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Chapter 1

Introduction

1.1 Spontaneous emission in vacuum

A two-level atom that is initially in its excited state will, at some time later,
spontaneously decay to its ground state with a lower energy and simultaneously
emit a photon. The instant of this transition is random and therefore a prob-
ability per unit time or transition rate (also called decay rate or spontaneous
emission rate) is introduced to describe this stochastic behavior. The transi-
tion rate of an excited atom can be studied by repeating the measurement of
transition events on a single atom, or by measuring an ensemble of identical
and independent atoms. Theoretically, this seemingly simple “spontaneous”
emission, however, can not be explained by a semiclassical theory in which the
atomic system is quantized and the radiation field is treated classically, because
in that case an excited atom in vacuum will never decay. This problem can
only be solved in quantum electrodynamics (QED) in which electromagnetic
fields are quantized leading to a concept of vacuum field or vacuum photon
(virtual photon) that even exists in “vacuum” without actual photons. It is
the vacuum field that perturbs the atom causing the “spontaneous” emission.
The “spontaneous” emission can be thought of as “stimulated” emission by in-
teracting with virtual photons. In this section, we will study the spontaneous
emission in vacuum in the framework of QED. This topic has been covered by
many textbooks such as [10, 11, 12].

In quantum mechanics, the transition rate from an initial state |i〉 to a
final state |j〉 under an interaction Hamiltonian H ′ by using the first-order
perturbation theory can be written as

wij =
2π

h̄
|〈i|H ′|j〉|2δ(Ei − Ej), (1.1)

where the Hamiltonian of the system is H = H0 + H ′ with H0 being the
unperturbed Hamiltonian and H ′ is treated as a perturbation, |i〉 and |j〉 are
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2 CHAPTER 1. INTRODUCTION

the eigenstates of H0 with the corresponding eigenenergies of Ei and Ej , and
h̄ is reduced Planck’s constant. For the perturbation theory to be valid, H ′

should be small compared with H0 and the eigenstates and eigenenergies of H
do not differ much from those of H0. Here the term δ(Ei−Ej) ensures energy
conservation during the transition.

We apply Eq. (1.1) to spontaneous emission of a two-level atom in vacuum.
The states are given by

|i〉 = |e, 0〉k,l ≡ |e〉 ⊗ |0〉k,l and |j〉 = |g, 1〉k′,l′ ≡ |g〉 ⊗ |1〉k′,l′ , (1.2)

where “e” (“g”) denotes the excited (ground) state of the atom, “0” and “1”
indicate the number of photons, and k and l = 1, 2 (k′ and l′) are the wave
vector and polarization label of the initial (final) photon state, respectively.
The interaction Hamiltonian reads

H ′ = −µ ·E, (1.3)

where µ is the operator of the atomic dipole moment, E is the operator of the
electric field, and we have used the dipole approximation assuming the transi-
tion wavelength is much larger than the dimension of the atomic wavefunction.
According to the theory of QED, an electromagnetic wave as a function of
position r and time t can be quantized on a planar wave basis:

E(r, t) = i
∑
l=1,2

∑
k

êk,l

√
h̄ωkNk,l

2ε0V

[
ak,le

i(k·r−ωkt) − a†k,le
−i(k·r−ωkt)

]
, (1.4)

where êk,l is a unit polarization vector, orthogonal to k, Nk,l is the number
of photons, ωk = ck is the angular frequency corresponding to a wave number
k = |k| with c being the speed of light in vacuum, ε0 is the vacuum permittivity,

V is a quantization volume, ak,l (a†k,l) is the annihilation (creation) operator.

