M̄ , q)
dq

|q=qmax = 0 (3.74)

and the value
a

15πN (a, M̄ , q)|q=qmax

defines Q̄2
max.

Let us remind that we are working in physical units and we use the

following notations (3.37) and (3.36): M̄ =
4G5E

3π and Q̄2 =
4G5Q

2
n

3π .

Results of calculations are presented in Fig. 3.5.

E, Tev

Qn, fm
1/2

Figure 3.5. The allowed zone for the trapped surface formation is under the
line on the diagram. The plot has been constructed by using formulas from [22].
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To estimate corrections to GYP multiplicity due to non-zero chemical
potential, we use formula (3.17) from [22]. In notations admitted in this
paper, (3.32) and (3.35), the formula has the form

AAdS5 ≈ 4πL3
(
G5E

L2

) 2
3

1− 1
24

(
1 + 5Q2

n

EL2

)(
2
√

2L2

G5E

) 3
2
(3.75)

In Fig.3.6 we show the entropy, AAdS5 , for Qn = 0 and Qn 6= 0. The
blue line represents Qn = 0. The red line represents Qn = 2 · 106. We see
that the deviation form the GYP multiplicity is essential for small energies
and is almost neglectful for large energies.

E, TeV

A5AdS

Figure 3.6. The function AAdS5 , at Qn = 0, (blue line) and Qn = 2 · 106fm1/2

(red line).

3.4 Holographic QGP phase diagram in the wall-
wall dual model of heavy-ions collisions

3.4.1 Charged wall as a dual model for a heavy-ion

Let us note that the form of the JWP
uu in (3.52) can be obtained by spread-

ing out the energy-momentum tensor of an ultrarelativistic point, i.e Juu
in the form (3.25) with ρ(q) given by eq.( 3.31), over the transversal sur-
face.
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The Einstein equation for the charged wall (membrane) has the form

(∂2
z −

3
z
∂z)φ(z) = −16πG5

(
JWP
uu + JWQ

uu (Q, z)
)

. (3.76)

where JWP
uu is given by (3.52) and we suppose that JWQ

uu (Q, z) can be
obtained in the similar way by spreading the energy-momentum tenzor of
the ultrarelativistic charged point T pQuu over the transversal surface. In the
previous calculations:

JWQ
uu =

´
M JpQuu Dx⊥´
MDx⊥

(3.77)

here the subscript ”pQ” means the electromagnetic part of the energy
momentum tensor of the charged point particle and ”Dx⊥” means that
we integrate over the induced metrics on the orthogonal surface M.

For this purpose we take

JpQuu (z, z0) =
L

z
ρpQ (3.78)

where ρpQ is given by (3.34), and according to our prescription (3.77) we
integrate over all transversal coordinates

JPQ,II
uu =

L
z

´∞
0 ρpQ(q)L

2

z2
0

1
2dr

2

´∞
0

L2

z2
0
rdr

(3.79)

The result is
JpQuu = XJ (3.80)

where

J =
64
3 zz0

(
1− z6

0 − 3 z2z4
0 − 3 z4z2

0 + z6

|z2
0 − z2|3

)
(3.81)

X =
5

256
Q2
n

πL6 =
5

256
Q2

L6 (3.82)

We see divergency at z = z0, as it should be for the energy-momentum
tensor of a charged plane. We introduce regularization by adding the ε
factor in the denominator.
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3.4.2 Charged wall-on-wall collision as a dual model for
heavy-ions collisions

To find the TS formation condition in the wall-wall collision one has to
solve Einstein equation

(∂2
z −

3
z
∂z)φ(z) = −16πG5

(
JpWuu (z) + JQWuu (Q, z)

)
, (3.83)

JpWuu (z) =
E

L2
z3

0
L3 δ(z − z0), (3.84)

JQWuu (Q, z) =
128X

3 zz0
z4 (−z2 + 3 z0

2) θ(z0 − z) + z4
0
(
−3z2 + z2

0
)
θ(z − z0)

