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1
One of the largest health problems in the Western world is cardiovascular disease (CVD),1, 

2	with	atherosclerosis	being	the	main	pathophysiological	cause,	resulting	in	cardiovascular	
morbidity	and	mortality.	Atherosclerosis	is	a	disease	affecting	the	vessel	wall	associated	with	
the	local	accumulation	of	lipids,	immune	cells,	smooth	muscle	cells	and	connective	tissue.	
Accumulation	of	these	constituents	 leads	to	the	progressive	narrowing	of	the	vessel	wall	
and	subsequently	to	a	decrease	in	blood	flow	to	the	organs.	Progression	of	local	narrowing	
and	disease	are	associated	with	pain	(angina	pectoris)	and	may	ultimately	lead	to	plaque	
rupture	and	subsequent	heart	attack,	stroke	or	even	death.

Epidemiological	 studies	 have	 identified	 several	 risk	 factors	 associated	 with	 the	
development	 of	 atherosclerosis	 e.g.	 genetic	 predisposition,	 smoking,	 hypertension,	 age,	
gender,	 obesity,	 inflammation	 and	 dyslipidaemia.3, 4 Dyslipidaemia is characterized by 
increased levels of triglycerides (TG) and (very) low density lipoprotein [(V)LDL]-cholesterol 
(C),	and	decreased	levels	of	high	density	lipoprotein	(HDL)-C.	Inflammation	is	characterized	
by	e.g.	increase	levels	of	the	acute	phase	marker	C-reactive	protein	(CRP)	and	cytokines	such	
as	tumor	necrosis	factor	α	(TNFα).	Currently,	the	standard	treatment	for	the	reduction	of	
CVD	risk	is	statin	therapy	aimed	at	reducing	plasma	(V)LDL-C,	with	lowering	of	inflammation	
as	 a	 pleiotropic	 effect.	However,	 a	 substantial	 residual	 risk	 remains,	which	has	 triggered	
the	search	for	additional	treatment	strategies.5, 6	The	observation	of	an	inverse	association	
between	HDL-C	 level	and	CVD	risk,7, 8 and the fact that cholesteryl ester transfer protein 
(CETP)	decreases	HDL-C,	has	made	CETP	an	important	therapeutic	target	for	lowering	CVD	
risk.	This	has	led	to	the	development	of	several	CETP-inhibitors,	which	are	in	different	stages	
of clinical trials.

