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Chapter 1

Introduction

Cognoscibility of the Universe is the basic axiom of beingness of our civi-
lization. Real progress in understanding fundamental principles governing
Nature at various scales, from microscopic physics to the dynamical pro-
cesses in society, can be possible only under one assumption: any conceiv-
able problem we might ever face in our research must be soluble in one way
or another. In the novel “The glass bead game”, Hermann Hesse described
a surreal world where people have managed to figure out a universal lan-
guage that allows for establishing precise connections between all branches
of human knowledge, and is powerful enough to provide a solution to any
problem once it is reformulated in terms of the glass bead game. This fic-
tional concept is a good illustration of what the actual goal of theoretical
science should be: not just to solve a problem that seems to be difficult,
but rather to find a proper language that automatically makes it almost
trivial.

1.1 Preface

A wide class of longstanding open problems in theoretical physics that
have proven themselves to be unsolvable with existing methods belongs
to the area of strongly interacting quantum systems. The most famous of
them include the problem of confinement in quantum chromodynamics,
and the question about the physical mechanisms of high Tc superconduc-
tivity. After decades spent in efforts to crack these puzzles by standard
techniques, it is becoming clear that if we wish to get a handle on strongly
correlated quantum dynamics, we should seek a completely new theoreti-
cal paradigm.

The problems we are facing in our attempts to analyze physics of
strongly interacting systems are caused by two factors - the large value of
the coupling constant, and finite fermion density. The first factor man-
ifests itself in the absence of a small parameter that we could use to
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construct a perturbative analytic description of a model. If this was the
only issue, we still might hope that the equations governing the evolution
of a strongly coupled system could be solved at least numerically. This
is possible for bosonic models (or models that allow for the effective re-
formulation in bosonic variables). However, a finite density of quantum
fermionic matter leads to an obstacle that may be considered more severe
than just the strong correlations. The standard numerical approach to
simulation of many-body systems is the (Quantum) Monte Carlo method,
which consists of calculating the quantum field theoretical observables by
random sampling of the Euclidean phase space configurations, and aver-
aging over them with the Boltzmann distribution. If we are studying a
fermionic system, however, the anticommutativity of fermionic operators,
along with the finite density, spoils the charge conjugation symmetry of the
corresponding Hamiltonian. On the numerical level it leads to the Fermion
Sign Problem [1] - uncontrollable sign oscillations of the sampled quantum
partition function. This problem is conjectured to be non-polynomially
hard [2], and thus it puts very strong limitations even on our ability to
perform numerical simulations.

This thesis is dedicated to a new framework, a new language that has
demonstrated an unexpected naturalness in dealing with models of many
body systems both at strong coupling and finite density. This framework is
the holographic correspondence. The holographic principle emerged from
attempts to understand the applicability of the laws of quantum theory
to black holes in papers by G. ’t Hooft [3] and L. Susskind [4]. In its
most generic form, the principle states that a theory of quantum gravity
in D+ 1 dimensions should be equivalent to a quantum field theory in D
dimensions, in the sense that the degrees of freedom of the two theories
can be precisely mapped to each other, and all observables of each of the
theories are encoded in its dual partner. Phrased this way, the principle
seems to be unrelated to real life phenomenological problems. But we
can try to revert this statement and ask when it is possible to represent
a quantum field theory in dual gravitational form, and what we can gain
from it for our understanding of the QFT?

Nowadays we know several concrete examples of holographic dualities
[5–8], among which the most developed and understood one relates grav-
ity in spacetimes with a negative cosmological constant (Anti-de-Sitter
spacetimes) to conformal field theories, the AdS/CFT correspondence.
Even before the holographic principle was proposed, in 1986 J. Brown
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and M. Henneaux demonstrated that the asymptotic symmetry group of
three dimensional anti-de Sitter space coincides with the two dimensional
conformal group [9]. But the actual realization of the correspondence was
proposed in 1997 by J. Maldacena [5], who seminally conjectured that
the N = 4 supersymmetric SU(N) Yang-Mills theory in D = 4 in the
strong coupling limit is exactly dual to type IIB string theory on the
AdS5 × S5 background at weak coupling (and vice versa). The concrete
rigorous mathematical formulation of the correspondence was developed
by S. Gubser, I. Klebanov, and A. Polyakov in [10], and E. Witten [11].
They emphasized an equivalence of partition functions of the two dual the-
ories that provides a way to calculate correlation functions, now known as
the GKPW-rule.

We should remark that the idea of weak/strong dualities is not novel
in physics. Already in 1941, H. Kramers and G. Wannier discovered that
a two dimensional Ising model on a square lattice at small coupling is dual
to itself at strong coupling [12]. Since that time, plenty of other dualities
in many areas of theoretical physics have been figured out and played a
great role in the history of science. Some of them relate only two particular
models, some are broader and applicable to large classes of theories. The
latter include the Seiberg duality [13] that equates infrared fixed points
of N = 1 supersymmetric field theories with different number of flavors
and colors, and the particle-vortex duality [14], relating the dynamics of
point-like and non-local objects in statistical systems. However, as we
will see further, holographic duality has so far demonstrated the largest
flexibility and universality in description of various models in completely
different areas of theoretical physics.

Originally the AdS/CFT correspondence was an important string
theoretical construction, though unrelated to quantum many-body phe-
nomenology. A key observation was made by G. Policastro, A. Starinets,
D. T. Son in [15], and then elaborated on by P. Kovtun, A. Starinets, D.
T. Son in [16]. Using the AdS/CFT correspondence, they calculated the
shear viscosity of the N = 4 supersymmetric quark-gluon plasma, and it
turned out to be not a value specific for the particular toy model, but
a universal quantity equal to }/4πkB, which they conjectured to be a
lower bound for the shear viscosity of an ideal quantum liquid. This cal-
culation and this conjecture were of huge importance since they demon-
strated that the holographic correspondence, in principle, can be used
to get insights into the physics of experimentally accessible strongly cor-
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related field theories. The era of applied holography had begun. The
AdS/CFT correspondence was successfully applied to plenty of different
physical phenomena, from non-equilibrium processes in the quark-gluon
plasma [17] and meson spectra in QCD [18], to the transport properties
of high temperature superconductors [19, 20] and the evolution of open
quantum systems [21]. Holographic quantum chromodynamics and holo-
graphic condensed matter theory evolved into broad independent areas of
physics [22, 23].

Among other achievements we can mention the following:

• The theory of hydrodynamics has been fully reformulated holograph-
ically [24, 25]. That opened a natural and simple way to describe
dissipative forces in quantum systems, that is hard to do within the
standard field theoretical formalism. In particular, accurate simu-
lations of turbulence in quantum liquids have been performed with
the holographic approach [26, 27].

• Transport coefficients of unconventional superconductors have been
calculated. The linear temperature dependence of electric resistivity
of non-Fermi liquids, that can not be derived within the standard
Landau Fermi liquid paradigm, was demonstarted to naturally come
out of holographic setups [20, 28], as well as the Hall angle [29].

• A framework for simulations of the non-equilibrium quark-gluon
plasma, using advances of numerical relativity, has been developed
[30]. This opened a possibility to study real-time processes in the
QGP theoretically.

• A language to describe phases of fermionic quantum matter, that
does not rely on the paradigm of weakly coupled Fermi liquids, has
been suggested [31, 32].

After more than ten years of research, the applied AdS/CFT corre-
spondence is still a young and actively developing area of physics. Being
a drastically new, and not completely established, language, it attracted
both attention and enthusiasm, and justified criticism and skepticism of
theoretical physicists. It still remains to seen whether holographic dual-
ity really has the capacity to become The Glass Bead Game of strongly
coupled quantum field theory. But we have very good reasons to hope so.

This thesis is organized as follows. In section 1.2 of the introductory
chapter we review basic ideas of the holographic principle closely following
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the original paper by L. Susskind [4]. In 1.3 we briefly introduce technical
aspects of the AdS/CFT correspondence, the so called AdS/CFT dic-
tionary that translates quantum field theoretical objects to the language
of the theory of gravity. In 1.4 we recall the most important steps in the
history of the applied “phenomenological” holography. Chapters 2, 3, and
4 are based on research papers and form the core of this thesis.

1.2 The holographic principle: the idea.

The idea of the holographic principle is based on the fundamental fact first
emphasized by J. Bekenstein [33], that if we wish to account for quantum
properties of matter interacting with a black hole, we should unavoidably
impose that the black hole must be subject to the laws of thermodynamics.
To understand this statement, recall that the black hole event horizon is
not a singular surface. A freely falling observer crossing the horizon will
not experience anything qualitatively new at this moment. It is always
possible to make a simple coordinate change that makes this explicit.
Therefore if we wish to construct a self-consistent theory of a quantum
field evolving in the background of a black hole, we should properly define
it not only outside of the horizon, but also behind it.

This was done by S. Hawking [34], and the outcome of his calculation
was that quantum effects would lead to evaporation of the black hole.
Without getting into formal mathematical details, we can see it from the
following reasoning. A classical signal from behind the horizon cannot
leave the black hole and reach the outer region. However quantum phe-
nomena are more subtle. Quantum fluctuations can lead to formation of
a virtual pair near the horizon. Under normal circumstances these parti-
cles would not be observable and would immediately annihilate, since for
a very short time they violate the energy conservation law. But if they
emerged from a vacuum on the opposite sides of the black hole horizon, the
physical picture becomes more complicated. The signature of the space-
time alternates across the horizon, and the timelike direction ∂t becomes
spacelike behind the horizon. Since the energy of a particle is associated
with the symmetry of translations in time, this sign change would lead to
the fact that the virtual particles on either sides of the horizon will have
energies of opposite signs. From the point of view of an external observer
the particle behind the horizon has negative energy, and the conservation
law is not violated. Thus if the outer particle has speed large enough to
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leave the vicinity of the black hole (for light-like particles that’s always
true), it will not annihilate with its counterpartner.

This particle emission due to quantum fluctuations near the horizon is
known as Hawking radiation. The radiation takes away energy from the
black hole, thus causing its evaporation. Hawking famously demonstrated
that this black hole radiation has a black body thermal spectrum with a
temperature (in the natural kB = } = c = 1 unit system):

T =
1

8πGM . (1.1)

Because a black hole has a temperature and energy (equal to its mass,
M = E), it would be natural to define its entropy in accordance with the
first law of thermodynamics:

dM = dE = TdS . (1.2)

supporting Bekenstein’s conjecture. So,

dM =
1

8πGM dS , (1.3)

and finally for the entropy we get

S = 4πM2G =
πR2

s

4G =
A

4G , (1.4)

where Rs = 4GM is the Schwarzschild radius, and A is the area of the
event horizon.

The next natural question to ask is what kind of microscopic statistical
physics is behind a black hole’s thermodynamic properties? This area-law
scaling is very puzzling from the perspective of general physics wisdom.
We do not have a complete theory of quantum gravity yet, but it would
be natural to assume that a unit cell of a quantum gravity phase space
must be set by the Planck scale, lP =

√
G. If each Planck cell encodes k

degrees of freedom, than the naive counting tells us that the total number
of possible different microstates corresponding to the macroscopic black
hole should be proportional to

Γnaive = k

4πR3
s

3l3
P . (1.5)
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The black hole entropy scales then with the volume of the black hole, and
not with the area:

Snaive =
V

G3/2 log k. (1.6)

A radical solution to this contradiction has been suggested by G. ’t
Hooft [3] and L. Susskind [4]. They conjectured that the actual number
of states in a theory of quantum gravity should be lower than the naive
estimation, and that any quantum state of a subregion of the 3 + 1 di-
mensional spacetime can be completely encoded in a state of its 2 + 1
dimensional boundary. In this language, the number of microstates n in-
side a spatial volume V = 4

3πR
3 can not exceed the maximal possible

value set by (1.4):

n ≤ exp(S) = exp(πR2/4G) . (1.7)

When this bound, called the entropic bound, is saturated, a black hole
forms, and any further increase of the number of microstates is impossible
without growing of the black hole volume/area.

Because the number of microstates of a black hole is the maximal for
a given volume, if the ’t Hooft-Susskind holographic conjecture is correct
for a black hole, it should also be correct for any other macroscopic state
of a spacetime. In the limit of an infinitely large region, the state of the
whole spacetime can be reconstructed from the state of a lower dimensional
surface at spatial infinity. From here on, we will call the higher dimensional
space the “bulk”, and its encoding boundary surface the “boundary”. An
elementary Planckian volume ∼ l3P in the bulk then corresponds to an
elementary area ∼ l2P on the boundary. We will refer to this elementary
boundary area as a “pixel”.

This holographic principle sounds very counterintuitive. A simple
counterexample to it appears to be a collection of black holes where one
of them is shielded by others from the boundary. Nevertheless configura-
tions of this kind can be holographically projected onto the boundary in
an unambiguous manner. If we have a number of black holes in the bulk,
their horizons still form a disconnected surface of a finite area, and can
be injectively mapped pixel-by-pixel to the boundary. The easiest way
to show this is by tracing classical light rays emerging from the horizons.
The gravitational field of a black hole has the property that nothing can
be hidden in the “shadow” of a black hole. Light rays approaching the
black hole from behind would be strongly deflected and reach the observer
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Figure 1.1. The horizons of two black holes, after the holographic mapping,
form a picture on the boundary. Nothing can be hidden behind a black hole,
so each Planckian pixel on both of the horizons can be connected with a unique
pixel on the boundary without any overlap.

in front of the black hole (see Fig. 1.1). In particular, it can be explicitly
calculated that, for an arbitrary distribution of black holes in the bulk,
information about the states of their horizon pixels can be unambiguously
transmitted to the boundary by light-like geodesics orthogonal to it [4].

What we have discussed so far is related to the physics of black holes.
The natural question to ask is whether an arbitrary configuration of gravi-
tational fields and matter possesses a holographic description. It is natural
to expect that if we have non-gravitational degrees of freedom in the bulk,
we can map them onto the boundary only if the dual holographic quan-
tum field theory also contains matter. Here we face a new puzzle. If a
point-like particle (we will call it a parton) is located somewhere in the
bulk, its projection on the boundary screen at first sight seems to occupy
a single boundary pixel, independently of its bulk coordinates. So, how
would we encode the parton’s distance to the boundary? A possible res-
olution of this problem has been proposed by L. Susskind [4]. Consider
the holographic extra bulk dimension in the momentum representation,
i.e. partons with larger values of the holographic coordinate have higher
momenta. We must take into account that a parton is a quantum ob-
ject. If we boost it up to high enough energy, the interplay of quantum
and relativistic effects causes particle number non-conservation, and the
parton can split into multiple partons (see Fig. 1.2). Thus, in the rest
frame of a static observer at the boundary, we see a spatially distributed
cloud of apparent partons instead of the original single point-like particle.
To estimate the growth of the cloud’s transversal area under Lorentzian
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Figure 1.2. Momentum space representation: the larger is the “holographic”
momentum P−, the stronger is the effect of partonic cloud spreading in the
transversal “boundary” directions, P⊥.

boosts, we can use different models of relativistic partons. In particular,
if we treat the parton as a free string in the context of string theory, the
dependence of its transversal size on the momentum can be shown to be
logarithmic [4] (when the energy of the parton is much lower than the
Planckian limit):

R2
⊥ ∼ l2s log

p‖
ε

, (1.8)

where ls is the string length, and ε is an IR cut-off. Hence information
about the holographic momentum of a parton can be stored in the size of
its boundary projection.

This picture can be rephrased in terms of the coordinate representa-
tion. Consider a parton falling into a black hole in the bulk. The further
away it is from the boundary, and closer to the horizon, the larger are
its momentum and transversal spreading. In the rest frame of a static
observer, the transversal size of the parton grows in time as [4]

R2
⊥ ∼ l2s

t

4GM , (1.9)

when the energy is much smaller than the Planckian limit, and

R2
⊥ ∼ l2se

t
4GM , (1.10)
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Black hole
R

Figure 1.3. Overlapping partonic clouds and their holographic projection.
Transversal size grows in time as the parton approaches the black hole.

in the ultra-relativistic transplanckian regime. So the distance to the
screen is encoded in this quantity.

The last point to be discussed is how to describe holographically a
many-particle bulk state. When a number of partons are boosted by the
gravitational forces to very high energies, their images on the screen start
overlapping, as shown on Fig. 1.3 . As they approach the horizon, the
overlap becomes stronger, and at some point the partons lose their iden-
tity. Information about their bulk state can not be any more recovered
just from local probes of the holographic boundary. In the dual boundary
language, the pixels on the screen start getting entangled, and in order to
reconstruct the full bulk state we have to analyze non-local correlations.
If the boost is extremely strong, we might expect a situation where the
partonic clouds spread over the whole horizon, forming infinitely thin iden-
tical shells (as is clear from (1.10), this would happen in a finite time). If it
happens, partons will become holographically indistinguishable, and even
the non-local correlations would not provide us with enough information
to reconstruct the bulk state. Nevertherless, the holographic principle still
can be saved. As was argued in [4], the apparent partons forming the cloud
are not subject to Lorentz contraction. Therefore, when approaching the
black hole horizon, each partonic cloud occupies a unique shell of a finite
radial thickness, and interpenetration of the two clouds is impossible (we
could say they behave as an incompressible liquid). As a result, different
partons have different holographic radial positions, and the corresponding
pattern imprinted on the holographic screen is unique and unambiguous.

That concludes the generic discussion of the ideas behind the holo-
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graphic principle, and we can proceed further to its concrete constructive
realisation - the Anti-de-Sitter/Conformal Field Theory correspondence
(AdS/CFT ).

1.3 The AdS/CFT dictionary

In this section we provide a brief introduction to technical aspects of the
AdS/CFT correspondence. We start with reviewing basic facts about
anti-de Sitter spacetime, and provide a holographic interpretation of its
geometric features. Then we introduce the holographic prescription for a
quantum field theory partition function (the Gubser-Klebanov-Polyakov-
Witten formula), and demonstrate how it can be used both to describe
collective thermodynamic properties of the QFT and to calculate micro-
scopic correlation functions.

1.3.1 Anti-de Sitter spacetime

Anti-de Sitter space is a maximally symmetric space of a constant nega-
tive curvature, which can be thought of as a one sheet hyperbolic surface
embedded into R(2,d) space. In physics it naturally appears as a vacuum
solution to the Einstein-Hilbert equations with negative cosmological con-
stant. The embedding into the higher-dimensional flat space is given by
the equation

−X2
0 −X2

d+1 +
d∑
i=0

X2
i = −L2. (1.11)

By construction, this surface is a homogeneous and isotropic Riemannian
manifold with the SO(2, d) isometry group. L here is the AdS radius,
and hereinafter we set it to be L = 1. The induced metric on this surface
can be obtained by parameterizing these d+ 2 dimensional coordinates in
terms of d+ 1 independent variables:

X0 =
√

1 + r2 cos(t), (1.12)
Xd+1 =

√
1 + r2 sin(t), (1.13)

Xi = rΩi, (1.14)

where Ωi are coordinates on a d-dimensional sphere. The induced metric
on the hypersurface is the

ds2 = −(1 + r2)dt2 +
dr2

1 + r2 + r2dΩ2
d−1. (1.15)
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Figure 1.4. (a): Penrose diagram of the universal cover of the anti-de Sitter
spacetime. (b): Global (unwrapped!) AdS consists of two Poincare charts sepa-
rated from each other by Poincare horizons z → ±∞. Time is periodic, so time
slices t = −π and t = π are identified.

This set of coordinates is called global, and covers the whole hyperboloid.
Note that time is periodic in these coordinates. In order to avoid closed
time-like curves, the time axis can be unwrapped to make t ∈ (−∞,∞).
We will always consider this universal cover of global AdS.

The topology of the universal cover of AdS is easily recognized as a
cylinder (see Fig. 1.4a): the axis of the cylinder (r = 0) is codirected with
the time axis, the boundary of the cylinder depicts spatial infinity r =∞,
and each t = const slice of the boundary has the topology of a sphere
Sd−1. The boundary of the cylinder is a visual representation of the so
called conformal boundary of AdS - the surface where the quantum field
theory that holographically encodes gravity in AdS is defined.

For our future purposes we also introduce a different coordinate sys-
tem, which is more convenient for many applications - the Poincare chart
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coordinates:

X0 =
z

2

(
1 + 1

z2

(
1 + ~x2 − t2

))
, (1.16)

Xi =
xi
z

, (1.17)

Xd+1 =
z

2

(
1− 1

z2

(
1− ~x2 − t2

))
. (1.18)

The AdS metric in these coordinates has an explicitly conformal form:

ds2 =
1
z2

(
−dt2 + dz2 +

d−1∑
i=1

dx2
i

)
. (1.19)

These coordinates cover only half of the cylinder (as in Fig. 1.4(b)),
and describe a case where the conformal boundary is a Minkowski R1,d−1

spacetime (as opposed to R× Sd−1 in the global case) located at z = 0.

1.3.2 Holographic interpretation of AdS spacetime

According to the holographic principle, the AdS gravity should have a
dual quantum field theoretical partner on the boundary of AdS. We have
already announced that the dual theory is a conformal field theory. The
reason for this is rooted in the fact that the isometry group SO(2, d)
of (d+ 1)-dimensional anti-de Sitter spacetime coincides with the confor-
mal group of d-dimensional Minkowski spacetime, which includes SO(1, d)
isometry transformations, dilatations and special conformal transforma-
tions (radial inversions). Hence it is natural to expect that the symmetries
of two sides of the duality should match, and the boundary field theory is
actually conformal.

Finally, let us discuss how quantum properties of the boundary theory
can be stored in the classical geometry. In the holographic picture we have
an extra emergent “radial” coordinate r (or z), which should have some in-
terpretation in the dual boundary terms. To gain some intuition, consider
a classical point-like particle in the bulk of AdSd+1. What is it dual to on
the boundary? As we will show in the subsequent section, a state of the
bulk corresponds to a state of the boundary theory. So, if an empty AdS
is dual to a ground state, it is natural to expect that this configuration
with a point-like particle is dual to an excited state in the correspond-
ing CFT. In conformal field theory, excitations are massless, otherwise
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Figure 1.5. The size-to-distance holographic relation.

an explicit scale m would spoil the conformal symmetry. Unlike massive
particles, massless conformal excitations are non-local and characterized
not only by their position in space, but also by their size [35]. So both the
particle in the bulk and the conformal excited state in the boundary can
be described by a (d+ 1)-vector: the d-vector of the transversal location
of the bulk particle encodes for the transversal location of the conformal
state, and the extra radial coordinate of the bulk particle encodes for the
size of the conformal state (see Fig.1.5). The further the particle is from
the boundary, the larger it is. We can see that this interpretation is in
perfect agreement with Susskind’s vision laid out in the previous section.

In the momentum representation, the spatial size of the excitation cor-
responds to its inverse energy. Thus the extra holographic coordinate has
meaning of energy scale in the boundary field theory: the boundary z = 0
corresponds to the UV limit, while z → ∞ is the IR. The corresponding
variation along this direction ∂z thus geometrically encodes a renormal-
ization group flow, where the z = 0 surface corresponds to the ultraviolet
fixed point of the theory.

The boundary field theory can be thought of as defined not only at
z = 0, but at any z = const surface. In the case of pure AdS all z = const
slices obviously are equivalent, and the RG flow is trivial as should it be
in a completely scale invariant theory. However, as we will see later, the
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AdS/CFT correspondence is defined not only for pure AdS, but also for
any solution of General Relativity that possesses an asymptotically AdS
form. The strict conformal invariance then may be broken, and we find a
non-trivial renormalization flow connecting UV and IR fixed points.

To understand how the spectrum of states of the field theory can be
mapped onto the bulk gravity, consider a massive particle evolving in AdS
with zero transversal momentum. Its Lagrangian has form

L = gµν ẋ
µẋν = − 1

z2 ṫ
2 +

1
z2 ż

2 = −1 . (1.20)

The particle has two conserved momenta:

E =
ṫ

z2 , J =
ż

z2 , (1.21)

and its radial evolution equation is

ż2 = −z2 +E2z4 . (1.22)

At the boundary, the z2-term is leading, and for any value of energy E the
r.h.s. is negative. This means that the particle experiences an (infinitely)
strong repulsive potential as it approaches the boundary:

V (z) ∼
√
−g00 ∼

1
z

, z → 0. (1.23)

Thus if instead of a particle we consider a field in the bulk, this repulsive
potential will act as an infinitely high quantum well. Posing appropriate
boundary conditions at both sides of the well, we obtain a well-defined
spectrum of quantized bulk wavefunctions that dualizes to the spectrum
in the boundary field theory. In other words, classical boundary conditions
in the bulk define the quantization rules in the dual theory.

1.3.3 The Gubser-Klebanov-Polyakov-Witten rule

So far we have discussed only the general ideas of AdS/CFT hologra-
phy. Now we define a precise constructive correspondence that allows for
concrete calculations of observables.

We want to be able to calculate correlation functions of gauge invariant
operators Oi in the boundary field theory. On the QFT side, a correlation
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function of n operators in Euclidean signature can be defined in terms of
a generating functional depending on sources Ji:

e−W [Ji] = 〈eJiOi〉QFT , (1.24)

where the averaging on the r.h.s. means path integral evaluation. The
n-point correlation function is then just given by an n-th order functional
derivative:

〈Oi1 . . .Oin〉 = ∂n

∂Ji1 . . . ∂Jin
e−W [Ji]

∣∣∣∣∣
J=0

. (1.25)

The holographic correspondence states that these operators should be dual
to fields φi in the bulk. More specifically, the mathematical formalism of
the AdS/CFT correspondence is based on the formula figured out by S.
Gubser, I. Klebanov, and A. Polyakov [10], and E. Witten [11] that resides
in the fact that the partition functions of the bulk and boundary theories
are identical:

e−W [JI ] = Zbulk|φI (z=0)=JI , (1.26)

where the boundary value of the bulk field plays the role of the source in
the boundary field theory.

To emphasize the calculational power of this law, let us focus on the
original version of the AdS/CFT correspondence that equates the N = 4
Super Yang-Mills theory on the boundary and the IIB string theory on
AdS5 × S5 in the bulk. Super Yang-Mills is a SU(N) gauge theory with
the following Lagrangian:

LSYM=− 1
4g2
YM

Tr
(
FµνF

µν+DµΦIDµΦI+ψ̄iγµDµψ
i+[ΦI , ΦJ ]2+ . . .

)
.

(1.27)
Dots are for interaction terms required by the condition of maximal super-
symmetry, and the trace is taken over the gauge indices. Fµν is the gauge
field strength. The fields ΦI (I = 1, · · · 6) are scalars, and ψi (i = 1, · · · 4)
are fermions, all in the adjoint representation of the gauge group.

This theory is completely defined by two parameters: the rank of the
gauge group N , and the coupling constant gYM .1 On the other hand,
the string theory also contains only two defining parameters - the string
coupling constant gs, and the curvature scale L/ls the theory lives on,

1In a generic case, the theory also has a θ-term θ
8π2

´
TrF ∧ F , but this is not

relevant for the discussion here.
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given in terms of the inverse string length. According to ’t Hooft we can
redefine the perturbative expansion in terms of λ = g2

YMN . Later on, this
will allow us to to take a smooth limit N →∞ while keeping the coupling
constant finite.

Without getting into detailed derivations, we just quote that these
constants dualize according to the relations:

4πgs =
λ

N
, L

ls
= λ1/4. (1.28)

Here is where the weak/strong nature of the duality manifests itself. If
we are interested in the strongly coupled regime of the gauge quantum
field theory, λ � 1, we should take L � ls. In other words it means
that on the string theory side of the duality we consider only large scale
dynamics, stringy corrections to the geometry are negligible, and the low
energy supergravity limit of the string theory is valid. If we also wish to
avoid taking into account quantum gravity effects and keep gs small, we
need to stay at the large N limit of the gauge theory, λ/N � 1. From
a field theoretical point of view precisely this N → ∞ limit with fixed
λ � 1 corresponds to the contributions of all planar Feynman diagrams,
i.e. those which can be drawn on a topologically trivial surface [36].

In the strongly correlated regime λ � 1 the diagrammatic expansion
is not well defined, but on the dual side the supergravity approximation
is at work, and in Euclidean signature we have

Zstring=Zgravity=e
−Sgravity ⇒ W [JI ] = Sgravity[φI(z=0)=JI ] .

(1.29)
When the rank of the boundary gauge group is large, N � 1, the gravi-
tational action can be evaluated just on the classical solution to the equa-
tions of motion. Thus we dualize states in the strongly coupled large N
boundary quantum field theory to solutions of the classical supergravity
theory.

In this thesis we will be studying physical problems that can not be
described by a simple supersymmetric Yang-Mills theory, but these key
ingredients will be there. What the large N limit corresponds to in, for in-
stance, condensed matter phenomenology is not completely clear. Roughly
speaking, it describes a kind of mean field theory of a many-body system,
where a self-consistent approximation of the collective dynamics is gov-
erned by the bulk classical action. Of course it would be nice to overcome
this limitation, but we might hope that the most interesting properties of
the physical systems of interest survive in this limit.
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1.3.4 AdS/CFT and thermodynamics

Now we are going to use AdS/CFT to study strongly coupled physics
and discuss the basic elements of the holographic Glass Bead Game.

All physical processes involve energy dynamics, so the first thing to be
shown is how it can be described in holography. The classical supergravity
theory includes General Relativity as a universal subsector. So we can
ignore the supersymmetric nature of the full AdS/CFT construction and
stick to the Einstein-Hilbert theory with a negative cosmological constant
in the bulk and, in general, some matter:

S =
1

2κ2

ˆ
dd+1x

√
−g

(
R+

d(d− 1)
L2 + 2κ2LM

)
. (1.30)

Following the GKPW rule (1.26) and the large-N limit (1.29) the bulk
dynamical field - the metric - gains the following interpretation: fluc-
tuations of the bulk metric sources energy currents on the boundary,
and thus the boundary asymptotics of the metric dualizes to the bound-
ary energy-momentum tensor. This is not to be confused with the bulk
energy-momentum tensor.

Another “bead” to be defined is the notion of thermal matter in holog-
raphy. It can easily be demonstrated that a black hole metric with AdS
asymptotics corresponds to a thermal state of the dual field theory with
temperature equal to the Hawking temperature of the black hole. Con-
sider the simplest black hole solution - the anti de Sitter-Schwarzschild
metric. In Poincare coordinates it takes the form

ds2 =
1
z2

(
−f(z)dt2 + dz2

f(z)
+ dxidxi

)
, (1.31)

where the emblackening factor

f(z) = 1−
(
z

zH

)d
. (1.32)

Here, zH is the location of the horizon. Because in coordinates of the
Poincare chart the metric is transversally symmetric along the boundary
directions, sometimes it’s called a planar black hole.

