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MEASURE-VALUED MASS EVOLUTION PROBLEMS WITH FLUX
BOUNDARY CONDITIONS AND SOLUTION-DEPENDENT

VELOCITIES∗

JOEP H. M. EVERS† , SANDER C. HILLE‡ , AND ADRIAN MUNTEAN§

Abstract. In this paper we prove well-posedness for a measure-valued continuity equation
with solution-dependent velocity and flux boundary conditions, posed on a bounded one-dimensional
domain. We generalize the results of an earlier paper [J. Differential Equations, 259 (2015), pp. 1068–
1097] to settings where the dynamics are driven by interactions. In a forward-Euler-like approach,
we construct a time-discretized version of the original problem and employ those results as a building
block within each subinterval. A limit solution is obtained as the mesh size of the time discretization
goes to zero. Moreover, the limit is independent of the specific way of partitioning the time interval
[0, T ]. This paper is partially based on results presented in Chapter 5 of [Evolution Equations for
Systems Governed by Social Interactions, Ph.D. thesis, Eindhoven University of Technology, 2015],
while a number of issues that were still open there are now resolved.
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1. Introduction. A considerable amount of recent mathematical literature has
been devoted to evolution equations formulated in terms of measures. Such equa-
tions are used to describe systems that occur in, e.g., biology (animal aggregations
[CFRT10, CCR11], crowds of pedestrians [CPT14], structured populations [DG05,
GLMC10, CCGU12, AI05]) and material science (defects in metallic crystals [vMM14]).
Many interesting and relevant scenarios take place in bounded domains. Apart from
the examples mentioned above, these include intracellular transport processes
(cf. [EHM15b, section 1]) and manufacturing chains [GHS+14]. However, most works
that deal with well-posedness of measure-valued equations and properties of their so-
lutions treat these equations in the full space; see, for instance, [BGCG06, CDF+11,
TF11, CLM13, CCS15]. The present work explicitly focuses on bounded domains and
the challenge of defining mathematically and physically “correct” boundary
conditions.

In [EHM15a], we derived boundary conditions for a one-dimensional measure-
valued transport equation on the unit interval [0, 1] with prescribed velocity field v.
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1930 J. H. M. EVERS, S. C. HILLE, AND A. MUNTEAN

A shorthand notation for this equation is

(1.1)
∂

∂t
µt +

∂

∂x
(v µt) = f · µt.

We focused on the well-posedness of this equation, in the sense of mild solutions, and
the convergence of solutions corresponding to a sequence (fn)n∈N in the right-hand
side. Some specific choices for (fn)n∈N represent, for instance, effects in a boundary
layer that approximate, as n → ∞, sink or source effects localized on the boundary.
The boundary layer corresponds to the regions in [0, 1] where the functions fn are
nonzero.

There are several reasons why we consider mild solutions rather than weak so-
lutions. First of all, the mild formulation in terms of the variation of constants
formula—see (2.18)—follows directly from a probabilistic interpretation, as was shown
in [EHM15a, section 6]. Therefore the choice for mild solutions is justified by a mod-
eling argument. Second, usually uniqueness of weak solutions cannot be expected to
hold, while mild solutions are unique when the perturbation (µ 7→ f · µ) is Lipschitz.
In [EHM15a], where the perturbation even has discontinuities, we still obtain unique-
ness of the mild solution. This is one of the main results of [EHM15a]. In the works
[AI05, GLMC10, CCGU12, GJMC12] a specific weak solution is constructed that is
precisely the mild solution that we obtain by different means. Finally, there is a tech-
nical advantage of using mild solutions. Most of our estimates are in terms of the
dual bounded Lipschitz norm ‖ ·‖∗BL, which will be introduced in section 2.1. Because
test functions do not appear explicitly, our calculations are often simpler than when
weak solutions are considered. Moreover, our estimates are in fact uniform over test
functions in a bounded set.