By plugging Eqs. (1.2), (1.3), and (1.4) into Eq. (1.1), we obtain the tran-
sition rate for specific k and l of the final photon state:

w(k, l) =
Nk,lπωk

h̄ε0V
|êk,l · ẑ|2 µ2δ(ωk − ω0), (1.5)

where ẑ is a unit vector parallel with µ, µ = |〈e|µ|g〉|, and ω0 is the resonance
frequency of the atom. Here we have used the following properties of the
annihilation and creation operators as well as the photon number states:

ak,l|n〉k,l =
√
n|n− 1〉k,l, a†k,l|n〉k,l =

√
n+ 1|n+ 1〉k,l,

k,l〈n|n〉k,l = 1, (1.6)
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1.2. SPONTANEOUS EMISSION IN A UNIFORM MEDIUM 3

In the theory of QED, we have Nk,l = 1/2 for the vacuum state. However, it
has been proven that this one-half vacuum photon contributes only half of the
spontaneous emission rate and that another half of the spontaneous emission
rate stems from radiation reaction. The fact that the vacuum photon alone can
not induce spontaneous emission explains why spontaneous absorption never
happens by the interaction with the vacuum photon—the vacuum photon and
radiation reaction cancel with each other in this case. Detailed discussions on
the vacuum photon and radiation reaction are beyond the scope of this thesis
and to this end we set Nk,l = 1 to include the effect of radiation reaction (see
Ref. [13] for a detailed discussion on this topic).

For spontaneous emission in vacuum, the final photon state has no prefer-
able k or l and we need to integrate over all k and l in Eq. (1.5) to obtain the
spontaneous emission rate:

w =
2V

8π3

∫ ∞
−∞

dkw(k, l)

=
2V

8π3

∫ 2π

0
dφ

∫ π

0
sin θ dθ

∫ ∞
0

ω2
k

c3
dωk w(k, l)

=
µ2ω3

0

3πε0h̄c3
, (1.7)

where “2” in the nominator of the pre-factor before the integral accounts for
the two polarization states and the term V/8π3 is the number of modes in a
unit volume in k-space.

1.2 Spontaneous emission in a uniform medium

We will continue our discussion with the situation in which the atom is located
in an infinite and uniform medium with a phase refractive index np. In general,
the medium is dispersive with a group refractive index ng. Equations (1.1)–
(1.3) remain the same, but Eqs. (1.4) and (1.5) are modified as

E(r, t) = i
∑
l=1,2

∑
k

êk,l

√
Nk,lh̄ωk

2npngε0V

[
ak,le

i(k·r−ωkt) − a†k,le
−i(k·r−ωkt)

]
, (1.8)

and

w(k, l) =
Nk,lπωk

npngh̄ε0V
|êk,l · ẑ|2 µ2δ(ωk − ω0). (1.9)

The density of modes is also changed and therefore Eq. (1.7) becomes

w =
2n2

pngV

8π3

∫ ∞
0

dkw(k, l) =
npµ

2ω3
0

3πε0h̄c3
. (1.10)
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4 CHAPTER 1. INTRODUCTION

We notice that compared with vacuum an infinite and uniform material with
a phase refractive index np increases the spontaneous emission rate by a factor
of np and that the group refractive index cancels out and does not appear in
the expression of the spontaneous emission rate [14].

1.3 Cavity quantum electrodynamics

A cavity is a resonant optical element which stores light for a certain lifetime.
The electromagnetic field in a cavity is enhanced as well as the vacuum field.
As a result, spontaneous emission of an atom in a cavity can be enhanced
(inhibited spontaneous emission is also possible, but it is beyond the scope of
this thesis). This effect was discovered by Edward M. Purcell in 1946 [15] and
is referred to as the Purcell effect with the corresponding Purcell factor that
characterizes the enhancement of the spontaneous emission. We will discuss
the Purcell effect in the framework of cavity QED and derive a generalized
Purcell factor. We will show that under certain conditions the generalized
Purcell factor is reduced to the original Purcell factor proposed by Purcell.