We can perform a Euclidean continuation of this metric to imaginary
time t→ iτ :

ds2
E =

1
z2

(
f(z)dτ2 +

dz2

f(z)
+ dxidxi

)
. (1.33)
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It should be emphasized that the Euclidean continued metric does not
solve the Euclidean theory automatically. The imaginary time coordinate
is periodic, and it can be shown [37] that (1.33) is a saddle point to the
vacuum Euclidean version of (1.30), only if we fix the period as2:

τ ∼ τ + 4π
|f ′(zH)|

= τ +
4πzH
d

. (1.34)

To understand meaning of this fact in the dual field theory language, we
can perform a near-boundary expansion of the metric (z → 0):

gµν(z) =
1
z2 g(0)µν + · · · . (1.35)

The expansion coefficient g(0)µν has a natural interpretation as the back-
ground metric the boundary field theory evolves in. Clearly, for any
asymptotically AdS spacetime it is

g(0)µν = dτ2 + dxidxi, τ ∈ [0, 4πzH/d) (1.36)

so the dual quantum field theory is also defined on a space with periodic
imaginary time. Hence, it is in a thermal state of temperature T = d

4πzH
which precisely conincides with the Hawking temperature of the bulk black
hole.

Here we have made a standard Wick rotation to periodic imaginary
time to make the connection between thermal properties of both sides of
the correspondence more clear. However a remarkable property of the
AdS/CFT holography is that the temperature is now an inherent prop-
erty of the Lorentzian bulk - it is given by the Hawking temperature. It
can be shown by a direct calculation [40] that once we have rotated back
to the Lorentzian signature, the field theory still is in a thermal state.
Therefore we can work with our bulk objects in real time and at finite
temperature simultaneously. This is one of the biggest technical advan-
tages of the holographic language over standard field theory machinery.

The next thermodynamical holographic dictionary entry to be de-
fined is the finite charge density or the chemical potential. Again, the
AdS/CFT correspondence is capable of including it in a very simple,
natural manner. Let’s add the electromagnetic Maxwell term to our ac-
tion:

SM = −1
4

∞̂

0

dz

ˆ
ddx
√
−gFµνFµν , (1.37)

2Otherwise the metric would contain an apparent unphysical conical defect [37].
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where Fµν is the U (1) gauge field strength tensor in the bulk. Integrating
it by parts we get

SM =

∞̂

0

dz

ˆ
ddx
√
−gAν∂µFµν +

1
2

ˆ
ddx
√
−gFµνAµnν |z→0 , (1.38)

where nν is a unit vector orthogonal to the boundary.
Consider then a solution to the equations of motion of the gauge field

Aµ. We can deduce that the radial-directed bulk electric field is

∂LEM
∂(∂zA0)

=
∂(FµνFµν)

∂(∂zA0)
= Ez , (1.39)

and the field Aµ approaches its boundary value as

Aµ(~x, z) = A(0)
µ (~x) +A(1)

µ (~x)zd−2 + · · · . (1.40)

Substituting this function into the electromagnetic boundary action
(second term in (1.38)) we can see that the leading and subleading expan-
sion coefficients are coupled:

Sb = −
ˆ
ddx

√
−g(0)A(0)

µ (~x)A(1)µ(~x) + · · · , (1.41)

thus they should be regarded as holographic dictionary entries for con-
jugate operators in the boundary field theory. Knowing the asymptotic
behaviour (1.40), we can derive that the subleading term A

(1)
0 is the radial-

directed bulk electric field Ez evaluated at the boundary: A
(1)
0 (~x) =

Ez(~x), which in turn is equal to the surface charge density. So holo-
graphically we identify the subleading term with the negative3 boundary
charge density, A(1)

0 = ρ, and its conjugate A(0)
0 then can be recognized

as the chemical potential, A(0)
0 |z→0 = µ.

In a similar way we can interpret the spatial transversal components
of the gauge field. The spatial subleading expansion coefficients A(1)

i are
dual to the current Ji, while their sources A(0)

i are dual to spatial com-
ponents of the global U(1) boundary field. Note that interestingly the
bulk U(1) gauge field dualizes to the global U(1) current on the boundary.
That’s another basic property of the AdS/CFT correspondence: bulk

3Due to the overall minus sign in (1.41)
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gauge symmetries holographically encodes for global symmetries in the
field theory. That’s not only true for the discussed example of U(1), but
rather a generic property of the correspondence.

Temperature and chemical potential are two important thermodynam-
ical quantitites. But it is trivial to show that the GKPW rule provides
a complete description of the thermodynamics of the boundary quantum
field theory. By definition the free energy F of a QFT is the logarithm of
its partition function:

e−βF = 〈Z〉QFT , (1.42)

where β = 1/T . Through AdS/CFT , the right hand side of this identity
is equal to the bulk string theory partition function, or, in the large N
limit, to the classical exponent evaluated at the gravity saddle point. Thus
the free energy is simply

F = TSgrav , (1.43)

where the gravity action also contains a boundary term which fixes the
boundary conditions for the bulk fields in accordance with (1.29). All
other thermodynamical potentials can be derived from F .

1.3.5 Correlation functions from holography

One of the most important aspects of AdS/CFT is that we can also ex-
tract much more detailed microscopic information. In principle we can
compute the full set of correlation functions of the theory. Let us demon-
strate the holographic techniques on the two-point Green’s function, one
of the most physically interesting and simple to calculate quantities. For
simplicity, we firstly reproduce the standard result for a Green’s function
in a conformal field theory in Euclidean signature. After that we will com-
ment on how to use the power of holography to obtain Green’s functions
at strong coupling directly in the real time representation.

Consider a massive scalar field action:

S =
1
2

ˆ
dzddx

√
g
(
∂µφ∂

µφ+m2φ
)

, (1.44)

with the corresponding equations of motion:

1
√
g
∂µ(
√
ggµνφ(z, ~x))−m2φ(z, ~x) = 0 . (1.45)
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A solution to this equation in the Euclidean empty AdS space behaves
near the boundary as

φ(z, ~x) ' z∆−φ(0)(~x) + z∆+φ(1)(~x) + · · · , when z → 0 , (1.46)

where
∆± =

d

2 ±
1
2
√
d2 + 4m2 . (1.47)

We already know that the leading term φ(0)(~x) is a source for a dual
boundary operator,

´
ddxφ(0)(~x)O(~x).

The Green’s function of the differential operator (1.45) can be found
exactly:

G(0, ~x; z, ~x′) = z∆+

(z2 + |~x− ~x′|2)∆+
, (1.48)

so the solution (1.46) has a representation:

φ(z, ~x) =
ˆ
dd~x′

z∆+

(z2 + |~x− ~x′|2)∆+
φ0(~x

′). (1.49)

Having the solution, we can substitute it into the action, and evaluate
the functional derivative with respect to φ0(~x) to apply the GKPW rule.
The bulk action variation around the solution is zero by definition, so,
as before when we discussed the gauge field, all non-trivial structures are
contained in the surface boundary term:

δS(φ) =

ˆ
dd~x′dΣµ∂µφδφ , (1.50)

where dΣµ is the boundary area element. To apply the GKPW rule
(1.25),(1.26) we need to express this variation in terms of the bound-
ary data. Varying the boundary action is a subtle procedure that requires
accurate treatment of near boundary divergences. Without touching on
related technical issues, we just quote the result [38]:

δφ = z∆−δφ0, (1.51)

δS(φ) =

ˆ
dd~xdd~x′

φ0(~x)δφ0(~x′)

|~x− ~x′|2∆+
. (1.52)

Taking the first functional derivative, for the boundary vacuum expecta-
tion value sourced by φ0(~x) we get

〈O(~x)〉 = δ (−S(φ))
δφ0(~x)

= −
ˆ
dd~x′

φ0(~x′)

|~x− ~x′|2∆+
(1.53)
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Repeating the procedure we arrive at the correct result for the Euclidean
2-point conformal Green’s function:

〈O(~x)O(~x′)〉 = δ(−S(φ))
δφ0(~x)δφ0(~x′)

=
const

|~x− ~x′|2∆+
. (1.54)

Clearly ∆+ is the conformal dimension of the operator O in the boundary
field theory. We obtain a new holographic dictionary entry: the mass of
the bulk field corresponds to the conformal dimension of the dual boundary
operator.

In many cases, the Euclidean correlator can be then analytically con-
tinued to Lorentzian signature. However sometimes it is really necessary
to have the Lorentzian Green’s function right away. In particular, we
need it when dealing with systems out of equilibrium, like a supercon-
ductor quenched by an external pulse, or the quark gluon plasma that
exists for a tiny fraction of a second after the moment of a heavy ion
collision. In such time dependent cases, Euclideanization usually can not
be performed because the state of the theory is different at different time
instants, and the notion of global-in-time Wick rotation is ill-defined. Re-
markably, the AdS/CFT correspondence provides a generic prescription
for real-time response functions. But in order to derive it, we need to
resolve two issues.

One of the issues with real time QFT is rooted in the fact that unlike
the Euclidean case, we can have a multitude of different Green’s functions
(retarded, advanced, Feynman, Wightman). On the holographic side this
is reflected in the fact that there is no unique choice of boundary conditions
for the bulk field in the infrared.

For time-like bulk excitations there are two linearly independent so-
lutions to the equations of motion possessing the same near-boundary
regular asymptotics. On the other hand, near the Poincare horizon they
behave as

φ(z) ∼ e±iqz, z →∞, where q =
√
ω2 −~k2 . (1.55)

As proven in [39], for the retarded Green function GR we have to impose
infalling boundary conditions in the IR region:

φ(z) ∼ e−iqz . (1.56)

This choice is intuitively reasonable. Infallingness means that wave fronts
of the bulk field move towards the (black hole or Poincaré) horizon and
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disappear behind it. Thus it is in an agreement with the fact that GR
describes causal propagation of an excitation.

The second problem, apart from the ambiguity of the boundary con-
ditions, is that in the Lorentzian signature the two-point Green’s function
can not be calculated as a second functional derivative of the action. For
instance, the boundary action of a 4-dimensional scalar field theory eval-
uated on the classical solution is

Sbnd =

ˆ
d4k

(2π)4φ0(−k)F(k, z)φ0(k)|z=zHz=zB , (1.57)

where F(k, z) is a certain real function. Therefore the object naively
anticipated to be the retarded Green function is

− (F(k, z) +F(−k, z)) |z=zHz=zB , (1.58)

and it is completely real. So this can not be the correct GR.
In [40] it has been shown that we have to neglect contributions coming

from the horizon and contributions of negative momenta, and the proper
definition for the retarded propagator in holography is

GR(k) = −2F(k, zB) . (1.59)

This function has both real and imaginary parts, and was proven to re-
produce the correct real-time Schwinger-Keldysh formalism in [39].

The prescription (1.59) together with (1.56) works for any spacetime
metric with AdS asymptotics in an arbitrary dimension, giving us a pow-
erful universal tool for studying real time physics in quantum field theories
at finite temperature and charge density, with different field content, in
non-trivial external fields, in spatially modulated lattice backgrounds etc.

To summarize the aforementioned technical elements of the AdS/CFT
correspondence, let us provide the holographic dictionary in the form of a
short table.
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Bulk AdS gravity Boundary QFT
Extra dimension Renormalization group
Hawking temperature of a
black hole

Temperature

Maxwell U (1) gauge field Chemical potential and
charge density

Field Operator
Mass of a field Conformal dimension of a

dual operator
Space-time metric Energy-momentum tensor
Quantum numbers Quantum numbers

1.4 The correspondence as a method

In this section we survey several holographic models of real life physical
systems. By no means is this exposition exhaustive. The only goal is to
demonstrate that the AdS/CFT correspondence is a really universal lan-
guage that can be applied to a variety of problems in theoretical physics.
We start with a brief review of the very first paper on applied holography,
dedicated to the minimal shear viscosity of the quark-gluon plasma, and
then we focus on condensed matter theory applications of the AdS/CFT
correspondence - models of holographic superconductors and non-Fermi
liquids.

1.4.1 Minimal viscosity

When dealing with translationally invariant “planar” black hole solutions
in AdS, we may ask a question about the physics of small hydrodynamical
(long wavelength) fluctuations of the horizon and their boundary field the-
ory interpretation. It turns out that hydrodynamical response functions of
the boundary theory can be precisely encoded in the dual long wavelength
dynamics of gravity theories with horizons, providing a route to yet an-
other incarnation of applied holography - the fluid/gravity correspondence
[25].4

A particular system of interest in this context is the quark gluon
plasma formed in heavy ion collisions [42]. The QGP is a strongly-coupled

4Some subtleties arise if we wish to study high-frequency fluctuations in the bound-
ary field theory [41], but in the low-frequency limit the mapping is unambiguous.
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system that exhibits the behaviour of a nearly perfect quantum liquid,
and its experimentally measurable properties are defined by the hydro-
dynamical transport coefficients, especially by the shear viscosity that
measures the strength of transversal momentum transport in a liquid. So
it is natural to start our discussion of phenomenological applications of
the AdS/CFT correspondence with the result on minimal shear viscosity
obtained in [15, 16].

In a field theory, the shear viscosity can be calculated within the Kubo
formalism, which relates it to equilibrium two-point correlation functions:

η = lim
ω→0

1
2ω

ˆ
dtd3~xeiωt〈

[
Txy(t, ~x),Tx,y(0,~0)

]
〉. (1.60)

To compute the correlator in AdS/CFT , consider a simple thermal field
theory whose dual is the 5-dimensional Schwarzschild black hole in Poincare
coordinates:

ds2 =
1
z2

−(1− z4

z4
H

)
dt2 + dx2 + dy2 + dξ2 +

1
1− z4

z4
H

dz2

 . (1.61)

As we have discussed in the previous section, according to the AdS/CFT
correspondence the boundary energy-momentum tensor Tµν is dual to
metric perturbations hµν = gµν − g

(0)
µν in the bulk. From this perspective,

the correlator (1.60) corresponds to the graviton absorption rate by the
planar black hole:

σ(ω) = −2κ2

ω
ImGR(ω) =

κ2

ω

ˆ
dtd3~xeiωt〈

[
Txy(t, ~x),Tx,y(0,~0)

]
〉. (1.62)

Thus we see that
η =

σ(0)
2κ2 , (1.63)

where κ2 = 8πG is the gravitational Newton constant (1.30). Note that
the planar black hole has an infinite horizon are, so instead of the absolute
Bekenstein entropy we can define the entropy per unit area:

s =
a

4G =
2πa
κ2 . (1.64)

To calculate the quantity (1.63), we can assume that the metric per-
turbations are orthogonal to the “holographic” direction, and have only
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Figure 1.6. Dependence of the η/s ratio on the ’t Hooft coupling constant.

transversal xy-polarization. Then on the linearized level, the equation of
motion for hxy simplifies and takes the form of the Klein-Gordon equation
for a massless scalar:

�hxy = 0. (1.65)

This allows a shortcut to the answer - we can apply the theorem of univer-
sality of low frequency scalar field absorption by the black hole [43] and
claim

σ(0) = a =
κ2

2πs . (1.66)

So we arrive at a simple parameter-independent result

η

s
=
σ(0)
2κ2 =

1
4π , (1.67)

or, with restored units:
η

s
=

}
4πkB

. (1.68)

The result is remarkable in at least two fundamental aspects. Here we
have sketched the calculation for a simple planar 5-dimensional AdS-
Schwarzschild black hole, but this result was also obtained in many differ-
ent theories within the complete supergravity context, including models
dual to various brane configurations [44], and models with non-relativistic
Schroedinger symmetry [45]. In this regard it is very universal.
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This leads to a conjecture that η
s = 1

4π is the universal minimal bound
on the possible values of shear viscosity of quantum liquids, Fig. 1.6. For
a long time this conjecture was widely believed to be true, but finally it
was figured out that under certain circumstances, e.g. in the presence of
matter fields in the fundamental representation, this bound can be violated
[46]. Still, the shear viscosity of the quark gluon plasma measured in
experiments on high energy ion collisions [42] turned out to be very close
to the original 1

4π value. Historically, this was the first manifestation of
the surprising applicability of holographic duality to real life physics. And
this ignited the applied holography revolution.

1.4.2 The holographic superconductor

One of the first applications of the AdS/CFT correspondence to con-
densed matter physics was the formulation of a Landau-Ginzburg-like
scalar order parameter theory of superconductivity in holographic terms
[47].

This set up is particulary elegant. Again, consider a planar Schwarz-
schild black hole in four dimensions:

ds2 = −
(
r2 − M

r

)
dt2 +

dr2

r2 − M
r

+ r2(dx2 + dy2) . (1.69)

The boundary in these coordinates is at r →∞. Following the GKPW rule
we encode the superconducting order parameter charged under a global
U(1) current in a bulk complex charged scalar field coupled to the local
gauge U(1) field:

S =

ˆ
d4x
√
−g

(
−1

4FµνF
µν− (1.70)

− (∂µΨ− iAµΨ) (∂µΨ∗ + iAµΨ∗)) + 2ΨΨ∗, (1.71)

where the mass of the bulk scalar field is taken to be m2 = −2 for sim-
plicity.

The action in the bulk is just the abelian U(1) Higgs model. Higgsing
the gauge U(1) symmetry in the bulk corresponds to the spontaneous
global U(1) symmetry breaking, opening room for the Landau-Ginzburg
phase transition in the boundary field theory.

We now study the system at finite chemical potential, A0|r→∞ = µ.
Assuming time independence, homogeneity and isotropy, we impose the
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bulk gauge field to have only A0 = Φ non-vanishing component, and both
Ψ(r) and Φ(r) to be functions of only the holographic radial coordinate.
Then we arrive at the equations of motion:

Ψ′′ +
(
f ′

f
+

2
r

)
Ψ′ +

Φ2

f2 Ψ +
2
f

Ψ = 0, (1.72)

Φ′′ +
2
r

Φ′ − 2Ψ2

f
Φ = 0.

Solving them in the background (1.69), we obtain the near boundary
asymptotics:

Ψ =
Ψ1
r

+
Ψ2
r2 + · · · , as r →∞ , (1.73)

Φ = µ− ρ

r
+ · · · . (1.74)

As we already know, according to the AdS/CFT dictionary the lead-
ing coefficient in the near boundary expansion corresponds to the source
of a dual operator, and the subleading one corresponds to the expectation
value. Thus we can proceed with the following strategy:

• As we are interested in condensation of the order parameter, i.e. in
formation of the vev in absence of the source, we fix Ψ1 = 0.

• We want to study the thermal phase transition between disordered
and superconducting phases, and demonstrate that the system un-
dergoes a second order phase transition as the temperature ap-
proaches a critical value Tc. In the holographic setting we can do
this by varying the Hawking temperature of the bulk black hole.

• In the superconducting phase we analyze the electric conductivity
of the field theory by considering perturbations of spatial compo-
nents of the gauge field, and explore whether it indeed exhibits the
characteristic gap associated with order parameter condensation.

We begin with the analysis of the order parameter condensation. To make
our notation consistent with [47], we normalize the order parameter as

〈O2〉 =
√

2Ψ2. (1.75)
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Figure 1.7. Thermal phase transition between superconducting and normal
phases of a holographic superconductor.

Its dependence on the temperature can be deduced numerically, and can
be perfectly fit with the following law (see also Fig.1.7):

〈O2〉 = const · Tc
(

1− T

Tc

) 1
2

. (1.76)

One can notice that this is completely consistent with the Landau-Ginzburg
critical exponent of the second order thermal phase transition in a super-
conductor.

Next we have to analyze the transport properties of the order param-
eter and make sure that it really superconducts. Let us recall that in
AdS/CFT , the boundary electromagnetic current and its source - elec-
tric field - are encoded in the near boundary expansion of the spatial bulk
gauge field components:

Ax = A(0)
x +

A
(1)
x

r
+ · · · , (1.77)

Abndx = A(0)
x , 〈Jx〉 = A(1)

x . (1.78)

Consider a small, constant frequency perturbation of the gauge field along
the x direction:

Ax = Ax(r)e
−iωt . (1.79)

Then we can rewrite the Ohm law as
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Figure 1.8. Electric conductivity of the holographic superconductor. The D.C.
conductivity in the ordered phase is delta function-like, and the A.C. conduc-
tivity exhibits a characteristic gap which gradually increases as we lower the
temperature .

σ(ω) =
〈Jx〉
Ex

= − 〈Jx〉
∂tAx

= − iA
(1)
x

ωA
(0)
x

(1.80)

Thus, once we know the solution to the linearized equation of motion for
the gauge field, we can read off the conductivity from the near boundary
behaviour of Ax.

The e.o.m. is

A′′x +
f ′

f
A′x +

(
ω2

f2 −
2Ψ2

f

)
Ax = 0 . (1.81)

Solving this equation of motion with infalling boundary conditions near
the horizon, we can show that the A.C. conductivity has a gap that grad-
ually increases when the temperature is lowered, and the density of the
condensate increases. This gap is qualitatively similar to the gap in a
conventional Bardeen-Cooper-Schrieffer superconductor [48], but contra
to the standard case, the conductivity is never strictly zero at low frequen-
cies. Rather, we have a soft “algebraic” gap, σ(ω) ∼ ωp, where p > 0.
The D.C. conductivity in the ordered phase exhibits a delta function-like
peak at ω = 0 which persists upon increment of the temperature (Fig.
1.8). The peak might be misinterpreted as yet another signature of su-
perconductivity, but we should be careful here. The considered model is
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translationally invariant, so there is no source of momentum dissipation
like an atomic lattice or disorder, and the peak is there even in the non-
SC phase. Therefore, strictly speaking, we can not judge whether it is a
superconductor or a perfect conductor from this consideration. However,
in follow-up papers it was shown that the conductivity peak in the con-
densed phase is not destroyed by translational symmetry breaking [49], so
the system actually exhibits superconductivity.

Ideologically, this holographic superconductor is very similar to the
superconductor of the Landau-Ginzburg theory. However, it differs in two
crucial aspects. First of all, holographically it is possible to describe a
scalar order parameter of an arbitrary scaling dimension. Microscopically
the scalar is formed of fermionic pairs, so in a weakly interacting system
the scaling dimension of the order parameter is just twice that of the
fermionic operator dimension, ∆s = 2∆f . At strong coupling it might
be renormalized due to strong non-perturbative interactions, and holog-
raphy can naturally capture this. Secondly, holographic superconductiv-
ity emerges from a critical rather than quasi-particle system. Criticality
(in other words, emergent conformal invariance in many-body systems) is
commonly believed to underlie the physics of many unconventional phases
of strongly correlated systems, like high-Tc superconductors and strange
metals [50]. In this regard, AdS/CFT is able to explore a whole new range
of physical systems, which are inaccessible by perturbative quantum field
theory.

1.4.3 AdS/CFT and fermionic matter

In the previous subsection, we have demonstrated how the holographic
correspondence can be applied to describe a superconducting phase tran-
sition. The next step to be done is to go beyond the order parameter
level and take into account the fermionic nature of strongly correlated
systems.5

The only really well understood phase of fermionic matter is the weakly
interacting Fermi liquid [51], and the associated BCS superconductor [52].
The key assumption of the standard Landau theory of the Fermi liquid
is the existence of coherent long-living quasiparticle excitations near the
Fermi surface. In field theoretical terms, this means that the correspond-
ing fermionic Green function has a sharp pole at a well-defined Fermi-

5This will also be an important motivation for Chapter 2 of this thesis.
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momentum kF . However at strong coupling we should not expect the
quasi-particle picture to be universal. Strong interactions can cause com-
plicated emergent phenomena that manifest themselves in non-trivial re-
construction (or even destruction) of the Fermi surface, modification of
the dispersion relations, exotic transport properties etc.

As we discussed earlier, the conventional analytic and numerical meth-
ods fail to provide us with a universal tool to study such systems. Is
AdS/CFT capable of bringing us a better understanding of strongly cou-
pled fermionic matter at finite charge density, and of providing a mathe-
matical description of phases of quantum matter beyond the conventional
Fermi liquid picture? This issue has been addressed independently in
Leiden and MIT in 2009 [31, 32], and the result of these studies was a
holographic model that clearly exhibits properties of a finite density state
of fermionic matter that is not a Fermi liquid; we will call such states
non-Fermi liquids.

Consider a 4-dimensional Einstein-Hilbert-Maxwell theory (as in the
example of the scalar holographic superconductor), but add to the action
a fermionic term6:

Sψ =

ˆ
dd+1x

√
−gi

(
ψ̄ΓMDMψ−mψ̄ψ

)
, (1.83)

where the covariant derivative is

DM = ∂M +
1
4ωabM

[
Γa, Γb

]
− ieAM . (1.84)

Here ωabM is the spin connection, and e is the fermionic electric charge. As
we discussed in Sec. 1.3.4, finite charge density at the boundary dualizes
to the electric field in the bulk, so in order to account for it we will put
the bulk fermion in the background of a charged Reissner-Nordström black
hole (and for simplicity treat the fermionic field as a probe):

ds2 = r2
(
−f(r)dt2 + d~x2

)
+

1
r2

dr2

f(r)
, f(r) = 1+ Q2

r4 −
1 +Q2

r3 . (1.85)

6In what follows the capital latin indicies denote coordinates in the bulk, the greek
boundary coordinates, and the small latin ones coordinates on a flat tangent bundle.
Indices on the gamma matrices always correspond to the tangent space. We choose the
gamma matrices basis as

Γr =

(
1 0
0 −1

)
, Γr =

(
0 σµ

σµ 0

)
, (1.82)

where σµ are the Pauli matrices.
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Here Q is the dimensionless charge of the black hole, and the electric field
is

A0 = µ

(
1− 1

r

)
µ = gFQ , (1.86)

where gF is the coupling constant of the Maxwell gauge field.
It is convenient to split the four-component fermionic field into two

two-component eigenfunctions of the projector:

(1 + Γr)ψ± = ±ψ± , (1.87)

Fourier transform it along the boundary directions, and rescale

ψ± (−ggrr)−1/4 e−iωt+
~k~xφ± . (1.88)

The Dirac equations then become√
gii
grr

(∂r ∓m
√
grr)φ± = i

√
−gii
gtt

(
ω+ eQ

(
1− 1

r

))
φ± − ikiσiφ∓.

(1.89)
We are interested in the fermionic Green’s function. As shown in

[32, 53], in order to derive the Green’s function, instead of evaluating the
classical action at the saddle point, one just can analyze the near boundary
asymptotics of the Dirac bulk wave function:

φ+ = A(ω,~k)rm +B(ω,~k)r−m−1 + · · · , r →∞ (1.90)
φ− = C(ω,~k)rm−1 +D(ω,~k)r−m + · · · . (1.91)

Then
GR = −iD(ω,~k)A−1(ω,~k) . (1.92)

As described in [31, 32], imposing infalling boundary conditions at the
horizon we can evaluate this function. What has been found is that the
theory has a number of remarkable features that distinguish it from the
conventional Fermi liquid:

• At zero temperature, the spectral function of the theory has a Fermi
surface pole, but the corresponding dispersion relation is not of the
linear Landau type ω ∼ vF (k− kF ), but rather

ω ∼ (k− kF )z , (1.93)

where z can be any value dependent on the parameters of the model.
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• As the temperature is raised, the peak is smoothed out. However
unlike the Fermi liquid case, its width is not just quadratic in fre-
quency/temperature, but depends non-trivially on frequency and
momentum [31]:

Γ = tan γ|ω?(kF )| , (1.94)

where ω? is the resonant frequency at the Fermi level where the peak
is located, and γ is a numerical parameter.

• Another non-FL feature of the model is that, near the Fermi mo-
mentum kF , it has a strong particle-hole asymmetry:

Gii(ω,~k) 6= Gii(−ω,~k). (1.95)

• In the limit of small frequencies, the Green function exhibits loga-
rithmic oscillations G ∼ ei logω.

• The system can have a multitude of Fermi-surfaces.

It remains to be checked experimentally what properties of the holographic
non-Fermi liquids can be observed in nature. However, it is already clear
that the AdS/CFT provides a powerful tool for modeling fermionic sys-
tems at finite density beyond the quasi-particle paradigm, and even if
this simplest model does not capture all possible physics, the holographic
approach has the capacity for constructing more realistic setups [19, 54].

1.5 This thesis

In this thesis we apply the AdS/CFT correspondence to three problems
belonging to different areas of theoretical physics.

Chapter 2 is dedicated to the holographic description of superconduc-
tivity. While most of the holographic setups describe this phenomenon
on the level of the scalar order parameter, a realistic theory should take
into account the strong pairing between microscopic fermionic degrees of
freedom. Here we make a first step towards filling in the gap and study
pairing-induced superconductivity in strongly coupled systems at finite
density. The inroad is to study the pairing of quasi-particles. We have
just described a holographic model of a non-Fermi liquid, but we can easily
change it to a regular Fermi liquid by introducing an IR hard wall cut-off.
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This removes gapless critical excitations and allows one to controllably ad-
dress the dynamics of a single confined Fermi surface. Then, in the weakly
coupled dual gravitational theory, the mechanism is that of conventional
BCS theory. We study in detail the interplay between the scalar order
parameter field and fermion pairing. It is very natural in holography to
introduce independent bulk dynamics for the scalar field as well, which
corresponds to a non-trivial RG flow of the order parameter. One can then
demonstrate that the theory experiences a BCS/BEC crossover controlled
by the relative scaling dimensions of the scalar and fermionic operators.
A novel technical issue we encounter here is unexpected resonances in the
canonical expectation value of the scalar operator at certain values of the
scaling dimension, which indicate that in the presence of interacting fields
in the bulk, the standard holographic dictionary requires modification.

In chapter 3 we analyze the holographic quark gluon plasma (QGP)
formed at a very early stage right after the collision of heavy ions. The
T − µ phase diagram of the QGP is constructed by using a holographic
dual model for the heavy ion collision. In this dual model, colliding ions are
simulated by charged gravitational shock waves. In accordance with the
suggestion in [55], the formation of the deconfined QGP phase is associated
in dual terms with the creation of a black hole in the collision of shock
waves, which can be detected in the appearance of a trapped surface.
Hadronic matter and other confined states correspond to the absence of a
trapped surface after the collision.

In addition, we estimate the multiplicity of the ion collision process,
i.e. the number of hadrons that forms when the quark gluon plasma has
frozen out, which in the dual language is proportional to the area of the
trapped surface. We show that a non-zero chemical potential reduces the
multiplicity. To plot the phase diagram we use two different dual models of
colliding ions, the pointlike and the wall shock waves, and find qualitative
agreement of the results.

