
The holographic glass bead game : from superconductivity to time
machines
Bagrov, A.

Citation
Bagrov, A. (2015, September 23). The holographic glass bead game : from superconductivity
to time machines. Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/35436
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/35436
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/35436


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/35436 holds various files of this Leiden University 
dissertation 
 
Author: Bagrov, Andrey 

Title: The holographic glass bead game : from superconductivity to time machines 
Issue Date: 2015-09-23 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/35436


Chapter 2

Pairing induced
superconductivity in
holography

2.1 Introduction

The puzzles posed by strongly correlated electron systems have been con-
siderably illuminated in recent years by the application of gauge-gravity
duality. This “holography”, which translates the challenging strongly cou-
pled dynamics to an equivalent weakly coupled gravitational theory in one
dimension higher, has given qualitative new insights into quantum critical
transport [1, 2], superconductivity beyond the weak coupling Bardeen-
Cooper-Schrieffer (BCS) paradigm [3–5], and non-Fermi liquids [6, 7].

A simple way to pose the challenge of strongly coupled systems is that
the familiar weakly coupled particles no longer exist as controlled exci-
tations in this regime of the theory. Our microscopic understanding of
the observed macroscopics in condensed matter usually rests on the no-
tion of an electron(ic quasi)-particle — a charged spin 1/2 fermion — as
the fundamental degree of freedom. The theory of Fermi-liquids and the
BCS description of superconductivity are good examples of such weakly
coupled systems. Even in strongly correlated phases, parts of this elec-
tron quasi-particle picture survive. The transition from such a strongly
correlated phase to a superconducting phase is still thought to arise from
fundamental electron pairing at the microscopic level. After all, these
are the only relevant charge carriers in the system. The open puzzle in
strongly correlated electron systems such as high Tc superconductors is
the nature of the “glue”: the interaction that allows pairs to form.

In this chapter we take this suggestion that simple pairing mecha-
nisms should survive in strongly coupled systems to heart. While staying
ignorant on the glue, it is a very natural step to incorporate the BCS
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theory in the holographic framework. A straightforward reason to do so
is to use this very well understood standard theory of superconductivity
as a benchmark and inroad into a deeper understanding of holographic
fermions. Although AdS/CFT models of superconductivity that have
been constructed up to now are quite successful in capturing the main
universal properties of real superconductors, they describe physics on the
Landau-Ginzburg level of a scalar order parameter. In doing so it mani-
festly cannot reveal details of the underlying microscopic mechanisms that
drive the superconducting instability, but it also ignores the Cooper pair
origin of the order parameter. Our specific question here is whether holo-
graphic BCS can fill in the latter gap while being agnostic on the former,
and serve as a good foothold for further research on this topic.

The most straightforward implementation of Cooper pairing in holog-
raphy is to incorporate an attractive four-fermi interaction in the grav-
itational dual theory. In essence one now has a weakly coupled BCS
interaction in the dual description of the strongly coupled theory. Pairing
instabilities in this set-up were studied in [8], and the formation of a gap in
the fermion spectral functions in a fixed Landau-Ginzburg holographic su-
perconductor background, charactertistic of the broken groundstate, was
shown in [9]; see also [11].

Both these studies consider the fermions as probes. Since then our un-
derstanding of holographic fermions has increased and we now understand
that some of the peculiar holographic effects, in particular the non-Fermi-
liquid behavior, arise from a coupling to an interacting critical IR [12]. We
shall use that improved understanding to go beyond the probe limit and
study the full condensation of any paired state, its subsequent ground-
state and the self-consistent gap in the fluctuations around it. One way
to fully treat the fermion physics is to approximate the fermions in the
gravitational dual in a macroscopic fluid limit [13, 14]. In this electron
star approximation it is possible to understand the full macroscopic fea-
tures of the system as it includes gravitational backreaction. A companion
article takes this approach [15]. The drawback of the fluid limit is that it
essentially describes a system with infinitely many Fermi surfaces — one
for each mode in the extra radial AdS direction. This is very unusual from
a condensed matter point of view.

Here we pursue an approach that allows us to concentrate on the dy-
namics of a single Fermi surface. This requires us to consider the fermions
quantum-mechanically. In the straightforward holographic set-up this

46



“quantum electron star” is fraught with subtle issues due to zero-point
energy renormalization and its effect on the gravitational background
[16, 17]. From the perspective of the field theory side this difficulty is
the interaction with the large number of surviving IR degrees in addition
to the Fermi-surface quasiparticle. As our first goal is to simply recover
the physics of regular BCS in the dual description, the straightforward so-
lution is to lift these extra IR degrees of freedom, and start with a regular
confined Fermi-liquid. This can be done by the addition of a hard-wall
[12, 16]. This also discretizes the infinite number of Fermi surfaces dual
to each radial mode that the AdS theory describes. We then tune the
chemical potential such that only a single Fermi surface is occupied. This
has the added virtue that the gravitational backreaction will be small,
and we are allowed to neglect it. In this straightforward set-up the bulk
AdS computation reduces to a standard Hartree BCS calculation but with
relativistic fermions in an “effective box” that is spatially curved. This
has several technical consequences: working in d = 3+ 1 bulk dimensions,
there is an effective spin-splitting in that the up and down spin fermions
have different Fermi-momenta [18, 19]. Furthermore the non-trivial wave-
functions of the fermions enter into the gap equation. Accounting for this,
we shall show that in this hard wall model conventional BCS maps cleanly
between the dual gravitational theory and the strongly interacting field
theory on the boundary.

To connect this closer to previous study [9] including the standard
Landau-Ginzburg holographic superconductor, we next allow the gap-
operator to become dynamical: i.e. we introduce a kinetic term for the
scalar field in the gravitational bulk. The interpretation of this in the
dual field theory is that we have explicitly added an additional charged
scalar operator in the theory, that can independently condense. The char-
acteristic quantum number of this new scalar operator in the strongly
coupled critical theory is its scaling dimension. Following the well-known
AdS/CFT dictionary, this translates into the mass of dual scalar field in
the gravitational bulk. For very high mass/dimension the field/operator
decouples and we have the conventional BCS scenario constructed earlier.
For low masses, the field/operator starts to mix with the Cooper pair op-
erator, and we observe a BCS/BEC crossover. Here we find a novel result.
When the operator dimension is strictly degenerate with the that of the
Cooper pair, the expectation values of each diverge. Nevertheless their
sum — equal to the order parameter — and the gap stay finite. In effect
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the extra scalar and the Cooper pair act as a π-Josephson pair in that the
relative phase of the condensates is opposite.1

However, when the operator dimension is degenerate with that of a
higher derivative cousin of the Cooper-pair — higher conformal partial
wave — there is another resonance where the naive expectation values
of each diverge. Arguably the gap should stay finite for any value of
the scaling dimension. A direct application of AdS/CFT rules does not
extract the gap cleanly and indicates that a clearer definition of the order
parameter vev is needed in the AdS/CFT dictionary. We will address this
in future work. Here we conclude by shownig that one can easily construct
an expression that has the right order parameter property in that it stays
finite. This postulated gap shows a clean BCS/BEC crossover.

2.2 Review of fermion spectra in the AdS dual:
spin splitting

To start we shall recall a lesser known point of spectra of holographic
fermions: the spectra depend on the spin [18, 19]. The spectra follow
from the simplest AdS model of fermions, Einstein Dirac-Maxwell theory
— we shall add the BCS interaction in later. The action is

S =
1

2κ2

ˆ
d4x
√
−g

(
R+

6
L2 −

1
4FµνF

µν + ΨΓµDµΨ−mΨΨΨ
)

, (2.1)

Here the covariant derivative equals Dµ = ∂µ+
1
4ω

ab
µ Γab− iqAµ, and Ψ =

iΨ†Γ0. For the background we choose a pure AdS4 spacetime with AdS
radius L equal to one, and cut-off by a hard wall at a finite value of the
holographic direction z = zw.

ds2 =
1
z2

(
−dt2 + dz2 + dx2 + dy2

)
, z ∈ [0, zw], (2.2)

We shall consider a large charge q � κ where it is consistent to ignore
gravitational backreation. The cut off at zw plays a double role. Together
with the AdS potential well, it renders the interval along the holographic
coordinate 0 < z < zw effectively finite. This leads to quantization of
fermionic energy bands ωn(k) (where n is the discrete band number).