In the present work, we propose and investigate a procedure to generalize the
former results to include velocity fields that depend on the solution itself. Such gen-
eralization makes it possible to model in a bounded domain the dynamics governed
by interactions between the “particles”; in particular we will be concerned with inter-
action terms of convolution type that are given by a weighted average over the whole
population.

The results in this paper hold for a source-sink right-hand side that is based on
a function f that is an element of the space BL([0, 1]) of bounded Lipschitz functions
on [0, 1]. In [EHM15a], we worked with f : [0, 1] → R that is piecewise bounded
Lipschitz, though. Hence, here we are able to describe absorption in a boundary
layer, but not yet absorption on the boundary alone. In the discussion section of this
paper (see section 5.1), we comment on the possibilities to extend our results to f
that is piecewise bounded Lipschitz.

We consider (1.1) for velocity fields that are no longer fixed elements of BL([0, 1]).
Instead of v, we write v[µ] for the velocity field that depends functionally on the
measure µ. The transport equation on [0, 1] becomes

(1.2)
∂

∂t
µt +

∂

∂x
(v[µt]µt) = f · µt.

The aim of this paper is to ensure the well-posedness of (1.2), in a suitable sense.
Because (1.2) is a nonlinear equation, establishing well-posedness is not straightfor-
ward. Here, we employ a forward-Euler-like approach that builds on the fundamentals
constructed in [EHM15a]. We partition the time interval [0, T ] and fix the velocity
on each subinterval. That is, restricted to a subinterval, the velocity depends only
on the spatial variable and not on the solution measure. Within each subinterval the
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measure-valued solution evolves according to the fixed velocity and the evolution fits
in the framework set in [EHM15a]. A more detailed description of our approach is
given in section 3. We decrease the mesh size in the partition of [0, T ] and estimate
the difference between Euler approximations. The main result of this paper is the
fact that this procedure converges.

A forward-Euler scheme similar to ours is used in [PR13] for measures absolutely
continuous with respect to the Lebesgue measure. Their results are extended to
general measures in [CPT14, Chapter 7]. The difference between their work and ours
is twofold: they use the Wasserstein distance and they work in unbounded domains.

The references that directly inspired us are [CG09, Hoo13, GLMC10]. The ap-
proach presented in this paper deviates from [Hoo13], since we restrict ourselves to
evolution on the interval [0, 1], while [Hoo13] considers [0,∞). Furthermore, our
regularity conditions on the velocity—given in Assumption 3.1—are weaker than in
[Hoo13]; cf. Remark 3.3. Moreover, [Hoo13] restricts to velocity fields that point
inward at 0. In this way, no mass is allowed to flow out of the domain [0,∞). In
our approach, the fact that the flow is stopped at the boundary is encoded in the
semigroup (Pt)t>0, irrespective of the sign of the velocity there; cf. section 2.2. We
consider it too restrictive to have a condition on the sign of the velocity at 0 or 1;
in practice it is very difficult to make sure that such condition is satisfied when the
velocity v[µ] depends on the solution (like in, e.g., Example 3.2).

In this paper we limit our attention to a one-dimensional state space, [0, 1], be-
cause in this case the (global) Lipschitz continuous dependence of the stopped flow
on the time-invariant velocity field v is a rather straightforward property (see section
2.2, Lemma 2.2). In higher dimensional (bounded) state spaces this seems much more
delicate to establish. We comment on this in more detail after the proof of Lemma 2.2.
One should note, however, that the results on convergence of the forward-Euler-like
approach that we present do not depend on the dimensionality other than through
the mentioned Lipschitzian property as presented in Lemma 2.2.

This paper is organized as follows. Within each subinterval of the Euler approx-
imation the dynamics are given by a fixed velocity, like in [EHM15a]. Therefore,
we start in section 2 by collecting the results of [EHM15a] that we require here: a
number of properties of the semigroup (Pt)t>0 and of the solution operator, called
(Qt)t>0. The forward-Euler-like approach to construct solutions is introduced in sec-
tion 3, where we also state the main results of this paper: Theorems 3.10 and 3.12 and
Corollary 3.11. In plain words and combined into one pseudo-theorem, these results
read as follows.