Finally, in chapter 4 we address a more exotic issue, namely the dy-
namical evolution of a quantum field in a time machine. Three dimensional
gravity in AdS has a very simple eternal time machine solution based on
two conical defects moving around their center of mass on a circular or-
bit. Closed time-like curves in this spacetime extend all the way to the
boundary of AdS3, violating the causality of the boundary field theory.
We apply AdS/CFT to obtain the dual interpretation of this spacetime.
By use of the geodesic approximation, we address the “grandfather para-
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dox” in the dual 1+ 1 dimensional field theory and calculate its two-point
causal Green’s function. It has a non-trivial analytical structure both at
negative and positive times, providing us with constructive intuition on
how an interacting quantum field could behave once causality is broken.
In particular a clear effect we can see is revivals of the field at certain time
moments in the past, preceding the act of the Green’s function sourcing.

We conclude with a discussion of the obtained results and put them
into a wider context of the holographic Glass Bead Game.
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Chapter 2

Pairing induced
superconductivity in
holography

2.1 Introduction

The puzzles posed by strongly correlated electron systems have been con-
siderably illuminated in recent years by the application of gauge-gravity
duality. This “holography”, which translates the challenging strongly cou-
pled dynamics to an equivalent weakly coupled gravitational theory in one
dimension higher, has given qualitative new insights into quantum critical
transport [1, 2], superconductivity beyond the weak coupling Bardeen-
Cooper-Schrieffer (BCS) paradigm [3–5], and non-Fermi liquids [6, 7].

A simple way to pose the challenge of strongly coupled systems is that
the familiar weakly coupled particles no longer exist as controlled exci-
tations in this regime of the theory. Our microscopic understanding of
the observed macroscopics in condensed matter usually rests on the no-
tion of an electron(ic quasi)-particle — a charged spin 1/2 fermion — as
the fundamental degree of freedom. The theory of Fermi-liquids and the
BCS description of superconductivity are good examples of such weakly
coupled systems. Even in strongly correlated phases, parts of this elec-
tron quasi-particle picture survive. The transition from such a strongly
correlated phase to a superconducting phase is still thought to arise from
fundamental electron pairing at the microscopic level. After all, these
are the only relevant charge carriers in the system. The open puzzle in
strongly correlated electron systems such as high Tc superconductors is
the nature of the “glue”: the interaction that allows pairs to form.

In this chapter we take this suggestion that simple pairing mecha-
nisms should survive in strongly coupled systems to heart. While staying
ignorant on the glue, it is a very natural step to incorporate the BCS
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theory in the holographic framework. A straightforward reason to do so
is to use this very well understood standard theory of superconductivity
as a benchmark and inroad into a deeper understanding of holographic
fermions. Although AdS/CFT models of superconductivity that have
been constructed up to now are quite successful in capturing the main
universal properties of real superconductors, they describe physics on the
Landau-Ginzburg level of a scalar order parameter. In doing so it mani-
festly cannot reveal details of the underlying microscopic mechanisms that
drive the superconducting instability, but it also ignores the Cooper pair
origin of the order parameter. Our specific question here is whether holo-
graphic BCS can fill in the latter gap while being agnostic on the former,
and serve as a good foothold for further research on this topic.

The most straightforward implementation of Cooper pairing in holog-
raphy is to incorporate an attractive four-fermi interaction in the grav-
itational dual theory. In essence one now has a weakly coupled BCS
interaction in the dual description of the strongly coupled theory. Pairing
instabilities in this set-up were studied in [8], and the formation of a gap in
the fermion spectral functions in a fixed Landau-Ginzburg holographic su-
perconductor background, charactertistic of the broken groundstate, was
shown in [9]; see also [11].

Both these studies consider the fermions as probes. Since then our un-
derstanding of holographic fermions has increased and we now understand
that some of the peculiar holographic effects, in particular the non-Fermi-
liquid behavior, arise from a coupling to an interacting critical IR [12]. We
shall use that improved understanding to go beyond the probe limit and
study the full condensation of any paired state, its subsequent ground-
state and the self-consistent gap in the fluctuations around it. One way
to fully treat the fermion physics is to approximate the fermions in the
gravitational dual in a macroscopic fluid limit [13, 14]. In this electron
star approximation it is possible to understand the full macroscopic fea-
tures of the system as it includes gravitational backreaction. A companion
article takes this approach [15]. The drawback of the fluid limit is that it
essentially describes a system with infinitely many Fermi surfaces — one
for each mode in the extra radial AdS direction. This is very unusual from
a condensed matter point of view.

Here we pursue an approach that allows us to concentrate on the dy-
namics of a single Fermi surface. This requires us to consider the fermions
quantum-mechanically. In the straightforward holographic set-up this
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“quantum electron star” is fraught with subtle issues due to zero-point
energy renormalization and its effect on the gravitational background
[16, 17]. From the perspective of the field theory side this difficulty is
the interaction with the large number of surviving IR degrees in addition
to the Fermi-surface quasiparticle. As our first goal is to simply recover
the physics of regular BCS in the dual description, the straightforward so-
lution is to lift these extra IR degrees of freedom, and start with a regular
confined Fermi-liquid. This can be done by the addition of a hard-wall
[12, 16]. This also discretizes the infinite number of Fermi surfaces dual
to each radial mode that the AdS theory describes. We then tune the
chemical potential such that only a single Fermi surface is occupied. This
has the added virtue that the gravitational backreaction will be small,
and we are allowed to neglect it. In this straightforward set-up the bulk
AdS computation reduces to a standard Hartree BCS calculation but with
relativistic fermions in an “effective box” that is spatially curved. This
has several technical consequences: working in d = 3+ 1 bulk dimensions,
there is an effective spin-splitting in that the up and down spin fermions
have different Fermi-momenta [18, 19]. Furthermore the non-trivial wave-
functions of the fermions enter into the gap equation. Accounting for this,
we shall show that in this hard wall model conventional BCS maps cleanly
between the dual gravitational theory and the strongly interacting field
theory on the boundary.

To connect this closer to previous study [9] including the standard
Landau-Ginzburg holographic superconductor, we next allow the gap-
operator to become dynamical: i.e. we introduce a kinetic term for the
scalar field in the gravitational bulk. The interpretation of this in the
dual field theory is that we have explicitly added an additional charged
scalar operator in the theory, that can independently condense. The char-
acteristic quantum number of this new scalar operator in the strongly
coupled critical theory is its scaling dimension. Following the well-known
AdS/CFT dictionary, this translates into the mass of dual scalar field in
the gravitational bulk. For very high mass/dimension the field/operator
decouples and we have the conventional BCS scenario constructed earlier.
For low masses, the field/operator starts to mix with the Cooper pair op-
erator, and we observe a BCS/BEC crossover. Here we find a novel result.
When the operator dimension is strictly degenerate with the that of the
Cooper pair, the expectation values of each diverge. Nevertheless their
sum — equal to the order parameter — and the gap stay finite. In effect
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the extra scalar and the Cooper pair act as a π-Josephson pair in that the
relative phase of the condensates is opposite.1

However, when the operator dimension is degenerate with that of a
higher derivative cousin of the Cooper-pair — higher conformal partial
wave — there is another resonance where the naive expectation values
of each diverge. Arguably the gap should stay finite for any value of
the scaling dimension. A direct application of AdS/CFT rules does not
extract the gap cleanly and indicates that a clearer definition of the order
parameter vev is needed in the AdS/CFT dictionary. We will address this
in future work. Here we conclude by shownig that one can easily construct
an expression that has the right order parameter property in that it stays
finite. This postulated gap shows a clean BCS/BEC crossover.

2.2 Review of fermion spectra in the AdS dual:
spin splitting

To start we shall recall a lesser known point of spectra of holographic
fermions: the spectra depend on the spin [18, 19]. The spectra follow
from the simplest AdS model of fermions, Einstein Dirac-Maxwell theory
— we shall add the BCS interaction in later. The action is

S =
1

2κ2

ˆ
d4x
√
−g

(
R+

6
L2 −

1
4FµνF

µν + ΨΓµDµΨ−mΨΨΨ
)

, (2.1)

Here the covariant derivative equals Dµ = ∂µ+
1
4ω

ab
µ Γab− iqAµ, and Ψ =

iΨ†Γ0. For the background we choose a pure AdS4 spacetime with AdS
radius L equal to one, and cut-off by a hard wall at a finite value of the
holographic direction z = zw.

ds2 =
1
z2

(
−dt2 + dz2 + dx2 + dy2

)
, z ∈ [0, zw], (2.2)

We shall consider a large charge q � κ where it is consistent to ignore
gravitational backreation. The cut off at zw plays a double role. Together
with the AdS potential well, it renders the interval along the holographic
coordinate 0 < z < zw effectively finite. This leads to quantization of
fermionic energy bands ωn(k) (where n is the discrete band number).

1Recall that the absolute phase of a condensate is unobservable.
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Therefore, on the one hand, we have well-defined sharp long living quasi-
particles, and on the other hand the removal of the geometry beyond zw
corresponds to a gapping out of normally present low energy deconfined
degrees of freedom. This fundamental gap is also present in the fermion
spectra itself. See Fig. 2.1(a). In this set-up we can arrive at the dual de-
scription of a single Fermi liquid by tuning the chemical potential such that
exactly one band is partially occupied [12]. The charge density produced
by the occupied fermions backreacts on the gauge field and its profile and
the subsequent adjustment in the fermion spectra can be determined in
a self-consistent Hartree manner [12]. Changing zw changes the size of
the gap and the level spacing (larger values of zw correspond to smaller
gap), but does not affect the qualitative picture. Only for strictly infinite
zw do we enter a new critical regime which requires a completely differ-
ent analysis [16, 17]. We will keep zw finite throughout and therefore set
zw = 1 for most of the remainder without loss of generality. Since all our
computations will only depend on the combination qA0, we also set q = 1
in every numerical calculation from hereon.

As we shall review now, due to the spin carried by the relativistic
fermions there are actually two Fermi liquids. Moreover, the (background
or self-generated) electric field provides a spin-orbit coupling that renders
them slightly non-degenerate in the curved background geometry. In ad-
dition the lowest energy state is at a non-zero momentum value; this is
known as the plasmino mode [18, 19]. This non-degeneracy of the different
spin Fermi surfaces will be important in that it leads to a more complex
pairing of the fermions.

The spectrum of the fermions is given by normalizable solutions to the
Dirac equation. Eliminating the spin connection by rescaling

Ψ = (−ggzz)−1/4 ψ = z3/2ψ, (2.3)

Fourier transforming along the boundary directions, and making the as-
sumption that the only non-vanishing component of the vector potential
is A0, the Dirac equation reduces to the eigenvalue problem(

iΓ0Γz∂z + kiΓiΓ0 − qA0 − i
mΨ

z
Γ0
)
ψ = ωψ, (2.4)

Hereinafter we use tangent-space gamma-matrices, and i = 1, 2 refers to
the boundary spatial indices.
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Due to the impenetrability of the hard wall we choose the canonical
momenta to vanish at z = zw:

1
2 (1 + Γz)ψ(zw) = 0 , A′0(zw) = 0. (2.5)

At the boundary z = 0 we demand that the fermion and scalar fields are
normalizable (i.e. vanish sufficiently fast), and the boundary value of the
gauge field sets the chemical potential in dual field theory: A0(0) = µ.

The fermion spectra are determined together with the gauge field pro-
file self-consistently by (numerical) iteration [12]: solve the Dirac equation
for a given gauge field profile (for the initial profile A0(z) = µ). Then solve
Maxwell equations∇µFµν = −iq〈ΨΓνΨ〉 with the source determined from
the normalizable wave-functions. This gives a new gauge field profile for
A0, etc. the result converges to a self-consistent solution after a few iter-
ations (Fig. 2.2).

The interesting feature of the spectrum is that each band has a fine
structure. To understand the origin of this splitting we examine profiles of
the two spinor modes corresponding to the first band. Fermion spectra are
frequently analyzed using rotational invariance to rotate the momentum
ki parallel to the x-axis and choosing an appropriate basis of the gamma
matrices one can simplify the problem [6]. It will, however, be useful for
us to keep the rotational symmetry manifest. Our objective is to separate
the radial evolution of the fermion from its spinorial structure as much as
possible. We can solve the Dirac equation (2.4) with the ansatz

ψ±(z) = A±
(
z, |~k|

)
u±
(
k̂i
)
+B±

(
z, |~k|

)
Γ0u±

(
k̂i
)

, (2.6)

where A±
(
z, |~k|

)
and B±

(
z, |~k|

)
are functions of the radial coordinate

and u±
(
k̂i
)

are spinors (with unit norm) independent of z. The latter
are defined by the following properties

Γzu±
(
k̂i
)
= u±

(
k̂i
)

, k̂iΓiΓ0u±
(
k̂i
)
= ±u±

(
k̂i
)

, (2.7)

where k̂i is a unit (boundary) vector pointing to the direction of the mo-
mentum ki. In the basis (2.15) (which we will use later in this chapter)
and with a momentum parallel to the x-axis u+ (u−) is the spinor with
only fourth (first) nontrivial component.

50



The Dirac equation implies that

(
±|~k| − qA0(z) imΨ

z + i∂z
−imΨ

z + i∂z ∓|~k| − qA0(z)

) A±
(
z, |~k|

)
B±

(
z, |~k|

)  = ω

 A±
(
z, |~k|

)
B±

(
z, |~k|

)  .

(2.8)
Provided the electrostatic potential is regular near the AdS boundary at
z = 0, the asymptotic behavior of the solution is

 A±
(
z, |~k|

)
B±

(
z, |~k|

)  = a

(
0
1

)
z−mΨ + b

(
1
0

)
zmΨ . (2.9)

Normalizable solutions are those with a = 0. Note that the scaling dimen-
sion of the original fermion is ∆Ψ = mΨ + 3

2 and we obtained the powers
of z above as a result of the rescaling (2.3). In the IR, the boundary
condition (2.5) implies that A±

(
zw, |~k|

)
= 0.

In the absence of an electric field (i.e. A0(z) is constant), the positive
and negative modes have the same energy. In this case we can actually
solve our problem exactly in terms of Bessel functions [12]

 A±,n
(
z, |~k|

)
B±,n

(
z, |~k|

)  = N±
√
z

 JmΨ− 1
2

(
jn
zw
z
)

i
±|~k|−

√
(jn/zw)2+~k2

jn/zw JmΨ+
1
2

(
jn
zw
z
)
 ,

(2.10)
with the dispersion relation ωn =

√
(jn/zw)

2 + ~k2 − qµ. Here jn is the
n-th zero of the Bessel function JmΨ−1/2, and N± is the normalization
constant.

However, in the presence of an electric field in the bulk (A′0(z) 6= 0)
the positive and negative modes no longer have the same energy anymore.
The reason is that the densities of the two modes (2.10) have different
radial profiles. The “effective chemical potential” A0(z) felt by each mode
is therefore different, if the gauge field has a non-trivial z dependence, and
this results in a different energy shift for the two modes (Fig. 2.1(b)).

51



óðð óë ë ðð
µ

óðð

óë

ë

ðð

©

(a)

óëëë óëëð óðëë ðëë ëëð ëëë
µ

óðëëë

óðëëð

óðëðë

ðëðë

ðëëð

ðëëë

©

(b)

Figure 2.1. (a): Fermionic spectrum in the AdS-hardwall background at zero
chemical potential zw = 1 and mΨ = 1(b): Spectrum of fermions with unit mass
(and zw = 1) in the presence of externally applied electric field qA0(z) = 4.5− 2z
(without backreaction). We can observe that degeneracy of the two spin states is
resolved, and state of a minimal energy is at non-zero momentum. The red and
blue curves correspond to positive u+(k) and negative u−(k) modes respectively.
(When the electric field is self-generated by the fermions the effect is smaller, see
Fig. 2.2(a))
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Figure 2.2. (a): Fermionic spectrum in the self-consistent solution of the
fermion+gauge field system at qµ = 4.5, zw = 1 and mΨ = 1. The red and
blue curves represent the modes with positive and negative eigenvalues of k̂iΓiΓ0

respectively. (b): The profile of the gauge field sourced by the fermions.
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2.3 Self interacting fermions in AdS and a bulk
BCS theory

2.3.1 Majorana interaction

To study pairing driven superconductivity we now add a quartic contact
fermionic interaction in the bulk of AdS:

Lcontact =
η2

5
m2
φ

z6
(
ψCΓ5ψ

)† (
ψΓ5ψC

)
, ψ = iψ†Γ0, ψC = CΓ0ψ∗

(2.11)
ψC here is a charge conjugated spinor, and the z6 factor is due to the
rescaling (2.3). One can also consider the naive relativistic generalization
of the Cooper pair ψCψ. However to boil down to standard BCS in non-
relativistic limit, where the coupling occurs in s-wave channel between
states time-reversed to each other, the unique Lorentz invariant term is
actually the Majorana coupling ψCΓ5ψ (see e.g. [20] for details). We
therefore focus only on this term.

As was shown in [18] the direction of the spin of each of the slightly
offset modes is perpendicular to the momenta and the two modes have
opposite spin. The zero-momentum pairing therefore occurs between op-
posite spin, without any mixing of the two fermion modes, see Fig. (2.3).

To analyze the interacting theory, we perform the standard Hubbard-
Stratonovich transformation with the introduction of an auxiliary the
scalar field φ(z) with charge qφ = 2q dual to the superconducting conden-
sate. The scalar part of the action thus takes the form

S =

ˆ
d4x

(
iη∗5φ

∗z3ψCΓ5ψ+ h.c.−m2
φφφ

∗
)

(2.12)

This is the theory studied in [9, 8] with the kinetic term for the scalar
turned off. We shall reintroduce this kinetic term in section 2.4.3.

2.3.2 Nambu-Gorkov formalism

The resulting system differs from standard BCS in that, as before, we
are including the backreaction of the finite density fermions on the gauge
field. Assuming translational invariance in the boundary directions, and
restrict the scalar and the gauge field to depend only on z-coordinate, the
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Figure 2.3. The two Fermi surfaces and the BCS pairing for the same param-
eters as in Fig. 2.2. The arrows indicates the direction of the spin of the modes.
The pairing happens between opposite spins.

holographic BCS system is formed by

−m2
φφ(z) = −iη∗5z3〈ψcΓ5ψ〉,

z2A′′0 − 2q2
φA0φ

2 = qz2〈ψ+ψ〉. (2.13)

The fermionic expectation values are assumed to only depend on z as
well; they are averaged over all other directions. To compute them, it
is convenient to rewrite the action in a quadratic form in terms of the
Nambu-Gorkov spinors. We choose the following basis of gamma-matrices

Γ0 =

(
iσ2 0
0 iσ2

)
, Γ1 =

(
σ1 0
0 σ1

)
, Γ2 =

(
0 σ3
σ3 0

)
, (2.14)

Γ3 =

(
σ3 0
0 −σ3

)
, Γ5 =

(
0 −iσ3
iσ3 0

)
.
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and rewrite the fermionic part of the action as

SD + SM =

ˆ
d4x
√
gzz

[
ψΓµ(∂µ − iqAµ)ψ−mΨψψ− (2.15)

−iη∗5φ∗ψcΓ5ψ+ h.c.
]
=

ˆ
d4xχKχ,

where the Nambu-Gorkov spinor χ equals

χ =


ψ1
ψ2
ψ∗3
ψ∗4

 . (2.16)

Taking the pure AdS metric (2.2) explicitly, and using rotational invari-
ance of the problem to set ky = 0, the kinetic matrix K equals

K =

(
D11 2η5

φ
z σ3

−2η∗5
φ∗

z σ3 D22

)
, (2.17)

with
D11 = iσ2(∂0 − igA0) + σ1∂x + σ3∂z −

mΨ

z
, (2.18)

D22 = iσ2(∂0 + igA0) + σ1∂x − σ3∂z −
mΨ

z
. (2.19)

The fermionic expectation values can be written in terms of the Nambu-
Gorkov Green’s function, which satisfies the equation

iΓ0KGχiχ+
j
(t, ~x; t′, ~x′) ≡ (i∂0 −H)Gχiχ+

j
(t, ~x; t′, ~x′)

= iδ(t− t′)δ (~x⊥ − ~x′⊥) δ(z − z′). (2.20)

Note the additional factor of iΓ0 in our definition.
We determine the Green’s function by spectral decomposition. For

this we solve the Dirac eigenvalue problem in presence of both the (back-
reacted) scalar and gauge field

H(i~k, z)χ~k,n(z) = ω~k,nχ~k,n(z). (2.21)

Note, that the Nambu-Gorkov formalism flips the signs of some pieces of
the spectrum. Fig. 2.4(a) shows how the two low-lying energy bands in
Fig. 2.2(a) look like in the Nambu-Gorkov formalism.
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Figure 2.4. (a): The lower two bands from Fig. 2.2 in the Nambu-Gorkov
convention (with parameters qµ = 4.5, zw = 1, mΨ = 1). (b): Energy spectrum
for constant gauge field qA0 = qµ = 4.5 and linear fixed scalar profile φ(z) = z
at η5 = 0.25 (zw = 1, mΨ = 1). The spectrum is gapped at the Fermi surface.

It is convenient to write (2.21) in terms of (α1,α2,α3,α4) = (χ1, iχ2,χ3, iχ4).
In this way the redefined “Hamiltonian” H is real (but we will still denote
it with H).

We will construct the spectrum numerically, but it is instructive to
first consider a toy example. We wish to show that the fermion spectrum
becomes gapped in the presence of a condensate for φ. Consider the special
case when the gauge field is constant A0 = µ, and the scalar field profile
is linear φ(z) = z. Then it is possible to solve the Dirac equation exactly,
and the dispersion relation (corresponding to the first band) takes the
form (Fig. 2.4(b)):

ω2 =

(
qµ−

√
(j1/zw)

2 + k2
)2

+ (2η5)
2, (2.22)

where j1 is the first zero of the Bessel-function JmΨ−1/2. We visibly see
the eigenvalue repulsion responsible for the opening of a gap.

2.3.3 Perturbative calculation of the scalar source

In the Nambu-Gorkov formalism it is straightforward to compute the form
of fermionic bilinears sourcing the electric and scalar fields (see Appendix
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A for details).

〈ψ+ψ〉 = 1
2π
∑
n

ˆ
dk|k|

(
α2
k,n,1 + α2

k,n,2

)
Θ (−ωk,n) (2.23)

〈ψ̄CΓ5ψ〉 = i

2π
∑
n

ˆ Λ(ωD)

−Λ(ωD)
dk|k| [Θ (ωk,n) (αk,n,1αk,n,4 − αk,n,2αk,n,3)]

(2.24)
where the sum is over the various bands (i.e. radial modes). The sum
in the Cooper pair condensate needs to be cut-off at a momentum scale
Λ in order to be well-defined. This momentum cut-off corresponds to an
energy cut-off ωD.2 From now on we will be using real coupling constant
η∗5 = η5.

A direct discretization of the momentum integral in (2.24) is not the
most reliable way to numerically computing the fermionic source for the
scalar field because contributions from different momenta are sharply
peaked around the Fermi surfaces. For higher numerical accuracy and
analytical control we solve (2.21) perturbatively in the scalar field. For
this we split the Hamiltonian into an unperturbed piece and an interac-
tion piece H = H0 + V , H0 = H|η5=0. The typical spectrum for the
unperturbed operator looks like the one in Fig. 2.4(a). With our choice of
Gamma-matrices, the eigenspinor with the unperturbed energy ω

(0)
k and

momentum parallel to the x-axis takes the form (we omit the band index)

α
(0)
k,+ =

(
ξk
0

)
(2.25)

where ξk is a two component spinor. There is also a mode

α
(0)
k,− =

(
0

iσ2ξk

)
(2.26)

with −ω(0)
k , for which only the lower two components are non-zero. Using

nearly degenerate perturbation theory we find the matrix-element control-
ling the effect of the scalar field:

Vk = 2η5

ˆ zw

0
dz|ξk(z)|2

φ

z
. (2.27)

2We use the conventional BCS notation for this cut-off, although there is no explicit
connection to any Debye frequency here as the origin of the four-fermion interaction is
left in the dark.
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The new energy levels are

ω± = ±
√(

ω
(0)
k

)2
+ V 2

k , (2.28)

so the size of the gap is VkF . We show in the Appendix B that the scalar
source has the following form in terms of the unperturbed wave-functions
(considering only one fermion mode):

〈ψ̄CΓ5ψ〉 = − i

4π

ˆ Λ(ωD)

−Λ(ωD)
dk|k| Vk√(

ω
(0)
k

)2
+ V 2

k

|ξk(z)|2. (2.29)

2.3.4 Analytical study of the non-dynamical scalar: double
gap equation

Eq.(2.29) is very similar to the standard BCS gap equation. The key
difference is the way the spatial profiles ξk of the fermion wavefunctions
modify both the gap Vk and the spatially varying profile of the pairing vev
〈ψ̄CΓ5ψ〉. Since the AdS geometry together with the hard wall confine the
wavefunction, what we have essentially done is solve a relativistic BCS in
a non-trivial potential.

There is one additional subtlety, in that the Fermi surfaces correspond-
ing to the up-down spin are slightly split. Assuming, as is conventional,
that the cut-off frequency is small enough, we are allowed to approximate
Vk and ξk by their values at the Fermi surfaces. Doing so we can solve the
gap equation

φ(z) =
z3

4η5

γ1V1 log

ωD +
√
ω2
D + V 2

1

V1

 ρ1(z)+ (2.30)

+γ2V2 log

ωD +
√
ω2
D + V 2

2

V2

 ρ2(z)

 , (2.31)

where ρ1(z) = |ξkF ,1 |2, ρ2(z) = |ξkF ,2 |2 are the fermion wave functions
at the two distinct Fermi surfaces, and γ1,2 =

η2
5

m2
φ
π

|kF1,2|
|ω′(kF1,2)| . A brief

inspection reveals that the gap equation only depends on the dimensionless
combinations η5

mφ
and η5

ωD
.

58



In Appendix 2.B.2 we show that the solution of the gap equation can be
found in a form of linear combination of the two fermionic wave functions
(up to an additional z3 factor)

φ = (C1ρ1(z) +C2ρ2(z)) z
3. (2.32)

For C1 � C2 (C2 � C1) the condensate profile is more similar to the wave-
function at the first (second) Fermi surface. We obtain the coefficients

C1 = (ax+ b)
ωD
η5

exp
(
−bx+ c

γ2

)
, (2.33)

C2 = (bx+ c)
ωD
η5

exp
(
−bx+ c

γ2

)
, (2.34)

where x is the ratio of the two gaps x = V1/V2, satisfying the following
equation

x2 +

(
I22
I12

γ2
γ1
− I11
I12

)
x− γ2

γ1
=
γ2
b
x log x. (2.35)

Here I11, I22, I12, a, b, c are functionals of the fermion profiles ρ1, ρ2,
defined in (2.79), and (2.81) in Appendix B2.

In Fig. 2.5(b) we show the perturbative solutions to the gap equation
for µ = 4.5, q = 1, mΨ = 1 and for two different couplings. (In principle
there are two solutions but one of these contains a node and is presum-
ably energitically unfavored). We can see a cross-over when we tune the
coupling η5/mφ (see also Fig. 2.6). For small (large) coupling the profile
of the condensate is dominated by ρ2 (ρ1). Note that the gap at the first
Fermi-surface (with fermion wave-function ρ1) is always smaller than the
gap at the second Fermi-surface.

The analysis above is all from the perspective of the bulk AdS physics.
All the data of the dual strongly coupled field theory is directly inferred
from it. The spectral condition for a normalizable mode is the same [12],
hence a gap in the bulk spectra equals a gap in the boundary fermion spec-
trum. The CFT order parameter is by construction the leading non-zero
component of the fermion bilinear vev 〈OU(1)〉 = limz→0 z

−2∆Ψ〈ΨCΓ5Ψ〉,
where ∆Ψ is the scaling dimension of the single trace fermionic operator
OΨ dual to the AdS Dirac field (each normalizable fermion wavefunction
behaves as z∆Ψ) [21, 22]. We thus neatly see how a bulk BCS coupling
holographically encodes standard BCS in the dual CFT.
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Figure 2.5. (a): wave function profiles of the fermions at the two Fermi surfaces
(ρ1, ρ2) (qµ = 4.5, zw = 1, mψ). (b) The profiles of the stable solutions of the gap
equation φ̃ = φ exp

(
bx+c
γ2

)
(rescaled by z3) for η5/ωD = 0.5, η5/mφ = 0.5 and

η5/mφ = 2.5. Depending on the coupling the profiles are similar to the fermion
wave-functions ρ1, ρ2. In the inset we plot the unstable solution for η5/mφ = 2.5
(for the other value of the coupling this mode is exponentially small).
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Figure 2.6. (a): The ratio of the gaps (V2/V1) as a function of the inverse
coupling mφ/η5 (for fixed η5/ωD = 0.5). The other parameters are as in Fig.
(2.5). For zero boson mass (or infinite coupling) the gaps have the same size but
for non-zero mass (smaller coupling) V2 is bigger and the ratio converges to the
value 2.56. (b): The ratio of the coefficients C2/C1 as a function of the inverse
coupling.
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2.4 Fermionic ordering in holography

To establish a closer connection to previous works [9, 10] on fermionic
aspects in holographically ordered ground states, we now introduce by
hand a kinetic term for the scalar field φ. From the bulk perspective this
would correspond to a situation where the coherence length (the inverse
binding energy) of the Cooper pair is smaller than the relevant cut-off.
From the dual boundary field theory perspective this corresponds to the
introduction of an explicit scalar operator of scaling dimension

∆φ =
3
2 +

1
2

√
9 + 4m2

φ. (2.36)

We reserve the symbol ∆ for the scaling dimensions of operators. It is not
to be confused with the value of the gap. Again assuming translational
invariance in the boundary directions, the bosonic equations now take the
form

z2φ′′ − 2zφ′ + z2q2
φA

2
0φ−m2

φφ = −iη5z
3〈ψcΓ5ψ〉, (2.37)

z2A′′0 − 2q2
φA0φ

2 = qz2〈ψ+ψ〉, (2.38)

where qφ = 2q. In addition one has the Dirac equation

K(φ,A0)χ = 0 (2.39)

through which one defines the bulk expectation values on the right hand
side. Here K(φ,A0) is the kinetic matrix in (2.17),

The distinction between the model with a dynamical and non-dynamical
scalar field is two-fold:

(1) Although physically the order parameter in the broken state cannot
distinguish between a fermionic Cooper pair origin and a condensed
scalar, in this holographic model they mathematically arise at differ-
ent orders in the 1/N expansion. Recall that the coupling constant
expansion in AdS/CFT maps to the 1/N matrix expansion of the
dual field theory, whereas each AdS field is dual to a single trace
composite operator. A Cooper pair is thus dual to double trace op-
erator in the dual field theory which are always 1/N suppressed.
This distinction is the same distinction between classical sponta-
neous symmetry breaking in a scalar field theory, and “quantum
pairing” in BCS.
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(2) Physically, strictly put the scalar is an additional degree of freedom
(it will show up in the free energy). If the coherence length of the
Cooper pair is smaller than the relevant cut-off, one should indeed
introduce this operator separately. In this “strong coupling” (equal
to small coherence length) limit, the dynamical scalar field can con-
dense by itself. In the formulation here this is controlled by its
mass. For high mass the field should decouple. This is dual to the
statement that in the dual field theory the corresponding operator
will have a very high scaling dimension and become extremely irrel-
evant. All the IR dynamics is then controlled by the fermions and
we recover the standard BCS of the previous section. For low mass,
however, the boson dynamics will start to compete with the fermion
pairing and rapidly take over the symmetry breaking dynamics in
the IR.