1Recall that the absolute phase of a condensate is unobservable.
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Therefore, on the one hand, we have well-defined sharp long living quasi-
particles, and on the other hand the removal of the geometry beyond zw
corresponds to a gapping out of normally present low energy deconfined
degrees of freedom. This fundamental gap is also present in the fermion
spectra itself. See Fig. 2.1(a). In this set-up we can arrive at the dual de-
scription of a single Fermi liquid by tuning the chemical potential such that
exactly one band is partially occupied [12]. The charge density produced
by the occupied fermions backreacts on the gauge field and its profile and
the subsequent adjustment in the fermion spectra can be determined in
a self-consistent Hartree manner [12]. Changing zw changes the size of
the gap and the level spacing (larger values of zw correspond to smaller
gap), but does not affect the qualitative picture. Only for strictly infinite
zw do we enter a new critical regime which requires a completely differ-
ent analysis [16, 17]. We will keep zw finite throughout and therefore set
zw = 1 for most of the remainder without loss of generality. Since all our
computations will only depend on the combination qA0, we also set q = 1
in every numerical calculation from hereon.

As we shall review now, due to the spin carried by the relativistic
fermions there are actually two Fermi liquids. Moreover, the (background
or self-generated) electric field provides a spin-orbit coupling that renders
them slightly non-degenerate in the curved background geometry. In ad-
dition the lowest energy state is at a non-zero momentum value; this is
known as the plasmino mode [18, 19]. This non-degeneracy of the different
spin Fermi surfaces will be important in that it leads to a more complex
pairing of the fermions.

The spectrum of the fermions is given by normalizable solutions to the
Dirac equation. Eliminating the spin connection by rescaling

Ψ = (−ggzz)−1/4 ψ = z3/2ψ, (2.3)

Fourier transforming along the boundary directions, and making the as-
sumption that the only non-vanishing component of the vector potential
is A0, the Dirac equation reduces to the eigenvalue problem(

iΓ0Γz∂z + kiΓiΓ0 − qA0 − i
mΨ

z
Γ0
)
ψ = ωψ, (2.4)

Hereinafter we use tangent-space gamma-matrices, and i = 1, 2 refers to
the boundary spatial indices.
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Due to the impenetrability of the hard wall we choose the canonical
momenta to vanish at z = zw:

1
2 (1 + Γz)ψ(zw) = 0 , A′0(zw) = 0. (2.5)

At the boundary z = 0 we demand that the fermion and scalar fields are
normalizable (i.e. vanish sufficiently fast), and the boundary value of the
gauge field sets the chemical potential in dual field theory: A0(0) = µ.

The fermion spectra are determined together with the gauge field pro-
file self-consistently by (numerical) iteration [12]: solve the Dirac equation
for a given gauge field profile (for the initial profile A0(z) = µ). Then solve
Maxwell equations∇µFµν = −iq〈ΨΓνΨ〉 with the source determined from
the normalizable wave-functions. This gives a new gauge field profile for
A0, etc. the result converges to a self-consistent solution after a few iter-
ations (Fig. 2.2).

The interesting feature of the spectrum is that each band has a fine
structure. To understand the origin of this splitting we examine profiles of
the two spinor modes corresponding to the first band. Fermion spectra are
frequently analyzed using rotational invariance to rotate the momentum
ki parallel to the x-axis and choosing an appropriate basis of the gamma
matrices one can simplify the problem [6]. It will, however, be useful for
us to keep the rotational symmetry manifest. Our objective is to separate
the radial evolution of the fermion from its spinorial structure as much as
possible. We can solve the Dirac equation (2.4) with the ansatz

ψ±(z) = A±
(
z, |~k|

)
u±
(
k̂i
)
+B±

(
z, |~k|

)
Γ0u±

(
k̂i
)

, (2.6)

where A±
(
z, |~k|

)
and B±

(
z, |~k|

)
are functions of the radial coordinate

and u±
(
k̂i
)

are spinors (with unit norm) independent of z. The latter
are defined by the following properties

Γzu±
(
k̂i
)
= u±

(
k̂i
)

, k̂iΓiΓ0u±
(
k̂i
)
= ±u±

(
k̂i
)

, (2.7)

where k̂i is a unit (boundary) vector pointing to the direction of the mo-
mentum ki. In the basis (2.15) (which we will use later in this chapter)
and with a momentum parallel to the x-axis u+ (u−) is the spinor with
only fourth (first) nontrivial component.
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The Dirac equation implies that

(
±|~k| − qA0(z) imΨ

z + i∂z
−imΨ

z + i∂z ∓|~k| − qA0(z)

) A±
(
z, |~k|

)
B±

(
z, |~k|

)  = ω

 A±
(
z, |~k|

)
B±

(
z, |~k|

)  .

(2.8)
Provided the electrostatic potential is regular near the AdS boundary at
z = 0, the asymptotic behavior of the solution is

 A±
(
z, |~k|

)
B±

(
z, |~k|

)  = a

(
0
1

)
z−mΨ + b

(
1
0

)
zmΨ . (2.9)

Normalizable solutions are those with a = 0. Note that the scaling dimen-
sion of the original fermion is ∆Ψ = mΨ + 3

2 and we obtained the powers
of z above as a result of the rescaling (2.3). In the IR, the boundary
condition (2.5) implies that A±

(
zw, |~k|

)
= 0.

In the absence of an electric field (i.e. A0(z) is constant), the positive
and negative modes have the same energy. In this case we can actually
solve our problem exactly in terms of Bessel functions [12]

 A±,n
(
z, |~k|

)
B±,n

(
z, |~k|

)  = N±
√
z

 JmΨ− 1
2

(
jn
zw
z
)

i
±|~k|−

√
(jn/zw)2+~k2

jn/zw JmΨ+
1
2

(
jn
zw
z
)
 ,

(2.10)
with the dispersion relation ωn =

√
(jn/zw)

2 + ~k2 − qµ. Here jn is the
n-th zero of the Bessel function JmΨ−1/2, and N± is the normalization
constant.

However, in the presence of an electric field in the bulk (A′0(z) 6= 0)
the positive and negative modes no longer have the same energy anymore.
The reason is that the densities of the two modes (2.10) have different
radial profiles. The “effective chemical potential” A0(z) felt by each mode
is therefore different, if the gauge field has a non-trivial z dependence, and
this results in a different energy shift for the two modes (Fig. 2.1(b)).
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Figure 2.1. (a): Fermionic spectrum in the AdS-hardwall background at zero
chemical potential zw = 1 and mΨ = 1(b): Spectrum of fermions with unit mass
(and zw = 1) in the presence of externally applied electric field qA0(z) = 4.5− 2z
(without backreaction). We can observe that degeneracy of the two spin states is
resolved, and state of a minimal energy is at non-zero momentum. The red and
blue curves correspond to positive u+(k) and negative u−(k) modes respectively.
(When the electric field is self-generated by the fermions the effect is smaller, see
Fig. 2.2(a))
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Figure 2.2. (a): Fermionic spectrum in the self-consistent solution of the
fermion+gauge field system at qµ = 4.5, zw = 1 and mΨ = 1. The red and
blue curves represent the modes with positive and negative eigenvalues of k̂iΓiΓ0

respectively. (b): The profile of the gauge field sourced by the fermions.
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2.3 Self interacting fermions in AdS and a bulk
BCS theory

2.3.1 Majorana interaction

To study pairing driven superconductivity we now add a quartic contact
fermionic interaction in the bulk of AdS:

Lcontact =
η2

5
m2
φ

z6
(
ψCΓ5ψ

)† (
ψΓ5ψC

)
, ψ = iψ†Γ0, ψC = CΓ0ψ∗

(2.11)
ψC here is a charge conjugated spinor, and the z6 factor is due to the
rescaling (2.3). One can also consider the naive relativistic generalization
of the Cooper pair ψCψ. However to boil down to standard BCS in non-
relativistic limit, where the coupling occurs in s-wave channel between
states time-reversed to each other, the unique Lorentz invariant term is
actually the Majorana coupling ψCΓ5ψ (see e.g. [20] for details). We
therefore focus only on this term.

As was shown in [18] the direction of the spin of each of the slightly
offset modes is perpendicular to the momenta and the two modes have
opposite spin. The zero-momentum pairing therefore occurs between op-
posite spin, without any mixing of the two fermion modes, see Fig. (2.3).

To analyze the interacting theory, we perform the standard Hubbard-
Stratonovich transformation with the introduction of an auxiliary the
scalar field φ(z) with charge qφ = 2q dual to the superconducting conden-
sate. The scalar part of the action thus takes the form

S =

ˆ
d4x

(
iη∗5φ

∗z3ψCΓ5ψ+ h.c.−m2
φφφ

∗
)

(2.12)

This is the theory studied in [9, 8] with the kinetic term for the scalar
turned off. We shall reintroduce this kinetic term in section 2.4.3.