1.3.1 Light-matter interaction

A cavity supports a number of discrete modes. Each mode has a specific
resonance frequency, and field enhancement only occurs around the resonance
frequency within a certain linewidth. For simplicity we study a single-mode
cavity with a resonance frequency ωc and a linewidth ∆ωc defined as the full
width at half maximum (FWHM) of the cavity resonance. The quality factor
Qc of the cavity quantifies the number of field oscillations before the field leaks
out of the cavity. It is defined as:

Qc =
ωc

∆ωc
=
ωc
κ
, (1.11)

where κ ≡ ∆ωc is the cavity decay rate. The quantized cavity field in analogy
to the quantized field in a uniform medium as given by Eq. (1.8) reads (N = 1)

E(r, t) = iê

√
h̄ωc

2npngε0V

(
a u(r)e−iωct − a†u∗(r)eiωct

)
, (1.12)

where u(r) is the transverse profile of the cavity mode. We expand the operator
of the atomic dipole moment in the basis of the atom:

µ = (|e〉〈e|+ |g〉〈g|)µ(|e〉〈e|+ |g〉〈g|)
= |e〉〈e|µ|g〉〈g|+ |g〉〈g|µ|e〉〈e|
≡ ~µ|e〉〈g|+ ~µ∗|g〉〈e|
≡ ~µσ+ + ~µ∗σ−, (1.13)
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1.3. CAVITY QUANTUM ELECTRODYNAMICS 5

where we have defined ~µ = 〈e|µ|g〉, the atomic rising operator σ+ = |e〉〈g|, and
the atomic lowering operator σ− = |g〉〈e|, while the terms 〈e|µ|e〉 and 〈g|µ|g〉
vanish since µ has an odd parity.

With the expressions of E and µ, the interaction Hamiltonian as given by
Eq. (1.3) can be rewritten as

H ′ = − (~µσ+ + ~µ∗σ−) ·

[
iê

√
h̄ωc

2npngε0V

(
a u(r)e−iωct − a†u∗(r)eiωct

)]

= −i

√
h̄ωc

2npngε0V

[
(~µ · ê)u(r)e−iωctaσ+ − (~µ∗ · ê)u∗(r)eiωcta†σ−

+(~µ∗ · ê)u(r)e−iωctaσ− − (~µ · ê)u∗(r)eiωcta†σ+

]
= ih̄g(a†σ−e

iωct − aσ+e
−iωct), (1.14)

where we have omitted the terms with aσ− and a†σ+ under the rotating wave
approximation and defined a coupling constant g as

g =

√
ωc

2npngh̄ε0V
(~µ · ê)u(r) = µ

√
ωc

2npngh̄ε0V
| cos θ|u(r), (1.15)

with µ = |~µ| and θ being the angle between the dipole moment and the local
electric field.

1.3.2 Equations of motion

We are ready to write down the Hamiltonian of the atom-cavity system and
to obtain equations of motion from the master equation. Depending on the
coupling strength between the atom and the cavity field compared to deco-
herence rates of the system (such as atom dephasing rate, atom decay rate,
and cavity field decay rate), two distinct regimes can be classified with dif-
ferent physics and phenomena. In the strong coupling regime in which the
atom and the field exchange energy coherently with a rate that is faster than
any decoherence rates, the system exhibits vacuum Rabi oscillation, vacuum
Rabi splitting, and “collapse and revival” of the Rabi oscillation. On the other
hand, in the weak coupling regime in which the coupling strength is smaller
than one or more decoherence rates, the spontaneous emission rate of the atom
can be modified by the cavity vacuum field that is different from the vacuum
field in free space. The weak coupling regime is essential for efficient quantum
information transfer between light and matter, and will be the regime explored
in this thesis. We solve the equations of motion and obtain the expression for
the generalized Purcell factor following the formalism as described in Ref. [16].
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The Hamiltonian of the atom-cavity system can be written as

H = h̄ω0σ+σ− + h̄ωca
+a+ ih̄g(a†σ− − aσ+). (1.16)