Tuning the scalar mass therefore controls a crossover between pure BCS
theory and a classic BEC spontaneous symmetry breaking. Qualitatively
one can thus consider the mass/scaling dimension of the scalar operator as
a proxy for the coherence length of the Cooper pair. When it is large, the
dynamics is pure BCS; as it becomes comparable to and smaller than the
relevant cut-off, one should introduce the paired operator independently.

Writing out the spin components explicitly the full system of equations
that we are attempting to solve is

z2φ′′ − 2zφ′ + 4q2z2A2
0φ−m2

φφ = (2.40)

=
η5z

3

2π
∑
n

ˆ Λ(ωD)

−Λ(ωD)
dk|k|Θ (ωk,n) (αk,n,1αk,n,4 − αk,n,2αk,n,3) ,

z2A′′0 − 8q2A0 =
qz2

2π
∑
n

ˆ
dk|k|

(
α2
k,n,1 + α2

k,n,2

)
Θ (−ωk,n) ,


∂z − mΨ

z −(ω− k)− qA0 2η5
φ
z 0

(ω+ k) + qA0 ∂z +
mΨ
z 0 2η5

φ
z

2η5
φ
z 0 ∂z +

mΨ
z (ω− k)− qA0

0 2η5
φ
z −(ω+ k) + qA0 ∂z − mΨ

z



α1
α2
α3
α4

 = 0

Here all fields depend only on the radial direction z. For completeness
we recall boundary conditions for each of the fields. At the impenetrable
hard wall all canonical momenta should vanish. For the bosons this means

φ′(zw) = 0 , A′0(zw) = 0 ; (2.41)

62



for the fermions this can be achieved by the choice

α1(zw) = α4(zw) = 0 (2.42)

At the AdS boundary, all field should be normalizable: they should vanish
as a positive power of z. (For two of the fermion components this is
automatic, see eq. (2.9)).

We will approach the fully interacting scalar-fermion system in three
steps: we first set all fermions to vanish and construct the purely scalar
holographic superconductor. Next we include fermions, but hold the BCS
coupling η5 = 0; this exhibits bose-fermi competition in the system. Fi-
nally we will analyze fully interacting system at η5 6= 0. Details of the
numerical calculations are discussed in Appendix C.

2.4.1 Purely scalar holographic superconductor

First, as the scalar field in our system is a fully dynamical degree of
freedom, it should condense for small enough mass even in absence of
fermions [4, 23, 24]. This hardwall superconductor will be useful for later
comparison.

Since we consider a pure hardwall AdS4 spacetime without a black hole
horizon, we study a T = 0 groundstate as a function of the mass/conformal
dimension of the scalar field/dual scalar operator. Any phase transition is
therefore of quantum origin. Note that the hard gap due to the hardwall
directly implies that the physics is the same for any temperature T <
1/zw. Only when T > 1/zw will the the black hole horizon become
relevant to the geometry, see e.g. [25].

The numerics of the pure scalar system is particularly simple as there
is no need to solve the integro-differential equations iteratively. Varying
the scalar conformal dimension we indeed find a condensate value below
a critical value (Fig. 2.7). We see a sharp second order phase transition
as expected for spontaneous symmetry breaking. Scalar operators with
smaller conformal dimensions (dual to lighter bulk scalar fields) are more
likely to condense and yield an order parameter with higher density.

2.4.2 Bose-Fermi competition

The next step is to see what happens in a system where both scalar and
fermionic fields are present, but interact with each other only via the gauge
field A0, and not directly (the Majorana coupling η5 = 0 vanishes). For
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Figure 2.7. Condensate of a scalar order parameter in the boundary theory as
a function of scalar conformal dimension at µq = 4.5, zw = 1, qφ = 2.
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Figure 2.8. (a): Comparision of the superconducting phase transition in a
purely scalar system (blue curve) to the one in a system with fermions at η5 = 0
(red curve). At small conformal dimension there is no difference between the
phase curves at all, while for larger dimension we see effects of Bose-Fermi com-
petition. (b): Total fermionic bulk charge as a function of scalar conformal

dimension, nF =
zẃ

0
qz2〈ψ†ψ〉dz. Here µq = 4.5, zw = 1, qφ = 2, ωD = 0.7.

the same parameters as in Fig. 2.7 for a scaling dimension of the fermionic
operator ∆Ψ = mΨ + 3/2 = 5/2 we obtain a scalar condensate shown on
Fig.2.8.

Comparing, the two condensate values become identical with the pure
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hardwall superconductor without fermions for low enough ∆φ. For these
values the bulk scalar field is so light that it consumes all the energy in
the system. Ceteris paribus we would need a higher chemical potential to
make fermions occupy the first band and backreact on A0.

At larger values of ∆φ there is still a scalar condensate, but it is sup-
pressed compared to the pure hardwall superconductor (Fig.2.8(a)). This
can be easily understood in terms of canonical ensemble. For fixed total
electromagnetic charge of the system, adding new constituents (fermions)
would redistribute the available charge (Fig.2.8(b)) and the condensate
of the original degrees of freedom would be suppressed. This effect has
also been observed in a holographic set-up where the fermions are approx-
imated in the fluid [26, 27]

2.4.3 A dynamical BCS scalar and a BCS/BEC crossover

Now we analyze the most interesting case and include the full dynamics
for the scalar field φ. Let us give another reason why this is quite natural
from the field theory perspective. The evolution in the radial direction in
AdS captures the (leading matrix large N contribution to the) RG flow of
the corresponding operator in the field theory. The BCS gap, proportional
to the vev of the scalar field is certainly sensitive to the RG scale. Hence
one expects it to change dynamically as a function of the radial direction.
Strictly speaking the double trace pairing operator which sets the value
of the gap is a subleading operator in large N and any running that
deviates from its semiclassical scaling is therefore a quantum effect in the
AdS gravity theory. This is the situation we studied in section 2.3.4. At
the 1/N level, for small enough coherence length, the pair operator will
become dynamical and qualitatively it ought to be given by the dynamical
scalar we study here.

We will see a very interesting effect occurs in doing so. Because
the scalar is sourced by the Cooper pair condensate, this changes near-
boundary fall off of φ, and the standard holographic prescription for
boundary field theory condensates has to be modified. Without the pres-
ence of a Cooper pair condensate, the zero momentum scalar mode equa-
tion in AdS4 is a homogeneous (linear) differential equation

z2φ′′(z)− 2zφ′(z) + q2
φz

2A2
0(z)φ(z)−m2

φφ(z) = 0. (2.43)
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Near the AdS boundary its solutions have the following form

φ(z) = Az3−∆φ ·
(
1 + a1z + a2z

2 + ...
)
+Bz∆φ ·

(
1 + b1z + b2z

2 + ...
)

,

∆φ =
3
2 +

1
2

√
9 + 4m2

φ, (2.44)

and in the standard quantization scheme the coefficient A of the non-
normalizable solution corresponds to the source JOφ for the operator Oφ
dual to φ, and the coefficient B of the normalizable solution to the vev
〈Oφ〉. Spontaneous symmetry breaking due to a condensation of the op-
erator occurs for a solution in the absence of a source, i.e. with A = 0 as
a boundary condition.

For the interacting scalar-fermion system this simple one-to-one cor-
respondence between bulk asymptotics and boundary condensates needs
modification. We must now consider the inhomogeneous differential equa-
tion

z2φ′′(z)− 2zφ′(z) + q2
φz

2A2
0(z)φ(z)−m2

φφ(z) = −iη5z
3〈ψcΓ5ψ〉. (2.45)

The solutions to this equation now include the particular solution respond-
ing to the inhomogeneous source in addition to the homogeneous solutions
(2.44). For near boundary behavior of the source

lim
z→0

z3〈ψcΓ5ψ〉 ∼ z2∆Ψ (2.46)

the particular solution will behave in the same way (assuming 2∆Ψ 6= ∆φ):

φ(z) = φhom(z) + φpart(z)

φpart(z) = P1z
2∆Ψ +P2z

2∆Ψ+1 +P3z
2∆Ψ+2 + ... (2.47)

This particular solution will control the dominant normalizable near
boundary behavior for ∆φ > 2∆Ψ. This raises the question what we should
use as the vev for the corresponding operator. The canonical AdS/CFT
prescription

〈Oφ〉 = lim
z→0

z−d+1∂z
(
zd−∆φφ(z)

)
(2.48)

no longer gives a viable answer. Let us exhibit this in detail. As an aside,
note that the near-boundary behavior of the fermions does not change
provided the solution for φ(z) is normalizable.
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Figure 2.9. Profiles of the bulk scalar wavefunction φ(z) for ∆φ = 4.6765, ∆φ =
4.8541 (two blue curves), ∆φ = 4.9438, ∆φ = 5.0341 (two red curves, - proximity
of the critical point), ∆φ = 5.379, and ∆φ = 5.4925 (two orange curves). Crossing
the critical point ∆φ = 2∆Ψ = 5 does not lead to any singularities in the bulk
wavefunction. The other parameters here are η5 = 1, µq = 4.5, zw = 1, qφ =
2, ωD = 0.7.

Denoting the coefficient B of the normalizable homogeneous solution
with B = H1 we extract these coefficients from numerical solutions to
the scalar and fermionic equations. (see Fig.2.10, 2.11). Immediately
noticable are the singularities at ∆φ = 2∆Ψ and ∆φ = 2∆Ψ + 2. Strictly
speaking when ∆φ = 2∆Ψ + n the expansion (2.47) breaks down and the
solution has an extra logarithmic term

φ(z) = H1z
2∆Ψ+n + ... +P1z

2∆Ψ + ... +Pn+1z
2∆Ψ+n ln(z) + ... (2.49)

The singular divergence of coefficients is a precursor of this logarithm.
There is no singularity at 2∆Ψ + 1 because P2 happens to vanish in our
case.3

The indisputable presence of these singularities or resonances can be
readily seen by considering a simplified version of the scalar equation.

3This vanishing of P2 (due to the vanishing of S2) and the structure of the series
expansion is determined by the solutions of the Dirac equation. For zero electric field
each even coefficient would vanish in fact. Since the gauge field profile modifies the
higher order coefficients in the series expansion of the Dirac equation, it can be shown
that S4 6= 0.

67



5.0 5.5 6.0 6.5 7.0 7.5
Df

-5

5

10

15

H1

Figure 2.10. Dependence of the leading homogeneous coefficient in the scalar
solution expansion on the conformal dimension of the field. Here µq = 4.5, η5 =
1, zw = 1, qφ = 2, mΨ = 1 (so 2∆Ψ = 5),ωD = 0.7.
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Figure 2.11. Dependence of the two leading particular coefficients in the scalar
solution expansion on the conformal dimension of the field. Here µq = 4.5, η5 =
1, zw = 1, qφ = 2, mΨ = 1 (so 2∆Ψ = 5),ωD = 0.7.
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Computing the series solution to the equation

z2φ′′ − 2zφ′ −m2
φφ = S1z

2∆Ψ + S3z
2∆Ψ+2 (2.50)

one directly finds the “resonances”

P1 =
S1

2∆Ψ(2∆Ψ − 3)− ∆φ(∆φ − 3) ,

P3 =
S3

(2∆Ψ + 2)(2∆Ψ − 1)− ∆φ(∆φ − 3) . (2.51)

Note that they are Feschbach-like resonances in that the singularity is a
single rather than a double pole.

The question is how to extract the information of the strongly coupled
dual field theory from this asymptotic behavior of the AdS scalar wave-
function. Despite these singularities in the coefficients, by construction
the bulk scalar wavefunction is regular at all points (Fig.2.9). It is there-
fore physically natural to have regular observables in the boundary field
theory as well. There are two obvious points to make here.

(1) Physically the origin of the order parameter is indistinguishable.
One cannot tell whether the broken groundstate is caused by con-
densation of the Cooper pair or the scalar field.

(2) Mathematically, the regularity of the bulk solution directly implies
that the homogeneous component H1 must have a similar resonance
but with an opposite sign.

An obvious and physically motivated choice is to postulate that the actual
order parameter is the simply the sum of the naive condensates, with the
Cooper pair condensate S1 renormalized to P1: i.e.

〈Oφ〉 = H1 +P1. (2.52)

Taking this linear combination does in fact lead to a cancelation of “res-
onances” and a smooth function at ∆φ = 2∆Ψ (see Fig. 2.12). However,
the reflection of the next resonance ∆φ = 2∆Ψ + 2 in the homogenous
solution H1 remains. Likewise, a similar partial resolution occurs for the
linear combination H1 +P3.

These “resonances” in Pi and their cancellation by (part of) the homo-
geneous solution H1 will in fact occur at every order of the expansion from
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Figure 2.12. Linear combinations of the series expansion coefficients. Red
curve represents the boundary scalar operator condensate 〈Oφ〉 as a function of
its conformal dimension in presence of fermions at η5 = 0 (the same as the red
curve on Fig.2.8). The blue curve represent the linear combinationH1 +P1 on the
left plot, and H1 +P3 on the right one. Resonances in H1 and P1 precisely cancel
each other at ∆φ = 2∆Ψ, and so do resonances in H1 and P3 at ∆φ = 2∆Ψ + 2.
All parameters are as in Fig.2.10.
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Figure 2.13. (a): Dependence of the two gaps V1 (orange) and V2 (green)
on ∆φ in the fully interacting case. (b): Dependence of the total fermionic

bulk charge nF =
zẃ

0
qz2〈ψ†ψ〉dz (magenta) and the total “number” of pairs

nPairing = −iη5
zẃ

0
z3〈ψCΓ5ψ〉dz (blue) on ∆φ. One can see that while at small

scalar conformal dimensions the fermionic bulk charge totally vanishes the num-
ber of Cooper pairs in the bulk theory stays finite. All parameters are as in
Fig.2.10.
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the AdS boundary z = 0. It hints that the proper definition of the su-
perconducting condensate should be given by a ∆φ-dependent linear com-
bination of the homogeneous H1 and particular coefficients P1,P3,P5, ...
that is regular for all ∆φ. One can readily construct such a combination,
e.g.

〈Oφ〉 = H1 +
1
2 ((2∆Ψ + 2)− ∆φ)P1 +

1
2 (∆φ − 2∆Ψ)P3, (2.53)

see Fig. 2.14(a). as a demonstration of the existence of a non-singular
combination; though there is no proof at all that this constitutes the actual
physical observable.4

Normally the strict application of the AdS/CFT dictionary does not
assign any role to such higher order coefficients in the bulk wavefunction.
It is clear, however, that the singularities arise solely from the extraction
of the coefficients, whereas the full AdS wavefunctions at any finite z are
regular for ∆φ = 2∆Ψ + N. Let us now give an argument why the coef-
ficient rule can receive modification.The right way to interpret the linear
combination H1 +P1 is as a mixing of the two independent operators dual
to the fundamental scalar operator and the bilinear (double trace) Cooper
pair operator. This suggests that we should think in a similar way about
the resonance at ∆φ = 2∆Ψ + 2. There should be another Cooper-pair
like operator in the theory which mixes with the fundamental scalar, such
that the linear combination that constitutes the order parameter is finite.

In AdS/CFT this connection between mixing and resonances is in fact
cleanly seen in correlation functions of bilinear operators [28, 29]. These
bilinear operators are also known as double trace operators, since in the
models where we know the dual CFT, each operator dual to an AdS field
is a single trace over an N ×N matrix valued combination of fields. Bi-
linear operators are thus the normal-ordered product of two single trace
operators. Each pair of single trace CFT operators OΨ, however, gives rise

4Another putative combination found by chance, 〈Oφ〉 = H1 +
1
2e
−(2∆Ψ−∆φ)((2∆Ψ +

2)− ∆φ)P1 + 1
2e
−(2∆Ψ+2−∆φ)(∆φ − 2∆Ψ)P3 has a remarkable overlap with the scalar

condensate in the case η5 = 0, see Fig. 2.14(b).
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to an infinite tower of independent primary double trace operators:

O(0) = OΨCOΨ

O(1) = OΨC (
←
∂µ −

→
∂µ)(

←
∂µ −

→
∂µ)OΨ − trace

O(2) = OΨC (
←
∂µ −

→
∂µ)(

←
∂µ −

→
∂µ)(

←
∂ν −

→
∂ν)(

←
∂ν −

→
∂ν)OΨ − traces

... (2.54)

These conformal partial waves are all the higher derivative bilinear oper-
ators that cannot be written as a descendant (a derivative) of the a lower
order primary. All these operators have the same global quantum numbers
as the simple pair operator with scaling dimension 2∆Ψ, but increase their
dimension by two integer units each time. The correlation function study
[28, 29] in particular shows that in the case of an interacting purely scalar
bulk theory, all these linearly independent double trace primaries mix in
as well and cause single-pole Feschbach resonances in s-wave scattering of
single trace operators. The correspondence between the 2n difference in
scaling dimension5 between each successive primary and the location of
the resonance in the leading part of the bulk scalar wavefunction supports
that this mixing is the right interpretation of the resonance.6

We do not yet have a controlled method to extract the quantative
expectation value of these higher order double trace primaries from the
constituent single trace fields. The mixing originates in the renormaliza-
tion of the theory, and this suggests that the proper value of the order
parameter results from the introduction of higher order boundary coun-
terterms of the type

Scounter ∼
ˆ
z=ε

d3x
(
−φ2 − φΨ̄C

+Ψ− − φΨ̄C
+

↔
∂µ
↔
∂µΨ− − . . .

)
(2.55)

5As we mentioned one also expects a resonance at 2∆Ψ + 3 for high enough chemical
potential. This is due to the effect of the electric field on the fermion wave functions.
From the boundary perspective this could be a result of mixing with OψJµ(

←
∂µ−

→
∂µ)Oψ

type operator which has the right scaling dimension (∆J = 2).
6The conformal partial wave operators share a resemblance with operators relevant

for Fulde-Ferrel-Larkin-Ovchinnikov pairing [30, 31]. In the original FFLO set-up one
considers the Zeeman splitting of spin-up/spin-down electrons and this causes an offset
in their Fermi surfaces of the same form seen here. The discussion about the mixing
in of these higher order partial waves does not rely on the split degeneracy of Fermi
surfaces. The mixing is therefore not correlated with an FFLO-like phenomenon.
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Figure 2.14. (a): The blue curve represents a particular linear combinations of
the series expansion coefficients 〈Oφ〉1 = H1 +

1
2 ((2∆Ψ + 2)− ∆φ)P1 +

1
2 (∆φ −

2∆Ψ)P3 such that all the resonances cancel out. The red curve included for
comparison represents 〈Oφ〉 at η5 = 0. (b): The serendipitous combination
〈Oφ〉2 = H1 +

1
2e
−(2∆Ψ−∆φ)((2∆Ψ + 2)− ∆φ)P1 +

1
2e
−(2∆Ψ+2−∆φ)(∆φ − 2∆Ψ)P3

that has a remarkable overlap with the η5 = 0 solution at low ∆φ as desired. All
parameters are as in Fig.2.10.

where Ψ± are eigenspinors of Γ5. To construct this correct set of countert-
erms and deduce the appropriate extraction of the vev in the boundary
field theory is an interesting question to pursue.

The conclusion is that the resulting condensate ought to be of the
form in Fig. 2.14. Qualitatively this result shows the BCS/BEC crossover
as a function of the scalar scaling dimension ∆φ. Though our set up is
rather abstract in that scalar field here is an additional degree of freedom
introduced by hand, instead of emerging from microscopic dynamics, it
captures the BCS/BEC physics. For small scaling dimension the scalar op-
erator Oφ dominates the Bose-Fermi competition, whereas at large scalar
conformal dimensions corresponding to weak coupling regime, η5/mφ � 1,
the dynamics of the boson field are suppressed, and its order parameter
expectation value is dominated by fermions as shown on Fig. 2.12. The
most interesting region is just to the right of the red curve. Here there
is no bosonic contribution to the order parameter, but there is an en-
hanced Cooper pair contribution (due to the proximity effect). This is
the most notable region where we have pairing induced superconductivity
in holography. At larger scalar conformal dimension the order parameter
exponentially decreases with increasing of ∆φ, although it never vanishes.
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In the strict mφ →∞ limit we have the standard BCS scenario of section
2.3.4.

Let us finally briefly comment on the dependence on the UV cut off ωD.
In the previous section we discussed that at very large bulk scalar mass
all dynamics depends only on two parameters, η5/ωD and η5/mφ. For
a dynamical scalar the dependence is more complicated, but we can still
qualitatively infer what will happen. We know that most of the contribu-
tion to the pairing operator is located near the Fermi surfaces. Increasing
ωD means taking into account states lying far away from kF ’s. The physi-
cal picture will therefore only change minimally; to first approximation it
can be compensated by adjusting η5 such that η5/ωD stays constant. A
non-trivial effect does happen when ωD becomes so large that the integral
becomes sensitive to fermions in the second band (for instance, see Fig.
2.1), but this is beyond the scope of this chapter.

2.5 Conclusions

We have constructed a holographic model of superconductivity which ex-
plicitly takes into account fermionic pairing driving the phase transition.
In the simplest holographic models, the microscopic mechanism of super-
conductivity is not addressed. Specific top-down models may shed light on
the strong coupling dynamics and a possible pairing mechanism [32, 33],
but generic holographic models operate at a Landau-Ginzburg order pa-
rameter level.

Even so, the physics of fermionic pairing and condensation should also
be explicitly representable in holographic systems. The most straightfor-
ward way to do so is to mimic the classic BCS mechanism. This is what
we have done here. By introducing an attractive four-fermion interaction
in the AdS bulk, we show that this directly reduces to a pairing induced
superconducting groundstate both in the bulk and the dual boundary. To
cleanly separate the fermion physics, we introduced a hard wall cut-off.
This essentially guaranteed this results as the low energy theory in both
sides is just a Fermi liquid in the absence of the four-fermion interaction.
The one technical difference with textbook BCS is the relativistic nature
of the underlying fermion theory.

Next we introduced separately a kinetic term for the AdS dual of
the order parameter. Physically the paired operator should become dy-
namical if the coherence length is much shorter than the scales of inter-
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est. One should find a BCS/BEC crossover as one tunes between these
regimes. Here that control parameter is the scaling dimension of the or-
der parameter field (relative to the scaling dimension of the Cooper pair
operator). For large scaling dimension the kinetics of the dual AdS field
is suppressed and we have the BCS physics found earlier. For low scaling
dimension the scalar dynamics should be energetically favored compared
to pairing condensation, and one should find a regular BEC (holographic)
superconductor.

In observing this BCS/BEC crossover we encountered a surprise. At
specific values ∆φ = 2∆Ψ and ∆φ = 2∆Ψ + 2 of the control parameter
the independent scalar 〈Oφ〉 and pairing 〈OΨCOΨ〉 vevs diverge. In fact
the naive order parameter 〈Oφ〉+ 〈OΨCOΨ〉 remains divergent at ∆φ =
2∆Ψ + 2. The mathematics is clear and suggests that these divergences can
also occur at higher value of the scaling dimension. Physically, a plausible
explanation is that higher order primaries OΨC (

←
∂µ −

→
∂µ)n(

←
∂µ −

→
∂µ)nOΨ,

that arise in the OPE of the product of two single fermion operators, mix
in with the scalar vev and the lowest order primary 〈Oφ〉 + 〈OΨCOΨ〉.
To establish this concretely requires a more detailed study of single and
double trace operator mixing in AdS/CFT . We aim to address this in
a future publication. We can nevertheless readily construct an extraction
rule for a finite order parameter that interpolates between the BCS and
BEC regimes.

In both aspects the physics that holographic system describes is very
conventional. It is again an excellent proving ground for AdS/CFT that it
does so, but by construction it does not uncover any unconventional or ex-
otic physics. The main reason it does not do so is the presence of the hard
wall. It ensures that the groundstate dynamics closely follows standard
Fermi liquid and Landau-Ginzburg theory. It would be very interesting,
but technically challenging [16, 17], to try to remove the hard wall. This
would reintroduce the low energy dynamics that could yield exotic and
novel behaviour. In particular, it might be an important step towards a
holographic fermionic theory of unconventional superconductivity.

2.A Green’s functions and charge densities

In this Appendix we provide a detailed derivation of the formulas for the
fermionic bilinears appearing in the bosonic equations. In principle while
calculating these objects one needs to be careful because of the renormal-
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ization of these composite operators. However, we are just regularizing
these object with a cut off and not attempting to perform the renormal-
ization. We can write the fermionic electric charge density as a limit of
Feynman Green’s function:

〈ψ+(x)ψ(x)〉 = lim
t,~x→t′,~x′

〈Tψ+(t, ~x)ψ(t′, ~x′)〉 = lim
t,~x→t′,~x′

Gψ+
i ψi

(2.56)

We would like to express it with the Nambu-Gorkov (NG) Green’s
function defined as

Gχiχ+
j
=

1
Z

ˆ
DχDχ+χiχ

+
j exp

(
i

ˆ
d4xχ+K̃χ

)
. (2.57)

Using properties of the time ordered product the relations between the
original Green’s functions and the NG ones are

Gψ+
1 ψ1

(t, ~x; t′, ~x′) = −Gχ1χ
+
1
(t′, ~x′; t, ~x) , (2.58)

Gψ+
3 ψ3

(t, ~x; t′, ~x′) = Gχ3χ
+
3
(t, ~x; t′, ~x′) . (2.59)

With these the charge densities can be expressed with the components
of the NG Green’s function

〈ψ+ψ〉 = lim
t,~x→t′,~x′

(
−Gχ1χ

+
1
(t′, ~x′; t, ~x)−Gχ2χ

+
2
(t′, ~x′; t, ~x)

+Gχ3χ
+
3
(t, ~x; t′, ~x′) +Gχ4χ

+
4
(t, ~x; t′, ~x′)

)
,

〈ψcΓ5ψ〉 = lim
t,~x→t′,~x′

(
Gχ1χ

+
4
(t, ~x; t′, ~x′) +Gχ2χ

+
3
(t, ~x; t′, ~x′)

+Gχ2χ
+
3
(t′, ~x′; t, ~x) +Gχ1χ

+
4
(t′, ~x′; t, ~x)

)
. (2.60)

Since the NG Green’s function solves (2.20) we can decompose it as

G (t, ~x; t′, ~x′) =
ˆ
dω

2π e
−iω(t−t′)∑

n

ˆ
d2k

4π2
iei

~k(~x⊥−~x′⊥)

ω− ω~k,n + isgn(ω)εχ~k,n(z)χ
+
~k,n

(z′),

(2.61)
where χ~k,n(z) solves the Dirac equation (2.21) and form an orthonormal
basis ˆ zw

0
dzχ+~k,n

(z)χ~k,n′(z) = δnn′ , (2.62)∑
n

χ~k,n(z)χ
+
~k,n

(z′) = δ(z − z′). (2.63)
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We can immediately perform the ω integral to get (supposing that
t > t′)

G (t, ~x; t′, ~x′) =
∑
n

ˆ
d2k

4π2 e
−iω~k,n(t−t

′)
ei
~k(~x⊥−~x′⊥)χ~k,n(z)χ

+
~k,n

(z′)Θ
(
ω~k,n

)
,

(2.64)

G (t′, ~x′; t, ~x) = −
∑
n

ˆ
d2k

4π2 e
−iω~k,n(t

′−t)
ei
~k(~x′⊥−~x⊥)χ~k,n(z)χ

+
~k,n

(z′)Θ
(
−ω~k,n

)
.

(2.65)
Substituting this into (2.60) we obtain (2.23) and (2.24).

2.B Perturbative solution

2.B.1 Perturbative fermion spectrum, AdS-gap equation

We will solve the fermionic equation of motion (2.21) perturbatively in
the scalar interaction and determine the gap equation. It is convenient
for this to write the eigenvalue problem in terms of (α1,α2,α3,α4) =
(χ1, iχ2,χ3, iχ4). The redefined Hamiltonian is real (but we will still de-
note it with H).

Our Hamiltonian can be split as H = H0 +V , where H0 = H(η5 = 0).
The perturbation is coming from the Majorana coupling

V = 2η5
φ

z

(
0 −ε
ε 0

)
, (2.66)

where ε is the 2x2 matrix ε = iσ2
The solution of the unperturbed problem for a given momentum takes

the form

α
(0)
k,+,n =

(
ξk,n
0

)
ω
(0)
1,k,n = ω

(0)
k,n > 0, (2.67)

α
(0)
k,−,n =

(
0

εξk,n

)
ω
(0)
2,k,n = −ω(0)

k,n. (2.68)

We will focus on n = 1 and will omit this index.
When doing the perturbation theory we should be careful because

near the Fermi-surface different bands are crossing each other. Therefore
we start with two modes with unperturbed energy ω

(0)
k and −ω(0)

k and
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approximate the solution as αk = aα
(0)
k,+ + bα

(0)
k,−. Near the Fermi-surface

this is a good approximation.
The perturbed energy and wave-functions can be determined by the

off-diagonal matrix element of V (the diagonal elements are zero).