LIPIDS AND LIPOPROTEIN METABOLISM

The main lipid components of our diet are TG and cholesterol. TG are an important source 
of	 energy	 in	 the	 body	 and	 cholesterol	 is	 an	 essential	 component	 of	 cell	membranes	 as	
well as the precursor for bile acids, hormones and vitamin D. Since lipids are hydrophobic 
and thus insoluble in blood they are transported in hydrophilic lipoproteins. Lipoproteins 
consist	 of	 a	 hydrophobic	 core	 containing	 TG	 and	 cholesteryl	 esters	 (CE),	 and	 a	 surface	
containing	 phospholipids,	 unesterified	 cholesterol	 and	 apolipoproteins.	 Based	 on	 their	
density, lipoproteins can be divided into 5 main groups (from lowest to highest density): 
chylomicrons,	 VLDL,	 intermediate	 density	 lipoprotein,	 LDL	 and	 HDL.	 In	 the	 subsequent	
paragraphs,	specific	aspects	of	lipoprotein	metabolism	and	especially	CETP	that	are	relevant	
to	 the	 subsequent	 chapters	are	explained,	and	 their	potential	 roles	 in	atherogenesis	are	
discussed shortly.
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Chylomicrons and (V)LDL
Figure	1	represents	a	schematic	overview	of	lipoprotein	metabolism.	After	a	meal,	dietary	
TG	and	cholesteryl	esters	are	broken	down	in	the	intestinal	lumen,	absorbed	by	enterocytes	
in	the	intestine	and	resynthesized,	assembled	in	chylomicrons	and	secreted	via	the	lymph	
into	 the	 circulation.	 In	 periods	 between	 meals,	 the	 liver	 produces	 TG-rich	 VLDL.	 The	
principal	 function	 of	 chylomicrons/VLDL	 is	 the	 transport	 TG	 from	 the	 intestine/liver	 to	
peripheral organs. TG used for VLDL assembly are synthesised de novo, or are derived from 
TG-derived	fatty	acids	(FA),	after	hepatic	uptake	of	chylomicron	remnants	or	VLDL	remnants.	
However,	VLDL	also	contains	both	free	and	esterified	cholesterol.	Cholesterol	 is	obtained	
from lipoprotein remnants or by de novo cholesterol synthesis. Cholesterol is synthesized 
predominantly	by	liver	cells	from	relatively	simple	molecules	via	a	complex	37-step	process.	
The	 reduction	 of	 3-hydroxy-3-methylglutaryl	 CoA	 to	 mevalonate	 by	 the	 enzyme	 HMG-
CoA	reductase	(HMGCR)	is	the	rate-limiting	step.	The	key	structural	protein	component	of	
chylomicrons and VLDL is apolipoprotein (apo) B. When chylomicrons and VLDL arrive via 
the	circulation	in	metabolically	active	tissues,	their	TG	are	hydrolysed	by	lipoprotein	lipase	
(LPL)	into	FA	and	glycerol.9	These	FA	are	taken	up	by	the	skeletal	muscle	and	heart	for	use	as	
an	energy	source,	by	brown	adipose	tissue	for	thermogenesis,	and	by	white	adipose	tissue	
for storage.10 Upon lipolysis, chylomicrons and VLDL become so called remnants enriched 
in	 CE	 and	 acquire	 ApoE.11, 12 These remnants are cleared by the liver predominantly via 
the	ApoE-LDL	receptor	 (LDLr)	pathway,	although	the	LDLr-related	protein-1	 (LRP1)	 is	also	
involved.13	The	VLDL	remnants	can	also	be	further	lipolysed	and	processed	in	the	circulation	
to generate LDL.9, 14	LDL	is	virtually	depleted	of	TG	and	rich	in	CE.	LDL	can	be	taken	up	via	the	
LDLr	by	the	liver,	but	also	by	extra-hepatic	tissues	that	need	cholesterol.15, 16

HDL
The	main	function	of	HDL	in	lipid	metabolism	is	to	acquire	excess	cholesterol	from	peripheral	
tissues	and	transport	it	to	other	lipoproteins	or	back	to	the	liver	(so	called	reverse	cholesterol	
transport).	ApoA1,	the	most	abundant	apolipoprotein	of	HDL,	is	synthesized	in	the	liver	and	
the	intestine.	After	being	released	into	the	circulation,	ApoA1	is	lipidated	with	phospholipids	
via	the	ATP	binding	cassette	transporter	A1	(ABCA1),	to	form	nascent	discoidal	HDL.	This	HDL	
particle	can	take	up	cholesterol	 from	various	peripheral	tissues.	The	acquired	cholesterol	
is	esterified	by	 lecithin-cholesterol-acyltransferase	 (LCAT)	and	accumulates	 in	 the	core	of	
the	HDL	 particle.	 The	HDL	 becomes	 a	more	mature	 spherical	 HDL	 particle	 and	 acquires	
additional	apolipoproteins	from	the	circulation.	The	maturation	also	results	in	an	increased	
affinity	for	ATP	binding	cassette	transporter	G1	(ABCG1)	and	scavenger	receptor-BI	(SR-BI),	
to	increase	the	cholesterol	efflux	from	tissues.17, 18	Subsequently,	CE	in	HDL	are	selectively	
taken up by the liver,19	 and	 can	 be	 used	 for	 storage,	 assembly	 of	 VLDL,	 or	 for	 excretion	
into	the	intestine	as	neutral	sterol	or	bile	acids.20	Alternatively,	in	humans	and	some	other	
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1
species,	CE	in	HDL	can	be	transferred	to	ApoB-containing	lipoproteins	by	cholesteryl	ester	
transfer	protein	(CETP)	in	exchange	for	TG.

Figure 1: Schematic overview of lipoprotein metabolism
AT,	adipose	tissue;	TG,	triglycerides;	LDLr,	LDL	receptor;	CE,	cholesteryl	ester;	E,	ApoE;	B,	ApoB;	AI,	
ApoAI;	 FC,	 free	 cholesterol;	 C,	 cholesterol;	 PL,	 phospholipids;	 PLTP,	 phospholipid	 transfer	 protein;	
CETP,	cholesteryl	ester	transfer	protein.