The master equation can be written as

ρ̇ = − i
h̄

[H, ρ] + Laρ+ L∗aρ+ Lcρ, (1.17)

where La, L∗a, and Lc are the Lindblad superoperators accounting for the
decay of the atom, pure dephasing of the atom, and decay of the cavity field,
respectively. Their explicit expressions are

Laρ =
γ

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−),

L∗aρ =
γ∗

4
(2σzρσz − σzσzρ− ρσzσz), (1.18)

Lcρ =
κ

2
(2aρa+ − a+aρ− ρa+a),

where κ is the cavity decay rate, γ is the atom decay rate, γ∗ is the atom pure
dephasing rate, and σz = (|e〉〈e| − |g〉〈g|)/2. We consider a system with only
one excitation, i.e., the basis is truncated to |e, 0〉 and |g, 1〉. By multiplying
operators of interest at both sides of the master equation and by taking traces,
we obtain the equations of motion of their expectation values:

d〈a+a〉
dt

= −κ〈a+a〉+ g〈σ+a〉+ g〈a+σ−〉,

d〈σ+σ−〉
dt

= −γ〈σ+σ−〉 − g〈σ+a〉 − g〈a+σ−〉, (1.19)

d〈σ+a〉
dt

= −
(γ

2
+
κ

2
+ γ∗

)
〈σ+a〉+ g〈σ+σ−〉 − g〈a+a〉+ i∆〈σ+a〉,

where 〈X〉 ≡ Tr[ρX] represents the expectation value of an operator X and
∆ = ωa − ωc is the frequency detuning.

In the weak coupling regime, the coupling term 〈σ+a〉 that is responsible
for the Rabi oscillation can be adiabatically eliminated, i.e., d〈σ+a〉/dt = 0,
but 〈σ+a〉 6= 0. As a result, the equations of motion are simplified as

d〈a+a〉
dt

= −(κ+R)〈a+a〉+R〈σ+σ−〉,

d〈σ+σ−〉
dt

= −(γ +R)〈σ+σ−〉+R〈a+a〉, (1.20)

where

R =
2g2γtot

γ2
tot + ∆2

, with γtot =
γ

2
+
κ

2
+ γ∗. (1.21)
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We notice that Eqs. (1.20) describe a coupled atom-cavity system exchanging
energy with a rate R. The atom decays with a total rate of γ + R, while the
cavity decays with a total rate of κ+R. Hence, the spontaneous emission rate
of the atom is increased by R. The Purcell factor can be defined as

F =
R

γ
=

2g2γtot

(γ2
tot + ∆2)γ

. (1.22)

By using g = µ

√
ω

2h̄εV
and γ =

µ2ω3n

3πε0h̄c3
, we obtain

F =
3

4π2

(
λ

np

)3 Q

V
, with Q =

ωcγtot/2

(γ2
tot + ∆2)

, (1.23)

where λ is the wavelength in vacuum. Equation (1.23) is reduced to the well-
known expression by Purcell for a zero detuning ∆ = 0 and when the cavity
loss is the dominant decoherence process, i.e., κ� γ, γ∗ such that γtot ≈ κ/2:

F =
3

4π2

(
λ

np

)3 Qc
V
. (1.24)

1.4 Optical cavities

Equation (1.24) indicates that an optical cavity with a large quality factor Qc
and a small mode volume V is required to achieve a large Purcell factor. There
are generally three types of optical cavities that have been intensively studied
and optimized in terms of Qc/V for the purpose of cavity QED experiments.
In this section we shall summarize the properties of these cavities.

1.4.1 Ring resonators

A ring resonator is an optical device that guides light to travel in a closed cycle.
It can be made of three or more mirrors reflecting light in a polygonal shape.
This type of ring resonators is widely used as laser cavities. Light can also be
guided by a waveguide structure in a circular shape (waveguide ring resonator)
or by the boundary of a disk or a sphere with a higher refractive index than
its surroundings (whispering-gallery mode (WGM) ring resonator). These two
types of ring resonators are commonly used in cavity QED experiments.