Theorem. The proposed forward-Euler-like approach converges as the mesh size
of the time discretization goes to zero. The limit is independent of the specific way
in which the time domain is partitioned. This approximation procedure yields exis-
tence and uniqueness of mild solutions to the nonlinear problem, and solutions depend
continuously on initial data.

A more precise formulation follows later. We prove these results in section 4 using
estimates between two Euler approximations of (1.1). In section 5 we reflect on the
achievements of this paper, discuss open issues, and provide directions for further
research.

2. Preliminaries. This section contains a summary of the results obtained in
[EHM15a] on which we shall build. Moreover, we mention the technical preliminaries
needed for the arguments in this paper.
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1932 J. H. M. EVERS, S. C. HILLE, AND A. MUNTEAN

2.1. Basics of measure theory. If S is a topological space, we denote byM(S)
the space of finite Borel measures on S and by M+(S) the convex cone of positive
measures included in it. For x ∈ S, δx denotes the Dirac measure at x. Let

(2.1) 〈µ, φ〉 :=

∫
S

φdµ

denote the natural pairing between measures µ ∈ M(S) and bounded measurable
functions φ. The push-forward or image measure of µ under Borel measurable Φ :
S → S is the measure Φ#µ defined on Borel sets E ⊂ S by

(2.2) (Φ#µ)(E) := µ
(
Φ−1(E)

)
.

One easily verifies that 〈Φ#µ, φ〉 = 〈µ, φ ◦ Φ〉.
We denote by Cb(S) the Banach space of real-valued bounded continuous func-

tions on S equipped with the supremum norm ‖·‖∞. The total variation norm ‖·‖TV

on M(S) is defined by

‖µ‖TV := sup
{
〈µ, φ〉

∣∣∣φ ∈ Cb(S), ‖φ‖∞ 6 1
}
.

It follows immediately that for Φ : S → S continuous, ‖Φ#µ‖TV 6 ‖µ‖TV. In
our setting, S is a Polish space (separable, completely metrizable topological space;
cf. [Dud04, p. 344]). It is well-established (cf. [Dud66, Dud74]) that in this case the
weak topology onM(S) induced by Cb(S) when restricted to the positive coneM+(S)
is metrizable by a metric derived from a norm, e.g., the Fortet–Mourier norm or the
Dudley norm. The latter is also called the dual bounded Lipschitz norm, which we
shall introduce now. To that end, let d be a metric on S that metrizes the topology,
such that (S, d) is separable and complete. Let BL(S, d) = BL(S) be the vector space
of real-valued bounded Lipschitz functions on (S, d). For φ ∈ BL(S), let

|φ|L := sup

{
|φ(x)− φ(y)|

d(x, y)

∣∣∣ x, y ∈ S, x 6= y

}
be its Lipschitz constant. Now

(2.3) ‖φ‖BL := ‖φ‖∞ + |φ|L

defines a norm on BL(S) for which this space is a Banach space [FM53, Dud66]. In
fact, with this norm BL(S) is a Banach algebra for pointwise product of functions:

(2.4) ‖φ · ψ‖BL ≤ ‖φ‖BL ‖ψ‖BL.

Alternatively, one may define on BL(S) the equivalent norm

‖φ‖FM := max
(
‖φ‖∞ , |φ|L

)
,

where FM stands for Fortet–Mourier (see below). Let ‖ · ‖∗BL be the dual norm of
‖ · ‖BL on the dual space BL(S)∗, i.e., for any x∗ ∈ BL(S)∗ its norm is given by

‖x∗‖∗BL := sup {| 〈x∗, φ〉 | | φ ∈ BL(S), ‖φ‖BL 6 1} .