CETP as a modulator of lipoprotein metabolism
At	 least	two	 lipid	transfer	proteins	can	be	found	 in	human	plasma;	phospholipid	transfer	
protein	(PLTP)	and	CETP.	PLTP	transfers	phospholipids	from	TG-rich	lipoproteins	to	HDL	during	
their	lipolytic	conversion	by	LPL,	thereby	enabling	maturation	of	HDL.	In	this	thesis,	we	will	
focus	on	CETP	that	promotes	the	exchange	of	CE	and	TG	between	plasma	lipoproteins.	CETP	
is	a	74	kDa	glycoprotein	that	is	expressed	by	several	species,	including	humans,	monkeys,	
rabbits, hamsters and pigs, but not by rats and mice.21-23	In	humans,	expression	of	CETP	is	
described	 in	the	 liver	and	adipose	tissue,	but	also	to	some	extent	 in	spleen,	heart,	small	
intestine,	adrenal	gland,	kidney	and	skeletal	muscle.21, 22, 24, 25	CETP	expression	is	regulated	
by	 various	 factors,	 among	which	 are	 sterol	 regulatory	 element	 binding	 protein	 (SREBP),	
the	liver-X-receptor	(LXR)	and	farnesoid-X-receptor	(FXR).24-30	Albeit	that	CETP	seems	to	be	
expressed	by	multiple	organs,	the	relative	contribution	of	these	organs	to	whole-body	CETP	
production,	 and	 the	 cellular	 origin	 are	 still	 under	 debate.	 The	 protein	 structure	 of	 CETP	
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reveals	a	curved	molecule	with	N-	and	C-	terminal	cavities	and	a	tunnel	spanning	the	entire	
length	of	the	protein,	which	can	accommodate	neutral	lipids	such	as	CE	and	TG.31	CETP	is	
secreted	into	the	plasma	where	it	binds	to	HDL.	The	net-effect	of	CETP	activity	is	a	transfer	
of	CE	from	HDL	to	chylomicrons/VLDL	in	exchange	for	TG.32

Dyslipidaemia and atherosclerosis development
As	 mentioned	 above,	 dyslipidaemia	 is	 an	 important	 risk	 factor	 for	 the	 development	 of	
atherosclerosis.	LDL	 is	considered	to	be	pro-atherogenic	and	HDL	to	be	anti-atherogenic.	
The	role	of	CETP	in	the	development	of	atherosclerosis	is	currently	under	debate.

The	development	of	an	atherosclerotic	plaque	starts	with	the	infiltration	of	atherogenic	
lipoproteins such as LDL or lipoprotein remnants into the vessel wall. Thus, increased levels 
of these lipoproteins are obvious causes for the increase of atherosclerosis development. 
The	 infiltrated	 lipoproteins	 undergo	 modification	 (e.g.	 oxidation	 and/or	 aggregation)	
resulting	in	a	signal	for	the	activation	of	endothelial	cells	and	the	recruitment	of	immune	
cells	(neutrophils,	T-	and	B-cells,	and	monocytes).	Infiltrating	monocytes	differentiate	into	
macrophages	and	start	to	phagocytose	the	modified	lipoproteins,	turning	the	macrophages	
into	 lipid-laden	 “foam	 cells”.	 These	 foam	 cells	 are	 the	 first	 markers	 for	 atherosclerosis	
development.

HDL	has	a	dual	anti-atherogenic	role.	Firstly,	HDL	scavenges	the	cholesterol	from	“foam	
cells”	 in	 the	 atherosclerotic	 plaque.	 This	 cholesterol	 is	 esterified	 by	 LCAT	 into	 CE	 and	
transported	by	HDL	to	the	liver	where	it	can	be	excreted	as	neutral	sterol	or	as	bile	acid.	This	is	
generally called reverse cholesterol transport (RCT). Studies have shown that increasing RCT 
reduces the development of atherosclerosis.33	Secondly,	in	addition	to	its	role	in	cholesterol	
metabolism,	it	is	proposed	that	HDL	has	a	variety	of	anti-inflammatory,	anti-microbial	and	
anti-oxidant	properties,34-37	contributing	to	the	anti-atherogenic	properties	of	HDL.