(−z2 + z2
0 + ε2)

3

(3.85)

with the following boundary conditions

1) φ(za) = φ(zb) = 0,φa(z0) = φb(z0) (3.86)

2)
(
ψ′(za)

za
L

)
= 2,

(
ψ′(zb)

zb
L

)
= −2, (3.87)

where za and zb are the boundaries of the TS and ψ is related to

φ(z) =
z

L
ψ. (3.88)

We search for a solution to the Einstein equation with a charged source
in the form of the sum of the ”neutral” solution and a correction propor-
tional to Q2

φ = φn + φq (3.89)

here φn denotes the solution of the neutral case.
As in the neutral case it is convenient to consider domains z < z0,

z > z0 separately

φq =

{
φqz0>z, z0 > z;
φqz>z0 , z > z0

(3.90)

and we have

(∂2
z −

3
z
∂z)φq = −16πG5X

128
3 zz0

z4 (−z2 + 3 z0
2)

(−z2 + z2
0 + ε2)

3 , z0 > z (3.91)

(∂2
z −

3
z
∂z)φq = −16πG5X

128
3 zz0

z4
0
(
−3z2 + z2

0
)

(−z2 + z2
0 − ε2)

3 , z > z0 (3.92)
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Solutions to (3.91) and (3.92) can be presented as :

ψqz0>z = z3C1 +
C2
z
− NLz0 z

3

4 (−z2 + z02 + ε2)
, z0 > z, (3.93)

ψqz>z0 =
C3
z

+ z3C4 +
NLz0

5

4z (−z2 + z02 + ε2)
, z > z0 (3.94)

Here N = 40
3
πG5Q2

L6 The first two terms in (3.93) and (3.94) are solution
to the Lin and Shuryak equation (55) in [18]. If one assumes that they
satisfy condition 1, i.e. ψn(za) = ψn(zb) = 0, ψna(z0) = ψnb(z0), one gets
[60]:

Ψn =



ψna = C

(
z3

z3
a

− za
z

)
, C = −4πG5E

L4

(
z4

0
z4
b

− 1
)
zb

z4
b − z4

a

z3
az

3
b

, z < z0

ψnb = D

(
z3

z3
b

− zb
z

)
, D = −4πG5E

L4

(
z4

0
z4
a

− 1
)
za

z4
b − z4

a

z3
az

3
b

, z0 < z

(3.95)

In the neutral case one find za and zb from the 2-nd condition
(
ψ′na(za)

za
L

)
=

2,
(
ψ′nb(zb)

zb
L

)
= −2, here za and zb are the boundaries of the TS.

As to (3.93) and (3.94), choosing

C1 =
NLz0

4(z2
a − z2

0)
, C2 = 0, (3.96)

C3 =
NLz5

0
4(z2

b − z2
0)

, C4 = 0, (3.97)

we obtain


ψaq = −

NLz0z
3

4
−z2

a + z2 − ε2

(−z2 + z2
0 + ε2)(−z2

a + z2
0)

, z < z0

ψbq =
NLz5

0
4z

−z2
b + z2 + ε2

(−z2 + z2
0 − ε2)(−z2

b + z2
0)

, z0 < z

(3.98)
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Note that for the constructed solution the condition ψ(za) = ψ(zb) = 0
is satisfied automatically.

The second requirement (3.87) gives

−8πG5E
(
z4

0 − z4
b

)
z3
a

L5(z4
b − z4

a)
− N

4
z0z

5
a

(−z2
a + z2

0)
2 = 1, (3.99)

−8πG5E
(
z4

0 − z4
a

)
z3
b

L5(z4
b − z4

a)
+
N

4
z5

0zb
(−z2

b + z2
0)

2 = −1; (3.100)

These equations do not have analytical solutions and we treat them nu-
merically.