Vk =

ˆ zw

0
dzα

(0)+
k,+ V α

(0)
k,− = 2η5

ˆ zw

0
dz|ξk|2

φ

z
. (2.69)

The new energy levels are

ω± = ±
√(

ω
(0)
k

)2
+ V 2

k , (2.70)

so the size of the gap is VkF . The normalized wave-functions are

αk,+ =

(
ξk cos 1

2βk
εξk sin 1

2βk

)
, αk,− =

(
−ξk sin 1

2βk
εξk cos 1

2βk

)
, (2.71)

where
tan βk =

Vk

ω
(0)
k

. (2.72)

Using this perturbative result we can express the scalar source with
the unperturbed fermion wave functions:

〈ψ̄CΓ5ψ〉 = − i

4π

ˆ Λ(ωD)

−Λ(ωD)
dk|k| Vk√(

ω
(0)
k

)2
+ V 2

k

|ξk(z)|2. (2.73)

Here Λ(ωD) is a momentum cut-off corresponding to the energy scale ωD.
In our numerics we sample discrete number of momenta and sum over it.
In order to capture the contribution around kF accurately we can use the
following discretization
ˆ Λ(ωD)

−Λ(ωD)
dk|k| Vk√(

ω
(0)
k

)2
+ V 2

k

|ξk|2 ≈
∑
ki

Vkiki
1

|ω′(ki)|

ˆ ω(ki+1)

ω(ki)

dω√
ω2 + V 2

k

=
∑
i

|ξki |
2 Vkiki
ω′(ki)

log

ω
(0)
i+1 +

√(
ω
(0)
i+1

)2
+ Vki

ω
(0)
i +

√(
ω
(0)
i

)2
+ Vki

 (2.74)
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2.B.2 Simplified Gap equation

The dominant contribution for the scalar charge comes from a region near
the Fermi surface where the (unperturbed) spectrum is linear. Since the
perturbation matrix element Vk is a slowly varying function of k we can
approximate its value with VkF ,1 = V1 and VkF ,2 = V2.

We have two Fermi surfaces. Hence the gap-equation is (recall that
our scalar is an auxiliary field with no dynamics here)

φ(z) =
z3

4η5

γ1V1 log

ωD +
√
ω2
D + V 2

1

V1

 ρ1(z)+ (2.75)

γ2V2 log

ωD +
√
ω2
D + V 2

2

V2

 ρ2(z)

 , (2.76)

where ρ1(z) = |ξkF ,1 |2, ρ2(z) = |ξkF ,2 |2 and γ1,2 =
η2

5
m2
φ
π

|kF1,2|
|ω′(kF1,2)| . We

make the following ansatz

φ = (C1ρ1(z) +C2ρ2(z)) z
3. (2.77)

In this case the perturbation matrix element is

V1 = 2η5 (C1I11 +C2I12) , V2 = 2η5 (C2I22 +C1I12) , (2.78)

where

I11 =

ˆ zw

0
z2ρ2

1dz, I22 =

ˆ zw

0
z2ρ2

2dz, I12 =

ˆ zw

0
z2ρ2ρ1dz. (2.79)

In the limit of ωD � η5 our gap-equations take the following form

aV1 + bV2 = 2η5γ1V1 log
(
ωD
η5V1

)
bV1 + cV2 = 2η5γ2V2 log

(
ωD
η5V2

)
, (2.80)

with

a =
I22

I22I11 − I2
12

, b =
I12

I2
12 − I22I11

, c =
I11

I22I11 − I2
12

. (2.81)
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For the ratio x = V1/V2 we obtain

x2 +

(
I22
I12

γ2
γ1
− I11
I12

)
x− γ2

γ1
=
γ2
b
x log x. (2.82)

We can now solve our equations easily to obtain

C1 = (ax+ b)
ωD
η5

exp
(
−bx+ c

γ2

)
, C2 = (bx+ c)

ωD
η5

exp
(
−bx+ c

γ2

)
.

(2.83)

2.C Numerical methods

2.C.1 General strategy

To solve the equations (2.41) numerically, we resort to an iterative Hartree
resummation:

• At a constant A0 = µ and zero scalar field, we find the unperturbed
spectrum of fermions. As a result we get a set of fermionic wave-
functions for a discrete array of energies and momenta (ki,ωn,i).

• With these wavefunctions we construct the source terms on the right
hand side of the first two equations in (2.41) and solve for A0(z) and
φ(z). Both UV cut offs in both k and ω should be imposed to render
the sums in the source terms finite.

• Substitute the new A0(z) and φ(z) into the Dirac equation and find
the new spectrum.

• Repeat steps 2 – 4 till full convergence.

Once the system converges sufficiently, we can extract the information of
the dual theory by a fit to the near boundary behavior of the resulting
wavefunctions.

We have optimized our numerics in several ways: The most time-
consuming part of the algorithm is the repeated calculation of the Dirac
fermion spectrum. A significant improvement is obtained using the per-
turbative prescription described in a previous section. We exclude the
φ(z) field from the Dirac equation, and instead of four coupled ODE we
get for fermions two identical decoupled systems of a second order. Then
we construct the corrected wavefunctions. In addition, we do not need to
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take equally dense sampling in k, because most of the fermionic spectral
weight is concentrated around kF (remember that we have two slighly dif-
ferent Fermi momenta in the theory), and we may take sparser k-sampling
away from these points without loss in accuracy.

Empirically we found that different numerical schemes to fermionic and
bosonic subsystems was the most efficient. For the fermionic spectrum we
use the shooting method: we impose boundary conditions dependent on a
free parameter at the boundary cut off z = ε, and scan over this parameter
to make the resulting solution satisfy physical boundary conditions at the
hard wall.

However, the shooting method in the gauge field and scalar sector
often leads the system to converge to some higher harmonics instead of
the groundstate. The Newton method is much more stable in that case:
we impose both AdS-infinity and hardwall boundary conditions at the
same time, approximate differential equations by finite differences, and
solve the resulting system of linear algebraic equation with a relaxation
algorithm. For our purposes a grid of Np = 3000 points in z-direction
(for zw = 1) was chosen, in which case the relaxation algorithm converges
after 5− 6 iterations.

Once the bulk wave functions are obtained, it is still not a trivial ques-
tion how to extract the leading boundary behavior from this data. This
is what contains the information of the dual field theory. The analytical
puzzles related to this problem were discussed in section 2.A. Here we
focus on corresponding numerical issues.

We are interested in coefficients H1, P1, P3 defined in (2.51). The
function φ(z) is known in a form of discrete list of values {zi, φ(zi)} of
the length Np = 3000, therefore our accuracy is limited and naive use of
the standard fitting schemes of Mathematica leads to large errors.

Instead we first determine the expansion coefficients of the fermionic
bilinear sourcing the scalar field

− iη5z
3〈ψcΓ5ψ〉 = S1z

5 + S3z
7 + ... (2.84)

These can be easily found, as contra to the scalar field profile the fermionic
bulk wave functions are derived with a great accuracy due to the use of
the shooting method.

Then we use the algebraic relations (2.51) to obtain the “particular”
coefficients on the base of Si.
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Knowing P1 and P3 we can subtract these from the scalar wave func-
tion and run the Newton relaxation scheme one more time for

φ̃(z) = φ(z)−P1z
5 −P3z

7. (2.85)

We now need to fit only for the single coefficient H1. This can be easily
done even for moderate number of discretized points Np.
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Chapter 3

Holographic phase diagram
of quark-gluon plasma
formed in heavy-ions
collisions

3.1 Introduction

For the last decade, since the publication of fascinating papers [1–3], it
was realized that supersymmetric and non-supersymmetric theories in the
strong coupling limit in principle could be pretty close in their properties
[4]. The AdS/CFT correspondence, which appeared as a formal duality
between the N = 4 super Yang-Mills theory and a quantum gravity in
AdS background, has become powerful tool for studying various properties
of real physical systems in the strong coupling [5].

Important branch of these investigations is the analysis of the Quark
Gluon Plasma (QGP) from the point of view of AdS-holography, see for
example, review [6]. These applications of the AdS/CFT correspondence
to strongly coupled QGP have been mostly related to equilibrium proper-
ties of the plasma, or to its’ kinetics/hydrodynamics near the equilibrium.

A particular application of AdS/CFT to the strongly coupled QGP,
is the analysis of thermalization of matter and early entropy production
instantly after the collision of relativistic heavy ions. RHIC experiments
have shown that a QGP forms at a very early stage just after the heavy ion
collision, i.e. a rapid thermalization occurs, and QGP produced in RHIC
is believed to be strongly coupled as evidenced by its rapid equilibration.
Strong collective flows well reproduced by hydrodynamics, and strong jet
quenching [7–9]. This obviously requires a calculation of the strongly
coupled field theory in non-equilibrium process.

Not long ago Gubser, Yarom and Pufu [11] have proposed the gravi-
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tational shock wave in AdS5 as a possible holographic dual for the heavy
ion and have related the area of the trapped surface formed in a collision
of such waves to the entropy of matter formed after collision of heavy
ions. Early papers where has been mentioned an analogy between collid-
ing heavy ions and colliding gravitational shock waves in anti-de Sitter
space include [12]-[16]. This AdS-holographic model has been also used
to find the stress-energy tensor of the QGP formed by ion collision. In
accordance with AdS/CFT dictonary this stress-energy tensor is dual to
the metric of spacetime after collision of shock waves [16].

The main result of [11, 17], confirmed by numerical calculations per-
formed in [18, 19], is that in the limit of a very large collision energy E
the multiplicity (the entropy S) grows as

S > CE2/3, (3.1)

C is a numerical factor (see Sect.3.2.1).
Alvarez-Gaume, Gomez, Sabeo Vera, Tavanfar, and Vazquez-Mozoand

[20] have considered central collision of shock waves sourced by a nontrivial
matter distribution in the transverse space and they have found critical
phenomenon occurring as the shock wave reaches some diluteness limit.
This criticality may be related to criticality found in [18]. The numerical
results of [18] show the existence of a simple scaling relation between the
critical impact parameter and the energy of colliding waves.

The size of colliding nuclei is introduced via the distance of those
objects from the boundary along the holographic coordinate z.

The model of infinite homogenous wall has been proposed and analyzed
by Shuryak and Lin [18]. The advantage of this model is the essential
simplicity of calculations. However, the legitimacy of these calculations
requires some additional examinations (see our discussion in Sect. 3.2.2).

In heavy ion collisions not only the energy per nucleus is important
variable. One can try to associate different nuclei with different kinds of
shock waves. There are several proposal in literature on this subject. For
example, in [21] the holographic model with cutting off the UV part of the
bulk geometry, has been proposed. Formation of trapped surfaces (TS)
in head-on collisions of charged shock waves in the (A)dS background
has been considered in [22] and it has been shown that the formation
of trapped surfaces on the past light cone is only possible when charge
is below certain critical value - situation similar to the collision of two
ultrarelativistic charges in Minkowski space-time [23]. This critical value
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depends on the energy of colliding particles and the value of a cosmological
constant. The formation of trapped surfaces in head-on collisions of shock
waves in gravitational theories with more complicated bulk dynamics, in
particular with the Einstein-dilaton dynamics, pretended to describe holo-
graphic physics that is closer to QCD than the pure AdS theory [24, 21],
has been considered recently by Kiritsis and Taliotis [25]1 and they have
found that the multiplicity grows as

S & E 0.24, (3.2)

that is rather close to the experimental data.
In this chapter we propose to incorporate the study of collisions of

charged shock gravitational waves [22] into the description of colliding nu-
clei with non-zero baryon chemical potential. In the holographic context,
the chemical potential of strongly coupled QGP on the gravity side is re-
lated to temporal component At of the U(1) gauge field [27]-[34]. The
asymptotic value of this gauge field component in the bulk is interpreted
as the chemical potential in the gauge theory

µ = At|boundary. (3.3)

We use the same identification (3.3) for colliding ions. It would be in-
teresting to perform calculations for the off-center collision of charged
gravitational waves or generally smeared charged shock waves. Postpon-
ing this problem for further investigations, here we consider the head-on
collision of charged point shock waves and charged wall shock waves. This
will give us the holographic picture for QPG phase diagram in the first
moment after collisions of heavy ions. This phase diagrams, chemical po-
tential (charge) µ versus temperature (energy) T , are displayed in Fig.
5 and Fig. 11. The colored lines separate the TS-phase from the phase
free of TS. Let us note that the obtained diagrams differ from the phase
diagram for equilibrium QGP (see Fig.3.1 in Sect. 3.2.1).

The chapter is organized as follows. In Sect.2 we present our set up of
the problem. In Sect.2.1.1 we describe the role of black holes in AdS/CFT
description of strongly coupled QGP. In Sect. 2.1.2. we present the de-
scription of the chemical potential of QGP within the AdS/CFT corre-
spondence. In Sect. 2.1.3 we remind the main facts about shock waves in

1Collision of dilatonic shock waves in the flat background has been considered in
[26].
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AdS5 related to the trapped surface formation. In Sect.2.1.4 we describe in
details the dual conjecture proposed in [11]. In Sect.2.2 we pay a special
attention to the problem of regularization that appears within the wall
shock waves approach. In Sect. 3 we present the phase diagram, temper-
ature vs chemical potential, for QGP formed in the heavy-ions collisions
by using the holographic approach with the central collision of charged
shock waves. In Sect. 4 we present our calculations of the same prob-
lem by using the regularized version of the charged wall shock waves. We
summarize our calculations in Sect. 5 and present here also further direc-
tions related to holographic description of quark-gluon plasma formed in
heavy-ions collisions.

3.2 Set up

3.2.1 Dual conjectures

Black holes and AdS/CFT correspondence for strongly coupled
QGP

The idea of AdS/CFT applications to description of the QGP is based
on the possibility to make an one to one correspondence between phe-
nomenological/termodynamical parameters of plasma – T ,E,P ,µ – and
parameters that characterize deformations of AdS5. In the dual gravity
setting the source of temperature and entropy are attributed to the grav-
itational horizons. The relation between energy density and temperature
typical for the BH in AdS according [35, 36] is

E =
3π3 L3

16G5
T 4 (3.4)

In the phenomenological model of QGP, such as the Landau or Bjorken
hydrodynamical models [37, 38], the plasma is characterized by a space-
time profile of the energy-momentum tensor Tµν(xρ), µ, ν, ρ = 0, ...3. This
state has its counterpart on the gravity side as a modification of the ge-
ometry of the original AdS5 metric. This follows the general AdS/CFT
line: operators in the gauge theory correspond to fields in SUGRA. In the
case of the energy-momentum tensor, the corresponding field is just the
5D metric. It is convenient to parameterize corresponding 5-dimensional
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geometry as

ds2 = L2 gµν(x
ρ, z)dxµdxν + dz2

z2 , (3.5)

that is the 5D Fefferman-Graham metric [39]. The flat case gµν = ηµν
parametrizes AdS5 in Poincaré coordinates. The conformal boundary of
space-time is at z=0 and

gµν(x
ρ, z) = ηµν + z4g(4)µν (x

ρ) + . . . (3.6)

The AdS/CFT duality leads to the relation

g(4)µν (x
ρ) ∼< Tµν(x

ρ) > (3.7)

Applications of AdS/CFT correspondence to hydrodynamical descrip-
tion of the GQP is based on the fact that the energy momentum tensor
can be read off from the expansion of the BH in AdS5 metric (3.6) corre-
sponding to simple hydrodynamical model

< Tµν >∝ g(4)µν = diag(3/z4
0 , 1/z4

0 , 1/z4
0 , 1/z4

0) (3.8)

The BH in AdS5 in the Fefferman-Graham coordinates has the form (3.5)
with the following nonzero components of gµν(xρ, z) (see [6] and refs
therein)

g00 = −

(
1− z4

z4
0

)2

(
1+ z4

z4
0

) , gii =

(
1+ z4

z4
0

)
(3.9)

A change of coordinates z̃ = z/(1 + z4/z4
0)

1/2 transforms (3.5) to the
standard metric form of the AdS-Schwarzschild static black hole

z̃2ds2 = −
(

1− z̃4

z̃4
0

)
dt2+ d~x2+

1
1− z̃4

z̃4
0

dz̃2, (3.10)

with z̃0 = z0/
√

2 being the location of the horizon.

Chemical potential in QGP via AdS/CFT correspondence

The Reissner-Nordström metric in AdS has the following form:

ds2 = −g(R)dT 2 + g(R)−1dR2 +R2dΩ2
D−2, (3.11)
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g(R) = 1− 2M
R2 +

Q2

R4 +
Λ
3 R

2, (3.12)

where Λ is cosmological constant, Λ/3 ≡ 1/a2, M and Q are related to
the ADM (Arnowitt-Deser-Misner) mass m and the charge σ

M =
4πG5m

3π2 , Q2 =
4πG5σ

2

3 . (3.13)

σ is a charge of the electromagnetic field (pure electric) with only one
non-zero component

A = ATdT =

(
−
√

3
4
Q

R2 + Φ
)
dT , (3.14)

here Φ is a constant Φ =

√
3

2
Q

R2
+

, where R+ is the largest real root of g(R).

Thermodynamics of the charged BH is described by the grand canonical
potential (free energy) W = I/β, the Hawking temperature T = 1/β,
and the chemical potential [40, 41] that are given by

I =
πβ

8G5a2

(
a2R2

+ +R4
+ −

Q2a2

R2
+

)
, T =

1
4πg

′(R+), µ =

√
3Q

2R2
+

, (3.15)

here R+ is outer horizon, g(R+) = 0, I is given by the value of the action
at (3.12) and (3.14). The relation with the first low of thermodynamics,
dE = TdS + µdQ is achieved under identification

W = E − TS −ΦQ, E = m, S =
SH
4G5

, Q = q, µ = Φ (3.16)

Note that just the asymptotic value of a single gauge field component gives
the chemical potential [27]-[34]

µ = lim
r→∞

At(r) (3.17)

The QGP is characterized at least by two parameters: temperature
and chemical potential. Generically speaking, quantum field theories may
have non zero chemical potentials for any or all of their Noether charges.
Within the AdS/CFT context two different types of chemical potential
are considered, namely related to the R charge and to baryon number.

Baryon number charge can only occur when we have a theory con-
taining fundamental flavours. Introduction flavours into the gauge theory
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Figure 3.1. Phase diagram from [27]: Quark chemical potential µq/Mq, in
versus temperature T/M̄ . The red line separates the phase of Minkowski em-
beddings (small temperatures, small µq/Mq) from black hole embeddings (see
details in [27]). Figure (b) zooms in on the region near the end of this line.
Different lines in (b) correspond to different embedding geometries.

by means of a D7 brane leads to appearance of a U(Nf ) global flavour
symmetry. The flavour group contains a U(1)B, that is a baryon number
symmetry, and for this baryon number one adds a chemical potential µb
[28]. To calculate the free energy one has to calculate the DBI action for
a D7 brane. Note that there is a divergence in formal definition, so we
must go through the process of renormalization, see for example lectures
[42] and for yearly discussion [43].

R charge chemical potential appears for SUSY models [34]. In the N
= 1 case there is a U(1) R symmetry group. As to extended SUSY, say
N=2, the quark mass term breaks R symmetry.

The typical phase diagram the chemical potential vs the temperature
is presented in Fig. 3.1 (the diagram is taken from [27]). In the phase
diagram: µq =

µb
Nc

, µq is the quark chemical potential and M̄ ∝ mq is a

mass scale defined as M̄ = 2Mq/
√
λ and λ = g2

YMNc.

Shock waves in AdS5

Shock waves propagating in AdS have the form

ds2 = L2−dudv+ dx2
⊥ + φ(x⊥, z)δ(u)du2 + dz2

z2 , (3.18)
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where u and v are light-cone coordinates, and x⊥ are coordinates transver-
sal to the direction of motion of the shock wave and to z-direction. This
metric is sourced by the stress-energy momentum tensor TMN with only
one non-zero component TSWuu

TSWuu = Juu(z,x⊥)δ(u) (3.19)

and the Einstein E.O.M. reduces to

(�H3 −
3
L2 )Φ(z,x⊥) = −16πG5

z

L
Juu(z,x⊥) (3.20)

where
Φ(z,x⊥) ≡

L

z
φ(z,x⊥) (3.21)

and
�H3 =

z3

L2
∂

∂z
z−1 ∂

∂z
+
z2

L2 (
∂2

∂x2
⊥
) (3.22)

Different forms of the shock waves correspond to different forms of the
source Juu(z,x⊥). The most general O(3) invariant shock wave in AdS
located at u = 0 corresponds to

ΦO(3)(z,x⊥) = F (q). (3.23)

where q is the chordal distance

q =
(x1
⊥)

2 + (x2
⊥)

2 + (z − z0)2

4zz0
, (3.24)

In this case ρ, related to Juu as
z

L
Juu(z,x⊥) ≡ ρ(z,x⊥), (3.25)

has the form
ρO(3)(z,x⊥) = ρ(q), (3.26)

and the Einstein E.O.M takes the form

(�H3 −
3
L2 )F = −16πG5 ρ(q) (3.27)

or explicitly

q(q+ 1)F ′′qq + (3/2)(1 + 2q)F ′q − 3F = −16πG5L
2 ρ(q), (3.28)
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The shape of point shock wave F p is given by the solution to (3.20)
with

Juu = Eδ(u)δ(z −L)δ(x1)δ(x2) (3.29)

and has the form is given by

F p(z,x⊥) =
8L2G5Ez

3

(x2
⊥ + (z −L)2)3 (3.30)

This point shock wave shape is in fact equal to F p(q), Φpoint(z,x⊥) =
F p(q), that is a solution to (3.28) with

ρp(q) =
E

L3
δ(q)√
q(1 + q)

. (3.31)

It has the form

F p =
2G5E

L

 (8q2 + 8q+ 1)− 4(2q+ 1)
√
q(1 + q)√

q(1 + q)

 (3.32)

The shape of the charged point shock wave is a sum of two components

F = F p + FQ (3.33)

where F p is given by (3.32) and FQ is the solution to (3.28) with

ρpQ =
5Q̄2

32 · 64L5G5

1
[q(q+ 1)]5/2 =

5Q2
n

π24 · 64L5
1

[q(q+ 1)]5/2 , (3.34)

explicitly

FQ =
5G5Q

2
n

48L3

144q2 + 16q− 1 + 128q4 + 256q3 − 64(2q+ 1)q(q+ 1)
√
q(1 + q)

q(1 + q)
√
q(1 + q)

(3.35)
To establish the connection with [22] let us note the relations of nota-

tions
M̄ =

4G5E

3π (3.36)

Q̄2 =
4G5Q

2
n

3π (3.37)
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and

3πM̄
2a =

2G5E

L
(3.38)

5πQ̄2

64a3 =
5G5Q

2
n

48L3 (3.39)

More complicated shock waves in AdS and dS have been considered in
[44–49].

GYP dual conjecture

Gubser, Yarom and Pufu (GYP) [11] have proposed the following dual to
QCD holographic picture for colliding nuclei:

• the bulk dual of the boundary nuclei is the shock waves propagating
in AdS of the form (3.18);

• the bulk dual of two colliding nuclei in the bulk is the line element
for two identical shock waves propagating towards one another in
AdS

ds2 = L2−dudv+ dx2
⊥ + φ1(x⊥, z)δ(u)du2 ++φ2(x⊥, z)δ(v)dv2 + dz2

z2 ;
(3.40)

• when the shock waves collide in the bulk, a black hole should form,
signifying the formation of a quark-gluon-plasma.

To estimate the BH formation one usually use the TS technic [50, 51].2
A trapped surface is a surface whose null normals all propagate inward
[53]. There is no rigorous proof that the TS formation in asymptotically
AdS spacetime provides the BH formation, however there is an common
belief that trapped surfaces must lie behind an event horizon and that a
lower bound on entropy SAdS of the black hole is given by area of the TS,
Atrapped,

SAdS ≥ Strapped ≡
Atrapped

4G5
(3.41)

2This estimation can be also performed using so-called capture arguments [52, 26].
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To make the proposed duality prescription more precise one has to fix
the relations between the bulk parameters, G5,L,E and the phenomeno-
logical parameters of QGP. According to [21], one of these relations is

L3

G5
=

16E · T 4

3π3 =
11 · 16

3π3 ≈ 1.9 (3.42)

The arguments supporting (3.42) are following. Lattice calculations in
QGP [57] have shown that ET 4 is a slowly varied quantity and

ET 4 ≈ 11. (3.43)

Just to match the black hole equation of state (3.4) with (3.43), Gubser,
Yarom and Pufu [11] have assumed (3.42). It is important to note that
here is assumed an identification of the total energy of each nucleus with
the energy of the corresponding shock wave. One can modify this identi-
fication and assume that only a part of energy of the gravitational shock
wave is related to the total energy of nucleus.

To fix the dimensionless parameter EL the AdS/CFT dual relation
(3.7) between the expectation value of the gauge theory stress tensor and
the AdS5 metric deformation by the shock wave has been used [11],

〈Tuu〉 =
L2

4πG5
lim
z→0

1
z3 Φ(z,x⊥)δ(u) (3.44)

For the point shock wave Φpoint given by (3.30), one gets the following
stress tensor in the boundary field theory:

〈Tuu〉 =
2L4E

π(L2 + (x1)2 + (x2)2)3 δ(u) (3.45)

The r.h.s. of (3.45) depends on the total energy E and L, and L has a
meaning of the root-mean-square radius of the transverse energy distri-
bution. It has been assumed [11] that L is equal to the root-mean-square
transverse radius of the nucleons, that is in according with a Woods-Saxon
profile for the nuclear density [54, 55] is of order of few fm. In particular
for Au it is equal to L ≈ 4.3 fm. For Pb it is L ≈ 4.4 fm.

The RHIC collides Au nuclei, (A=197), at √sNN = 200 GeV. This
means that each nucleus has energy E = 100 GeV per nucleon, for a total
of about E = Ebeam = 19.7 TeV for each nucleus.

LHC will collide Pb nuclei, (A=208) at √sNN = 5.5 TeV, that means
E = Ebeam = 570 TeV.
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Estimations of [11] for dimensionless values EL for Au-Au and Pb-Pb
collisions are

EL|Au−Au,√sNN=200 GeV ≈ 4.3× 105 , (3.46)
EL|Au−Au,√sNN=5.5 TeV ≈ 1.27× 107 , (3.47)

Note, that in [18] has been proposed to tune the scale L or z0 of the
bulk colliding object to the size of the nucleus, or to the “saturation scale”
Qs in the “color glass” models.

Calculations in [11] show that in the limit of a very large collision
energy E the entropy grows as E2/3,

Strapped ≈ π
(
L3

G5

)1/3

(2EL)2/3, (3.48)

Considerations of off-center collisions of gravitational shock waves in AdS
do not change the scaling E2/3. However, a critical impact parameter,
beyond which the trapped surface does not exist has been observed [18]
(compare with result of [20]). Experimental indications for similar critical
impact parameter in real collisions have been noted [18].

The relation of the total multiplicity, SQGP , given by experimental
data, and the entropy produced in the gravitational waves collision in
AdS5, SAdS has some subtleties [21]. Phenomenological considerations
[56, 58, 11], estimate the total multiplicity SQGP by the the number of
charged particles Nch times the factor ∼ 7.5.

SQGP ≈ 7.5Ncharged. (3.49)

The trapped surface analysis does not give the produced entropy but
it provides a lower bound

Strapped ≤ SAdS . (3.50)

Taking into account that in calculations [11] the energy of the gravi-
tational shock wave is identified with the energy of colliding ions and L
with the nucleus size, one can introduce proportionality constants between
these quantities to get

M· Strapped < Ncharged (3.51)

where all proportionality factors are included into the overall factor M.
One can take M to fit the experimental data at some point. But the
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scaling Strapped ∝ s1/3
NN implied by (3.48) differs from the observed scaling,

which is closer to the dependence S ∝ s1/4
NN , that predicted by the Landau

model [37], see Fig.3.2. It is obvious, that if E < Emax one can avoid a
conflict between [11] and experiment, but if E can be arbitrary large the
conflict takes place.

In figure 3.2 we plot the dependence of the entropy bound (3.48) on the
energy, together with the curve that schematically represents the realistic
curve that fits experimental data [59]. We can see that by changing the
coefficientM one can avoid the conflict only for energy up to some Emax.
The overall coefficient of the numerical plot has been chosen in order to

Figure 3.2. (color on-line) Plots of the total number of charged particles vs. en-
ergy. The red lines present the estimation (2.45). Plots A and B differ by the
overall factor M. The blue lines correspond to the prediction of the Landau
model and the dotted green lines schematically present the curves that fit experi-
mental data. The dashed lines correspond to corrections to the GYP multiplicity
via non-zero chemical potential, see Sect.3.

fit the RHIC data [59]. Their are indicated by dots in Fig.3.2.
In the above estimation energy of each shock wave is identified with

the energy of colliding beams. As has been noted in [17] one can improve
fit to the data by identifying the energy of each shock wave with the
fraction of the energy of the nucleus carried by nucleus that participate in
the collision. This give an extra parameter to fit data. But still a conflict
will arise at large energies. In paper [17] it has been proposed to cure
the problem by removing a UV part of AdS bulk. In [25] shock waves
corresponding to the BH with non-zero dilaton field [24] were considered
and it has been shown that lower bound on Ncharged scales is rather closer
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to s1/4
NN .

3.2.2 Remarks about the regularization of TS calculations
in the case of wall-on-wall collisions

In [18] has been proposed a much simpler dual description of the colliding
nuclei that uses a wall-on-wall collision in the bulk. The Einstein equation
for the profile of the wall shock wave [18] has the form:

(∂2
z −

3
z
∂z)φ(z) = JWP

uu , JWP
uu = −16πG5

E

L2
z3

0
L3 δ(z − z0) (3.52)

To find a trapped surface that can be formed in the collision of two wall
shock waves one needs to find a solution to the Einstein eq.(3.52) that
satisfies two conditions. It is convenient to write these conditions in terms
of function ψ(z) related to φ via

φ(z) =
z

L
ψ. (3.53)

They have the form

ψ(za) = ψ(zb) = 0, (3.54)

ψ′(za)
za
L

= 2, ψ′(zb)
zb
L

= −2 (3.55)

where za, zb are supposed to be the boundaries of the trapped surface
[18]. But as we will see in the moment, strictly speaking, one cannot
call the solution to the equation (3.52) with b.c. (3.54) and (3.55) the
trapped surface, since by definition this surface supposed to be smooth
and compact meanwhile the solution [18] is non-smooth and noncompact.

By this reason we call the solution found in [18] a quasi-trapped sur-
face. Let us remind the construction presented in [18].