2.3.2 Nambu-Gorkov formalism

The resulting system differs from standard BCS in that, as before, we
are including the backreaction of the finite density fermions on the gauge
field. Assuming translational invariance in the boundary directions, and
restrict the scalar and the gauge field to depend only on z-coordinate, the
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Figure 2.3. The two Fermi surfaces and the BCS pairing for the same param-
eters as in Fig. 2.2. The arrows indicates the direction of the spin of the modes.
The pairing happens between opposite spins.

holographic BCS system is formed by

−m2
φφ(z) = −iη∗5z3〈ψcΓ5ψ〉,

z2A′′0 − 2q2
φA0φ

2 = qz2〈ψ+ψ〉. (2.13)

The fermionic expectation values are assumed to only depend on z as
well; they are averaged over all other directions. To compute them, it
is convenient to rewrite the action in a quadratic form in terms of the
Nambu-Gorkov spinors. We choose the following basis of gamma-matrices

Γ0 =

(
iσ2 0
0 iσ2

)
, Γ1 =

(
σ1 0
0 σ1

)
, Γ2 =

(
0 σ3
σ3 0

)
, (2.14)

Γ3 =

(
σ3 0
0 −σ3

)
, Γ5 =

(
0 −iσ3
iσ3 0

)
.
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and rewrite the fermionic part of the action as

SD + SM =

ˆ
d4x
√
gzz

[
ψΓµ(∂µ − iqAµ)ψ−mΨψψ− (2.15)

−iη∗5φ∗ψcΓ5ψ+ h.c.
]
=

ˆ
d4xχKχ,

where the Nambu-Gorkov spinor χ equals

χ =


ψ1
ψ2
ψ∗3
ψ∗4

 . (2.16)

Taking the pure AdS metric (2.2) explicitly, and using rotational invari-
ance of the problem to set ky = 0, the kinetic matrix K equals

K =

(
D11 2η5

φ
z σ3

−2η∗5
φ∗

z σ3 D22

)
, (2.17)

with
D11 = iσ2(∂0 − igA0) + σ1∂x + σ3∂z −

mΨ

z
, (2.18)

D22 = iσ2(∂0 + igA0) + σ1∂x − σ3∂z −
mΨ

z
. (2.19)

The fermionic expectation values can be written in terms of the Nambu-
Gorkov Green’s function, which satisfies the equation

iΓ0KGχiχ+
j
(t, ~x; t′, ~x′) ≡ (i∂0 −H)Gχiχ+

j
(t, ~x; t′, ~x′)

= iδ(t− t′)δ (~x⊥ − ~x′⊥) δ(z − z′). (2.20)

Note the additional factor of iΓ0 in our definition.
We determine the Green’s function by spectral decomposition. For

this we solve the Dirac eigenvalue problem in presence of both the (back-
reacted) scalar and gauge field

H(i~k, z)χ~k,n(z) = ω~k,nχ~k,n(z). (2.21)

Note, that the Nambu-Gorkov formalism flips the signs of some pieces of
the spectrum. Fig. 2.4(a) shows how the two low-lying energy bands in
Fig. 2.2(a) look like in the Nambu-Gorkov formalism.
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Figure 2.4. (a): The lower two bands from Fig. 2.2 in the Nambu-Gorkov
convention (with parameters qµ = 4.5, zw = 1, mΨ = 1). (b): Energy spectrum
for constant gauge field qA0 = qµ = 4.5 and linear fixed scalar profile φ(z) = z
at η5 = 0.25 (zw = 1, mΨ = 1). The spectrum is gapped at the Fermi surface.

It is convenient to write (2.21) in terms of (α1,α2,α3,α4) = (χ1, iχ2,χ3, iχ4).
In this way the redefined “Hamiltonian” H is real (but we will still denote
it with H).

We will construct the spectrum numerically, but it is instructive to
first consider a toy example. We wish to show that the fermion spectrum
becomes gapped in the presence of a condensate for φ. Consider the special
case when the gauge field is constant A0 = µ, and the scalar field profile
is linear φ(z) = z. Then it is possible to solve the Dirac equation exactly,
and the dispersion relation (corresponding to the first band) takes the
form (Fig. 2.4(b)):

ω2 =

(
qµ−

√
(j1/zw)

2 + k2
)2

+ (2η5)
2, (2.22)

where j1 is the first zero of the Bessel-function JmΨ−1/2. We visibly see
the eigenvalue repulsion responsible for the opening of a gap.

2.3.3 Perturbative calculation of the scalar source

In the Nambu-Gorkov formalism it is straightforward to compute the form
of fermionic bilinears sourcing the electric and scalar fields (see Appendix
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A for details).

〈ψ+ψ〉 = 1
2π
∑
n

ˆ
dk|k|

(
α2
k,n,1 + α2

k,n,2

)
Θ (−ωk,n) (2.23)

〈ψ̄CΓ5ψ〉 = i

2π
∑
n

ˆ Λ(ωD)

−Λ(ωD)
dk|k| [Θ (ωk,n) (αk,n,1αk,n,4 − αk,n,2αk,n,3)]

(2.24)
where the sum is over the various bands (i.e. radial modes). The sum
in the Cooper pair condensate needs to be cut-off at a momentum scale
Λ in order to be well-defined. This momentum cut-off corresponds to an
energy cut-off ωD.2 From now on we will be using real coupling constant
η∗5 = η5.

A direct discretization of the momentum integral in (2.24) is not the
most reliable way to numerically computing the fermionic source for the
scalar field because contributions from different momenta are sharply
peaked around the Fermi surfaces. For higher numerical accuracy and
analytical control we solve (2.21) perturbatively in the scalar field. For
this we split the Hamiltonian into an unperturbed piece and an interac-
tion piece H = H0 + V , H0 = H|η5=0. The typical spectrum for the
unperturbed operator looks like the one in Fig. 2.4(a). With our choice of
Gamma-matrices, the eigenspinor with the unperturbed energy ω

(0)
k and

momentum parallel to the x-axis takes the form (we omit the band index)

α
(0)
k,+ =

(
ξk
0

)
(2.25)

where ξk is a two component spinor. There is also a mode

α
(0)
k,− =

(
0

iσ2ξk

)
(2.26)

with −ω(0)
k , for which only the lower two components are non-zero. Using

nearly degenerate perturbation theory we find the matrix-element control-
ling the effect of the scalar field:

Vk = 2η5

ˆ zw

0
dz|ξk(z)|2

φ

z
. (2.27)

2We use the conventional BCS notation for this cut-off, although there is no explicit
connection to any Debye frequency here as the origin of the four-fermion interaction is
left in the dark.
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The new energy levels are

ω± = ±
√(

ω
(0)
k

)2
+ V 2

k , (2.28)

so the size of the gap is VkF . We show in the Appendix B that the scalar
source has the following form in terms of the unperturbed wave-functions
(considering only one fermion mode):

〈ψ̄CΓ5ψ〉 = − i

4π

ˆ Λ(ωD)

−Λ(ωD)
dk|k| Vk√(

ω
(0)
k

)2
+ V 2

k

|ξk(z)|2. (2.29)

2.3.4 Analytical study of the non-dynamical scalar: double
gap equation

Eq.(2.29) is very similar to the standard BCS gap equation. The key
difference is the way the spatial profiles ξk of the fermion wavefunctions
modify both the gap Vk and the spatially varying profile of the pairing vev
〈ψ̄CΓ5ψ〉. Since the AdS geometry together with the hard wall confine the
wavefunction, what we have essentially done is solve a relativistic BCS in
a non-trivial potential.