CETP	activity	decreases	HDL-C	levels	and	is	considered	to	be	pro-atherogenic	and	indeed	
in	several	mouse	models,	including	C57Bl/6J,	Ldlr-/-, Apoe-/-	and	APOE*3-Leiden	mice,	CETP	
expression	 aggravates	 the	 development	 of	 atherosclerosis.38-40	 Genetic	 variants	 of	 the	
CETP	gene,	that	are	associated	with	decreased	plasma	CETP	concentration	and	activity,	are	
associated	with	increased	HDL-C	levels.	Moreover,	homozygous	CETP	deficiency	results	in	
decreased plasma LDL-C and ApoB levels.41	This	suggests	that	reduced	CETP	concentration	
and	 activity	 beneficially	 affect	 lipoprotein	metabolism	 and	 possibly	 the	 development	 of	
atherosclerosis.	 However	 the	 relation	 between	 CETP	 deficiency	 and	 CVD	 risk	 in	 humans	
is controversial CVD.42, 43	 Moreover,	 a	 meta-analysis	 showed	 that	 CETP	 polymorphisms	
associated	 with	 decreased	 CETP	 activity	 are	 associated	 with	 a	 decrease	 in	 CVD	 risk.44 
However,	other	studies	find	that	CETP	polymorphisms,	despite	raising	HDL-C,	do	not	alter	
CVD risk42, 45 or even increase CVD risk.46
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1
Commonly	used	wild-type	mice	(C57Bl/6)	have	a	very	rapid	clearance	of	ApoB-containing	

lipoproteins. To mimic the slower clearance observed in humans, a transgenic mouse model 
has	been	developed	expressing	a	dominant	mutation	in	APOE,	called	APOE*3-Leiden	mice.47 
Patients	carrying	the	APOE*3-Leiden	gene	have	 increased	 levels	of	 lipoprotein	remnants,	
and	increased	susceptibility	to	atherosclerosis.	The	E3L	mice	have	been	intercrossed	with	
human	 CETP-expressing	 mice	 (APOE*3-Leiden.CETP	 mice)40	 and	 both	 APOE*3-Leiden	
and	APOE*3-Leiden.CETP	mice	have	an	attenuated	 clearance	of	 TG-rich	 lipoproteins	and	
increased TG level.48	 Similar	 to	 patients	 carrying	 the	APOE*3-Leiden	 variant,	 in	 APOE*3-
Leiden	and	APOE*3-Leiden.CETP	mice,	a	major	part	of	plasma	cholesterol	is	contained	in	the	
VLDL	(remnant)	particles,	so	called	β-VLDL	particles,	which	further	increase	after	cholesterol	
feeding.	The	APOE*3-Leiden.CETP	mouse	model,	unlike	Apoe-/- and Ldlr-/- mice, responds in 
a	human-like	way	to	the	lipid	lowering	effects	of	statins,49	fibrates,50 niacin,51, 52 torcetrapib53 
and	 anti-PCSK9mabs,54	 with	 respect	 to	 both	 direction	 and	magnitude	 of	 the	 change.	 In	
conclusion,	 APOE*3-Leiden.CETP	 mice	 have	 a	 more	 human-like	 lipoprotein	 metabolism	
when	compared	to	C57Bl/6,	Apoe-/- or Ldlr-/- mice.

MACROPHAGES

White blood cells, or leukocytes, are a diverse group of cells that are crucial to the body’s 
immune	response.	They	circulate	through	the	blood	and	are	recruited	to	sites	of	inflammation	
and	damage.	The	different	types	of	leukocytes	have	a	common	origin	in	hematopoietic	stem	
cells	and	develop	along	distinct	differentiation	pathways.	Two	types	of	common	progenitor	
cells	exist,	common	lymphoid	progenitor	cells	(that	give	rise	to	T-,	B-,	and	natural	killer	cells)	
and common myeloid progenitor cells (that give rise to granulocytes, erythrocytes and 
monocytes). Common myeloid progenitor cell-derived monocytes give rise to a large variety 
of	macrophages	throughout	the	body,	as	well	as	dendritic	cells	and	osteoclasts.