Roots of system (3.99),(3.100) could not be found analytically since
these equations are equivalent to polynomial equations on za and zb of a
high degree (> 4). So we take z0 = L and analyze the following system
numerically

Fa ≡ −8πG5E
(
z4

0 − z4
b

)
z3
a

z5
0(z

4
b − z4

a)
− 10

3
πG5Q

2

z6
0

z0z
5
a

(−z2
a + z2

0)
2 = 1, (3.101)

Fb ≡ −8πG5E
(
z4

0 − z4
a

)
z3
b

z5
0(z

4
b − z4

a)
+

10
3
πG5Q

2

z6
0

z5
0zb

(−z2
b + z2

0)
2 = −1.(3.102)

To show the movement of roots of equations (3.101) and (3.102) we
suppose that zb for given Q is already known and represent function
Fa(za, zb) as function of za in Fig. 3.7. In the similar way, supposing
that za is already known we represent function Fb(za, zb) as function of zb
in Fig. 3.8.

In Fig.3.9 we show the charge flows of the roots. Different lines corre-
spond to different energies. We see that the flows go to z0 and reach the
line z = z0 for Q = Qcr. In Fig.3.10 we draw the corresponding flow for
physical parameters.

3.4.3 Comparison of the results

It is interesting to compare the phase diagrams, the energy (temperature)
E vs the charge (chemical potential) Q, corresponding to the pointlike
charge and the spread charge. Results of these calculations are collected
in the table below and presented in Fig.3.11. We see that this two phase
diagrams are qualitatively the same.
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za

Qn = 40
√
π · 103

Qn = 5
√
π · 103

Qn = 10
√
π · 103

Qn = 20
√
π · 103

Fa

(a)
za

Qn = 0

Qn = 40
√
π · 10

Qn = 5
√
π · 103

Qn = 20
√
π ·Fa

(b)

Figure 3.7. (a) The plot of Fa(za, zb) as a function of za for fixed zb near the
root za = za(E) at E = 118.2 TeV. (b) Zooming in the region of small Fa and
small za.

E (TeV) 118.2 60 30 6 3
Qcr, point 25649.6 14577.2 8180.6 2138.7 1199.9
Qcr,wall 47500 27000 15170 3950 2220
E (TeV) 0.6 0.06 0.03 0.0003 0.00025
Qcr, point 313.3 45.6 25.4 0.43 0.37
Qcr,wall 570 80 40 0.15 0

From Fig. 3.11 it is evident that the two lines, the red and the blue
ones, have a cross point. We represent the cross point in natural and
logarithmic scales in Fig. 3.12.
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zb

Qn = 5
√
π · 103

Qn = 40
√
π · 103

Qn = 20
√
π · 103

Qn = 10
√
π · 103

Fb

(a)

ln(zb)
Fb

(b)

Figure 3.8. (a) The plot of Fb(za, zb) as a function of zb for fixed za near the
root zb(E) at E = 118.2 TeV. (b) Zooming in the region of small negative Fb
and presenting zb in the logarithmic scale.

3.4.4 The square trapped surface calculation

Following [18] we calculate entropy lower bound as “the area of the trapped
surface” per an unite square of the wall3 using the formula:

S =
2A
4G5

=

´ √
gdzd2x⊥
2G5

, (3.103)

s ≡ S´
d2x⊥

=
L3

4G5

(
1
z2
a

− 1
z2
b

)
. (3.104)

In the absence of transverse dependence one ignores x2
⊥ in (3.103).

(3.104) measures entropy per transverse area.
The trapped surface decreases with growth of a charge. The corre-

sponding graphical representations are in Fig. 3.13.
In Fig.3.14 we show the entropy per volume given by (3.104) as func-

tion of energy for different Q. This plot is similar to the plot presented
3We put “area” and “trapped surface” in quotation marks since in the strict notions

of the trapped surface it has to be smooth and compact. In our case it is not smooth
and it does not have finite area, one can only assume this properties after regularization
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Figure 3.9. The schematic picture of charge flows. The magenta solid line
shows the position of the wall. We see that the positions of points za(Q) and
zb(Q) move to the point z = z0 when we increase Q. For Q → Qcr(E) the
segment [za(Q), zb(Q)] shrinks to zero.

in Fig. 3.6. We see that the influence of the chemical potential on the
multiplicity is essential for small energies and is almost neglectful for large
energies.