Here we consider a general model in which a ring resonator is coupled to
a straight waveguide via an evanescent field as shown in Fig. 1.1. Light in the
ring resonator can travel in both clockwise and counter-clockwise directions.
For simplicity we assume that the two travelling modes do not internally cou-
ple with each other and that the field propagating to the right (left) of the
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E1 E2

E3 E4

Input Output

R

CR

Figure 1.1: Schematic drawing of a single-mode waveguide coupled to a single-mode
ring resonator via a coupling region (CR). Light is coupled into and out of the waveg-
uide as denoted by the arrows. The electric fields at different positions are denoted
by E1–E4. The radius of the ring resonator is R.

waveguide is only coupled to the counter-clockwise (clockwise) mode of the
ring resonator and vice verse.

Based on the coupled mode theory [17], the four electric fields as defined
in Fig. 1.1 are related by

E2 = tE1 + irE3, (1.25)

E4 = irE1 + tE3, (1.26)

where t and r are transmission and reflection coefficients, respectively. t and
r are in general complex numbers, but they can be real if the coupling is
phase-matched. Assuming the coupling is lossless, t and r satisfy

|t|2 + |r|2 = 1. (1.27)

E3 and E4 are related by a phase shift and amplitude attenuation for one round
trip in the ring resonator such as

E3 = a exp(iφ)E4, (1.28)

where a and φ are electric field transmission and phase shift for one round trip
in the ring resonator, respectively. a and φ are given by

a = exp(−απR), (1.29)

φ =
4π2Rneff ν

c
, (1.30)

where α is the intensity attenuation coefficient due to absorption, bending
and scattering losses, neff is the effective refractive index of the mode of the



i
i

i
i

i
i

i
i

1.4. OPTICAL CAVITIES 9

ring resonator, c is the speed of light in vacuum, ν is the frequency of the
electromagnetic field, and R is the radius of the ring resonator. Substituting
Eq. (1.28) into Eqs. (1.25) and (1.26) and solving the equations for E1 and E2,
we obtain

E2

E1
=

r − a exp(iφ)

1− ra exp(iφ)
, (1.31)

with the assistance of Eq. (1.27) and assuming that r and t are real numbers.
The power transmission through the waveguide is therefore

T =

∣∣∣∣E2

E1

∣∣∣∣2 =
a2 − 2ra cosφ+ r2

1− 2ra cosφ+ r2a2
. (1.32)

By examining Eq. (1.30), we find that the transmission as given by Eq. (1.32)
is a periodic function of ν with the period or free spectral range (FSR)

FSR =
c

2πRneff
, (1.33)

where we have ignored dispersion of the material for simplicity such that the
phase index is equal to the group index. The resonance condition is given by
cosφ = 1 and the resonance transmission is

T0 =
(a− r)2

(1− ra)2
. (1.34)

We have T0 = 0, if a = r which is the critical coupling condition [18]. In the
vicinity of resonance frequencies, cosφ ≈ 1 − φ2/2 and Eq. (1.32) is approxi-
mately a Lorentzian function of ν. The linewidth of the resonance is

∆ν =
c(1− ra)

2π2Rneff
√
ra
. (1.35)

The quality factor is

Q =
ν

∆ν
=

2π2νRneff
√
ra

c(1− ra)
. (1.36)

WGM ring resonators such as micro-toroids and micro-spheres are a spe-
cial type of ring resonators that provides ultra-high quality factors. They are
typically made of fused silica with a high purity. Light is confined close to the
boundary of the ring resonator and therefore the surface smoothness is very
critical for the quality factor. Atomic smoothness can be achieved by the sur-
face tension of the material when melted. The quality factor of micro-toroids
is typically on the order of 108 [19] and that of micro-spheres can be as high
as 1010 [20]. A tapered optical fiber or a prism can be used to couple light in
and out of the WGM ring resonators.
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1.4.2 Fabry-Perot cavities