In [60], the solution to the Einstein equation (3.52) is written in such
a way that the property (3.54) is satisfied automatically. This solution
has the form

ψ(z) = ψa(z)Θ(z0 − z) + ψb(z)Θ(z − z0) (3.56)

ψa(z) = −
4GπE

(
z4

0
zb4
− 1

)
zb

4za
3
(
z3

za3 −
za
z

)
L4 (zb4 − za4)
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ψb(z) = −
4GπE

(
z0

4

za4 − 1
)
za

4zb
3
(
z3

zb3
− zb

z

)
L4 (zb4 − za4)

Let us first note that solution (3.56) is not smooth. There is a non-
smooth part of the solution (3.56)

Ξ =
K
z

(
− zb
z3
a

(Υ1)−
za
z3
b

(Υ2)

)
, where (3.57)

Υ1 = z4Θ(z0 − z) + z4
0Θ(z − z0) (3.58)

Υ2 = z4
0Θ(z0 − z) + z4Θ(z − z0) (3.59)

where
K =

4GπE
L4

z3
az

3
b

z4
b − z4

a

(3.60)

Thus, in order to smooth the solution we have to smooth the function
Ξ. We can do it by performing the regularization of the Heaviside step
function

Θ(z0 − z) ≈ Γ1 =
arctan (R (z0 − z))3

π
+

1
2 (3.61)

Θ(z − z0) ≈ Γ2 =
arctan (R (z − z0))

3

π
+

1
2 : (3.62)

and considering the regularized functions Υ̃1 and Υ̃2

Υ̃1 = z4
(

arctan (R (z0 − z))3

π
+

1
2

)
+ z4

0

(
arctan (R (z − z0))

3

π
+

1
2

)

Υ̃2 = z4
0

(
arctan (R (z0 − z))3

π
+

1
2

)
+ z4

(
arctan (R (z − z0))

3

π
+

1
2

)
For derivatives we have

dΥ1
dz
≈ 4z3Θ(z0 − z),

dΥ̃1
dz
≈ 4z3 (arctan(R(z0 − z))3 + π

)
π

;(3.63)

dΥ2
dz
≈ 4z3Θ(z − z0),

dΥ̃2
dz
≈ 4z3 (arctan(R(z − z0))3 + π

)
π

.(3.64)

In Fig.3.3 we present the derivatives of functions Υ1, Υ2 as well as
derivatives of the smoothed functions Υ̃1, Υ̃2.
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For R = 104 (see below) the differences between derivatives dΥ̃i
dz

and
their approximations given by (3.63) and (3.64)

∆1(z) =
dΥ̃1
dz
−
(
dΥ̃1
dz

)
appr

, ∆2(z) =
dΥ̃2
dz
−
(
dΥ̃2
dz

)
appr

(3.65)

∆1(z) = −∆2(z) = −3 z4R3 (z0 − z)2(
1 +R6 (z0 − z)6

)
π
+ 3 z0

4R3 (z − z0)
2(

1 +R6 (z − z0)
6
)
π

are of order & 10−3 fm3 only in the interval z ∈ [z′0, z′′0 ], z′0 = 4.293 fm,
z′′0 = 4.307 fm.

Indeed, in our consideration (spread case) the largest value of za is
4.260706906 fm and the smallest value of zb is 4.340400579 fm. At the
points z′0 = 4.260706906 fm, z′′0 = 4.340400579 fm the quantity ∆1 is less
then ≤ 5 · 10−6 fm3.

At the points z′0 = 0.6948439783 fm, z′′0 = 1018.393720 fm the quan-
tity ∆1 is less then ≤ 2 · 10−12 fm3.

The schematic picture of locations of roots and a region there |∆i(z)| &
10−3 are presented in Fig.3.4. We see that the difference ∆i is not essential
in location of the roots and we can use the approximations (3.63) and
(3.64).

The regularized version of the the function ψ is

ψreg = ψa(z)Γ1 + ψb(z)Γ2. (3.66)

Now one has to put conditions (3.55) on the regularized functions

za
2L

d

dz
ψreg

∣∣∣∣
z=z̃a

= 1 (3.67)

zb
2L

d

dz
ψreg

∣∣∣∣
z=z̃b

= −1 (3.68)

and find z̃a and z̃a from these conditions. However it is difficult to perform
these calculations. Instead of finding z̃a from condition (3.109) we propose
to use such regularization that does not change za found from formal
conditions (3.55). We can check that the formal za in fact solves also the
regularized condition if the regularization is smooth enough. So, we take
za and substitute it in the LHS of regularized condition (3.109). We define
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A. B

C.

Figure 3.3. A. The functions dΥ1
dz

(red line), dΥ̃1
dz

∣∣∣∣∣
appr

(blue line) . B. The

functions dΥ2
dz

(red line), dΥ̃2
dz

∣∣∣∣∣
appr

(blue line). The regularization parameter

R = 10 at A and B cases. C. Functions dΥ2
dz

(red line), dΥ̃2
dz

∣∣∣∣∣
appr

(blue line)

and dΥ̃2
dz

(green line) at the regularization parameter R = 104.

Fa,reg

∣∣∣∣∣∣
z=za

=
za
2L

(
dψa
dz

Γ1 +
dψb
dz

Γ2

) ∣∣∣∣∣∣
z=za

= 1 + δ1,

Fb,reg

∣∣∣∣∣∣
z=zb

=
zb
2L

(
dψa
dz

Γ1 +
dψb
dz

Γ2

) ∣∣∣∣∣∣
z=zb

= −1 + δ2.

We can calculate Fa,reg. The deviation of Fa,reg from 1 will show
how the regularization changes conditions (3.55). In the following table
we present calculations of Fa,reg for the wide range of parameter of the
theory.
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Figure 3.4. (color on-line) The schematic plots of locations of roots (solid black
lines) dependent on the energy (in the logarithmic scale) and the location of

differences |dΥ̃i
dz
− (

dΥ̃i
dz

)appr| & 10−3, i = 1, 2 (the magenta shaded region). The
magenta solid line shows the location of the wall. The dotted blue lines show
location of zeros for the charged wall.

We choose the parameter R as minimally needed to make δ1 and δ2
negligible at energies 10−4 < E < 102 TeV. Using the direct numerical
calculations we choose R = 104. We perform numerical calculations at
R = 104 and get the following table:

E, TeV Q, fm1/2 za, fm zb, fm, Fa Fb

118.2 0 0.044 4.015 · 106 1.00000 −1.00000

30 0 0.069 1.019 · 106 1.00000 −1.00000

0.03 0 0.695 1018.394 1.00000 −1.00000

0.00025 0 4.261 4.3404 0.99999 −0.99999

Thus, from the table evidently Fa ≈ 1, Fb ≈ −1.
As has been mentioned above, strictly speaking one may not consider

infinite surface as a trapped surface of any kind. Nevertheless it is possible
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to assume that transversal size of colliding objects is finite but very large,
and therefore boundary conditions do not affect the process of gravita-
tional interactions of inner parts of sources. If we are interested only in
the specific area of the formed trapped surface in respect to the unit of
shock wave area, we may define it as

A ≈ lim
L→∞

Atrap(L)

Asource(L)
, (3.69)

and the approximate equality takes place due to negligibility of boundary
effects. As often happens, we can get answers for finite physical systems
performing calculations for infinite non-physical objects.

3.3 Holographic QGP phase diagram for the cen-
tral heavy-ions collisions

In this section we construct the phase diagram for TS formed in the central
collision of two identical point-like charged shock waves [22].

The profile of point-like charged shock waves in AdS is given by (3.33)
with (3.32) and (3.35). Existence of the trapped surface in the central
collision of two point-like charged shock waves means the existence of a
real solution, q0, to the following equation (see [22] for details)

F ′(q0)−
2

1 + 2q0
F (q0) +

2L√
q0(1 + q0)

= 0 (3.70)

The left hand side of (3.70) can be written as

F(L,E, Q̄2, q) = N (L, M̄ , Q̄2, q)
D(a, q) . (3.71)

The numerator N (L,E, Q̄2, q) contains just one term with dependence on
Q̄2. This dependence is linear with a positive coefficient

N (a, M̄ , Q̄2, q) = N (a, M̄ , q) + 15π
a
Q̄2. (3.72)

The denominator in (3.71) does not take infinite values. To find solutions
to (3.70) for the shape function given by (3.33) we can draw the function

− N (a, M̄ , q) ≡ −(512a3q5 + 1280a3q4 −
− 96M̄πaq2 + 1024a3q3 − 96M̄πaq+ 256a3q2), (3.73)
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and see where this function can be equal to a given value 15Q̄2 π
a .

In order to find the maximal allowed Q̄2 at which solution to (3.70)
still exists we find the maximum of function N for fixed energy,

dN (a, M̄ , q)
dq

|q=qmax = 0 (3.74)

and the value
a

15πN (a, M̄ , q)|q=qmax

defines Q̄2
max.

Let us remind that we are working in physical units and we use the

following notations (3.37) and (3.36): M̄ =
4G5E

3π and Q̄2 =
4G5Q

2
n

3π .

Results of calculations are presented in Fig. 3.5.

E, Tev

Qn, fm
1/2

Figure 3.5. The allowed zone for the trapped surface formation is under the
line on the diagram. The plot has been constructed by using formulas from [22].
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To estimate corrections to GYP multiplicity due to non-zero chemical
potential, we use formula (3.17) from [22]. In notations admitted in this
paper, (3.32) and (3.35), the formula has the form

AAdS5 ≈ 4πL3
(
G5E

L2

) 2
3

1− 1
24

(
1 + 5Q2

n

EL2

)(
2
√

2L2

G5E

) 3
2
(3.75)

In Fig.3.6 we show the entropy, AAdS5 , for Qn = 0 and Qn 6= 0. The
blue line represents Qn = 0. The red line represents Qn = 2 · 106. We see
that the deviation form the GYP multiplicity is essential for small energies
and is almost neglectful for large energies.

E, TeV

A5AdS

Figure 3.6. The function AAdS5 , at Qn = 0, (blue line) and Qn = 2 · 106fm1/2

(red line).

3.4 Holographic QGP phase diagram in the wall-
wall dual model of heavy-ions collisions

3.4.1 Charged wall as a dual model for a heavy-ion

Let us note that the form of the JWP
uu in (3.52) can be obtained by spread-

ing out the energy-momentum tensor of an ultrarelativistic point, i.e Juu
in the form (3.25) with ρ(q) given by eq.( 3.31), over the transversal sur-
face.
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The Einstein equation for the charged wall (membrane) has the form

(∂2
z −

3
z
∂z)φ(z) = −16πG5

(
JWP
uu + JWQ

uu (Q, z)
)

. (3.76)

where JWP
uu is given by (3.52) and we suppose that JWQ

uu (Q, z) can be
obtained in the similar way by spreading the energy-momentum tenzor of
the ultrarelativistic charged point T pQuu over the transversal surface. In the
previous calculations:

JWQ
uu =

´
M JpQuu Dx⊥´
MDx⊥

(3.77)

here the subscript ”pQ” means the electromagnetic part of the energy
momentum tensor of the charged point particle and ”Dx⊥” means that
we integrate over the induced metrics on the orthogonal surface M.

For this purpose we take

JpQuu (z, z0) =
L

z
ρpQ (3.78)

where ρpQ is given by (3.34), and according to our prescription (3.77) we
integrate over all transversal coordinates

JPQ,II
uu =

L
z

´∞
0 ρpQ(q)L

2

z2
0

1
2dr

2

´∞
0

L2

z2
0
rdr

(3.79)

The result is
JpQuu = XJ (3.80)

where

J =
64
3 zz0

(
1− z6

0 − 3 z2z4
0 − 3 z4z2

0 + z6

|z2
0 − z2|3

)
(3.81)

X =
5

256
Q2
n

πL6 =
5

256
Q2

L6 (3.82)

We see divergency at z = z0, as it should be for the energy-momentum
tensor of a charged plane. We introduce regularization by adding the ε
factor in the denominator.
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3.4.2 Charged wall-on-wall collision as a dual model for
heavy-ions collisions

To find the TS formation condition in the wall-wall collision one has to
solve Einstein equation

(∂2
z −

3
z
∂z)φ(z) = −16πG5

(
JpWuu (z) + JQWuu (Q, z)

)
, (3.83)

JpWuu (z) =
E

L2
z3

0
L3 δ(z − z0), (3.84)

JQWuu (Q, z) =
128X

3 zz0
z4 (−z2 + 3 z0

2) θ(z0 − z) + z4
0
(
−3z2 + z2

0
)
θ(z − z0)

(−z2 + z2
0 + ε2)

3

(3.85)

with the following boundary conditions

1) φ(za) = φ(zb) = 0,φa(z0) = φb(z0) (3.86)

2)
(
ψ′(za)

za
L

)
= 2,

(
ψ′(zb)

zb
L

)
= −2, (3.87)

where za and zb are the boundaries of the TS and ψ is related to

φ(z) =
z

L
ψ. (3.88)

We search for a solution to the Einstein equation with a charged source
in the form of the sum of the ”neutral” solution and a correction propor-
tional to Q2

φ = φn + φq (3.89)

here φn denotes the solution of the neutral case.
As in the neutral case it is convenient to consider domains z < z0,

z > z0 separately

φq =

{
φqz0>z, z0 > z;
φqz>z0 , z > z0

(3.90)

and we have

(∂2
z −

3
z
∂z)φq = −16πG5X

128
3 zz0

z4 (−z2 + 3 z0
2)

(−z2 + z2
0 + ε2)

3 , z0 > z (3.91)

(∂2
z −

3
z
∂z)φq = −16πG5X

128
3 zz0

z4
0
(
−3z2 + z2

0
)

(−z2 + z2
0 − ε2)

3 , z > z0 (3.92)
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Solutions to (3.91) and (3.92) can be presented as :

ψqz0>z = z3C1 +
C2
z
− NLz0 z

3

4 (−z2 + z02 + ε2)
, z0 > z, (3.93)

ψqz>z0 =
C3
z

+ z3C4 +
NLz0

5

4z (−z2 + z02 + ε2)
, z > z0 (3.94)

Here N = 40
3
πG5Q2

L6 The first two terms in (3.93) and (3.94) are solution
to the Lin and Shuryak equation (55) in [18]. If one assumes that they
satisfy condition 1, i.e. ψn(za) = ψn(zb) = 0, ψna(z0) = ψnb(z0), one gets
[60]:

Ψn =



ψna = C

(
z3

z3
a

− za
z

)
, C = −4πG5E

L4

(
z4

0
z4
b

− 1
)
zb

z4
b − z4

a

z3
az

3
b

, z < z0

ψnb = D

(
z3

z3
b

− zb
z

)
, D = −4πG5E

L4

(
z4

0
z4
a

− 1
)
za

z4
b − z4

a

z3
az

3
b

, z0 < z

(3.95)

In the neutral case one find za and zb from the 2-nd condition
(
ψ′na(za)

za
L

)
=

2,
(
ψ′nb(zb)

zb
L

)
= −2, here za and zb are the boundaries of the TS.

As to (3.93) and (3.94), choosing

C1 =
NLz0

4(z2
a − z2

0)
, C2 = 0, (3.96)

C3 =
NLz5

0
4(z2

b − z2
0)

, C4 = 0, (3.97)

we obtain


ψaq = −

NLz0z
3

4
−z2

a + z2 − ε2

(−z2 + z2
0 + ε2)(−z2

a + z2
0)

, z < z0

ψbq =
NLz5

0
4z

−z2
b + z2 + ε2

(−z2 + z2
0 − ε2)(−z2

b + z2
0)

, z0 < z

(3.98)
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Note that for the constructed solution the condition ψ(za) = ψ(zb) = 0
is satisfied automatically.

The second requirement (3.87) gives

−8πG5E
(
z4

0 − z4
b

)
z3
a

L5(z4
b − z4

a)
− N

4
z0z

5
a

(−z2
a + z2

0)
2 = 1, (3.99)

−8πG5E
(
z4

0 − z4
a

)
z3
b

L5(z4
b − z4

a)
+
N

4
z5

0zb
(−z2

b + z2
0)

2 = −1; (3.100)

These equations do not have analytical solutions and we treat them nu-
merically.

Roots of system (3.99),(3.100) could not be found analytically since
these equations are equivalent to polynomial equations on za and zb of a
high degree (> 4). So we take z0 = L and analyze the following system
numerically

Fa ≡ −8πG5E
(
z4

0 − z4
b

)
z3
a

z5
0(z

4
b − z4

a)
− 10

3
πG5Q

2

z6
0

z0z
5
a

(−z2
a + z2

0)
2 = 1, (3.101)

Fb ≡ −8πG5E
(
z4

0 − z4
a

)
z3
b

z5
0(z

4
b − z4

a)
+

10
3
πG5Q

2

z6
0

z5
0zb

(−z2
b + z2

0)
2 = −1.(3.102)

To show the movement of roots of equations (3.101) and (3.102) we
suppose that zb for given Q is already known and represent function
Fa(za, zb) as function of za in Fig. 3.7. In the similar way, supposing
that za is already known we represent function Fb(za, zb) as function of zb
in Fig. 3.8.

In Fig.3.9 we show the charge flows of the roots. Different lines corre-
spond to different energies. We see that the flows go to z0 and reach the
line z = z0 for Q = Qcr. In Fig.3.10 we draw the corresponding flow for
physical parameters.

3.4.3 Comparison of the results

It is interesting to compare the phase diagrams, the energy (temperature)
E vs the charge (chemical potential) Q, corresponding to the pointlike
charge and the spread charge. Results of these calculations are collected
in the table below and presented in Fig.3.11. We see that this two phase
diagrams are qualitatively the same.
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za

Qn = 40
√
π · 103

Qn = 5
√
π · 103

Qn = 10
√
π · 103

Qn = 20
√
π · 103

Fa

(a)
za

Qn = 0

Qn = 40
√
π · 10

Qn = 5
√
π · 103

Qn = 20
√
π ·Fa

(b)

Figure 3.7. (a) The plot of Fa(za, zb) as a function of za for fixed zb near the
root za = za(E) at E = 118.2 TeV. (b) Zooming in the region of small Fa and
small za.

E (TeV) 118.2 60 30 6 3
Qcr, point 25649.6 14577.2 8180.6 2138.7 1199.9
Qcr,wall 47500 27000 15170 3950 2220
E (TeV) 0.6 0.06 0.03 0.0003 0.00025
Qcr, point 313.3 45.6 25.4 0.43 0.37
Qcr,wall 570 80 40 0.15 0

From Fig. 3.11 it is evident that the two lines, the red and the blue
ones, have a cross point. We represent the cross point in natural and
logarithmic scales in Fig. 3.12.
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zb

Qn = 5
√
π · 103

Qn = 40
√
π · 103

Qn = 20
√
π · 103

Qn = 10
√
π · 103

Fb

(a)

ln(zb)
Fb

(b)

Figure 3.8. (a) The plot of Fb(za, zb) as a function of zb for fixed za near the
root zb(E) at E = 118.2 TeV. (b) Zooming in the region of small negative Fb
and presenting zb in the logarithmic scale.

3.4.4 The square trapped surface calculation

Following [18] we calculate entropy lower bound as “the area of the trapped
surface” per an unite square of the wall3 using the formula:

S =
2A
4G5

=

´ √
gdzd2x⊥
2G5

, (3.103)

s ≡ S´
d2x⊥

=
L3

4G5

(
1
z2
a

− 1
z2
b

)
. (3.104)

In the absence of transverse dependence one ignores x2
⊥ in (3.103).

(3.104) measures entropy per transverse area.
The trapped surface decreases with growth of a charge. The corre-

sponding graphical representations are in Fig. 3.13.
In Fig.3.14 we show the entropy per volume given by (3.104) as func-

tion of energy for different Q. This plot is similar to the plot presented
3We put “area” and “trapped surface” in quotation marks since in the strict notions

of the trapped surface it has to be smooth and compact. In our case it is not smooth
and it does not have finite area, one can only assume this properties after regularization
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Figure 3.9. The schematic picture of charge flows. The magenta solid line
shows the position of the wall. We see that the positions of points za(Q) and
zb(Q) move to the point z = z0 when we increase Q. For Q → Qcr(E) the
segment [za(Q), zb(Q)] shrinks to zero.

in Fig. 3.6. We see that the influence of the chemical potential on the
multiplicity is essential for small energies and is almost neglectful for large
energies.

3.4.5 Remarks about the regularization

The regularized version of the the function ψ is

ψreg = ψa(z)Γ1 + ψb(z)Γ2 (3.105)

where ψa(z) and ψb(z) define the function ψ without regularization,

ψ = ψa(z)Θ(z0 − z) + ψb(z)Θ(z − z0) (3.106)

ψa(z) = −
4GπE

(
z4

0
zb4 − 1

)
zb

4za
3
(
z3

za3 − za
z

)
L4 (zb4 − za4)

− 10
3

Q2Gπ z0 z
3 (−za2 + z2)

L5 (−z2 + z02) (−za2 + z02)

ψb(z) = −
4GπE

(
z04

za4 − 1
)
za

4zb
3
(
z3

zb3 − zb
z

)
L4 (zb4 − za4)

+
10
3

Q2Gπ z0
5 (−zb2 + z2)

L5z (−z2 + z02) (−zb2 + z02)
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za

(a)

zb

(b)

Figure 3.10. (a) The charge flows of the root za(Q) for E = 1.97 TeV, 3 TeV,
9 TeV, and 24 TeV. (b) The charge flows of the roots zb(Q) for E = 1.97 TeV,
3 TeV.

and

Γ1 =
arctan (R (z0 − z))3

π
+

1
2 (3.107)

Γ2 =
arctan (R (z − z0))

3

π
+

1
2 (3.108)

Now one has to put conditions (3.55) on the regularized functions

za
2L

d

dz
ψreg

∣∣∣∣
z=z̃a

= 1 (3.109)

However it is difficult to find z̃a from the condition (3.109). Instead of
finding z̃a from the condition (3.109) we propose to use such regularization
that does not change za found from the formal conditions (3.55). We can
check that the formal za in fact solves also the regularized condition if the
regularization is smooth enough. So, the take za and substitute it in the
LHS of the regularized condition (3.109). We define
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ln(E)

ln(Qn)

A. E, TeV

Qn, fm
1/2

B

Figure 3.11. A. The phase diagram the logarithm of Qn vs the logarithm of
E at large E. B. The phase diagram E vs Qn for small E and small Qn. The
blue lines correspond to the pointlike charge and the red lines to the spread
charge. The zones above the lines are forbidden for black holes production for
corresponding E and Q.

Fa,reg

∣∣∣∣∣∣
z=za

=
za
2L

(
dψa
dz

Γ1 +
dψb
dz

Γ2

) ∣∣∣∣∣∣
z=za

≈ 1,

Fb,reg

∣∣∣∣∣∣
z=zb

=
zb
2L

(
dψa
dz

Γ1 +
dψb
dz

Γ2

) ∣∣∣∣∣∣
z=zb

≈ −1.

We can calculate Fa,reg and Fb,reg. In the following table we present
calculations of Fa,reg and Fb,reg for the wide range of parameter of the
theory. Results of calculations at R = 104 are presented in the following
table:

E, TeV Q = Qn/
√
π, fm1/2 za, fm zb, fm, Fa Fb

118.2 40000 0.049 4.015 · 106 0.99997 −1.00000

3 15000 0.088 1.019 · 106 1.00000 −1.00000

0.03 40 0.786 1017.792 1.00000 −1.00000
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1/2

Figure 3.12. The cross point of two diagrams in logarithmic and natural scales.

Qn/
√
π

s

Qn/
√
π

s

Figure 3.13. The dynamics of the trapped surface area s(Qn/
√
π) at E =

6TeV , E = 118.2TeV .

Thus, from the table it is evident that Fa ≈ 1, Fb ≈ −1.

3.5 Conclusion

3.5.1 Summary

In this chapter we have constructed the phase diagram of the quark gluon
plasma (QGP) formed at a very early stage just after the heavy ion col-
lision. In this construction we have used a holographic dual model for
the heavy ion collision. In this dual model colliding ions are described
by the charged shock gravitational waves. Points on the phase diagram
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Qn = 5000
√
π

s, fm−2

E, TeV

Qn = 0

Qn = 2000
√
π

Figure 3.14. The red line corresponds to the case Qn = 0 fm1/2, the blue to
the case Qn = 2000

√
π fm1/2, the black to the case Qn = 5000

√
π fm1/2.

correspond to the QGP or hadronic matter with given temperatures and
chemical potentials. The phase of QGP in dual terms is related to the case
when the collision of shock waves leads to formation of trapped surface.
Hadronic matter and other confined states correspond to the absence of
trapped surface after collision.

Multiplicity of the ion collision process has been estimated in the dual
language as an area of the trapped surface. We have shown that a non-zero
chemical potential reduces the multiplicity. To plot the phase diagram we
use two different dual models of colliding ions. The first model uses the
point shock waves and the second the wall shock waves. We have found
qualitative agrement of the results.

A special attention has been devoted to a regularization procedure for
calculations performed for wall shock waves. On the one hand technically
these calculations are essential simpler, but on the other hand, this ap-
proach, strictly speaking, is incorrect and requires a regularization. We
have shown that a natural regularization does exist. Moreover, the pro-
posed regularization does not make calculations to be more complicated
as compare with naive (direct) calculations. This open new possibility for
simple calculations for wall shock waves bearing nontrivial matter charges.
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3.5.2 Further directions

Head-on collisions of point charged shock waves have only two parameters.
In the dual language they correspond to energy and chemical potential per
nucleus. Off-center collisions are also specified by the impact parameter
and the change of this parameter can be associated with a dual change
from “non-thermal” peripheral to “thermal” central collisions [18]. How-
ever, this is still an oversimplification of the problem. The physics of
heavy-ion collision in RHIC is richer and as indicated in [18, 60], rapid
equilibration and hydrodynamical behavior experimentally observed at
RHIC for collisions of two heavy ions such as AuAu, does not have the
place for deuteron-Au collisions at the same rapidity. Maybe it is too
naive to believe that the simplest shock wave related by a boost to the
Schwarzschild black hole in AdS can mimic the nuclear matter in the col-
liders. However this simple shock wave in fact reproduces the interaction
of a relativistic quark with gravity and by this reason, may be considered
as a simplest candidate to mimic the nuclear matter within the holographic
conjecture. One can try to associate different nuclei with different forms
of shock waves. Let us remind in this context that the form of the shock
wave follows from the eikonal approximation of the gravity-quark interac-
tion in 5-dimension [61, 26]. The presence of the electromagnetic field or
other fields as well as any improvements of the eikonal approximation for
sure changes the form of the shock waves and it would be interesting to
see holographical consequences of this consideration.

The obtained lower bound on Ncharged scales as s1/3
NN , which is a faster

energy dependence than the s1/4
NN scaling predicted by the Landau model

[37] and largely obeyed by the data. If one has a priory a restriction on
allowed energy then one can fit constants to guaranty that the experi-
mental data are above the AdS bound. Note that taking into account
the chemical potential permits to increase the allowed energy. However
one cannot expect to much from the chemical potential corrections. The
relevant chemical potential for baryon number is not expected to be large,
i.e. µB ∼ 30MeV or µB/T ∼ 0.15 for recent experiments at RHIC [62]
and so any effects will be limited. However, as has been mentioned in the
text, the relation between the value of chemical potential and the value
of the 5-dimentional charge is in our disposal and we can assume a huge
ratio of them.

It would be also interesting to try to use plane gravitational waves in
AdS5 to describe nonperturbative stages in the gauge theories and colli-
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sions of these waves to describe the QGP formed in the heavy ions colli-
sions. In the plane case, the Chandrasekhar-Ferrari-Xanthopoulos duality
between colliding plane gravitational waves and the Kerr black hole so-
lution, has been used as a model of the BH formation [63]. It would be
interesting to generalize this duality to the AdS case. This may get a new
insight to a possible dependence of multiplicities on the rapidity.
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Chapter 4

Holographic dual of a time
machine

4.1 Introduction

Solutions to the equations of General Relativity that describe space-times
containing closed timelike curves (CTC) have attracted significant interest
as they revealed at least hypothetical theoretical possibility of travelling
in time. Since the renowned publication by Kurt Gödel [1] a number of
causality violating solutions in GR as well as in modified theories of gravity
have been constructed, among which we can name the Tipler-Van Stockum
time machine generated by axially rotating distribution of particles [2], [3],
the Morris-Thorne-Yurtsever transversable wormhole [4, 5], the Gott time
machine based on moving conical defects [6], the Ori dust solution [7], and
the solutions in f(R) theories of gravity [8] and theories with non-minimal
matter-curvature coupling [9].

All questions about physics of time machines that could be posed in
principle fall into three general categories:

• Is there a physical way to create a time machine?

• Is there any time machine solution that can be stable?

• What dynamical behaviour would a physical system experience evolv-
ing in a time machine background?

None of the questions have yet received a definite answer.
The answer to the first question is believed to be negative. Extensive

analysis of particular time machine solutions has demonstrated that in
order to create a space-time with CTC one needs matter that violates
strong, weak or null energy conditions of General Relativity (different
solutions require violation of different energy conditions), and only eternal
time machines can exist [10, 11]. However we can not be sure that all
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matter in the Universe obeys these conditions. For instance, there are a
number of models of the dark energy violating the null energy condition
[12–15], and this provides a way to by-pass the no-go statement.

The second question was raised by Hawking in [16], where he conjec-
tured that a space-time with CTC can be stable only on classical level,
but will be unavoidably destroyed by quantum fluctuations of the met-
ric. The real universal proof or refutal of the conjecture can be obtained
only within a framework of a complete theory of quantum gravity. String
theory opened a possibility to check the chronology protection condition
in specific cases. In [17] authors have shown that appearance of closed
timelike curves in a certain (O-plane) orbifold background would cause a
Hagedorn transition that restructures the space-time transforming it into
a chronologically safe configuration. So this result can be considered as a
very accurate and nice supporting evidence in favour of the Hawking con-
jecture. On the other hand in [18–20], it was demonstrated that the Gödel
type solutions can be smoothly embedded in the context of string theory.
Closed timelike curves in that case are hidden behind the so called holo-
graphic screens and do not violate causality in the rest of the space-time.
Thus the chronology is protected, but structure of the CTC remains un-
broken by quantum effects. An intriguing observation has been made by
authors of [21] and [22], that from the point of view of the AdS/CFT cor-
respondence, the existence of CTC in the bulk can be related to negative
or exceeding one fermionic probability in the boundary field theory.

The third category includes various types of the “grandfather para-
dox”. For a classical wave equation on a non-globally hyperbolic space
with CTC the possibility of self-consistent dynamics was demonstrated in
[23]. Classical mechanical billiards and their self-consistency conditions
have been studied in [24]. A basis of states of a free quantum field the-
ory in the Gott time machine has been constructed in [25], where it was
shown that the causality violation leads to an emergence of an effective
non-unitary interaction in the theory. Non-unitarity of interacting field
theories in time machines was analyzed in [26]. Some authors even ar-
gued that evolution of a physical system along closed timelike curves can
be studied experimentally by mean of simulation of emergent gravity in
metamaterials [27], or a qubit interacting with an older version of itself
[28].