The map µ 7→ Iµ with Iµ(φ) := 〈µ, φ〉 defines a linear embedding ofM(S) into BL(S)∗;
see [Dud66, Lemma 6]. Thus ‖ · ‖∗BL induces a norm on M(S), which is denoted by
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the same symbols. It is called the dual bounded Lipschitz norm or Dudley norm.
Generally, ‖µ‖∗BL 6 ‖µ‖TV for all µ ∈ M(S). For positive measures the two norms
coincide:

(2.5) ‖µ‖∗BL = µ(S) = ‖µ‖TV for all µ ∈M+(S).

One may also consider the restriction toM(S) of the dual norm ‖ · ‖∗FM of ‖ · ‖FM on
BL(S)∗. This yields an equivalent norm on M(S) that is called the Fortet–Mourier
norm (see, e.g., [LMS02, Zah00]):

(2.6) ‖µ‖∗BL 6 ‖µ‖∗FM 6 2‖µ‖∗BL.

This norm also satisfies ‖µ‖∗FM 6 ‖µ‖TV, so (2.5) holds for ‖ · ‖∗FM too. Moreover
(cf. [HW09, Lemma 3.5]), for any x, y ∈ S,

(2.7) ‖δx − δy‖∗BL =
2d(x, y)

2 + d(x, y)
6 min(2, d(x, y)) = ‖δx − δy‖∗FM.

In general, the space M(S) is not complete for ‖ · ‖∗BL. We denote by M(S)BL its
completion, viewed as closure ofM(S) within BL(S)∗. The spaceM+(S) is complete
for ‖ · ‖∗BL and hence closed in M(S) and M(S)BL.

The ‖ · ‖∗BL-norm is convenient also for integration. In Appendix C of [EHM15a]
some technical results about integration of measure-valued maps were collected. These
will also be used in this paper. The continuity of the map x 7→ δx : S → M+(S)BL

together with (C.2) in [EHM15a] yields the identity

(2.8) µ =

∫
S

δx dµ(x)

as a Bochner integral inM(S)BL; for basic results on Bochner integration, the reader
is referred to, e.g., [DU77]. The observation (2.8) will essentially link continuum (µ)
and particle description (δx) for our equation on [0, 1].

2.2. Properties of the stopped flow. Let v ∈ BL([0, 1]) be fixed. We assume
that a single particle (“individual”) is moving in the domain [0, 1] deterministically,
described by the differential equation for its position x(t) at time t:

(2.9)

{
ẋ(t) = v(x(t)),
x(0) = x0.

A solution to (2.9) is unique; it exists for time up to reaching the boundary 0 or 1
and depends continuously on initial conditions. Let x( · ;x0) be this solution and Ix0

be its maximal interval of existence. Define

τ∂(x0) := sup Ix0
∈ [0,∞],

i.e., τ∂(x0) is the time at which the solution starting at x0 reaches the boundary (if it
happens) when x0 is an interior point. Note that τ∂(x0) = 0 when x0 is a boundary
point where v points outward, while τ∂(x0) > 0 when x0 is a boundary point where v
vanishes or points inward.

The individualistic stopped flow on [0, 1] associated to v is the family of maps
Φt : [0, 1]→ [0, 1], t > 0, defined by

(2.10) Φt(x0) :=

{
x(t;x0) if t ∈ Ix0 ,

x(τ∂(x0);x0) otherwise.
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To lift the dynamics to the space of measures, we define Pt :M([0, 1])→M([0, 1])
by means of the push-forward under Φt: for all µ ∈M([0, 1]),

(2.11) Ptµ := Φt#µ = µ ◦ Φ−1
t ;

see (2.2). Clearly, Pt maps positive measures to positive measures and Pt is mass
preserving on positive measures. Since the family of maps (Φt)t>0 forms a semigroup,
so do the maps Pt in the space M([0, 1]). That is, (Pt)t>0 is a Markov semigroup on
M[0, 1] (cf. [LMS02]). The basic estimate

(2.12) ‖Ptµ‖TV 6 ‖µ‖TV

holds for µ ∈M([0, 1]).
In the rest of this section we summarize those properties of (Pt)t>0 that are needed

in this paper. We first recall Lemma 2.2 from [EHM15a].