A Fabry-Perot cavity consists of two high-reflectivity mirrors facing each other.
Light that matches the cavity modes bounces back and forth between the two
mirrors before leaking out of the cavity. In practice usually concave mirrors
are used to reduce the scattering due to the surface roughness of the mirrors.
At resonance frequencies the forward- and backward-travelling light interfere
constructively leading to a standing wave and an enhancement of the cavity
field. The cavity field Ec in relation to the incident field Ei is given by

Ec =

√
1−R1

1− eiφ
√
R1R2

Ei, (1.37)

where R1 and R2 are power reflectivity of the incident and output mirrors,
respectively, φ is phase shift of the field after one-round trip, and we have
ignored scattering and absorption losses. φ is given by

φ =
4πdν

c
, (1.38)

where d is the distance between the two mirrors, ν is the frequency of the field,
and we have assumed the volume in between the two mirrors is vacuum with
np = 1, but it is straightforward to extend to a material with np 6= 1. The
output field is given by Eo =

√
1−R2Ei and therefore the transmission is

T =

∣∣∣∣Eo

Ei

∣∣∣∣2 =
(1−R1)(1−R2)

1− 2 cosφ
√
R1R2 +R1R2

. (1.39)

The resonance condition is set by φ = 2πm with m being an integer. Therefore
the resonance frequencies ν0 are given by

ν0 =
mc

2d
. (1.40)

On resonance, T is maximized and the resonance transmission T0 reads

T0 =
(1−R1)(1−R2)

(1−
√
R1R2)2

. (1.41)

We have T0 = 1 if R1 = R2, otherwise T0 < 1. The quality factor is given by

Q =
2πd 4
√
R1R2

λ(1−
√
R1R2)

. (1.42)

An important type of Fabry-Perot cavities with minimized mode volumes
is a micro-pillar cavity. A micro-pillar cavity is a vertical cavity with its top
and bottom mirrors made of distributed Bragg reflectors (DBR) separated by
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a dielectric spacer. The DBR consists of alternating layers of two dielectric
materials with different refractive indices. The thickness of each layer is one
quarter of the wavelength in the material to have the maximum reflection.
The cavity is etched in a pillar shape with a diameter of several micrometers.
Figure 1.2(a) shows a scanning electron microscope (SEM) image of standard
micro-pillar cavities. The sidewall of the pillar provides lateral confinement for
the cavity modes and the scattering at the sidewall turns out to be the main
source of cavity losses. The mode volume is typically smaller than ten times of
a cubic wavelength in the material and the quality factor reaches up to 105.

10 μm 2 μm

Bottom DBR

Top DBR

Oxide aperture

Tapering

Cavity

5 μm

(a) (b) (c)

Top DBR

Bottom

DBR

Cavity

Figure 1.2: Scanning electron microscope (SEM) images of (a) three standard micro-
pillar cavities, (b) an oxide-aperture micro-pillar cavity, and (c) a cross-section of the
cavity as shown in (b). They are vertical Fabry-Perot cavities made of top and bottom
distributed Bragg reflectors (DBR). In (a) the lateral confinement of light is achieved
by the sidewall. (c) shows a tapered oxide aperture in the cavity as lateral confinement
of light. (a) was obtained by the Department of Applied Physics at the University of
Würzburg. (b) and (c) are adopted from Ref. [21].