However the question about properties of an interacting quantum field
theory in a time machine background remains open, though the real
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“grandfather paradox” can take place only in a self-interacting system.
When the notions of time ordering and unitarity are absent from the very
beginning, it is unclear how to formulate an interacting field theory. In
this chapter we address this problem and by use of the AdS/CFT cor-
respondence provide a constructive solution to it. Here we stand on the
position that even if the presence of CTC causes breaking of unitarity in
the boundary field theory [22], it should not be regarded as a big problem
as long as we can formulate a prescription how to solve the theory. When
one is trying to get an insight into physics of paradoxical systems, it is
not very useful to rely on the “common sense” intuition and corresponding
fundamental principles.

The AdS/CFT correspondence provides an elegant way to address the
paradox. In the large N limit it relates quantum field theories to a classical
gravity, and thus we can study properties of a quantum theory in the CTC
background just by careful analysis of the dual Riemannian geometry,
without any need to formulate special quantization rules that would be
valid in the case of broken causality.

The chapter is organized as follows. In the next section we introduce
a simple set up for the time machine in AdS3. In Sec. 4.3 we discuss
geodesic structure of the spacetime, and suggest that it could lead to non-
trivial effects in the boundary field theory. In Sec. 4.4 we introduce a
notion of timelike quasigeodesics that will be then used for connecting
timelike separated boundary points. Finally, in Sec. 4.5 we formulate a
precise algorithm for the Green function evaluation, provide the results of
numerical simulations, and discuss the related phenomenology.

4.2 Time machine in AdS3

The eternal time machine solution in AdS has been suggested by Gott
and DeDeo in [29] (for similar solutions containing CTC but collapsing
into a BTZ black hole see [30]). Here we briefly recall its structure closely
following the original text.

The three dimensional global anti-de Sitter space-time can be thought
of as a hypersurface

−X2
0 −X2

3 +X2
1 +X2

2 = −1, (4.1)

embedded in a four-dimensional flat R2,2 space-time with a metric:

ds2 = −dX2
0 − dX2

3 + dX2
1 + dX2

2 . (4.2)
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In the Schwarzschild coordinates the embedding formulas are

X0 =
√

1 +R2 cos t , (4.3)
X3 =

√
1 +R2 sin t ,

X1 = R cosφ ,
X2 = R sinφ ,

where R ∈ (0,∞), t ∈ (−∞,∞), φ ∈ [0, 2π).
The induced metric is then

ds2 = −(1 +R2)dt2 +
dR2

1 +R2 +R2dφ2. (4.4)

A massive particle put into a three dimensional space-time removes a
wedge with an angle deficit proportional to the mass of the particle, and
edges (faces) emerging from this point-like particle. Points on the opposite
edges of the wedge are identified, and the resulting space-time contains
a conical defect, Fig.4.1(a). When we are looking at the unfolding of
the conical defect, coordinate locations of the edges do not have an in-
dependent physical meaning, and we are free to rotate them preserving
the angular deficit. For our purposes it will be convenient to make the
cut out “pizza slice” twist in time with a constant angular velocity in the
reference frame of the massive particle, making a full rotation in a period
2π, Fig.4.1(b). Then for the trailing and leading faces of the wedge in the
embedding coordinates we get:

Xt
0 =

√
1 +R2 cos t X l

0 =
√

1 +R2 cos t ,
Xt

3 =
√

1 +R2 sin t X l
3 =
√

1 +R2 sin t ,
Xt

1 = R cos(t− α/2) X l
1 = R cos(t+ α/2) ,

Xt
2 = R sin(t− α/2) X l

2 = R sin(t+ α/2) .

Here α is the angular deficit of the conical spacetime. Integrating the
spacetime stress-energy tensor over the angle, we can deduce that the
effective mass concentrated in the interior of the bulk is

M = − 1
8G +

α

16πG . (4.5)

Here the second term is the mass of the point-like source, and the first
one is the contribution from the negative AdS curvature.

For a single static conical defect we can not make its angular deficit
α larger than 2π. If the mass of the point-like particle exceeds the limit
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Figure 4.1. Two equivalent unfoldings of the AdS3 spacetime with a conical
defect α =

√
3π. The larger part of the spacetime outside of the faces is to be

cut out, and the faces are identified. The only physical space is the narrow region
between the faces. To construct a time machine the twisted unfolding is more
convenient to use.
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Figure 4.2. Left: a boosted conical defect in AdS3. Faces of the wedge are
deformed, and the identification occurs between points with different time co-
ordinates (in the centre of mass frame). Here α =

√
3π, ψ = 1. Right: the

DeDeo-Gott time machine.
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α = 2π (M ≥ 0), the resulting space-time will be rather a BTZ black hole
instead of a naked conical singularity [31].

However, if we boost the massive source, the removed wedge is effec-
tively getting “squeezed” from the point of view of an external observer
at rest (see Fig. 4.2(a)). This provides a room for a second conical defect
with a deficit angle β such that α + β > 2π. In other words, relative
motion can support the system of conical defects, preventing them from
collapsing into a black hole. This will be the essence of the DeDeo-Gott
construction.

Consider a system of two identical conical defects undergone two op-
posite Lorentz transformations, in the (X0,X1) and (X3,X2) planes of
the embedding space each:

ΛI = Λ−1
II =


coshψ 0 sinhψ 0

0 coshψ 0 sinhψ
sinhψ 0 coshψ 0

0 sinhψ 0 coshψ

 (4.6)

In the three-dimensional coordinates of theAdS spacetime these Lorentzian
transformations correspond to SO(2, 2) isometry transformations.

It can be shown that in the coordinates of global AdS3 these defects
move along the same circular orbit R = const with a constant velocity,
always being at the opposite points of the orbit, Fig.4.2(b). A conical
defect sits at R̃ = 0 in its rest frame, i.e.

X̃0 = cos t, X̃1 = 0, X̃2 = 0, X̃3 = sin t . (4.7)

In the boosted frame

X0 = coshψ cos t, X1 = sinhψ cos t, X2 = sinhψ sin t, X3 = coshψ sin t ,
(4.8)

hence

R =
√
X2

1 +X2
2 = | sinhψ|, (4.9)

cosφ =
X2
R

=
sinhψ cos t
| sinhψ| = sgnψ · cos t . (4.10)

In the rest frame of a wedge, the points on its edges are identified
at equal coordinate times. However if we boost it, from the point of
view of an external observer this identification would occur at different
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times leading to time jumps for a particle moving around the conical
singularity. In the case of a single conical defect its boost can be regarded
as a global coordinate transformation of the space-time, which obviously
can not cause any new physical effects. However, with two defects moving
relative to each other, the relative time jumps become a physical effect
that can not be eliminated by a (proper) choice of coordinate system.
These time jumps allow for the existence of CTC.

Existence of closed timelike curves in this space-time can be demon-
strated by looking at the identification of the edges near the boundary of
AdS3 (at R → ∞). We refer the reader to [29] for a detailed discussion,
here we just quote the result. Speaking in terms of the unfolding of the
two-conical space-time, when a timelike particle living on the boundary
of the AdS cylinder hits an edge of one of the two wedges, it undergoes a
time and an angle jump:

∆t = 2 arctan
( sin(α/2) tanhψ

1 + cos(α/2) tanhψ

)
, (4.11)

∆φ = 2 arctan
( sin(α/2)

tanhψ+ cos(α/2)

)
. (4.12)

It can be shown that ∆t + ∆φ = α. If α ≥ π, the world line of the
particle becomes a closed timelike curve, and thus the space-time is a
time-machine, see Fig.4.3.

In the regime when this limit is not exceeded, and CTC are not present,
the space-time has been studied in detail from holographic point of view
in [32], but the case of broken causality has not been addressed.

In the next sections we will study geodesic structure of this time ma-
chine and explicitly show that in presence of the two orbiting conical
defects we deal with a highly-nontrivial lensing of geodesics, and this re-
flects on the structure of two point Green’s functions of the dual boundary
theory.

4.3 Entwinement of geodesics and causality vio-
lations

When conformal dimension ∆ of a boundary operator in AdS/CFT is
very high, the corresponding two-point Green function can be derived in
the geodesic approximation [31]:

G(A,B) = e−∆LAB , (4.13)
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Figure 4.3. A timelike particle moving along the boundary experiences a jump
in time and angle when it hits a face of one of the wedges. If ∆t+ ∆φ > π,
closed timelike curves become possible. The gray strips are the cut out part of
the boundary, and the white strips are the physical part of the boundary.

where LAB is the length of a geodesic connecting boundary points A and
B. If there are more than one geodesic between A and B, they can give
additional contributions to the propagator. This is the case for the DeDeo-
Gott time machine geometry, and here we address possible outcome of this
in details.

Consider two arbitrary points A (t1,φ1) and B (t2,φ2) located in the
physical (unremoved) part of the AdS3 boundary. Having two rotating
conical defects in the bulk makes the structure of possible geodesics con-
necting1 A and B very nontrivial, so we should find a way to calculate
their contributions to the two-pont Green’s function G(A,B). Let us
shoot a geodesic from the boundary point A to the point B. Before it
hits the point B it can undergo a number of “refractions” on the faces of
wedges, winding around either of two conical defects clockwise (if it hits
the leading face of the wedge head on) or counterclockwise (if it overtakes
the trailing face of the wedge from behind). For example, schematically a

1When A and B are timelike separated we encounter some subtleties caused by the
fact that in the AdS space-time a timelike geodesic can not reach the boundary. These
issues will be commented further on, but the general point of view described in this
section remains unchanged.
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typical geodesic may have a structure (see also Fig. 4.4)

A→W−I →W
+
II →W

+
I →W

+
II → B, (4.14)

where W+,−
I,II stands for the act of clockwise/counterclockwise winding

around the 1-st or the 2-nd wedge respectively.
So, formally the Green’s function in the geodesic approximation is

given by

G(A,B) =
∞∑
n=0

∑
{W1···Wn}

e−∆L(A{W1···Wn}B), (4.15)

where the second sum is taken over all different entwinement structures
corresponding to the same number of windings, and the first sum is taken
over all winding numbers2.

It is easy to see that for a given number of windings N the maximal
possible number of topologically different geodesics is

nN = 4 · 3N−1 . (4.16)

The first winding act can be of four different types. But for each of the
next steps, if a geodesic wrapped around a conical defect, for example,
clockwise, then on the next step it can not go in the opposite direction
and wrap around the same conical defect counterclockwise. It means that
in the sequence of windings the winding act W+

I can be followed (at least
hypothetically) by W+

I , W+
II , W

−
II , but not by W−I .

As we will see further, for a given pair of boundary points (A,B) not
all sequences of entwinements are physically realistic and can contribute
to the sum (4.15).

To find a proper prescription for the lengths of the non-trivial winding
geodesics let us discuss in detail a particular example.

Take a look at Fig.4.4. The length of the presented geodesic is a sum
of lengths of its’ composing arcs:

L(A→W−I W
+
IIW

+
I W

+
II → B) = LAO1 +LO2O3 +LO4O5 +LO6O7 +LO8B.

(4.17)
We will refer to points Ci as complementary points, and Oi as refraction
points. Coordinates of the refraction points Oi are to be found from
coordinates of A and B, and that can be easily done step by step.

2This idea of entwinements in holography has been introduced in [33], but there it
was related to a concept of entanglement entropy “shadows” rather than to subleading
contributions to the propagator
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Figure 4.4. Schematic constant time projection of a typical geodesic connecting
points A and B in the time machine. Red curves are for leading faces of the rotat-
ing wedges, and blue curves - for trailing faces. The entwinement configuration
in this particular case is W−I W

+
IIW

+
I W

+
II according to the notations introduced

in the main text. All shown points in principle can have different time coordi-
nates (here we schematically project them down to a single time section, so the
curves the geodesic is made from should be taken only as an approximate artistic
representation). On the left picture the acts of entwinement and identifications
are shown explicitly. A and B belong to the physical unremoved part of the
spacetime, and Oi are the points where the geodesic undergoes “refraction” on
the wedges. The right picture demonstrates the idea of complementary points Ci
located in the removed part of the spacetime.
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Figure 4.5. The left picture demonstrates W−I refraction of a geodesic on the
first conical defect. The right picture demonstrates how it looks like in a reference
frame of the conical defect. Again, points generically belong to different time
slices, and the representation is purely schematic.

Focus on the first refraction on the wedge, W−I . The points of inter-
est are {A, O1, C1, C2, O2, C3}. Here we neglect for a while the second
wedge, so we do not consider the point O3 at all, and we treat C3 as
a physical point (not just as a point in the complementary “removed”
space), see Fig.4.5(a). These six points can be regarded as a result of
boost transformation ΛI applied to the wedge. We can “unboost” the
wedge and find static pre-images of these points (see Fig.4.5(b)). For the
“unboosted” points the following relations trivially hold

C̃2 = Λ−1
I C2 = Λ−1

I A− (0,α) = Ã− (0,α), (4.18)
C̃3 = Λ−1

I C3 = Λ−1
I C1 − (0,α) = C̃1 − (0,α),

where (0,α) is a boundary identification vector proportional to the angu-
lar deficit. Here we subtract the identification vector (0,α) because this
particular entwinement is counterclockwise. For clockwise W+ we should
rather add (0,+α). In that case points Õ1 and Õ2 are intersections of
geodesics ÃC̃1 and C̃2C̃3 with faces of the static wedge.

Applying the same procedure to the other entwinements, in a generic
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case we get a system of recurrent relations

C2 = Λ1(Λ−1
1 A± (0,α)), (4.19)

C2j = Λj(Λ−1
j C2j−2 ± (0,α)),

C2N−1 = ΛN (Λ−1
N B ∓ (0,α)),

C2j−1 = Λj(Λ−1
j C2j+1 ∓ (0,α)).

Here Λj = ΛI if the corresponding winding is W±I . Λj = ΛII if the
corresponding winding is W±II . In these formulae we pick up the upper
sign if W+

I,II , and the lower sign if W−I,II .
Note, that the Lorentz boost we have defined in terms of the embed-

ding space coordinates acts non-linearly on the AdS3 points, therefore we
can not simply expand the parentheses in (4.19).

Then for each of the auxiliary arcs C2kC2k+1 we can derive coordinates
of the refraction points O2k, O2k+1, and write down corresponding lengths
of the composing arcs.

Later we will also show that not every formally generated sequence of
windings does exist.

4.4 Quasigeodesics connecting boundary points

To discuss causality properties of the dual boundary QFT, we will in par-
ticular need to consider boundary points with timelike separation. The
conceptual problem we unavoidably encounter here is the absence of time-
like geodesics connecting points on the conformal boundary of AdS. The
equations for timelike geodesics can be derived from the following La-
grangian for a massive particle in AdS:

− (1 +R2)ṫ2 +
Ṙ2

1 +R2 +R2φ̇2 = −1 . (4.20)

Such a particle has two conserved momenta:

E = (1 +R2)ṫ, (4.21)
J = R2φ̇. (4.22)
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Substituting them into the Lagrangian we obtain the radial equation of
motion:

− E2

1 +R2 +
Ṙ2

1 +R2 +
J 2

R2 = −1, (4.23)

Ṙ2 = −
(
1 +R2

)(
1 + J

2

R2

)
+ E2 . (4.24)

Clearly the right hand side of the equation turns negative as R→∞, and
thus no real solution to this equation can exist.

In the case of a stationary spacetime the obstacle could be easily sur-
mounted by performing the analytic continuation of the metric to the
Euclidean signature, calculating the Green function in terms of Euclidean
lengths of the geodesics, and making the inverse Wick rotation back to
real time. However in our case we deal with a spacetime that is not only
non-stationary, but wich has no good global notion of time. Hence we are
forced to stick to the Lorentzian time.

The way to implement the geodesic approximation for timelike sepa-
rated boundary points in the single Poincaré patch has been suggested in
[34]. Let’s turn for a second to the single patch of the AdS3 spacetime,
covered by the Poincaré coordinates:

ds2 = −r2dt2 +
dr2

r2 + r2dx2 . (4.25)

Again, a massive bulk particle has two kinetic invariants:

E = r2ṫ, (4.26)
J = r2ẋ , (4.27)

but now we have two different classes of spacelike geodesics.

• For J2 > E2: 
r(λ) =

√
J2 −E2 coshλ

x(λ) = x0 +
J

J2−E2 tanhλ
t(λ) = t0 +

E
J2−E2 tanhλ

(4.28)

• For E2 > J2: 
r(λ) =

√
E2 − J2 sinhλ

x(λ) = x0 − J
E2−J2 cothλ

t(λ) = t0 − E
E2−J2 cothλ

(4.29)
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We will be interested in the geodesics of the second kind. As λ = 0 these
geodesics approach the point r(0) = 0, which is the Poincaré horizon of
the half-AdS chart. Regarding the horizon as a single infinitely far point
(as in the theory of complex functions), we can consider two disconnected
spacelike geodesics possessing the same kinetic invariants E and J , but
emerging from two different timelike separated boundary points A(tA,xA)
and B(tB,xB), as two branches of a single geodesic reaching the spatial
infinity and returning back to the boundary. The length of such a geodesic
will be divergent not only as r → ∞ (the standard holographic UV di-
vergence), but also as r → 0, but this can be cured by an appropriate
renormalization3. The resulting expression for the renormalized length of
the geodesic is simply

L = ln
(
(tB − tA)2 − (xA − xB)2

)
, (4.30)

which gives the correct answer for the two-point correlation function of
(1 + 1)-dimensional CFT :4

G(tA,xA; tB,xB) = e−∆L =
1

((tB − tA)2 − (xA − xB)2)∆ , ∆t2 > ∆x2 .

(4.33)
In the global AdS space-time the Poincaré horizon has no special phys-

ical meaning, but we can still try to generalize this procedure to this case.
The boundary field theory now is defined on S1 ×R1 spacetime, and

the two-point Green function that we must be able to reproduce via the
geodesic approximation has the form [35]:

G(tA,φA; tB,φB) =
1

| cos(tB − tA)− cos(φB − φA)|∆
. (4.34)

Note that this function is periodic both in angle and time. While the
angular periodicity is obvious by construction, periodicity in time emerges

3For details see App. B and D of [34]
4If ∆x2 > ∆t2, the renormalized length is

L = ln
(
−(tB − tA)2 + (xA − xB)2) , (4.31)

and the full Green function is

G(tA,xA; tB ,xB) =
1

|(tB − tA)2 − (xA − xB)2|∆
. (4.32)
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because of the finite size effects: an excitation created at some point in
space and time starts dissipating, but later recollects and revives due to
the spatial periodicity.

We will need a function that defines angular separation between bound-
ary points while properly maintaining the rotational invariance of the sys-
tem. For instance, given two angular coordinates φ2 = 7π

4 and φ1 = π
4 ,

the difference between them along the shorter arc is

D(φ2,φ1) = −
π

2 6= φ2 − φ1 . (4.35)

Thus we should use

D(φ1,φ2) = mod (φ2 − φ1 + π, 2π)− π . (4.36)

Analogously, for the arithmetic average of two angular coordinates (that
provides a point exactly at the middle of the shorter arc between φ1 and
φ2):

Σ(φ1,φ2) =
1
2

(
φ1 + φ2 − 2πθ

(
− cos

(1
2 (φ1 − φ2)

)))
(4.37)

Note that the Green function (4.34) has a symmetry:

G(tA,φA; tB,φB) = G(tA,φA; tB + π,φB + π) , (4.38)

where points on the r.h.s. can be spacelike separated while points on the
l.h.s. have timelike separation:

(tB − tA)2 > D(φB,φA)2 , but (tB − tA + π)2 < D(φB + π,φA)2 .
(4.39)

This symmetry can be used to construct a disjointed spacelike geodesic,
with two branches reattached at the Poincaré horizon, connecting timelike
separated points.

If we represent the global AdS3 space-time as a cylinder, the Poincaré
horizon consists of two planes cutting the cylinder at 45◦. The orientation
of the planes (as a rigid construction) can be chosen arbitrarily. Then con-
sider a spacelike geodesic emerging from boundary point A (see Fig.4.6),
and terminating at boundary point B∗. Somewhere in the bulk it has a
turning point P1 where its radial coordinate R∗ = R(0) is minimal.

Since we are free to choose the location of the Poincaré horizon, we
can always orient it in such a way that the AB∗ geodesic intersects it at
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Figure 4.6. A spacelike quasigeodesic connecting two boundary timelike sep-
arated points A and B. A spacelike curve emerges from point A and reach
the Poincaré horizon at point P1. Then it jumps to a mirror point P2 =
P1 + (πt,πφ, 0R) on the second plane of the horizon, and proceeds further to
B. The arc P2B is a rotation of P1B∗ by π.

the turning point P1. This point P1 can be identified with a point P2 =
P1 + (πt,πφ, 0R), located on the other cutting plane. The arc P1B

∗ can
be then rotationally translated to this point: P1 → P2, and then B∗ → B,
where B = B∗ + (π,π). Hereafter we will use disjointed “quasigeodesics”
of this AP1P2B type to connect timelike separated points.

The explicit analytic expression for the quasigeodesics can be derived
in the following way. Let’s take the Poincaré chart geodesics (4.29), and
rewrite them in coordinates of the embedding spacetime. The correspond-
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ing coordinate transformation is given by:

X0 =
r

2 (
1
r2 + 1 + x2 − t2), (4.40)

X1 = xr, (4.41)

X2 =
r

2 (
1
r2 − 1 + x2 − t2), (4.42)

X3 = rt . (4.43)

Substituting here (4.29), and recalling the relations between the global
and embedding coordinates (4.3), we obtain

√
1 +R2 cos t =

(−1 +E2 − J2)

2
√
E2 − J2

sinhλ , (4.44)
√

1 +R2 sin t =
E√

E2 − J2
coshλ , (4.45)

R cosφ =
J√

E2 − J2
coshλ , (4.46)

R sinφ =
(−1−E2 + J2)

2
√
E2 − J2

sinhλ . (4.47)

These can be solved to give us the embedding of the Poincaré chart space-
like geodesic into the global AdS:

t(λ) = arctan
( 2E
−1 +E2 − J2 cothλ

)
+ t0, (4.48)

φ(λ) = arctan
(
−1−E2 + J2

2J tanhλ
)
+ φ0, (4.49)

R(λ) =

√
J2

E2 − J2 cosh2 λ+
(−1−E2 + J2)2

4(E2 − J2)
sinh2 λ . (4.50)

This quasigeodesic already has a π-jump in time at the turning point
λ = 0, and as explained before we also need to adjust the discontinuity in
angle:

φ̃(λ) = φ(λ) + πθ(λ) = arctan
(
−1−E2 + J2

2J tanhλ
)
+ πθ(λ) + φ0 .

(4.51)
From now on we will omit the tilde.
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The kinetic invariants can then be expressed in terms of the boundary
coordinates:

E =
sin t2−t1

2

sin D(φ2−π,φ1)
2 − cos t2−t12

, (4.52)

J =
cos D(φ2−π,φ1)

2

sin D(φ2−π,φ1)
2 − cos t2−t12

. (4.53)

The integration constants t0 and φ0 in (4.49) can be represented as:

t0 =
1
2 (t1 + t2) ,φ0 = Σ(φ1,φ2 − π) . (4.54)

Inverting equation (4.50) we obtain dependence of the affine parameter
on the radial coordinate:

λ(R) = ± arcsinh
√

4(E2 − J2)R2 − 4J2

(−1−E2 + J2)2 + 4J2 , (4.55)

where the minus sign is taken on the first branch of the geodesic or quasi-
geodesic (i.e. before the turning point, - when particle moves away from
the boundary), and the plus sign is taken on the second branch (when par-
ticle moves towards the boundary). This function can be used to define
the geodesic length, which is simply

L(R1,R2) = λ±(R2)− λ±(R1) , (4.56)

for two points with radial coordinates R1 and R2.
Note that for a geodesic connecting two boundary points the length is

divergent:

L = lim
R→∞

(λ+(R)− λ−(R)) = 2 lim
R→∞

√
4(E2 − J2)R2 − 4J2

(−1−E2 + J2)2 + 4J2 =∞ ,

(4.57)
and needs to be renormalized. The natural way to do it is to subtract the
parameter independent divergent part, and define the geodesic length as

Lren = lim
R→∞

(λ+(R)− λ−(R)− 2 lnR) = (4.58)

ln
(

16(E2 − J2)

E4 − 2E2(−1 + J2) + (1 + J2)2

)
.
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The argument of the logarithm is always positive for quasigeodesics con-
necting timelike separated points, but can be less than 1. It means that
the geodesic length after the renormalziation in principle can be negative.
Using (4.58) along with (4.52) we obtain the correct result for the retarded
Green function:

Gc(t1,φ1; t2,φ2) = e−∆Lren =
1

(cos(t2 − t1)− cos(φ2 − φ1))∆ ,(4.59)

where (t2 − t1)2 > D(φ1,φ2)
2 ,

where D(φ1,φ2) is the function introduced in (4.36). The possible nega-
tivity of the renormalized geodesic length is the reason why singularities
of the correlator can be captured in the geodesic approximation.

Here we must pause for a second and stress Lorentz non-invariance
of (4.59). We define SO(2, 2) isometries of AdS3 in terms of the Lornetz
boosts of the embedding R(2,2) space (4.6). If we take two boundary points
A and B, and act on them with a bulk isometry transformation Λ of this
type, we will observe that it does not preserve the Green’s function (4.59):

Gc(ΛA, ΛB) 6= Gc(A,B) . (4.60)

It is the fundamental difference between holography of a Poincaré chart
and holography of global AdS. In the first case the bulk isometries induce
Lorentzian boosts on the boundary, so the Green function of a dual bound-
ary field theory is a relativistic invariant object (4.33). In the second case
the isometries rather act as conformal transformations leaving the Green
function covariant, i.e. invariant up to some coordinate dependent scaling
prefactors.

In the holographic language this is encoded in the fact that the renor-
malized lengths connecting boundary points are dependent on the choice
of the reference frame. Below when we consider the DeDeo-Gott time
machine geometry, we should be especially careful about this, since the
geodesics there are combinations of Lorentz invariant and non-invariant
terms as, for example, in (4.17). The proper way to deal with it is ex-
plained in the first subsection of Sec. 4.5.

In the next section we will analyze lensing of the quasigeodesics on the
conical defects and calculate the Green function of the dual field theory
in presence of the closed timelike curves in the bulk.
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4.5 The two point Green’s function

4.5.1 The algorithm

In Sec. 4.3 we have discussed the general idea of using the geodesic approx-
imation to compute the boundary Green’s function for the DeDeo-Gott
geometry. Now we will formulate an exact algorithm for that.

• Introduce coordinate system on the unfolding of the double-cone
space in such a way, that the physical (unremoved) part of the
boundary consists of two stripes covered by coordinate intervals:

t ∈ (−∞,∞) , (4.61)

φ ∈
(
−π2 −

∆φ
2 + t,−π2 +

∆φ
2 + t

)
∪
(
π

2 −
∆φ
2 + t, π2 +

∆φ
2 + t

)
.

• Fix two boundary points A and B. For simplicity we can choose
A = (0,−π

2 ).

• Fix the total number of windings N that a geodesic of interest un-
dergoes on the way from A to B. In our simulations we will not
go beyond N = 4, because the higher-order contributions to the
Green’s function are highly suppressed.

• For the given A, B, and the number N , generate all possible 4 · 3N−1

sets of the complementary points {C1, · · ·C2N} corresponding to dif-
ferent sequences of windings {W1, · · ·WN}. The (quasi)geodesics
then consist of N + 1 arcs AC1, C2C3, ..., C2NB, each of which is
just a (quasi)geodesic curve in empty AdS3.

• Impose that each of the “odd” complementary points C2i+1 belongs
to the causal future of the previous “even point”: C2i+1 � C2i.
Let us elaborate on what the reason to do so is. The most clear
question we can ask is whether causal propagation of a signal from
the future to the past is possible. To define the dual retarded
Green function in presence of the CTC in the bulk, we should re-
call that evolution of a particle moving in the bulk of AdS can be
split in two parts: “physical” continuous motion along a timelike
or a spacelike geodesic, and “topological” time jumps caused by en-
twinement around the conical defects. In the holographic language
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geodesic branches C2iC2i+1 correspond to the continuous evolution,
and C2i+1 → C2i+2 identifications - to the time jumps. In absence
of the closed timelike curves a signal could causally propagate from
A to B if B belongs to the future light cone of A: B � A. A natural
generalization of this prescription for the time machine case is to
impose that this should hold true for all “physical” segments, i.e.
C2i+1 � C2i ∀ i.

• For each of the causal quasigeodesics, solve for the intersection points
{O1, · · ·O2N}. The easiest way to do this is to transform for each
winding back to the rest frame of the corresponding wedge. For
example, if branch C2iC2i+1 intersects first the trailing face of the
2nd wedge, and then the leading face of the 1st wedge, we perform
a Lorentz transformation of the branch to the 2nd rest frame, then
untwist the wedge by a simple coordinate transformation φ′ = φ−
t, such that angular location of the face remains still in these co-
rotating coordinates, and solve the equation

(φIIC2iC2i+1(λ2i)− tIIC2iC2i+1(λ2i)) mod 2π = φ′TII mod 2π .
(4.62)

Then we repeat the procedure in the 1-st rest frame:

(φIC2iC2i+1(λ2i+1)− tIC2iC2i+1(λ2i+1)) mod 2π = φ′LI mod 2π .
(4.63)

• Make sure that all these equations have real solutions (otherwise
discard the geodesic).

• Make sure that if a branch is not expected to intersect other faces
within the physical region of the space, it actually does not (fake
intersections within the removed part of the unfolding are allowed).
In other words, if an arc O2iO2i emerges from the face LI and ter-
minates at the face TII , it should not have intersections with LII
and TI .

• Calculate the lengths of all inner segments of the geodesic (O2iO2i+1).
They are finite by construction and equal to

LO2iO2i+1 = λ2i+1 − λ2i . (4.64)
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• Renormalize the lengths of the boundary segments AO1 and O2NB
as they are divergent:

LAO1 =
1
2L

ren
AC1 + λ1, (4.65)

LO2NB =
1
2L

ren
C2NB − λ2N . (4.66)

• Calculate the renormalized lengths of LAO1 and LO2NB in the orig-
inal frame. As mentioned in the previous section, the renormalized
lengths are not Lorentz-invariant. So, while we are free to con-
stantly switch between different reference frames in order to calcu-
late lengths of the finite inner segments O2iO2i+1, the renormalized
lengths of the two boundary segments must be calculated in the
original frame where we define the Green’s function. In our case
it is the “centre-of-mass frame”, where the two conical defects are
symmetrically boosted.

• Finally calculate contribution of the geodesics to the Green function:

G(A,B) =
∑
k

e−∆Lk , (4.67)

where the index k runs over the set of geodesics that satisfy afore-
mentioned conditions.