3.4.5 Remarks about the regularization

The regularized version of the the function ψ is

ψreg = ψa(z)Γ1 + ψb(z)Γ2 (3.105)

where ψa(z) and ψb(z) define the function ψ without regularization,

ψ = ψa(z)Θ(z0 − z) + ψb(z)Θ(z − z0) (3.106)

ψa(z) = −
4GπE

(
z4

0
zb4 − 1

)
zb

4za
3
(
z3

za3 − za
z

)
L4 (zb4 − za4)

− 10
3

Q2Gπ z0 z
3 (−za2 + z2)

L5 (−z2 + z02) (−za2 + z02)

ψb(z) = −
4GπE

(
z04

za4 − 1
)
za

4zb
3
(
z3

zb3 − zb
z

)
L4 (zb4 − za4)

+
10
3

Q2Gπ z0
5 (−zb2 + z2)

L5z (−z2 + z02) (−zb2 + z02)
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za

(a)

zb

(b)

Figure 3.10. (a) The charge flows of the root za(Q) for E = 1.97 TeV, 3 TeV,
9 TeV, and 24 TeV. (b) The charge flows of the roots zb(Q) for E = 1.97 TeV,
3 TeV.

and

Γ1 =
arctan (R (z0 − z))3

π
+

1
2 (3.107)

Γ2 =
arctan (R (z − z0))

3

π
+

1
2 (3.108)

Now one has to put conditions (3.55) on the regularized functions

za
2L

d

dz
ψreg

∣∣∣∣
z=z̃a

= 1 (3.109)

However it is difficult to find z̃a from the condition (3.109). Instead of
finding z̃a from the condition (3.109) we propose to use such regularization
that does not change za found from the formal conditions (3.55). We can
check that the formal za in fact solves also the regularized condition if the
regularization is smooth enough. So, the take za and substitute it in the
LHS of the regularized condition (3.109). We define
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ln(E)

ln(Qn)

A. E, TeV

Qn, fm
1/2

B

Figure 3.11. A. The phase diagram the logarithm of Qn vs the logarithm of
E at large E. B. The phase diagram E vs Qn for small E and small Qn. The
blue lines correspond to the pointlike charge and the red lines to the spread
charge. The zones above the lines are forbidden for black holes production for
corresponding E and Q.

Fa,reg

∣∣∣∣∣∣
z=za

=
za
2L

(
dψa
dz

Γ1 +
dψb
dz

Γ2

) ∣∣∣∣∣∣
z=za

≈ 1,

Fb,reg

∣∣∣∣∣∣
z=zb

=
zb
2L

(
dψa
dz

Γ1 +
dψb
dz

Γ2

) ∣∣∣∣∣∣
z=zb

≈ −1.

We can calculate Fa,reg and Fb,reg. In the following table we present
calculations of Fa,reg and Fb,reg for the wide range of parameter of the
theory. Results of calculations at R = 104 are presented in the following
table:

E, TeV Q = Qn/
√
π, fm1/2 za, fm zb, fm, Fa Fb

118.2 40000 0.049 4.015 · 106 0.99997 −1.00000

3 15000 0.088 1.019 · 106 1.00000 −1.00000

0.03 40 0.786 1017.792 1.00000 −1.00000
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Figure 3.12. The cross point of two diagrams in logarithmic and natural scales.

Qn/
√
π

s

Qn/
√
π

s

Figure 3.13. The dynamics of the trapped surface area s(Qn/
√
π) at E =

6TeV , E = 118.2TeV .