There is one additional subtlety, in that the Fermi surfaces correspond-
ing to the up-down spin are slightly split. Assuming, as is conventional,
that the cut-off frequency is small enough, we are allowed to approximate
Vk and ξk by their values at the Fermi surfaces. Doing so we can solve the
gap equation

φ(z) =
z3

4η5

γ1V1 log

ωD +
√
ω2
D + V 2

1

V1

 ρ1(z)+ (2.30)

+γ2V2 log

ωD +
√
ω2
D + V 2

2

V2

 ρ2(z)

 , (2.31)

where ρ1(z) = |ξkF ,1 |2, ρ2(z) = |ξkF ,2 |2 are the fermion wave functions
at the two distinct Fermi surfaces, and γ1,2 =

η2
5

m2
φ
π

|kF1,2|
|ω′(kF1,2)| . A brief

inspection reveals that the gap equation only depends on the dimensionless
combinations η5

mφ
and η5

ωD
.
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In Appendix 2.B.2 we show that the solution of the gap equation can be
found in a form of linear combination of the two fermionic wave functions
(up to an additional z3 factor)

φ = (C1ρ1(z) +C2ρ2(z)) z
3. (2.32)

For C1 � C2 (C2 � C1) the condensate profile is more similar to the wave-
function at the first (second) Fermi surface. We obtain the coefficients

C1 = (ax+ b)
ωD
η5

exp
(
−bx+ c

γ2

)
, (2.33)

C2 = (bx+ c)
ωD
η5

exp
(
−bx+ c

γ2

)
, (2.34)

where x is the ratio of the two gaps x = V1/V2, satisfying the following
equation

x2 +

(
I22
I12

γ2
γ1
− I11
I12

)
x− γ2

γ1
=
γ2
b
x log x. (2.35)

Here I11, I22, I12, a, b, c are functionals of the fermion profiles ρ1, ρ2,
defined in (2.79), and (2.81) in Appendix B2.

In Fig. 2.5(b) we show the perturbative solutions to the gap equation
for µ = 4.5, q = 1, mΨ = 1 and for two different couplings. (In principle
there are two solutions but one of these contains a node and is presum-
ably energitically unfavored). We can see a cross-over when we tune the
coupling η5/mφ (see also Fig. 2.6). For small (large) coupling the profile
of the condensate is dominated by ρ2 (ρ1). Note that the gap at the first
Fermi-surface (with fermion wave-function ρ1) is always smaller than the
gap at the second Fermi-surface.

The analysis above is all from the perspective of the bulk AdS physics.
All the data of the dual strongly coupled field theory is directly inferred
from it. The spectral condition for a normalizable mode is the same [12],
hence a gap in the bulk spectra equals a gap in the boundary fermion spec-
trum. The CFT order parameter is by construction the leading non-zero
component of the fermion bilinear vev 〈OU(1)〉 = limz→0 z

−2∆Ψ〈ΨCΓ5Ψ〉,
where ∆Ψ is the scaling dimension of the single trace fermionic operator
OΨ dual to the AdS Dirac field (each normalizable fermion wavefunction
behaves as z∆Ψ) [21, 22]. We thus neatly see how a bulk BCS coupling
holographically encodes standard BCS in the dual CFT.
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Figure 2.5. (a): wave function profiles of the fermions at the two Fermi surfaces
(ρ1, ρ2) (qµ = 4.5, zw = 1, mψ). (b) The profiles of the stable solutions of the gap
equation φ̃ = φ exp

(
bx+c
γ2

)
(rescaled by z3) for η5/ωD = 0.5, η5/mφ = 0.5 and

η5/mφ = 2.5. Depending on the coupling the profiles are similar to the fermion
wave-functions ρ1, ρ2. In the inset we plot the unstable solution for η5/mφ = 2.5
(for the other value of the coupling this mode is exponentially small).
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Figure 2.6. (a): The ratio of the gaps (V2/V1) as a function of the inverse
coupling mφ/η5 (for fixed η5/ωD = 0.5). The other parameters are as in Fig.
(2.5). For zero boson mass (or infinite coupling) the gaps have the same size but
for non-zero mass (smaller coupling) V2 is bigger and the ratio converges to the
value 2.56. (b): The ratio of the coefficients C2/C1 as a function of the inverse
coupling.
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2.4 Fermionic ordering in holography

To establish a closer connection to previous works [9, 10] on fermionic
aspects in holographically ordered ground states, we now introduce by
hand a kinetic term for the scalar field φ. From the bulk perspective this
would correspond to a situation where the coherence length (the inverse
binding energy) of the Cooper pair is smaller than the relevant cut-off.
From the dual boundary field theory perspective this corresponds to the
introduction of an explicit scalar operator of scaling dimension

∆φ =
3
2 +

1
2

√
9 + 4m2

φ. (2.36)

We reserve the symbol ∆ for the scaling dimensions of operators. It is not
to be confused with the value of the gap. Again assuming translational
invariance in the boundary directions, the bosonic equations now take the
form

z2φ′′ − 2zφ′ + z2q2
φA

2
0φ−m2

φφ = −iη5z
3〈ψcΓ5ψ〉, (2.37)

z2A′′0 − 2q2
φA0φ

2 = qz2〈ψ+ψ〉, (2.38)

where qφ = 2q. In addition one has the Dirac equation

K(φ,A0)χ = 0 (2.39)

through which one defines the bulk expectation values on the right hand
side. Here K(φ,A0) is the kinetic matrix in (2.17),

The distinction between the model with a dynamical and non-dynamical
scalar field is two-fold:

(1) Although physically the order parameter in the broken state cannot
distinguish between a fermionic Cooper pair origin and a condensed
scalar, in this holographic model they mathematically arise at differ-
ent orders in the 1/N expansion. Recall that the coupling constant
expansion in AdS/CFT maps to the 1/N matrix expansion of the
dual field theory, whereas each AdS field is dual to a single trace
composite operator. A Cooper pair is thus dual to double trace op-
erator in the dual field theory which are always 1/N suppressed.
This distinction is the same distinction between classical sponta-
neous symmetry breaking in a scalar field theory, and “quantum
pairing” in BCS.
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(2) Physically, strictly put the scalar is an additional degree of freedom
(it will show up in the free energy). If the coherence length of the
Cooper pair is smaller than the relevant cut-off, one should indeed
introduce this operator separately. In this “strong coupling” (equal
to small coherence length) limit, the dynamical scalar field can con-
dense by itself. In the formulation here this is controlled by its
mass. For high mass the field should decouple. This is dual to the
statement that in the dual field theory the corresponding operator
will have a very high scaling dimension and become extremely irrel-
evant. All the IR dynamics is then controlled by the fermions and
we recover the standard BCS of the previous section. For low mass,
however, the boson dynamics will start to compete with the fermion
pairing and rapidly take over the symmetry breaking dynamics in
the IR.

Tuning the scalar mass therefore controls a crossover between pure BCS
theory and a classic BEC spontaneous symmetry breaking. Qualitatively
one can thus consider the mass/scaling dimension of the scalar operator as
a proxy for the coherence length of the Cooper pair. When it is large, the
dynamics is pure BCS; as it becomes comparable to and smaller than the
relevant cut-off, one should introduce the paired operator independently.

Writing out the spin components explicitly the full system of equations
that we are attempting to solve is

z2φ′′ − 2zφ′ + 4q2z2A2
0φ−m2

φφ = (2.40)

=
η5z

3

2π
∑
n

ˆ Λ(ωD)

−Λ(ωD)
dk|k|Θ (ωk,n) (αk,n,1αk,n,4 − αk,n,2αk,n,3) ,

z2A′′0 − 8q2A0 =
qz2

2π
∑
n

ˆ
dk|k|

(
α2
k,n,1 + α2

k,n,2

)
Θ (−ωk,n) ,


∂z − mΨ

z −(ω− k)− qA0 2η5
φ
z 0

(ω+ k) + qA0 ∂z +
mΨ
z 0 2η5

φ
z

2η5
φ
z 0 ∂z +

mΨ
z (ω− k)− qA0

0 2η5
φ
z −(ω+ k) + qA0 ∂z − mΨ

z



α1
α2
α3
α4

 = 0

Here all fields depend only on the radial direction z. For completeness
we recall boundary conditions for each of the fields. At the impenetrable
hard wall all canonical momenta should vanish. For the bosons this means

φ′(zw) = 0 , A′0(zw) = 0 ; (2.41)
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for the fermions this can be achieved by the choice

α1(zw) = α4(zw) = 0 (2.42)

At the AdS boundary, all field should be normalizable: they should vanish
as a positive power of z. (For two of the fermion components this is
automatic, see eq. (2.9)).

We will approach the fully interacting scalar-fermion system in three
steps: we first set all fermions to vanish and construct the purely scalar
holographic superconductor. Next we include fermions, but hold the BCS
coupling η5 = 0; this exhibits bose-fermi competition in the system. Fi-
nally we will analyze fully interacting system at η5 6= 0. Details of the
numerical calculations are discussed in Appendix C.

2.4.1 Purely scalar holographic superconductor

First, as the scalar field in our system is a fully dynamical degree of
freedom, it should condense for small enough mass even in absence of
fermions [4, 23, 24]. This hardwall superconductor will be useful for later
comparison.