In accordance with the described algorithm we subsequently account
for contributions from higher winding numbers starting with N = 25.
In other words, we formulate a kind of “perturbation theory” with the
number of entwinements as a control parameter.

One property of this series expansion must be comment on. Each
geodesic contributes to the Green function exponentially:

e−∆Lren . (4.68)

For higher windings the number of internal segments C2iC2i+1 of the
geodesic grows linearly in N , and so does its renormalized length Lren.

5For negative times N = 1 windings do not contribute as they are due to the lensing
on a single conical defect, that obviously can not lead to time travelling. But for positive
times we take them into account.
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Figure 4.7. A quasigeodesic with winding number N = 2 connecting boundary
points A and B.

Therefore the corresponding contribution to the Green function is expo-
nentially small6. On the other hand the total number of possible topolog-
ically different geodesics scales as

n ∼ 3N−1 , (4.69)

i.e. grows exponentially. Therefore in principle these two effects can
compete and we can not say a priori that the higher order contributions
to the Green function are suppressed, and the sum over entwinements
is convergent. If not, this could mean that our setup is unstable and
undergoes a Hagedorn like transition.

However there are three different reasons for it not to happen. Firstly,
by no means all of these 4 · 3N−1 winding configurations satisfy the causal-
ity condition: C2i+1 � C2i. Secondly, even if the causality condition for
the set of complementary points is satisfied, the geometric structure of the
geodesics becomes more and more complicated as the number of windings
increases, and it becomes hard to force a geodesic curve to undergo the
concrete sequence of windings (it is easy to see on Fig.4.8(b)). Finally,
the “decaying” exponent has a conformal dimension as a knob, so at large
enough ∆ it dominates over the “growing” exponent.

Another way to understand convergence of the series expansion in
all orders relies on a simple and general argument. Consider a germ of

6In a generic case when Lren > 0.
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Figure 4.8. Left: an example of a physical N = 4 geodesic contributing to the
Green function. Right: an example of physically impossible winding: for a given
sequence of entwinements a geodesic can not be fit in the unremoved part of the
spacetime.

all possible quasigeodesics emerging from point A. The first segment of a
generic quasigeodesic curve hits the boundary at some point C1, first in the
sequence of complementary points {Ci}. If we go along the curve further,
we will obviously see that it is defined uniquely up to the final moment
when it reaches the physical part of the boundary at point B. Thus, for a
fixed initial point A, for each of the “first-in-the-sequence” complementary
points C1 the final point B is defined unambiguously. Now, as we have
already emphasized, the singular contributions to the Green function come
at the points where the renormalized geodesic length is infinitely negative,
Lren = −∞. It is possible if and only if C1 is located exactly on a
generatrix of the light cone emerging from point A, or C2N is located on
the generatrix of the light cone of point B. Quasigeodesics having the
complementary points C1 and C2N right on the corresponding light cones
form a zero measure subset among all possible quasigeodesics. Thus the
set of boundary points where the Green function is infinite is also a zero
measure subset of the boundary spacetime. Everywhere else the Green
function is finite and well-defined.
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4.5.2 Phenomenology and discussion

We are now ready to implement our computational algorithm for the
DeDeo-Gott geometry. As shown in Sec. 4.2, closed timelike curves in
the spacetime are present when the total angular deficit is more than
2π. For concreteness we impose αI,II =

√
3π, and the boost rapidities

ψI,II = ±1. In their corresponding rest frames (in the co-rotating coordi-
nates) the locations of the edges are taken to be

φ′L1
= α/2 φ′T1

= −α/2,
φ′L2

= α/2 + π φ′T2
= −α/2 + π . (4.70)

It is more convenient to calculate the Green function also in the co-rotating
coordinates:

Gcr(t1,φ′1; t2,φ′2) = G(t1,φ1 − t1; t2,φ2 − t2) . (4.71)

For simplicity we will mostly study the Green function on a one-dimensional

A

B

1

2

1

2

Figure 4.9. The Green function is sourced at point A with coordinates
(0,−π/2). Blue lines depict the light cone emerging from this point. Any time-
like line would cross the removed region and enter another strip (red dashed line).
In order to avoid formulating the boundary field theory on both strips simulta-
neously we calculate the Green function on a timelike line very close to the light
cone generatrix.

timelike line passing through the point A. We should be careful here. Any
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timelike line originated in one physical strip crosses the cut out region and
enters the second strip. To formulate a quantum field theory on both strips
simultaneously is possible yet tricky due to the fact that on the unification
of two parts of the boundary time can not be globally defined. To avoid
this difficulty we will consider the Green function on a timelike line in a
close vicinity of the generatrix of the light cone. Then in a large range of
times we will stay within one strip of the boundary.

In other words, the object we will attempt to evaluate is (in the co-
rotating frame)

Gcr(0,−π/2; t,−π/2 + εt) , ε� 1 . (4.72)

We have performed the numerical calculation of the retarded Green
function for negative times t < 0 up to N = 4 order, and for positive
times t > 0 up to N = 2.

Let’s discuss firstly the analytic behaviour of the Green function at
negative times, - how the quantum particle behaves travelling back in
time. A naive expectation would be to think that the Green function
decays as t→ −∞, and it is partially true. However as we can see at not
very large negative times the function develops a number of non-trivial
features, - peaks which we can interpret as the “most probable” regions of
times the particle can reach using the time machine. The corresponding
results are present on Fig.4.10. As an illustration we also provide a two
dimensional plot for the leading N = 2 winding at negative times, Fig4.11.

The origin of these peaks can be traced back to the fact that renormal-
ized length of a geodesic can be negative. Generically at small conformal
weights N = 2, N = 3 and N = 4 contributions are commensurate, but
already at ∆ & 2, higher entwinement terms are getting suppressed as
compared to N = 2. However at specific points, where Lren < 0, the
corresponding contributions to the Green function are getting enhanced
in the large ∆ limit7, forming a sharp peak. For instance, N = 2 set of
geodesics contains such a curve around t2 = −1.9, and N = 4 set has a
special point at t2 ' −1.45, Fig.4.10.

We have not performed numerical simulations for N > 4, but we can
not exclude that such negative length curves can appear also at large N .
The geodesic length is defined by lengths of internal segments (always
positive) and lengths of the two boundary segments (that in principle can

7Strictly speaking, the geodesic approximation is reliable only in this limit.
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Figure 4.10. N = 2, N = 3, and N = 4 contributions to the retarded Green
function at negative times at ∆ = 1.5. Discontinuities of the curves are artifacts
of the geodesic approximation. The bottom right angle: the retarded Green
function at ∆ = 1.5 (N = 2, N = 3 and N = 4 contributions are added up).
For the large conformal dimensions peaks are enhanced, not suppresses, and we
can see revival of the particle at moments preceding the excitation of the Green
function. A not very large conformal dimension is chosen for convenience of
presentation. Here ε = 0.1.
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Figure 4.11. N = 2 contribution to the retarded Green function at ∆ = 1.5
at negative times in two dimensions. The Green function is sourced at the red
point (0,−π/2). We construct the theory only within one of the two strips of
the boundary. Sudden break of the function signalizes that some regions of the
spacetime are unattainable for the N = 2 quasigeodesics.

be negative):

LrenAB = LrenAO1 +L
ren
O2NB +

N∑
i=1
LO2i−2O2i−1 . (4.73)

If LrenAO1
+ LrenO2NB

< 0, and |LrenAO1
+ LrenO2NB

| >
N∑
i=1
LO2i−2O2i−1 , the Green

function will get a contribution that does not vanish in the large ∆ limit.
For a large number of internal segments it is not likely, but neither is
impossible: while all internal lengths are finite, the renormalized negative
lengths might be of an arbitrarily huge absolute value:

LrenAO1 < 0, |LrenAO1 | � 1 , (4.74)

thus dominating over positive contributions.
In the case of a large conformal dimension it would mean that, if we

were able to sum up contributions in all winding orders, the resulting
Green function would have a shape of a comb with a number of peaks
(in our calculations we discovered two of them). These peaks play a role
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Figure 4.12. The retarded Green function at conformal weight ∆ = 1 at positive
times. The left plot demonstrates how the non-trivial N = 2 windings modify
the original Green function (N = 1 does not contribute when we consider the
boundary theory within a single strip). The right plot represents the N = 2
winding contribution separately. We have made the Green’s function timelike to
avoid dealing with the light-cone singularity. Here ε = 0.1.

of “pit stops” for a particle travelling in time, - they form a set of easily
reachable coordinates in time. Hence we deal with specific “negative time”
revivals.

At positive times we have also discovered interesting features of the
Green function. In the case of plain AdS3 geometry the dual light-like
Green function (shifted away from the singularity) is decaying in time. In
presence of the causality violating conical defects we detected a new peak
of a high weight, Fig.4.12, signaling a revival of the excitation.

4.6 Phases of the boundary field theory

We have calculated the Green function numerically up to N = 4 en-
twinements for the time machine geometry with α =

√
3π and ψ = 1.

However it would be interesting to study how the properties of the Green
function change upon changing the strength and rapidities of the coni-
cal defects. We constructed the leading order N = 2 contribution to the
retarded Green function at negative times for α ∈ (1.1π, ...1.95π), and
ψ ∈ (0.1, ...1.5) with stepping ∆α = 0.05π, ∆ψ = 0.05., paying special
attention to the location in time and and strength of the revival peak.

The results can be schematically summarized in a form of a phase
diagram, Fig.4.13:
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• If for a given value of α the rapidity ψ is not large enough to prevent
the system from collapsing; the DeDeo-Gott geometry is forbidden
(blue).

• If for a given value of α the rapidity ψ allows for the existence of
the DeDeo-Gott time machine, but still not very large, we clearly
see the effect of revival, and the peak is sharper the closer ψ is to
the lower bound (yellow).

• If the rapidity is too large, the causality is violated, but excitations
just decay and do not revive at negative times anymore (green).

• At very small values of α the retarded Green function does not
exhibit any non-trivial features at negative time even in presence of
the closed timelike curves (red). However, this feature is likely just
an artifact of N = 2 approximation, and we do not expect it to be
there for higher windings.

The profiles of the Green’s function at negative times are presented
on Fig.4.14(a,b) for α = 1.5π and α = 1.7π respectively. The fact that
revivals are seen only at not very large rapidities (and the effect is stronger
as closer ψ to its minimal possible value) is surprising and contrasts to
how causality is broken in the bulk. The stucture of CTC is defined
by α and ψ, and the time jumps become stronger as the angle defects
and rapidities are increased. Thus we rather should expect that for high
ψ the time travelling along the CTC is more efficient in the sense that
amplitudes of the classical free Green’s function defined on the boundary
are getting enhanced as α ψ grows. In the interacting holographic dual
field theory the retarded Green’s function is damped for larger α and ψ, so
we can claim that causality in the boundary field theory is broken mildly
as compared to the bulk.

Another interesting feature of this system is that while the overall
weight of the Green function drastically decreases when the rapidity ψ is
taken away from the “forbidden region” on the diagram, the actual past
time penetration depth (i.e. the deepest reachable point at negative times
where Gcr(0,−π/2; t,−π/2) 6= 0) increases (though very moderately),
and this is in agreement with the “naive” intuition.
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Figure 4.13. The four different “phases” of the boundary field theory. Blue
spots depict the region of forbidden geometries, yellow spots are for the phase
of negative time revivals, green spots form the region where the retarded Green
function is non-zero at negative times, but does not exhibit reviving peaks in the
large ∆ limit. Red spots are where at the leading N = 2 order the boundary
field theory retarded Green function does not demonstrate causality violation
(i.e. Gcr(0,−π/2; t,−π/2) ≡ 0, t < 0) despite the presence of the CTC in the
bulk. Everything is based on the numerical simulations of the leading N = 2
contribution to the retarded Green function. We expect higher order corrections
to change the diagram qualitatively, but not quantitavely.

158



- 1.4 - 1.2 - 1.0 - 0.8 - 0.6 - 0.4 - 0.2

2

4

6

8

10

- 2.0 - 1.5 - 1.0 - 0.5

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4.14. The negative time N = 2 contribution to the retarded Green’s
function at α = 1.5, ψ = 0.45, 0.50, 0.55, 0.60 (left), and α = 1.7, ψ =
0.75, 0.80, 0.85, 0.90 (right). Here ∆ = 1. On each of the plots the first three
peaks are getting stronger and sharper as ∆→∞ (the yellow region on the phase
diagram), while the fourth one is getting suppressed in the same limit (the green
region), so we do not consider it to be an actual revival of a non-causal excitation.
Counterintuitively, the weight of the Green function drastically decreases when
we increase α or/and ψ.

4.7 Conclusions

In this chapter we have analyzed properties of a two-point Green func-
tion in a (1+1)-dimensional field theory dual to the DeDeo-Gott time
machine geometry. Using the geodesic approximation we have shown that
AdS/CFT is capable of describing a quantum field theory when causality
is violated, and have shown that the corresponding boundary propagator
has remarkable features. We discovered that in presence of closed time-
like curves in the AdS bulk a causal propagation of an excitation from the
future to the past is possible on the boundary, and the retarded Green
function exhibits peaks at certain negative times. At positive times ana-
lytic structure of the Green function also changes, and new singularities
arise.

Surprisingly, we have found that as we increase the strength of the
conical defects α and the rapidity ψ, the causality violation in the dual
field theory is getting milder in the sense that the weight of the retarded
Green’s function at negative times decreases.

Contra to the previous results on the dynamics of physical systems
in time machine backgrounds [23–26] our calculations have demonstrated
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that sometimes it is possible to define evolution of an interacting theory
in a time machine without imposing any additional self-consistency con-
straints. Despite the explicit non-causality the Green function does not
have any uncontrollable pathologies.

Our considerations leave a number of open questions. First of all,
we have to understand how to interpret the boundary state dual to the
DeDeo-Gott geometry, - whether this quantum state is pathological or
just exotic yet physical state. From the boundary point of view a single
conical defect, if its angular deficit is α = 2π(1− 1/N), can be thought of
as state created by a non-local twist operator in a conformal field theory
[33]. But what it means to have such an interplay of two independently
boosted defects has to be clarified.

Another thing we have not touched on in the chapter is the entangle-
ment structure of the boundary state. We focused on the properties of the
retarded Green function, and thus analyzed the timelike quasigeodesics.
However, even below the α = π threshold, when the CTC are not present
in the system, due to the lensing it is possible to connect timelike sep-
arated boundary points just by standard continuous spacelike geodesics.
If a certain generalization of the Ryu-Takayanagi conjecture [36] is true
in this case, it would mean that the boundary state is timelike entangled
[37]. Pursuing possible physical outcomes of this fact is an interesting
direction for the future research.
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Chapter 5

Discussion

In this thesis we have analyzed three completely different problems using
the AdS/CFT correspondence. To conclude, let us discuss how these
stories can be embedded in the wider context of the holographic theory
of strongly coupled systems, and provide an outlook of possible directions
for future research.

5.1 Holographic fermions and superconductivity

Among others, a natural and important goal of studies in the area of
applications of gauge/string duality to condensed matter physics is to
formulate a complete dynamical holographic theory of an unconventional
superconductivity with an explicit fermionic pairing mechanism. How-
ever, what could be meant by pairing in holography requires clarification.
As a weak/strong duality, the AdS/CFT correspondence helps to describe
quantum field theories at strong ’t Hooft gauge coupling λH by dualiz-
ing them to solutions of string theory at small string coupling constant
gs. In real solid state systems, the ’t Hooft gauge coupling does not have
an unambiguous phenomenological meaning, but we can say that in con-
densed matter-oriented holographic constructions that λH is responsible
for the emergence of highly correlated collective excitations out of funda-
mental degrees of freedom in the field theory. In that sense, it is similar
to the Coulomb interaction between fundamental bare electrons in a piece
of metal that governs collective dynamics at the very microscopic level.
However, if we wish to describe pairing in superconductivity, we should
also include in our considerations another channel(s) of interactions, now
responsible for coupling between these emergent composite operators, and
would play the same role as phonons or spin waves play in real materials.

In Chapter 2 we introduced this explicit pairing channel via a Yukawa-
like term in the bulk action that couples fermions to the order parameter.
We have demonstrated that this leads to the opening of a superconducting
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gap in the system and to condensation of the scalar order parameter. It is
natural to make the dual bulk scalar field dynamical, and the strength of
the interactions in this setup is then effectively controlled by the ratio of
the Yukawa coupling and scaling dimension of the scalar: λY /∆φ. In
the regime of weak coupling, λY /∆φ � 1, the boundary field theory
exhibits properties of the conventionalBCS superconductivity, while upon
increasing the coupling it undergoes the BEC/BCS crossover.

However, this result should be considered as a very first step towards
the ultimate goal. Our model should be further improved in the following
ways.
• Because we were originally interested in a holographic reformulation

of the Bardeen-Cooper-Schrieffer theory of superconductivity, we
studied the superconducting instability in a model of a holographic
Fermi-liquid, i.e. in a model with a sharp spectrum of fermionic
quasi-particles. But if we are interested in an unconventional SC,
we should take into account that fermionic degrees of freedom can
be of a critical nature. So, to generalize our model, one can try
to remove the IR cut-off and analyze the pairing of “unparticle”
fermions.

• We have studied only the T = 0 ground state of the theory. On the
other hand, it would be interesting to understand properties of the
fermionic superconductivity at finite temperature and to study its
thermal phase diagram.

• Our model accounts for interactions between fermions, the bulk
gauge field, and the scalar order parameter, but we did not take
into account the backreaction of the bulk fermions on the back-
ground metric. This could be important if one really wants to go
beyond the probe limit and study superconductivity in a strongly
correlated system. A first attempt to construct a setup with back-
reacting fermions (though without pairing and a dynamical scalar
field) has been performed in [1, 2], and it is clear that to general-
ize it to a fully interacting case would be a very difficult numerical
challenge.

• It would be interesting to analyze the transport properties of the
model and to study the fermionic corrections to the electric conduc-
tivity. Also, it might be important to know how the model would
behave once we introduce a lattice.
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• We implemented the pairing while staying ignorant about its phys-
ical mechanism. Thus it would be interesting to formulate a more
detailed “microscopic” theory where this interaction is caused by a
non-trivial dynamical field.

5.2 Holography and the non-equilibrium quark-
gluon plasma

Another important area of research in contemporary science is the physics
of the quark-gluon plasma. When QCD matter is heated up to a very high
temperature, T & 170MeV ∼ 1012K, it undergoes a phase transition, and
quarks and gluons, normally bounded within hadrons, deconfine: they
start behaving as independent unbounded entities. Such an extremal and
unusual state of matter opens room for studying properties of quantum
matter that are inaccessible under normal circumstances. Experimentally
the QGP can be produced in high energy collisions of heavy ions, like Pb
and Au. A large number of constituent nucleons is crucial for creating a
many-body state of matter.

The underlying Lagrangian for the quark-gluon plasma is just the well-
known Lagrangian of QCD, but it is of little use: the experimentally
produced QGP is a strongly coupled and highly non-equilibrium state of
matter [3], and standard mathematical methods of quantum field theory
are not applicable here. One can think about a holographic description
of quark-gluon plasma formation in high energy heavy ions collisions. On
the dual gravitational side, the relativistic ions are represented by gravi-
tational shock waves. The collision leads to mutual stopping of the waves,
and their kinetic energy transforms into rest energy, causing creation of a
black hole. In the boundary field theory, this effect can be interpreted as
the formation of a thermal deconfined state of matter, the QGP.

In Chapter 3 we have considered this model of colliding shock waves
at non-zero chemical potential. Although in real experiments on heavy
ion collisions the chemical potential is negligible, and all corresponding
holographic models do not take it into account, it might be interesting
to see if introducing non-zero charge density would lead to qualitatively
correct phase diagram. In particular, it is expected in QCD that at higher
density of hadronic matter, the temperature of the deconfinement phase
transition becomes smaller, i.e. less energy is needed to produce the quark-
gluon plasma. Surprisingly, in the simplest model of gravitational plane
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waves we discovered an opposite tendency: larger chemical potential sup-
presses formation of QGP. It might indicate that already the chargeless
models commonly used in holographic computations might require some
modifications to be correct.

However, to really test our observation a further extensive analysis
is required. In our calculations we limited ourselves by an analytic esti-
mate of the size of the formed black hole based on a critical trapped sur-
face calculation, that can be performed without simulations of the bulk
gravitational field after the shock wave collision. But in order to fully
understand the effect of non-zero chemical potential, complete real-time
numerical simulations are required. With the advances in non-equilibrium
numerical holography [4] this may be done in the near future.

5.3 Theoretical aspects of time travelling

Finally, in Chapter 4 we have applied the AdS/CFT correspondence to
get an insight into a more fundamental issue in gravitational physics, and
analyzed the behaviour of a two-point Green’s function of a quantum field
theory in a space with causality violation, by dualizing it to a space-time
with closed time-like curves. In this case, the main advantage of the
AdS/CFT was not that it is a weak/strong duality, but rather that it is
a classical/quantum duality. Therefore the non-causal quantum dynamics
could be mapped onto classical geometry, and the problem drastically
simplifies. But our calculation leaves many open questions.

First of all, we considered a time machine solution to classical Gen-
eral Relativity in three dimensions. Is it possible to find a string theory
embedding for this solution? Would this embedding preserve the closed
time-like curves, or do holographic screens appear, restoring the causality,
like happens for Gödel spacetimes in string theory [5, 6]?

In our model we relied on the geodesic approximation to avoid solving
the field equations in a topologically non-trivial causality-violating back-
ground. On the other hand, because three dimensional gravity is purely
topological and does not have propagating degrees of freedom, any solu-
tion is locally isometric to an empty AdS3 and often can be represented as
its factorization over some symmetry group. So we can not exclude that
it is possible to represent the DeDeo-Gott solution that we considered in
this form. Then an exact solution to a wave equation on this background
could be easily generated.
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Another issue is the field theoretical interpretation of the result. In
the bulk we have a very simple configuration of two conical defects, so
we might expect that it corresponds to a decent quantum state in the
dual field theory. We do not know what that state is, but can try to
speculate. In the case of three dimensions, bulk geodesics do not only
contribute to the Green’s functions, but also define the entanglement en-
tropy of boundary regions, as conjectured by Ryu and Takayanagi [7].
Usually only equal-time entanglement is well-defined. However recently it
has been proposed [8] to simulate CTC quantum mechanically by entan-
gling a qubit to an older version of itself. Thus it could be possible that
in our setup we deal with a field theoretical version of this non-equal time
entanglement. Whether this conjecture is correct is a question for future
investigation.

In this work, by solving several completely different problems, we tried
to demonstrate that the holographic correspondence is a paradigm that
has the power to provide intuition on totally diverse phenomenological
concepts and systems by mapping them onto the same set of resonantly
connected mathematical structures. A long way is ahead, a lot of prob-
lems remain to be addressed, and we still do not understand much about
borders of the applicability of holography. If the boldest formulation of
the holographic principle is true, and any quantum theory has a dual, the
correspondence may very well become the Glass Bead Game of theoretical
physics, in the original, literal meaning that Herman Hesse gave to this
concept.
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Samenvatting

Dit proefschrift is gewijd aan het toepassen van de holografische dualiteit
op een kwalitatieve analyse van problemen in verschillende gebieden van
de theoretische natuurkunde. Na een overzicht van de basisprincipes van
deze correspondentie tussen een anti-de Sitter ruimte en een conforme
veldentheorie in een dimensie lager (AdS/CFT) in hoofdstuk 1, nemen wij
zijn concrete toepassingen in de fysica van de gecondenseerde materie, de
kwantumchromodynamica, en de theorie van de niet-causale ruimtetijden
ter hand.

In hoofdstuk 2 gebruiken we AdS/CFT methoden om een theorie te
formuleren van BCS-achtige (Bardeen-Cooper-Schrieffer) supergeleiding
gedreven door het paarsgewijs condenseren van fermionen in holografi-
sche systemen met Landau-achtige langlevende quasideeltjes. We tonen
aan dat de duale theorie op de rand van AdS, duaal aan een interage-
rende Dirac-Maxwell-Scalar theorie, zowel supergeleiding als de Bardeen-
Cooper-Schrieffer/Bose-Einstein condensaat (BCS/BEC) crossover ver-
toont. Wanneer de scalaire en de fermionische velden ontkoppeld zijn,
concurreren zij om de elektrische lading, en onderdrukken de fermionen
het scalaire superfluid condensaat. Als er daarentegen sprake is van Yu-
kawa koppeling, dragen de fermionen bij aan de totale condensaat waarde.
Een opmerkelijk aspect van holografische fermionen is dat het bulk U(1)
ijkveld, duaal aan de chemische potentiaal op de rand, een splitsing van
de fermionische banden induceert (dit kan worden beschouwd als een bulk
analoog van Rashba spin-baan splitsing), die op zijn beurt leidt tot het
feit dat de paarvormings-symmetrie in de veldentheorie op de rand gelijk
is aan p + ip. We merken ook op dat de standaard Gubser-Klebanov-
Polyakov-Witten regel voor correlatiefuncties aan de theorie op de rand
niet zonder wijzigingen kan worden gebruikt zodra de bulkvelden aan el-
kaar zijn gekoppeld.

In hoofdstuk 3 richten we onze aandacht op de niet-evenwicht fy-
sica van de vorming van het quark-gluon plasma (QGP) dat in botsin-
gen van zware ionen tot stand komt. We gebruiken ter vereenvoudiging
compleet vlakke zwaartekrachts-schokgolven als een duaal model voor de
relativistische ionen in de veldentheorie op de rand en bestuderen hoe de
aanwezigheid van een chemische potentiaal het proces van QGP forma-
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tie bëınvloedt. Om de moeilijkheden van een dynamische simulatie van
het bulksysteem met botsende schokgolven te omzeilen, concentreren we
ons op de formatie van “trapped surfaces” (omsloten oppervlakken) die
het mogelijk maken enkele eigenschappen van “het-te-vormen” zwart gat
(duaal aan de deconfined toestand in de randtheorie) in te schatten, zon-
der de tijdsafhankelijke Einstein vergelijkingen op te hoeven lossen. We
concluderen dat, vergeleken met het neutrale geval, elektrische lading de
hoeveelheid hadrons geproduceerd in de botsing vermindert, en de tem-
peratuur van de confinement/deconfinement overgang verhoogt.

In hoofdstuk 4 behandelen wij paradoxen behorende bij het reizen
in de tijd. Met behulp van holografie kunnen wij de tweepunts Green’s
functies in een niet-causale kwantumveldentheorie berekenen. Zulke the-
orieën zijn moeilijk vanuit basisprincipes te herleiden. De zwaartekracht-
configuratie duaal in deze theorie is een (2 + 1) - dimensionale anti-de
Sitter ruimtetijd met twee elkaar omcirkelende conische defecten. Dit
resulteert in een ruimtetijd met gesloten tijdachtige krommen. Door toe-
passing van de AdS/CFT-correspondentie in zijn klassieke limiet, kunnen
we de analyse van de kwantumdynamica zonder causaliteit vereenvoudi-
gen tot simpelweg de analyse van klassieke pseudo-Riemann-meetkunde
van de bulk ruimtetijd. Ons baserend op de geodetische benadering kun-
nen we de Green’s functie in de theorie op de rand afleiden zonder ex-
tra zelf-consistentie eisen en wij tonen aan dat, zelfs in afwezigheid van
de causaliteit, de evolutie van een kwantumveld zowel controleerbaar als
niet-pathologisch kan zijn.

Tenslotte geven we in hoofdstuk 5 een overzicht van onze resultaten en
plaatsen ze in een bredere context van de hedendaagse theoretische fysica.

174



Summary

The thesis is devoted to applications of holographic duality to qualita-
tive analysis of problems in different areas of theoretical physics. After
reviewing the basic principles of holography in the form of the anti-de Sit-
ter/Conformal field theory (AdS/CFT) correspondence in Chapter 1, we
proceed to its concrete applications in condensed matter physics, quantum
chromodynamics, and the theory of non-causal spacetimes.

In chapter 2 we employ the AdS/CFT methods to formulate a theory
of fermion driven ordering through pairing induced BCS-like superconduc-
tivity in holographic systems with Landau-like long-lived quasiparticles.
We demonstrate that the AdS boundary dual of an interacting Dirac-
Maxwell-scalar theory exhibits both superconductivity and the BCS/BEC
crossover. If the scalar and fermionic field are decoupled form each other,
they compete for the electric charge, and fermions suppress the scalar
superfluid condensate. On the other hand, if the Yukawa coupling is
switched on, fermions contribute additively to the total condensate value.
A notable aspect of holographic fermions is that the bulk U(1) gauge
field dual to the boundary chemical potential also induces splitting of
the fermionic bands (that might be considered as a bulk analogue of the
Rashba spin-orbit splitting), which in turn leads to the fact that the pair-
ing symmetry in the boundary field theory is p+ ip. We also make an
observation that the standard Gubser-Klebanov-Polyakov-Witten rule for
the correlation functions cannot be used without modification once the
bulk fields are coupled to each other.

In chapter 3 we turn our attention to the non-equilibrium physics of the
formation of the quark-gluon plasma (QGP) in heavy ion collisions. For
simplicity we use flat planar gravitational shock waves as a dual model
of relativistic ions in the boundary field theory and study how a non-
zero chemical potential affects the process of QGP formation. In order
to circumvent the difficulties related to the full dynamical simulation of
the bulk system of colliding shock waves, we stick to the formalism of
trapped surfaces that allow us to obtain some estimates on properties of
the “to-be-formed” black hole (dual to the deconfined boundary state)
without solving the time-dependent Einstein equations. We find that as
compared to the neutral case, electric charge reduces the multiplicity of
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hadrons produced in the collision, and increases the temperature of the
confinement/deconfinement transition.

In chapter 4 we address paradoxes of time traveling. Using holography
we can calculate the two-point Green’s functions in a non-causal quantum
field theory. Such a theory is hard to construct ab initio, but its grav-
ity dual is just a (2 + 1)-dimensional anti-de Sitter spacetime with two
orbiting conical defects. This results in a spacetime with closed timelike
curves. Applying the AdS/CFT-correspondence in its classical limit, we
can simplify the analysis of the quantum dynamics at broken causality
to just the analysis of the classical pseudo-Riemannian geometry of the
bulk spacetime. Relying on the geodesic approximation we can perform
the derivation of the dual field theory Green’s function without implying
any additional self-consistency constraints and we show that evolution of
a quantum field can be controllable and non-pathological even in absence
of causality.

Finally, in chapter 5 we give a summary of our results and put them
in a wider context of the contemporary theoretical physics.
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