Tissue-resident macrophages
Macrophages	 are	 equipped	 with	 a	 range	 of	 pathogen-recognition	 receptors	 that	 make	
them	efficient	in	phagocytosis	and	that	induce	the	production	of	inflammatory	cytokines.55 
Macrophages	have	 frequently	been	grouped	 into	 two	 functionally	different	classes	using	
the ‘M1-M2 paradigm’.56	M1	macrophages,	derived	from	the	pro-inflammatory	monocytes,	
exhibit	anti-microbial	properties	and	promote	an	interleukin-1	and	-12	mediated	T-helper	
1	response.	On	the	other	hand,	M2	macrophages	support	an	anti-inflammatory	T-helper	2	
response	and	play	a	role	in	the	resolution	of	inflammation.

The	majority	of	tissues	contain	tissue-resident	macrophages,	e.g.	brain	(microglia),	skin	
(Langerhans	 cells),	 spleen	 (marginal	 zone	macrophages),	 and	 liver	 (Kupffer	 cells).	 Tissue-
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resident	macrophages	are	a	heterogeneous	population	of	macrophages	 that	 fulfil	tissue-
specific	functions.	These	range	from	dedicated	homeostasis,	such	as	clearance	of	cellular	
debris	(e.g.	apoptotic	cells),	growth	factor	production	and	iron	processing,	to	central	roles	
in	tissue	immune	surveillance	and	the	resolution	of	inflammation.	According	to	the	‘M1-M2	
paradigm’,	tissue-resident	macrophages	are	classified	as	M2-macrophages,	which	relates	to	
their	role	in	maintenance	of	homeostasis	and	the	resolution	of	inflammation.57, 58

Kupffer	 cells	 are	 one	 of	 the	 largest	 populations	 of	 tissue	 macrophages59 and were 
first	 observed	by	Karl	Wilhelm	 von	Kupffer	 in	 1876.60	 He	described	 them	as	 “specialized	
endothelial	cells	that	line	the	sinusoids	of	the	liver	and	form	part	of	the	reticuloendothelial	
system”.60	Von	Kupffer	called	these	cells	‘sternzellen’	(“star	cells”).	They	are	predominantly	
distributed	in	the	lumen	of	hepatic	sinusoids	and	are	a	component	of	the	innate61 and the 
adaptive62, 63	immune	system.	The	main	role	of	Kupffer	cells	is	to	eliminate	pathogens	from	
blood,64, 65	in	some	extent	to	regulate	liver	regeneration66, 67 and bilirubin metabolism.65, 67 In 
addition,	Kupffer	cells	are	known	to	play	a	role	in	the	pathogenesis	of	various	liver	diseases.

Macrophages and atherosclerosis development
Monocytes and macrophages play an important role in the development and stability of 
an	atherosclerotic	plaque.	Invading	monocytes	differentiate	into	macrophages	and	start	to	
engulf	the	infiltrated	and	modified	lipoproteins	via	scavenger	receptor	A	(SRA)	and	CD36.	
Unlimited	uptake	 turns	 them	 into	 lipid-laden	“foam	cells”	 that	are	 the	first	markers	of	a	
‘fatty	streak’	in	the	vessel	wall.	These	fatty	streaks	or	mild	plaques	consisting	of	primarily	
foam cells mostly cause no clinical symptoms and can reverse. Progression of mild plaques 
into	more	severe	plaques	is	the	consequence	of	the	infiltration	of	additional	immune	cells	
and	the	production	of	pro-inflammatory	cytokines	and	chemokines	by	activated	endothelial	
and immune cells. In response, smooth muscle cells proliferate and migrate towards the 
endothelium	 to	 form	a	fibrous	 cap.	 If	 this	 cap	 is	 strong	enough,	 it	 stabilizes	 the	plaque,	
preventing	 the	plaque	 from	rupture.	However,	necrosis	of	 the	 foam	cells	and/or	 smooth	
muscle	cells,	resulting	in	a	necrotic	core,	destabilizes	the	plaque,	and	might	cause	rupture.	
Thus,	plaque	stability	is	determined	by	the	composition	of	the	plaque.	Stable	plaques	have	
a	thick	fibrous	cap	and	a	low	number	of	foam	cells,	whereas	vulnerable	plaques	have	a	thin	
fibrous	cap	and	a	high	number	of	foam	cells	and/or	a	necrotic	core.	Rupture	of	the	plaque	
might	lead	to	coagulation	and	thrombus	formation,	causing	an	infarction	or	stroke.4, 68, 69