Since we consider a pure hardwall AdS4 spacetime without a black hole
horizon, we study a T = 0 groundstate as a function of the mass/conformal
dimension of the scalar field/dual scalar operator. Any phase transition is
therefore of quantum origin. Note that the hard gap due to the hardwall
directly implies that the physics is the same for any temperature T <
1/zw. Only when T > 1/zw will the the black hole horizon become
relevant to the geometry, see e.g. [25].

The numerics of the pure scalar system is particularly simple as there
is no need to solve the integro-differential equations iteratively. Varying
the scalar conformal dimension we indeed find a condensate value below
a critical value (Fig. 2.7). We see a sharp second order phase transition
as expected for spontaneous symmetry breaking. Scalar operators with
smaller conformal dimensions (dual to lighter bulk scalar fields) are more
likely to condense and yield an order parameter with higher density.

2.4.2 Bose-Fermi competition

The next step is to see what happens in a system where both scalar and
fermionic fields are present, but interact with each other only via the gauge
field A0, and not directly (the Majorana coupling η5 = 0 vanishes). For
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Figure 2.7. Condensate of a scalar order parameter in the boundary theory as
a function of scalar conformal dimension at µq = 4.5, zw = 1, qφ = 2.
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Figure 2.8. (a): Comparision of the superconducting phase transition in a
purely scalar system (blue curve) to the one in a system with fermions at η5 = 0
(red curve). At small conformal dimension there is no difference between the
phase curves at all, while for larger dimension we see effects of Bose-Fermi com-
petition. (b): Total fermionic bulk charge as a function of scalar conformal

dimension, nF =
zẃ

0
qz2〈ψ†ψ〉dz. Here µq = 4.5, zw = 1, qφ = 2, ωD = 0.7.

the same parameters as in Fig. 2.7 for a scaling dimension of the fermionic
operator ∆Ψ = mΨ + 3/2 = 5/2 we obtain a scalar condensate shown on
Fig.2.8.

Comparing, the two condensate values become identical with the pure
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hardwall superconductor without fermions for low enough ∆φ. For these
values the bulk scalar field is so light that it consumes all the energy in
the system. Ceteris paribus we would need a higher chemical potential to
make fermions occupy the first band and backreact on A0.

At larger values of ∆φ there is still a scalar condensate, but it is sup-
pressed compared to the pure hardwall superconductor (Fig.2.8(a)). This
can be easily understood in terms of canonical ensemble. For fixed total
electromagnetic charge of the system, adding new constituents (fermions)
would redistribute the available charge (Fig.2.8(b)) and the condensate
of the original degrees of freedom would be suppressed. This effect has
also been observed in a holographic set-up where the fermions are approx-
imated in the fluid [26, 27]

2.4.3 A dynamical BCS scalar and a BCS/BEC crossover

Now we analyze the most interesting case and include the full dynamics
for the scalar field φ. Let us give another reason why this is quite natural
from the field theory perspective. The evolution in the radial direction in
AdS captures the (leading matrix large N contribution to the) RG flow of
the corresponding operator in the field theory. The BCS gap, proportional
to the vev of the scalar field is certainly sensitive to the RG scale. Hence
one expects it to change dynamically as a function of the radial direction.
Strictly speaking the double trace pairing operator which sets the value
of the gap is a subleading operator in large N and any running that
deviates from its semiclassical scaling is therefore a quantum effect in the
AdS gravity theory. This is the situation we studied in section 2.3.4. At
the 1/N level, for small enough coherence length, the pair operator will
become dynamical and qualitatively it ought to be given by the dynamical
scalar we study here.

We will see a very interesting effect occurs in doing so. Because
the scalar is sourced by the Cooper pair condensate, this changes near-
boundary fall off of φ, and the standard holographic prescription for
boundary field theory condensates has to be modified. Without the pres-
ence of a Cooper pair condensate, the zero momentum scalar mode equa-
tion in AdS4 is a homogeneous (linear) differential equation

z2φ′′(z)− 2zφ′(z) + q2
φz

2A2
0(z)φ(z)−m2

φφ(z) = 0. (2.43)
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Near the AdS boundary its solutions have the following form

φ(z) = Az3−∆φ ·
(
1 + a1z + a2z

2 + ...
)
+Bz∆φ ·

(
1 + b1z + b2z

2 + ...
)

,

∆φ =
3
2 +

1
2

√
9 + 4m2

φ, (2.44)

and in the standard quantization scheme the coefficient A of the non-
normalizable solution corresponds to the source JOφ for the operator Oφ
dual to φ, and the coefficient B of the normalizable solution to the vev
〈Oφ〉. Spontaneous symmetry breaking due to a condensation of the op-
erator occurs for a solution in the absence of a source, i.e. with A = 0 as
a boundary condition.

For the interacting scalar-fermion system this simple one-to-one cor-
respondence between bulk asymptotics and boundary condensates needs
modification. We must now consider the inhomogeneous differential equa-
tion

z2φ′′(z)− 2zφ′(z) + q2
φz

2A2
0(z)φ(z)−m2

φφ(z) = −iη5z
3〈ψcΓ5ψ〉. (2.45)

The solutions to this equation now include the particular solution respond-
ing to the inhomogeneous source in addition to the homogeneous solutions
(2.44). For near boundary behavior of the source

lim
z→0

z3〈ψcΓ5ψ〉 ∼ z2∆Ψ (2.46)

the particular solution will behave in the same way (assuming 2∆Ψ 6= ∆φ):

φ(z) = φhom(z) + φpart(z)

φpart(z) = P1z
2∆Ψ +P2z

2∆Ψ+1 +P3z
2∆Ψ+2 + ... (2.47)

This particular solution will control the dominant normalizable near
boundary behavior for ∆φ > 2∆Ψ. This raises the question what we should
use as the vev for the corresponding operator. The canonical AdS/CFT
prescription

〈Oφ〉 = lim
z→0

z−d+1∂z
(
zd−∆φφ(z)

)
(2.48)

no longer gives a viable answer. Let us exhibit this in detail. As an aside,
note that the near-boundary behavior of the fermions does not change
provided the solution for φ(z) is normalizable.
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Figure 2.9. Profiles of the bulk scalar wavefunction φ(z) for ∆φ = 4.6765, ∆φ =
4.8541 (two blue curves), ∆φ = 4.9438, ∆φ = 5.0341 (two red curves, - proximity
of the critical point), ∆φ = 5.379, and ∆φ = 5.4925 (two orange curves). Crossing
the critical point ∆φ = 2∆Ψ = 5 does not lead to any singularities in the bulk
wavefunction. The other parameters here are η5 = 1, µq = 4.5, zw = 1, qφ =
2, ωD = 0.7.

Denoting the coefficient B of the normalizable homogeneous solution
with B = H1 we extract these coefficients from numerical solutions to
the scalar and fermionic equations. (see Fig.2.10, 2.11). Immediately
noticable are the singularities at ∆φ = 2∆Ψ and ∆φ = 2∆Ψ + 2. Strictly
speaking when ∆φ = 2∆Ψ + n the expansion (2.47) breaks down and the
solution has an extra logarithmic term

φ(z) = H1z
2∆Ψ+n + ... +P1z

2∆Ψ + ... +Pn+1z
2∆Ψ+n ln(z) + ... (2.49)

The singular divergence of coefficients is a precursor of this logarithm.
There is no singularity at 2∆Ψ + 1 because P2 happens to vanish in our
case.3

The indisputable presence of these singularities or resonances can be
readily seen by considering a simplified version of the scalar equation.

3This vanishing of P2 (due to the vanishing of S2) and the structure of the series
expansion is determined by the solutions of the Dirac equation. For zero electric field
each even coefficient would vanish in fact. Since the gauge field profile modifies the
higher order coefficients in the series expansion of the Dirac equation, it can be shown
that S4 6= 0.
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Figure 2.10. Dependence of the leading homogeneous coefficient in the scalar
solution expansion on the conformal dimension of the field. Here µq = 4.5, η5 =
1, zw = 1, qφ = 2, mΨ = 1 (so 2∆Ψ = 5),ωD = 0.7.
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Figure 2.11. Dependence of the two leading particular coefficients in the scalar
solution expansion on the conformal dimension of the field. Here µq = 4.5, η5 =
1, zw = 1, qφ = 2, mΨ = 1 (so 2∆Ψ = 5),ωD = 0.7.
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Computing the series solution to the equation

z2φ′′ − 2zφ′ −m2
φφ = S1z

2∆Ψ + S3z
2∆Ψ+2 (2.50)

one directly finds the “resonances”

P1 =
S1

2∆Ψ(2∆Ψ − 3)− ∆φ(∆φ − 3) ,

P3 =
S3

(2∆Ψ + 2)(2∆Ψ − 1)− ∆φ(∆φ − 3) . (2.51)

Note that they are Feschbach-like resonances in that the singularity is a
single rather than a double pole.