A more advanced and complicated version of the micro-pillar cavity is an
oxide-aperture micro-pillar cavity. There is an aluminium-concentrated layer
between the two DBRs. The cavity is etched down to a larger diameter (tens
of micrometers) compared with the standard micro-pillar cavity. A SEM im-
age of an oxide-aperture micro-pillar cavity is shown in Fig. 1.2(b) and its
cross-section is shown in Fig. 1.2(c). There are unetched bridges connecting
the micro-pillar to the surroundings which strengthen the structure and en-
able electrical connections to the cavity. The aluminium-concentrated layer
is then oxidized through the etched trenches to form a tapered aperture at
the cavity region as shown in Fig. 1.2(c). This oxide aperture provides lateral
confinement of the cavity modes. Compared with the standard micro-pillar
cavity, the oxide-aperture micro-pillar cavity typically has a higher quality fac-
tor because the tapered oxide aperture induces less light scattering than the
sidewall of the standard micro-pillar cavity. Furthermore, it is also much more
mechanically stable and capable of applying electrical connections to the cav-
ity, e.g., quantum dots in a p-i-n junction in the cavity can be tuned by an
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applied voltage. We have succeeded in making permanent optical fiber connec-
tions to the oxide-aperture micro-pillar cavities which can be used at cryogenic
temperatures. This will be presented in Chapter 3 of this thesis.

1.4.3 Photonic crystal cavities

Photonic crystals are artificial dielectric materials consisting of periodic scat-
terers for electromagnetic waves in analogy to real crystals where atoms form
a periodic lattice scattering electrons. Because of the periodic scattering, pho-
tonic band structures emerge in the energy/frequency domain similar with the
energy bands in real crystals. Electromagnetic modes are allowed in certain
bands only and forbidden in “band gaps”. If one or several local scatterers
are removed from the photonic crystal as a defect, the band structures will
be modified locally around the defect site. Consequently, in a band gap, elec-
tromagnetic modes are allowed to exist nowhere but only around the defect,
which effectively creates confinement or a cavity for the electromagnetic field.

A photonic crystal can be of different dimensions, e.g., a DBR can be
viewed as a one-dimensional photonic crystal, but in this introductory section
we limit our discussions only to two-dimensional (2D) cases. A 2D photonic
crystal cavity is made of a dielectric slab with a refractive index higher than
its surroundings (typically air). Electromagnetic fields are confined in the slab
by total internal reflection. Periodic scatterers are created as etched holes in
the slab with their diameters comparable with the wavelength of the field.
The positions of the holes are determined by numerically solving Maxwell’s
equations for the target wavelength. One or several holes are unetched to
modify the local photonic density of states. The mode volume is approximately
a cubic wavelength in the material and the quality factor is typically on the
order of 104.

1.5 Rare-earth ions in solids

Generally speaking, rare-earth elements are 17 chemical elements in the peri-
odic table including 15 lanthanides from lanthanum (La, atomic number 57)
to lutetium (Lu, 71) plus scandium (Sc, 21) and yttrium (Y, 39). Concern-
ing optical properties and applications in solids, only 13 elements from cerium
(Ce, 58) to ytterbium (Yb, 70) are important and throughout this thesis the
term “rare-earth” will be only referred to as these 13 elements. The rare-earth
elements share similar electronic configurations as shown in Figs. 1.3(a) and
1.3(b): a core with the electronic configuration of xenon (Xe, 54) , 4fn orbit,
and 6s2 orbit (for Ce there is an additional 5d1 orbit), where the numbers
before the letters are principal quantum numbers, the letters denote angular
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momentum quantum numbers: s = 0, p = 1, d = 2, f = 3, · · · , and the su-
perscripts are the numbers of electrons in the particular orbits. The number of
electrons in the 4f orbit n ranges from 1 for Ce to 14 for Yb. A special aspect
of rare-earth elements with important implications is that the 4f orbit is spa-
tially enclosed within the filled 5s and 5p orbits in the Xe shell, a phenomenon
called “lanthanide contraction”, which effectively shields the 4f orbit from the
environment. Calculated radial probabilities of 4f , 5s, and 5p orbits of Yb are
shown in Fig. 1.4 as an example to illustrate the lanthanide contraction.