PHARMACOLOGICAL INTERVENTION FOR CARDIOVASCULAR DISEASE

The standard treatment for dyslipidaemia and to halt and even reduce atherosclerosis 
development,	 thereby	 reducing	 cardiovascular	 risk,	 is	 statin	 therapy	 aimed	 at	 reducing	
plasma (V)LDL-cholesterol.
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Statins
Statins	 are	 inhibitors	 of	 HMGCR.	 As	 mentioned	 above,	 HMGCR	 is	 the	 rate	 limiting	
enzyme	 in	 the	 cholesterol	 biosynthesis	 pathway.	 Statins	 block	 the	 binding	 of	 3-hydroxy-
3-methylglutaryl-coenzyme	 A	 to	 HMGCR	 and	 thereby	 the	 formation	 of	 mevalonate,	 a	
precursor of cholesterol.70, 71	The	reduced	cholesterol	production	results	 in	a	reduction	of	
VLDL	secretion	and	thereby	 less	LDL	formation,72 and less atherosclerosis development.73 
Statin	treatment	not	only	reduces	the	cholesterol	content	of	the	liver,	but	also	upregulates	
the	hepatic	LDL	receptor,74-76 further reducing the plasma (V)LDL-C. A pleiotropic mechanism 
which	 is	 thought	 to	 also	 play	 a	 role	 in	 the	 reduction	of	 CV	 risk	 is	 the	 anti-inflammatory	
properties	of	statins.77	It	has	been	shown	in	experimental	and	clinical	studies,	that	statins	
decrease	inflammation,78 decrease monocyte adherence to the plaque79, 80 and reduce the 
inflammatory	biomarker	C-reactive	protein	(CRP).81-84	These	effects	are	largely	independent	
of lowering (V)LDL-C in the plasma.83

Intervention	 trials	 provide	 ample	 evidence	 that	 lowering	 of	 LDL-C	 contributes	 to	 a	
reduction	in	CVD	risk.5, 85-87	Although	a	substantial	CVD	risk	remains	and	some	patients	do	
not	 reach	 the	 recommended	 LDL-C	 target,	 statin	 treatment	 remains	 the	 most	 effective	
treatment for CVD.6, 87	However,	this	residual	CV	risk	has	prompted	the	search	for	secondary	
treatment targets.5, 6 Already in the 1970-80s, Castelli et al7, 8	showed	in	the	Framingham	
Heart	Study	that	subjects	with	low	levels	of	HDL-C	have	similar	risk	for	CVD	as	compared	
to	 those	with	 high	 levels	 of	 LDL-C.	 These	 observations,	 and	 prospective	 epidemiological	
studies,	have	indicated	that	raising-HDL-C	may	be	a	suitable	potential	secondary	target	for	
the treatment of CVD.88	The	 inverse	association	of	HDL-C	with	CVD	risk	and	the	fact	that	
CETP	plays	a	critical	role	in	HDL	metabolism	has	made	CETP	an	important	therapeutic	target	
to	modulate	HDL-C	levels.	In	addition,	mutations	that	cause	CETP	deficiency	or	reduce	CETP	
mass	and/or	activity	lead	to	increased	HDL-C	levels.89-94 This has led to the development of 
several	CETP-inhibitors,	e.g.	torcetrapib,	dalcetrapib,	anacetrapib	and	evacetrapib.