Lemma 2.1 (see [EHM15a, Lemma 2.2]). Let µ ∈M([0, 1]) and t, s ∈ R+. Then
(i) ‖Ptµ− Psµ‖∗BL 6 ‖v‖∞ ‖µ‖TV |t− s|,

(ii) ‖Ptµ‖∗BL 6 max(1, |Φt|L) ‖µ‖∗BL 6 e|v|Lt‖µ‖∗BL.

To distinguish between the semigroups onM([0, 1]) associated to v, v′ ∈ BL([0, 1]),
we write P v and P v

′
, respectively. Analogously, we distinguish between the semi-

groups (Φvt )t>0 and (Φv
′

t )t>0 on [0, 1] and between the intervals of existence Ivx0
and

Iv
′

x0
associated to (2.9).

Lemma 2.2. For all µ ∈M([0, 1]), v, v′ ∈ BL([0, 1]), and t ∈ R+
0

(2.13) ‖P vt µ− P v
′

t µ‖∗BL 6 ‖v − v′‖∞ t ‖µ‖TV e
L t,

where L := min(|v|L , |v′|L).

Proof. For any φ ∈ BL([0, 1]), we have

(2.14) |
〈
φ, P vt µ− P v

′

t µ
〉
| = |

〈
φ ◦ Φvt − φ ◦ Φv

′

t , µ
〉
| 6 |φ|L ‖Φvt − Φv

′

t ‖∞ ‖µ‖TV,

hence

(2.15) ‖P vt µ− P v
′

t µ‖∗BL 6 ‖Φvt − Φv
′

t ‖∞ ‖µ‖TV.

Let x ∈ [0, 1].
Case 1. t ∈ Ivx ∩ Iv

′

x .

|Φvt (x)− Φv
′

t (x)| =

∣∣∣∣∫ t

0

v(Φvs(x))− v′(Φv
′

s (x)) ds

∣∣∣∣
6 |v|L

∫ t

0

|Φvs(x)− Φv
′

s (x)| ds+ ‖v − v′‖∞ t.

Gronwall’s lemma yields

(2.16) |Φvt (x)− Φv
′

t (x)| 6 ‖v − v′‖∞ t e|v|L t

for all x ∈ [0, 1]. Due to the symmetry of (2.16) in v and v′, the same estimate (2.16)
can be obtained with |v′|L instead of |v|L, and hence we can write min(|v|L , |v′|L)
in the exponent. This observation yields, together with (2.15), the statement of the
lemma.
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Case 2. t 6∈ Ivx . We extend v : [0, 1] → R to v̄ : R → R by defining v̄(x) := v(0)
if x < 0 and v̄(x) := v(1) if x > 1. Then v̄ is a bounded Lipschitz extension of v
such that ‖v̄‖∞ = ‖v‖∞ and |v̄|L = |v|L. Let Φv̄t : R → R be the solution semigroup
associated to the unique (global) solution to (2.9) with v replaced by v̄ and with initial
condition to be taken from the whole of R. We extend v′ analogously to v̄′.

Irrespective of whether t ∈ Iv′x or t 6∈ Iv′x , and whether in the latter case Φvt (x) =
Φv
′

t (x) or Φvt (x) 6= Φv
′

t (x), the following estimate holds:

(2.17) |Φvt (x)− Φv
′

t (x)| 6 |Φv̄t (x)− Φv̄
′

t (x)|

for all x ∈ [0, 1]. Estimate |Φv̄t (x) − Φv̄
′

t (x)| using the same ideas as in (2.15) and
(2.16) and obtain

‖P v̄t µ− P v̄
′

t µ‖∗BL 6 ‖v̄ − v̄′‖∞ t ‖µ‖TV exp(min(|v̄|L , |v̄′|L) t).

The statement of the lemma follows from the equalities |v̄|L = |v|L, |v̄′|L = |v′|L,
‖v̄ − v̄′‖∞ = ‖v − v′‖∞ and (2.17). The case t 6∈ Iv′x is analogous.