The question is how to extract the information of the strongly coupled
dual field theory from this asymptotic behavior of the AdS scalar wave-
function. Despite these singularities in the coefficients, by construction
the bulk scalar wavefunction is regular at all points (Fig.2.9). It is there-
fore physically natural to have regular observables in the boundary field
theory as well. There are two obvious points to make here.

(1) Physically the origin of the order parameter is indistinguishable.
One cannot tell whether the broken groundstate is caused by con-
densation of the Cooper pair or the scalar field.

(2) Mathematically, the regularity of the bulk solution directly implies
that the homogeneous component H1 must have a similar resonance
but with an opposite sign.

An obvious and physically motivated choice is to postulate that the actual
order parameter is the simply the sum of the naive condensates, with the
Cooper pair condensate S1 renormalized to P1: i.e.

〈Oφ〉 = H1 +P1. (2.52)

Taking this linear combination does in fact lead to a cancelation of “res-
onances” and a smooth function at ∆φ = 2∆Ψ (see Fig. 2.12). However,
the reflection of the next resonance ∆φ = 2∆Ψ + 2 in the homogenous
solution H1 remains. Likewise, a similar partial resolution occurs for the
linear combination H1 +P3.

These “resonances” in Pi and their cancellation by (part of) the homo-
geneous solution H1 will in fact occur at every order of the expansion from
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Figure 2.12. Linear combinations of the series expansion coefficients. Red
curve represents the boundary scalar operator condensate 〈Oφ〉 as a function of
its conformal dimension in presence of fermions at η5 = 0 (the same as the red
curve on Fig.2.8). The blue curve represent the linear combinationH1 +P1 on the
left plot, and H1 +P3 on the right one. Resonances in H1 and P1 precisely cancel
each other at ∆φ = 2∆Ψ, and so do resonances in H1 and P3 at ∆φ = 2∆Ψ + 2.
All parameters are as in Fig.2.10.
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Figure 2.13. (a): Dependence of the two gaps V1 (orange) and V2 (green)
on ∆φ in the fully interacting case. (b): Dependence of the total fermionic

bulk charge nF =
zẃ

0
qz2〈ψ†ψ〉dz (magenta) and the total “number” of pairs

nPairing = −iη5
zẃ

0
z3〈ψCΓ5ψ〉dz (blue) on ∆φ. One can see that while at small

scalar conformal dimensions the fermionic bulk charge totally vanishes the num-
ber of Cooper pairs in the bulk theory stays finite. All parameters are as in
Fig.2.10.
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the AdS boundary z = 0. It hints that the proper definition of the su-
perconducting condensate should be given by a ∆φ-dependent linear com-
bination of the homogeneous H1 and particular coefficients P1,P3,P5, ...
that is regular for all ∆φ. One can readily construct such a combination,
e.g.

〈Oφ〉 = H1 +
1
2 ((2∆Ψ + 2)− ∆φ)P1 +

1
2 (∆φ − 2∆Ψ)P3, (2.53)

see Fig. 2.14(a). as a demonstration of the existence of a non-singular
combination; though there is no proof at all that this constitutes the actual
physical observable.4

Normally the strict application of the AdS/CFT dictionary does not
assign any role to such higher order coefficients in the bulk wavefunction.
It is clear, however, that the singularities arise solely from the extraction
of the coefficients, whereas the full AdS wavefunctions at any finite z are
regular for ∆φ = 2∆Ψ + N. Let us now give an argument why the coef-
ficient rule can receive modification.The right way to interpret the linear
combination H1 +P1 is as a mixing of the two independent operators dual
to the fundamental scalar operator and the bilinear (double trace) Cooper
pair operator. This suggests that we should think in a similar way about
the resonance at ∆φ = 2∆Ψ + 2. There should be another Cooper-pair
like operator in the theory which mixes with the fundamental scalar, such
that the linear combination that constitutes the order parameter is finite.

In AdS/CFT this connection between mixing and resonances is in fact
cleanly seen in correlation functions of bilinear operators [28, 29]. These
bilinear operators are also known as double trace operators, since in the
models where we know the dual CFT, each operator dual to an AdS field
is a single trace over an N ×N matrix valued combination of fields. Bi-
linear operators are thus the normal-ordered product of two single trace
operators. Each pair of single trace CFT operators OΨ, however, gives rise

4Another putative combination found by chance, 〈Oφ〉 = H1 +
1
2e
−(2∆Ψ−∆φ)((2∆Ψ +

2)− ∆φ)P1 + 1
2e
−(2∆Ψ+2−∆φ)(∆φ − 2∆Ψ)P3 has a remarkable overlap with the scalar

condensate in the case η5 = 0, see Fig. 2.14(b).
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to an infinite tower of independent primary double trace operators:

O(0) = OΨCOΨ

O(1) = OΨC (
←
∂µ −

→
∂µ)(

←
∂µ −

→
∂µ)OΨ − trace

O(2) = OΨC (
←
∂µ −

→
∂µ)(

←
∂µ −

→
∂µ)(

←
∂ν −

→
∂ν)(

←
∂ν −

→
∂ν)OΨ − traces

... (2.54)

These conformal partial waves are all the higher derivative bilinear oper-
ators that cannot be written as a descendant (a derivative) of the a lower
order primary. All these operators have the same global quantum numbers
as the simple pair operator with scaling dimension 2∆Ψ, but increase their
dimension by two integer units each time. The correlation function study
[28, 29] in particular shows that in the case of an interacting purely scalar
bulk theory, all these linearly independent double trace primaries mix in
as well and cause single-pole Feschbach resonances in s-wave scattering of
single trace operators. The correspondence between the 2n difference in
scaling dimension5 between each successive primary and the location of
the resonance in the leading part of the bulk scalar wavefunction supports
that this mixing is the right interpretation of the resonance.6

We do not yet have a controlled method to extract the quantative
expectation value of these higher order double trace primaries from the
constituent single trace fields. The mixing originates in the renormaliza-
tion of the theory, and this suggests that the proper value of the order
parameter results from the introduction of higher order boundary coun-
terterms of the type

Scounter ∼
ˆ
z=ε

d3x
(
−φ2 − φΨ̄C

+Ψ− − φΨ̄C
+

↔
∂µ
↔
∂µΨ− − . . .

)
(2.55)

5As we mentioned one also expects a resonance at 2∆Ψ + 3 for high enough chemical
potential. This is due to the effect of the electric field on the fermion wave functions.
From the boundary perspective this could be a result of mixing with OψJµ(

←
∂µ−

→
∂µ)Oψ

type operator which has the right scaling dimension (∆J = 2).
6The conformal partial wave operators share a resemblance with operators relevant

for Fulde-Ferrel-Larkin-Ovchinnikov pairing [30, 31]. In the original FFLO set-up one
considers the Zeeman splitting of spin-up/spin-down electrons and this causes an offset
in their Fermi surfaces of the same form seen here. The discussion about the mixing
in of these higher order partial waves does not rely on the split degeneracy of Fermi
surfaces. The mixing is therefore not correlated with an FFLO-like phenomenon.
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Figure 2.14. (a): The blue curve represents a particular linear combinations of
the series expansion coefficients 〈Oφ〉1 = H1 +

1
2 ((2∆Ψ + 2)− ∆φ)P1 +

1
2 (∆φ −

2∆Ψ)P3 such that all the resonances cancel out. The red curve included for
comparison represents 〈Oφ〉 at η5 = 0. (b): The serendipitous combination
〈Oφ〉2 = H1 +

1
2e
−(2∆Ψ−∆φ)((2∆Ψ + 2)− ∆φ)P1 +

1
2e
−(2∆Ψ+2−∆φ)(∆φ − 2∆Ψ)P3

that has a remarkable overlap with the η5 = 0 solution at low ∆φ as desired. All
parameters are as in Fig.2.10.

where Ψ± are eigenspinors of Γ5. To construct this correct set of countert-
erms and deduce the appropriate extraction of the vev in the boundary
field theory is an interesting question to pursue.