Thus, from the table it is evident that Fa ≈ 1, Fb ≈ −1.

3.5 Conclusion

3.5.1 Summary

In this chapter we have constructed the phase diagram of the quark gluon
plasma (QGP) formed at a very early stage just after the heavy ion col-
lision. In this construction we have used a holographic dual model for
the heavy ion collision. In this dual model colliding ions are described
by the charged shock gravitational waves. Points on the phase diagram
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Qn = 5000
√
π

s, fm−2

E, TeV

Qn = 0

Qn = 2000
√
π

Figure 3.14. The red line corresponds to the case Qn = 0 fm1/2, the blue to
the case Qn = 2000

√
π fm1/2, the black to the case Qn = 5000

√
π fm1/2.

correspond to the QGP or hadronic matter with given temperatures and
chemical potentials. The phase of QGP in dual terms is related to the case
when the collision of shock waves leads to formation of trapped surface.
Hadronic matter and other confined states correspond to the absence of
trapped surface after collision.

Multiplicity of the ion collision process has been estimated in the dual
language as an area of the trapped surface. We have shown that a non-zero
chemical potential reduces the multiplicity. To plot the phase diagram we
use two different dual models of colliding ions. The first model uses the
point shock waves and the second the wall shock waves. We have found
qualitative agrement of the results.

A special attention has been devoted to a regularization procedure for
calculations performed for wall shock waves. On the one hand technically
these calculations are essential simpler, but on the other hand, this ap-
proach, strictly speaking, is incorrect and requires a regularization. We
have shown that a natural regularization does exist. Moreover, the pro-
posed regularization does not make calculations to be more complicated
as compare with naive (direct) calculations. This open new possibility for
simple calculations for wall shock waves bearing nontrivial matter charges.
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3.5.2 Further directions

Head-on collisions of point charged shock waves have only two parameters.
In the dual language they correspond to energy and chemical potential per
nucleus. Off-center collisions are also specified by the impact parameter
and the change of this parameter can be associated with a dual change
from “non-thermal” peripheral to “thermal” central collisions [18]. How-
ever, this is still an oversimplification of the problem. The physics of
heavy-ion collision in RHIC is richer and as indicated in [18, 60], rapid
equilibration and hydrodynamical behavior experimentally observed at
RHIC for collisions of two heavy ions such as AuAu, does not have the
place for deuteron-Au collisions at the same rapidity. Maybe it is too
naive to believe that the simplest shock wave related by a boost to the
Schwarzschild black hole in AdS can mimic the nuclear matter in the col-
liders. However this simple shock wave in fact reproduces the interaction
of a relativistic quark with gravity and by this reason, may be considered
as a simplest candidate to mimic the nuclear matter within the holographic
conjecture. One can try to associate different nuclei with different forms
of shock waves. Let us remind in this context that the form of the shock
wave follows from the eikonal approximation of the gravity-quark interac-
tion in 5-dimension [61, 26]. The presence of the electromagnetic field or
other fields as well as any improvements of the eikonal approximation for
sure changes the form of the shock waves and it would be interesting to
see holographical consequences of this consideration.

The obtained lower bound on Ncharged scales as s1/3
NN , which is a faster

energy dependence than the s1/4
NN scaling predicted by the Landau model

[37] and largely obeyed by the data. If one has a priory a restriction on
allowed energy then one can fit constants to guaranty that the experi-
mental data are above the AdS bound. Note that taking into account
the chemical potential permits to increase the allowed energy. However
one cannot expect to much from the chemical potential corrections. The
relevant chemical potential for baryon number is not expected to be large,
i.e. µB ∼ 30MeV or µB/T ∼ 0.15 for recent experiments at RHIC [62]
and so any effects will be limited. However, as has been mentioned in the
text, the relation between the value of chemical potential and the value
of the 5-dimentional charge is in our disposal and we can assume a huge
ratio of them.