Remark 2.3. The definition of stopped flow in state spaces of dimension two and
higher and establishing elementary properties of its lift to measures is more delicate
than the one-dimensional case presented above. Consider an open domain Ω ⊂ Rn,
n ≥ 2 (with sufficiently smooth boundary). Let Ω be its closure and let v ∈ BL(Ω,Rn)
be a velocity field on Ω. Solutions to the initial value problem (2.9) with x0 ∈ Ω still
exist for some positive time, but in this higher dimensional setting it may happen that
trajectories of the flow in Ω defined by v are partially contained in the boundary ∂Ω
or even only “touch” ∂Ω. So reaching the boundary in finite time is not equivalent to
“leaving the domain.”

It is even possible to give a simpler counterexample, in which Ω is the unit disk
in R2. For any x = (x1, x2) ∈ R2, the orthogonal vector is defined as x⊥ := (x2,−x1).
Let the velocities v, v′ ∈ BL(Ω̄) be given by v(x) = x⊥ and v′(x) = x⊥ + ε x for
all x ∈ Ω̄, where 0 < ε � 1 is arbitrary. Then ‖v − v′‖∞ = ε. Let µ = δx0

, with
x0 := (0, 1 − ε2), whence ‖µ‖TV = 1. Now P vt µ is a Dirac measure that performs
(eternal) circular motion on the circle of radius 1− ε2, at speed 1− ε2. On the other
hand, because the semigroup P encodes the stopped flow, P v

′

t µ is a Dirac that hits
∂Ω in O(ε) time and remains at that position afterward.

Since P vt µ is a rotation on a circle of O(1) radius, with O(1) speed, there must be
a time t of order O(1) (in particular, after P v

′

t µ hits the boundary), at which the two
Diracs P vt µ and P v

′

t µ are located an O(1) distance apart. Hence, ‖P vt µ− P v
′

t µ‖BL is
of order O(1). The right-hand side of (2.13) is of order O(ε) at O(1) times, though,
while ε is arbitrarily small. Thus, (2.13) cannot be satisfied, and Lemma 2.2 does not
hold in R2.

A possible way to circumvent the observed problems is to redefine the semigroup
Φ such that when particles hit the boundary, they do not stop but their velocity is
projected to the tangential direction. In this case Lemma 2.2 might hold. However,
by redefining Φ new difficulties may be introduced in the later proofs of this paper.
Therefore, we restrict ourselves to the one-dimensional case here.

2.3. Properties of the solution for prescribed velocity. We consider mild
solutions to (1.1) that are defined in the following sense.

Definition 2.4 (see [EHM15a, Definition 2.4]). A measure-valued mild solution
to the Cauchy problem associated to (1.1) on [0, T ] with initial value ν ∈M([0, 1]) is
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a continuous map µ : [0, T ] → M([0, 1])BL that is ‖ · ‖TV-bounded and that satisfies
the variation of constants formula

(2.18) µt = Pt ν +

∫ t

0

Pt−sFf (µs) ds for all t ∈ [0, T ].

Here, the perturbation map Ff :M([0, 1])→M([0, 1]) is given by Ff (µ) := f · µ.

We showed in [EHM15a] that mild solutions in the sense of Definition 2.4 exist,
are unique, and depend continuously on the initial data. We repeat those results in
the following theorem.

Theorem 2.5. Let f : [0, 1] → R be a piecewise bounded Lipschitz function such
that v(x) 6= 0 at any point x of discontinuity of f . Then for each T > 0 and µ0 ∈
M([0, 1]) there exists a unique continuous and locally ‖ · ‖TV-bounded solution to
(2.18). Moreover, there exists CT > 0 such that for all initial values µ0, µ

′
0 ∈M([0, 1])

the corresponding mild solutions µ and µ′ satisfy

(2.19) ‖µt − µ′t‖∗BL 6 CT ‖µ0 − µ′0‖∗BL

for all t ∈ [0, T ].

Proof. See [EHM15a, Propositions 3.1, 3.3, and 3.5] for details.