The conclusion is that the resulting condensate ought to be of the
form in Fig. 2.14. Qualitatively this result shows the BCS/BEC crossover
as a function of the scalar scaling dimension ∆φ. Though our set up is
rather abstract in that scalar field here is an additional degree of freedom
introduced by hand, instead of emerging from microscopic dynamics, it
captures the BCS/BEC physics. For small scaling dimension the scalar op-
erator Oφ dominates the Bose-Fermi competition, whereas at large scalar
conformal dimensions corresponding to weak coupling regime, η5/mφ � 1,
the dynamics of the boson field are suppressed, and its order parameter
expectation value is dominated by fermions as shown on Fig. 2.12. The
most interesting region is just to the right of the red curve. Here there
is no bosonic contribution to the order parameter, but there is an en-
hanced Cooper pair contribution (due to the proximity effect). This is
the most notable region where we have pairing induced superconductivity
in holography. At larger scalar conformal dimension the order parameter
exponentially decreases with increasing of ∆φ, although it never vanishes.

73



In the strict mφ →∞ limit we have the standard BCS scenario of section
2.3.4.

Let us finally briefly comment on the dependence on the UV cut off ωD.
In the previous section we discussed that at very large bulk scalar mass
all dynamics depends only on two parameters, η5/ωD and η5/mφ. For
a dynamical scalar the dependence is more complicated, but we can still
qualitatively infer what will happen. We know that most of the contribu-
tion to the pairing operator is located near the Fermi surfaces. Increasing
ωD means taking into account states lying far away from kF ’s. The physi-
cal picture will therefore only change minimally; to first approximation it
can be compensated by adjusting η5 such that η5/ωD stays constant. A
non-trivial effect does happen when ωD becomes so large that the integral
becomes sensitive to fermions in the second band (for instance, see Fig.
2.1), but this is beyond the scope of this chapter.

2.5 Conclusions

We have constructed a holographic model of superconductivity which ex-
plicitly takes into account fermionic pairing driving the phase transition.
In the simplest holographic models, the microscopic mechanism of super-
conductivity is not addressed. Specific top-down models may shed light on
the strong coupling dynamics and a possible pairing mechanism [32, 33],
but generic holographic models operate at a Landau-Ginzburg order pa-
rameter level.

Even so, the physics of fermionic pairing and condensation should also
be explicitly representable in holographic systems. The most straightfor-
ward way to do so is to mimic the classic BCS mechanism. This is what
we have done here. By introducing an attractive four-fermion interaction
in the AdS bulk, we show that this directly reduces to a pairing induced
superconducting groundstate both in the bulk and the dual boundary. To
cleanly separate the fermion physics, we introduced a hard wall cut-off.
This essentially guaranteed this results as the low energy theory in both
sides is just a Fermi liquid in the absence of the four-fermion interaction.
The one technical difference with textbook BCS is the relativistic nature
of the underlying fermion theory.

Next we introduced separately a kinetic term for the AdS dual of
the order parameter. Physically the paired operator should become dy-
namical if the coherence length is much shorter than the scales of inter-
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est. One should find a BCS/BEC crossover as one tunes between these
regimes. Here that control parameter is the scaling dimension of the or-
der parameter field (relative to the scaling dimension of the Cooper pair
operator). For large scaling dimension the kinetics of the dual AdS field
is suppressed and we have the BCS physics found earlier. For low scaling
dimension the scalar dynamics should be energetically favored compared
to pairing condensation, and one should find a regular BEC (holographic)
superconductor.

In observing this BCS/BEC crossover we encountered a surprise. At
specific values ∆φ = 2∆Ψ and ∆φ = 2∆Ψ + 2 of the control parameter
the independent scalar 〈Oφ〉 and pairing 〈OΨCOΨ〉 vevs diverge. In fact
the naive order parameter 〈Oφ〉+ 〈OΨCOΨ〉 remains divergent at ∆φ =
2∆Ψ + 2. The mathematics is clear and suggests that these divergences can
also occur at higher value of the scaling dimension. Physically, a plausible
explanation is that higher order primaries OΨC (

←
∂µ −

→
∂µ)n(

←
∂µ −

→
∂µ)nOΨ,

that arise in the OPE of the product of two single fermion operators, mix
in with the scalar vev and the lowest order primary 〈Oφ〉 + 〈OΨCOΨ〉.
To establish this concretely requires a more detailed study of single and
double trace operator mixing in AdS/CFT . We aim to address this in
a future publication. We can nevertheless readily construct an extraction
rule for a finite order parameter that interpolates between the BCS and
BEC regimes.

In both aspects the physics that holographic system describes is very
conventional. It is again an excellent proving ground for AdS/CFT that it
does so, but by construction it does not uncover any unconventional or ex-
otic physics. The main reason it does not do so is the presence of the hard
wall. It ensures that the groundstate dynamics closely follows standard
Fermi liquid and Landau-Ginzburg theory. It would be very interesting,
but technically challenging [16, 17], to try to remove the hard wall. This
would reintroduce the low energy dynamics that could yield exotic and
novel behaviour. In particular, it might be an important step towards a
holographic fermionic theory of unconventional superconductivity.

2.A Green’s functions and charge densities

In this Appendix we provide a detailed derivation of the formulas for the
fermionic bilinears appearing in the bosonic equations. In principle while
calculating these objects one needs to be careful because of the renormal-
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ization of these composite operators. However, we are just regularizing
these object with a cut off and not attempting to perform the renormal-
ization. We can write the fermionic electric charge density as a limit of
Feynman Green’s function:

〈ψ+(x)ψ(x)〉 = lim
t,~x→t′,~x′

〈Tψ+(t, ~x)ψ(t′, ~x′)〉 = lim
t,~x→t′,~x′

Gψ+
i ψi

(2.56)

We would like to express it with the Nambu-Gorkov (NG) Green’s
function defined as

Gχiχ+
j
=

1
Z

ˆ
DχDχ+χiχ

+
j exp

(
i

ˆ
d4xχ+K̃χ

)
. (2.57)

Using properties of the time ordered product the relations between the
original Green’s functions and the NG ones are

Gψ+
1 ψ1

(t, ~x; t′, ~x′) = −Gχ1χ
+
1
(t′, ~x′; t, ~x) , (2.58)

Gψ+
3 ψ3

(t, ~x; t′, ~x′) = Gχ3χ
+
3
(t, ~x; t′, ~x′) . (2.59)

With these the charge densities can be expressed with the components
of the NG Green’s function

〈ψ+ψ〉 = lim
t,~x→t′,~x′

(
−Gχ1χ

+
1
(t′, ~x′; t, ~x)−Gχ2χ

+
2
(t′, ~x′; t, ~x)

+Gχ3χ
+
3
(t, ~x; t′, ~x′) +Gχ4χ

+
4
(t, ~x; t′, ~x′)

)
,

〈ψcΓ5ψ〉 = lim
t,~x→t′,~x′

(
Gχ1χ

+
4
(t, ~x; t′, ~x′) +Gχ2χ

+
3
(t, ~x; t′, ~x′)

+Gχ2χ
+
3
(t′, ~x′; t, ~x) +Gχ1χ

+
4
(t′, ~x′; t, ~x)

)
. (2.60)

Since the NG Green’s function solves (2.20) we can decompose it as

G (t, ~x; t′, ~x′) =
ˆ
dω

2π e
−iω(t−t′)∑

n

ˆ
d2k

4π2
iei

~k(~x⊥−~x′⊥)

ω− ω~k,n + isgn(ω)εχ~k,n(z)χ
+
~k,n

(z′),

(2.61)
where χ~k,n(z) solves the Dirac equation (2.21) and form an orthonormal
basis ˆ zw

0
dzχ+~k,n

(z)χ~k,n′(z) = δnn′ , (2.62)∑
n

χ~k,n(z)χ
+
~k,n

(z′) = δ(z − z′). (2.63)
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We can immediately perform the ω integral to get (supposing that
t > t′)

G (t, ~x; t′, ~x′) =
∑
n

ˆ
d2k

4π2 e
−iω~k,n(t−t

′)
ei
~k(~x⊥−~x′⊥)χ~k,n(z)χ

+
~k,n

(z′)Θ
(
ω~k,n

)
,

(2.64)

G (t′, ~x′; t, ~x) = −
∑
n

ˆ
d2k

4π2 e
−iω~k,n(t

′−t)
ei
~k(~x′⊥−~x⊥)χ~k,n(z)χ

+
~k,n

(z′)Θ
(
−ω~k,n

)
.

(2.65)
Substituting this into (2.60) we obtain (2.23) and (2.24).

2.B Perturbative solution

2.B.1 Perturbative fermion spectrum, AdS-gap equation

We will solve the fermionic equation of motion (2.21) perturbatively in
the scalar interaction and determine the gap equation. It is convenient
for this to write the eigenvalue problem in terms of (α1,α2,α3,α4) =
(χ1, iχ2,χ3, iχ4). The redefined Hamiltonian is real (but we will still de-
note it with H).