CETP inhibitors
Torcetrapib,	although	reducing	(V)LDL-C	up	to	25%	and	increasing	HDL-C	up	to	72%,	failed	in	
a	phase	III	clinical	trial	(ILLUMINATE).95	Despite	improving	the	lipoprotein	profile,	torcetrapib	
increased	the	risk	of	CVD	events	and	mortality.	The	detrimental	effects	were	ascribed	to	off-
target	effects	that	included	a	blood	pressure	raising	effect	a	decrease	in	serum	potassium,	
and increases in serum sodium, bicarbonate, and aldosterone.95	However,	post-hoc	studies	
showed	 that	 the	 raise	 in	 blood	 pressure	 could	 not	 explain	 the	 increased	 CV	mortality.95 
Studies	in	APOE*3-Leiden	mice	showed	that	torcetrapib	also	induced	a	pro-inflammatory	
plaque	phenotype	and	failed	to	reduce	atherosclerosis	development	beyond	atorvastatin.53 
A	second	CETP	phase	III	clinical	trial	with	dalcetrapib	(dal-OUTCOMES)	was	also	prematurely	
terminated.	Although	dalcetrapib	increased	HDL-C	up	to	40%,	no	additional	clinical	benefit	
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was	 observed	 beyond	 statin	 treatment,	most	 probably	 due	 to	 the	minimal	 reduction	 in	
LDL-C.96	Also	no	adverse	blood	pressure	effect	was	observed	in	the	dal-OUTCOMES	trial.97 A 
third	CETP	phase	III	clinical	trial	with	evacetrapib	(ACCELERATE)	was	also	recently	stopped	
due	 to	 insufficient	 efficacy.98	Nonetheless,	 the	effects	of	 the	more	potent	CETP	 inhibitor	
anacetrapib	 in	 patients	 on	 standard	 statin	 treatment	 on	 CV	 outcome	 is	 currently	 being	
evaluated	(REVEAL),	and	results	are	to	be	expected	in	2016-17.99 In phase II clinical trials, 
anacetrapib	decreased	LDL-C	up	to	40%	and	increased	HDL-C	up	to	130%100, 101 without any 
indication	for	an	off-target	blood	pressure	effect100, 102, 103 as observed with torcetrapib.104

In	addition,	the	effects	of	two	CETP	 inhibitors,	DRL-17822,	TA-8995	(DEZ-001)	are	still	
being	 tested	 in	 phase	 II	 and	 III	 clinical	 development.	 Next	 to	 that,	 dalcetrapib	 is	 being	
reinvestigated	 after	 a	 genetically	 distinct	 patient	 population	 demonstrated	 a	 significant	
reduction	in	cardiovascular	events.105

THESIS OUTLINE

The	overall	aim	of	this	thesis	was	to	gain	insight	in	the	mechanism	underlying	the	effects	
of	 CETP	 on	 atherosclerosis.	 To	 this	 end,	 we	 examined	 the	 cellular	 origin	 of	 CETP	 and	
gained	insight	in	the	effect	of	CETP	inhibition	on	lipid	metabolism	and	the	development	of	
atherosclerosis.

After	a	general	introduction	(chapter 1)	we	addressed	the	cellular	origin	of	CETP,	both	
in	humans	and	APOE*3-Leiden.CETP	transgenic	mouse	in	chapter 2. Previous studies have 
indicated	that	adipose	tissue	and	the	liver	are	the	two	major	sources	of	CETP.	However,	our	
data	show	that	the	liver	and	more	specifically	Kupffer	cells	are	the	principal	source	of	CETP.	
In chapter 3	we	further	characterized	the	specific	Kupffer	cell	subset	responsible	for	CETP	
production.	And	in	chapter 4	we	investigated	the	effect	of	intraperitoneal	lipopolysaccharide	
injection	 on	 hepatic	 macrophage	 activation,	 CETP	 expression,	 and	 plasma	 lipid	 and	
lipoprotein levels.

In	addition,	we	set	out	to	evaluate	whether	CETP	can	serve	as	a	target	for	treatment	of	
atherosclerosis.	We	examined	the	effect	of	 inhibiting	CETP	activity	by	anacetrapib	on	the	
development	of	atherosclerosis	in	the	APOE*3-Leiden.CETP	mouse	model	(supplementary 
chapter 1).	 In	addition,	we	examined	the	effects	of	anacetrapib	on	HDL	function	and	the	
possible	additive/synergistic	effects	of	anacetrapib	to	atorvastatin	on	plasma	lipid	levels	and	
atherosclerosis	prevention.	 In	chapter 5, the mechanism by which anacetrapib decreases 
(V)LDL-C was elucidated. 

Finally,	in	chapter 6	the	major	results	and	implications	of	this	thesis	are	discussed.
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