It would be also interesting to try to use plane gravitational waves in
AdS5 to describe nonperturbative stages in the gauge theories and colli-
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sions of these waves to describe the QGP formed in the heavy ions colli-
sions. In the plane case, the Chandrasekhar-Ferrari-Xanthopoulos duality
between colliding plane gravitational waves and the Kerr black hole so-
lution, has been used as a model of the BH formation [63]. It would be
interesting to generalize this duality to the AdS case. This may get a new
insight to a possible dependence of multiplicities on the rapidity.

120



Bibliography

[1] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J.
Theor. Phys. 38, 1113 (1999)]; arXiv:hep-th/9711200.

[2] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett. B 428,
105 (1998) ; arXiv:hep-th/9802109.

[3] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998); arXiv:hep-
th/9802150.

[4] G. Policastro, D. T. Son and A. O. Starinets, “The Shear viscosity
of strongly coupled N=4 supersymmetric Yang-Mills plasma,” Phys.
Rev. Lett. 87, 081601 (2001); hep-th/0104066.

[5] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A.
Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Colli-
sions, arXiv:1101.0618.

[6] A. Bernamonti and R. Peschanski, Time-dependent AdS/CFT corre-
spondence and the Quark-Gluon Plasma, arXiv:1102.0725.
R. A. Janik The dynamics of quark-gluon plasma and AdS/CFT, Lec-
tures at the 5th Aegean summer school, “From gravity to thermal
gauge theories: the AdS/CFT correspondence”, Adamas, Milos Is-
land, Greece, September 21-26, 2009; arXiv:1003.3291

[7] E. Shuryak, Prog. Part. Nucl. Phys. 53, 273 (2004); arXiv:hep-
ph/0312227.

[8] E. V. Shuryak, Nucl. Phys. A 750, 64 (2005); arXiv:hep-ph/0405066.

[9] U. W. Heinz, AIP Conf. Proc. 739, 163 (2004); arXiv:nucl-
th/0407067.

[10] R. A. Janik and R. B. Peschanski, Phys. Rev. D 74, 046007 (2006);
arXiv:hep-th/0606149.
R. A. Janik and R. Peschanski, Phys. Rev. D 73, 045013 (2006);
arXiv:hep-th/0512162.

121



[11] S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions
of gravitational shock waves and of heavy ions, Phys.Rev., D 78 (2008)
066014; arXiv: 0805.1551.

[12] H. Nastase, “On high energy scattering inside gravitational back-
grounds,” hep-th/0410124.

[13] H. Nastase, “The RHIC fireball as a dual black hole,” hep-
th/0501068.

[14] E. Shuryak, S.-J. Sin, and I. Zahed, “A gravity dual of RHIC colli-
sions,” J. Korean Phys. Soc. 50 (2007) 384–397; hep-th/0511199.

[15] A. J. Amsel, D. Marolf, and A. Virmani, “Collisions with Black Holes
and Deconfined Plasmas,” JHEP 04 (2008) 025; arXiv:0712.2221.

[16] D. Grumiller and P. Romatschke, “On the collision of two shock waves
in AdS5,” arXiv:0803.3226.

[17] S.S. Gubser, S.S. Pufu and A. Yarom, Off-center collisions in AdS5
with applications to multiplicity estimates in heavy-ion collisions
JHEP 11 (2009)050; arXiv:0902.4062.

[18] S. Lin, E. Shuryak, Grazing Collisions of Gravitational Shock Waves
and Entropy Production in Heavy Ion Collision; arXiv:0902.1508.

[19] A. Duenas-Vidal and M. A. Vazquez-Mozo, “Colliding AdS gravi-
tational shock waves in various dimensions and holography,” JHEP
1007, 021 (2010); arXiv:hep-th/1004.2609.

[20] L. Alvarez-Gaume, C. Gomez, A. S. Vera, Al. Tavanfar, M.
A. Vazquez-Mozo, Critical formation of trapped surfaces in the
collision of gravitational shock waves, JHEP 0902, 009 (2009);
arXiv:0811.3969.