Our Hamiltonian can be split as H = H0 +V , where H0 = H(η5 = 0).
The perturbation is coming from the Majorana coupling

V = 2η5
φ

z

(
0 −ε
ε 0

)
, (2.66)

where ε is the 2x2 matrix ε = iσ2
The solution of the unperturbed problem for a given momentum takes

the form

α
(0)
k,+,n =

(
ξk,n
0

)
ω
(0)
1,k,n = ω

(0)
k,n > 0, (2.67)

α
(0)
k,−,n =

(
0

εξk,n

)
ω
(0)
2,k,n = −ω(0)

k,n. (2.68)

We will focus on n = 1 and will omit this index.
When doing the perturbation theory we should be careful because

near the Fermi-surface different bands are crossing each other. Therefore
we start with two modes with unperturbed energy ω

(0)
k and −ω(0)

k and
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approximate the solution as αk = aα
(0)
k,+ + bα

(0)
k,−. Near the Fermi-surface

this is a good approximation.
The perturbed energy and wave-functions can be determined by the

off-diagonal matrix element of V (the diagonal elements are zero).

Vk =

ˆ zw

0
dzα

(0)+
k,+ V α

(0)
k,− = 2η5

ˆ zw

0
dz|ξk|2

φ

z
. (2.69)

The new energy levels are

ω± = ±
√(

ω
(0)
k

)2
+ V 2

k , (2.70)

so the size of the gap is VkF . The normalized wave-functions are

αk,+ =

(
ξk cos 1

2βk
εξk sin 1

2βk

)
, αk,− =

(
−ξk sin 1

2βk
εξk cos 1

2βk

)
, (2.71)

where
tan βk =

Vk

ω
(0)
k

. (2.72)

Using this perturbative result we can express the scalar source with
the unperturbed fermion wave functions:

〈ψ̄CΓ5ψ〉 = − i

4π

ˆ Λ(ωD)

−Λ(ωD)
dk|k| Vk√(

ω
(0)
k

)2
+ V 2

k

|ξk(z)|2. (2.73)

Here Λ(ωD) is a momentum cut-off corresponding to the energy scale ωD.
In our numerics we sample discrete number of momenta and sum over it.
In order to capture the contribution around kF accurately we can use the
following discretization
ˆ Λ(ωD)

−Λ(ωD)
dk|k| Vk√(

ω
(0)
k

)2
+ V 2

k

|ξk|2 ≈
∑
ki

Vkiki
1

|ω′(ki)|

ˆ ω(ki+1)

ω(ki)

dω√
ω2 + V 2

k

=
∑
i

|ξki |
2 Vkiki
ω′(ki)

log

ω
(0)
i+1 +

√(
ω
(0)
i+1

)2
+ Vki

ω
(0)
i +

√(
ω
(0)
i

)2
+ Vki

 (2.74)
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2.B.2 Simplified Gap equation

The dominant contribution for the scalar charge comes from a region near
the Fermi surface where the (unperturbed) spectrum is linear. Since the
perturbation matrix element Vk is a slowly varying function of k we can
approximate its value with VkF ,1 = V1 and VkF ,2 = V2.

We have two Fermi surfaces. Hence the gap-equation is (recall that
our scalar is an auxiliary field with no dynamics here)

φ(z) =
z3

4η5

γ1V1 log

ωD +
√
ω2
D + V 2

1

V1

 ρ1(z)+ (2.75)

γ2V2 log

ωD +
√
ω2
D + V 2

2

V2

 ρ2(z)

 , (2.76)

where ρ1(z) = |ξkF ,1 |2, ρ2(z) = |ξkF ,2 |2 and γ1,2 =
η2

5
m2
φ
π

|kF1,2|
|ω′(kF1,2)| . We

make the following ansatz

φ = (C1ρ1(z) +C2ρ2(z)) z
3. (2.77)

In this case the perturbation matrix element is

V1 = 2η5 (C1I11 +C2I12) , V2 = 2η5 (C2I22 +C1I12) , (2.78)

where

I11 =

ˆ zw

0
z2ρ2

1dz, I22 =

ˆ zw

0
z2ρ2

2dz, I12 =

ˆ zw

0
z2ρ2ρ1dz. (2.79)

In the limit of ωD � η5 our gap-equations take the following form

aV1 + bV2 = 2η5γ1V1 log
(
ωD
η5V1

)
bV1 + cV2 = 2η5γ2V2 log

(
ωD
η5V2

)
, (2.80)

with

a =
I22

I22I11 − I2
12

, b =
I12

I2
12 − I22I11

, c =
I11

I22I11 − I2
12

. (2.81)
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For the ratio x = V1/V2 we obtain

x2 +

(
I22
I12

γ2
γ1
− I11
I12

)
x− γ2

γ1
=
γ2
b
x log x. (2.82)

We can now solve our equations easily to obtain

C1 = (ax+ b)
ωD
η5

exp
(
−bx+ c

γ2

)
, C2 = (bx+ c)

ωD
η5

exp
(
−bx+ c

γ2

)
.

(2.83)

2.C Numerical methods

2.C.1 General strategy

To solve the equations (2.41) numerically, we resort to an iterative Hartree
resummation:

• At a constant A0 = µ and zero scalar field, we find the unperturbed
spectrum of fermions. As a result we get a set of fermionic wave-
functions for a discrete array of energies and momenta (ki,ωn,i).

• With these wavefunctions we construct the source terms on the right
hand side of the first two equations in (2.41) and solve for A0(z) and
φ(z). Both UV cut offs in both k and ω should be imposed to render
the sums in the source terms finite.

• Substitute the new A0(z) and φ(z) into the Dirac equation and find
the new spectrum.

• Repeat steps 2 – 4 till full convergence.

Once the system converges sufficiently, we can extract the information of
the dual theory by a fit to the near boundary behavior of the resulting
wavefunctions.

We have optimized our numerics in several ways: The most time-
consuming part of the algorithm is the repeated calculation of the Dirac
fermion spectrum. A significant improvement is obtained using the per-
turbative prescription described in a previous section. We exclude the
φ(z) field from the Dirac equation, and instead of four coupled ODE we
get for fermions two identical decoupled systems of a second order. Then
we construct the corrected wavefunctions. In addition, we do not need to
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take equally dense sampling in k, because most of the fermionic spectral
weight is concentrated around kF (remember that we have two slighly dif-
ferent Fermi momenta in the theory), and we may take sparser k-sampling
away from these points without loss in accuracy.

Empirically we found that different numerical schemes to fermionic and
bosonic subsystems was the most efficient. For the fermionic spectrum we
use the shooting method: we impose boundary conditions dependent on a
free parameter at the boundary cut off z = ε, and scan over this parameter
to make the resulting solution satisfy physical boundary conditions at the
hard wall.

However, the shooting method in the gauge field and scalar sector
often leads the system to converge to some higher harmonics instead of
the groundstate. The Newton method is much more stable in that case:
we impose both AdS-infinity and hardwall boundary conditions at the
same time, approximate differential equations by finite differences, and
solve the resulting system of linear algebraic equation with a relaxation
algorithm. For our purposes a grid of Np = 3000 points in z-direction
(for zw = 1) was chosen, in which case the relaxation algorithm converges
after 5− 6 iterations.

Once the bulk wave functions are obtained, it is still not a trivial ques-
tion how to extract the leading boundary behavior from this data. This
is what contains the information of the dual field theory. The analytical
puzzles related to this problem were discussed in section 2.A. Here we
focus on corresponding numerical issues.

We are interested in coefficients H1, P1, P3 defined in (2.51). The
function φ(z) is known in a form of discrete list of values {zi, φ(zi)} of
the length Np = 3000, therefore our accuracy is limited and naive use of
the standard fitting schemes of Mathematica leads to large errors.

Instead we first determine the expansion coefficients of the fermionic
bilinear sourcing the scalar field

− iη5z
3〈ψcΓ5ψ〉 = S1z

5 + S3z
7 + ... (2.84)

These can be easily found, as contra to the scalar field profile the fermionic
bulk wave functions are derived with a great accuracy due to the use of
the shooting method.

Then we use the algebraic relations (2.51) to obtain the “particular”
coefficients on the base of Si.
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Knowing P1 and P3 we can subtract these from the scalar wave func-
tion and run the Newton relaxation scheme one more time for

φ̃(z) = φ(z)−P1z
5 −P3z

7. (2.85)

We now need to fit only for the single coefficient H1. This can be easily
done even for moderate number of discretized points Np.
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