+Z Xe 4fn-1

Z = 58–70

n = 2–14

(c)

+58 Xe 4f1 5d1 6s2

Ce

(a)

+Z Xe 4fn 6s2

Z = 59–70

n = 3–14

(b)

Figure 1.3: Electronic configurations of (a) cerium (Ce, atomic number 58) atom, (b)
other rare-earth atoms, and (c) trivalent rare-earth ions. The inner xenon (Xe, 54) shell
has a configuration of 1s22s22p63s23p63d104s24p64d105s25p6. In these notations the
letters denote angular momentum quantum numbers: s = 0, p = 1, d = 2, f = 3, · · · ,
the numbers before the letters are principal quantum numbers, and the superscripts
are the numbers of electrons in the particular orbits. For ytterbium (Yb, 70), n = 14.

Rare-earth elements can be doped in solids such as glass and inorganic
crystals to form trivalent ions by losing two electrons from the 6s orbit and
one electron from the 4f orbit (for Ce it loses two electrons from the 6s orbit
and one electron from the 5d orbit). The resulting electronic configurations of
the trivalent ions are a Xe shell and the 4f orbit as shown in Fig. 1.3(c). The
number of electrons on the 4f orbit ranges from 1 for Ce3+ to 13 for Yb3+.
Since the maximum number of electrons that can occupy the 4f orbit is 14,
it can be considered as a single hole for Yb3+. In principal dipole transitions
within the 4f states of an isolated rare-earth ion are forbidden because the
initial state and the final state have the same parity. However, interactions with
the lattice field in the host material admix higher-lying states with opposite
parity into the 4f states. As a result, dipole transitions within the 4f states
become partially allowed, although these transitions are still extremely weak
(small dipole moments) compared with fully allowed dipole transitions. The
energy diagrams of the 4f states are typically very complex with exceptions
for Ce3+ and Yb3+ for which only one electron or one hole is in the 4f states.
For instance for Yb3+ there are simply two energy levels with three double-
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degenerate manifolds on the excited state and four double-degenerate manifolds
on the ground state as shown in the inset of Fig. 1.4. The spectra of the 4f
transitions are within the range of visible and infrared and exhibit sharp peaks
even at room temperature essentially because of the shielding of the 4f orbit
by the outer filled 5s and 5p orbits. Due to the small dipole moment, the
radiative lifetimes of the 4f states are typically on the order of milliseconds.
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Figure 1.4: Radial probabilities of 4f (solid curve), 5s (dashed curve), and 5p (dash-
dot curve) electronic orbits of ytterbium (Yb) atoms as a function of radial position.
The data are adopted from Ref. [22] resulting from numerical calculations based on
the Hartree-Fock method. The 4f orbit is largely enclosed in the filled 5s and 5p
orbits. Inset: energy level diagram of the 4f electrons of Yb3+ in silicon dioxide.
There are four manifolds (stark sub-levels) at the ground state and three manifolds
at the excited state. The transitions between the ground state and the excited state
involve near-infrared photons.

Rare-earth-doped solids have found many important applications for lasers
and optical communications. Rare-earth-doped glass and crystals, especially
neodymium (Nd, 60)-doped yttrium aluminum garnet (YAG) are the founda-
tion of modern solid-state lasers with much higher stability, efficiency, tun-
ability, and power capability than gas lasers. Erbium (Er, 68)- and Yb-doped
optical fibers are widely used as gain media of fiber lasers and as amplifiers
for optical communications. Recently, rare-earth ions in crystals attract new
interests for quantum information applications because of the high quantum
coherence of the 4f states at low temperature [23]. In the past few years, collec-
tive effects of ensembles of rare-earth ions have been used as quantum memories
for single photons [5, 6] and quantum entanglement of two remote crystals [24]
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has been experimentally demonstrated. Single rare-earth ions in crystals were
very recently detected by using different advanced techniques [25, 9, 7, 8]. They
show the great potential of rare-earth ions for future quantum information ap-
plications and form the basic motivation to study cavity QED with rare-earth
ions. This thesis presents results of solid-state rare-earth cavity QED with, up
to now, only a few preliminary studies [26, 27, 28, 29, 30, 31].
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