[21] S. S. Gubser, A. Nellore, “Mimicking the QCD equation of state with
a dual black hole,” Phys. Rev. D78 (2008) 086007; arXiv:0804.0434.

[22] I. Y. Aref’eva, A. A. Bagrov and L. V. Joukovskaya, “Criti-
cal Trapped Surfaces Formation in the Collision of Ultrarelativis-
tic Charges in (A)dS,” JHEP 1003 , 002, (2010); arXiv:hep-
th/0909.1294.

122



[23] H.Yoshino and R. B. Mann, Black hole formation in the head-on
collision of ultrarelativistic charges, arXiv:0605131.

[24] U. Gursoy and E. Kiritsis, “Exploring improved holographic theories
for QCD: Part I,” JHEP 0802 (2008) 032; arXiv: 0707.1324.
U. Gursoy, E. Kiritsis and F. Nitti, “Exploring improved holo-
graphic theories for QCD: Part II,” JHEP 0802 (2008) 019; arXiv:
0707.1349.

[25] E. Kiritsis, A. Taliotis, “Multiplicities from black-hole formation in
heavy-ion collisions”, arxiv:1111.1931.

[26] I.Ya. Aref’eva, Catalysis of Black Holes/Wormholes Formation in
High Energy Collisions, Physics of Particles and Nuclei, 41 (2010),
835, arXiv: 0912.5481.

[27] D. Mateos, S. Matsuura, R. C. Myers, and R. M. Thomson, “Holo-
graphic phase transitions at finite chemical potential”, JHEP 11
(2007) 085,; arXiv:0709.1225

[28] S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thom-
son, “Holographic phase transitions at finite baryon density,” JHEP
0702, 016 (2007); arXiv:hep-th/0611099.

[29] Koji Hashimoto, Norihiro Iizuka, and Takashi Oka, Rapid
Thermalization by Baryon Injection in Gauge/Gravity Duality;
arXiv:1012.4463

[30] R. C. Myers, M. F. Paulos, A. Sinha, “Holographic Hydrodynam-
ics with a Chemical Potential,” JHEP 0906, 006 (2009); arXiv:
0903.1596

[31] S. Hands, T. J. Hollowood, and J. C. Myers, QCD with Chemical
Potential in a Small Hyperspherical Box, JHEP 1007, 086 (2010);
arXiv:1003.5813.

[32] N. Horigome and Y. Tanii, Holographic chiral phase transition with
chemical potential, JHEP 01 (2007) 072,; hep-th/0608198.

[33] A. Parnachev, Holographic QCD with Isospin Chemical Potential,
JHEP 02, 062 (2008); arXiv:0708.3170.

123



[34] J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, “Fluid dynam-
ics of R-charged black holes,” JHEP 0901, 055 (2009); arXiv:hep-
th/0809.2488.

[35] S. W. Hawking and D. N. Page, Thermodynamics of Black Holes in
anti-De Sitter Space, Commun. Math. Phys. 87 (1983) 577.

[36] S. S. Gubser, I. R. Klebanov, and A. W. Peet, “Entropy and Tem-
perature of Black 3-Branes,” Phys. Rev. D54 (1996) 3915–3919; hep-
th/9602135.

[37] L. D. Landau, “On the multiparticle production in high-energy colli-
sions,” Izv. Akad. Nauk Ser. Fiz. 17, 51 (1953) (in Russian). [English
translation: Collected Papers of L. D. Landau, edited by D. ter Haar
(Gordon and Breach, New-York, 1968)].

[38] J. D. Bjorken, “Highly Relativistic Nucleus-Nucleus Collisions: The
Central Rapidity Region,” Phys. Rev. D 27, 140 (1983).

[39] C. Fefferman and C.R. Graham, “Conformal Invariants,” in Elie Car-
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