In this paper, we restrict ourselves to those functions f that are bounded Lip-
schitz on [0, 1]; see section 5.1 for further discussion on the need of this restric-
tion. Let v ∈ BL([0, 1]) and f ∈ BL([0, 1]) be arbitrary. For all t > 0, we define
Qt : M([0, 1]) →M([0, 1]) to be the operator that maps the initial condition to the
solution in the sense of Definition 2.4. Theorem 2.5 guarantees that this operator
is well-defined and continuous for ‖ · ‖∗BL. Moreover, Q preserves positivity, due to
[EHM15a, Corollary 3.4].

In the rest of this section, we give an overview of the properties of the solution
operator Q.

Lemma 2.6 (semigroup property). The set of operators (Qt)t>0 satisfies the
semigroup property. That is,

QtQs µ = Qt+s µ

for all s, t > 0 and for all µ ∈M([0, 1]).

Proof. The proof follows the lines of the argument of [Š94, p. 283]. We consider

Qt+sµ−QtQs µ = Pt+sµ+

∫ t+s

0

Pt+s−σ Ff (Qσ µ) dσ

−PtQs µ−
∫ t

0

Pt−σ Ff (Qσ Qs µ) dσ(2.20)

and observe that

PtQs µ = Pt Ps µ+ Pt

∫ s

0

Ps−σ Ff (Qσ µ) dσ

= Pt+s µ+

∫ s

0

Pt+s−σ Ff (Qσ µ) dσ.(2.21)D
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Because f ∈ BL([0, 1]), the map σ 7→ Ps−σ Ff (Qσ µ) is continuous and hence it is
measurable. Therefore, the second equality in (2.21) holds due to [EHM15a, (C.3)].
A combination of (2.20) and (2.21) yields that

Qt+sµ−QtQs µ =

∫ t+s

s

Pt+s−σ Ff (Qσ µ) dσ −
∫ t

0

Pt−σ Ff (Qσ Qs µ) dσ

=

∫ t

0

Pt−σ (Ff (Qσ+s µ)− Ff (Qσ Qs µ)) dσ.(2.22)

To obtain the last step in (2.22), we use the coordinate transformation τ := σ − s in
the first integral and subsequently rename the new variable τ as σ. We estimate the
total variation norm of (2.22) in the following way:

‖Qt+sµ−QtQs µ‖TV 6
∫ t

0

‖Pt−σ (Ff (Qσ+s µ)− Ff (Qσ Qs µ)) ‖TV dσ

6
∫ t

0

‖Ff (Qσ+s µ)− Ff (Qσ Qs µ)‖TV dσ

6 ‖f‖∞
∫ t

0

‖Qσ+s µ−Qσ Qs µ‖TV dσ.

Here, we used [EHM15a, Proposition C.2(iii)] (noting that the integrands are con-
tinuous with respect to σ) in the first line, (2.12) in the second line, and the fact
that f ∈ BL([0, 1]) ⊂ Cb([0, 1]) in the last line. Gronwall’s lemma now implies that
‖Qt+sµ−QtQs µ‖TV = 0 for all s, t > 0.

Lemma 2.7. For all µ ∈M([0, 1]) and s, t > 0, we have that

‖Qtµ−Qsµ‖∗BL 6 ‖µ‖TV ·
(
‖f‖∞ + ‖v‖∞

)
· e‖f‖∞max(t,s) · |t− s|.

Proof. The statement of this lemma is part of the result of [EHM15a, Proposi-
tion 3.3].

Lemma 2.8. For all µ ∈M([0, 1]) and t > 0, we have that
(i) ‖Qtµ‖TV 6 ‖µ‖TV exp(‖f‖∞ t) and

(ii) ‖Qtµ‖∗BL 6 ‖µ‖∗BL exp(|v|L t+ ‖f‖BL t e
|v|L t).

Proof. (i) This estimate is given in [EHM15a, Proposition 3.3].
(ii) By applying [EHM15a, (C.1)] and Lemma 2.1(ii) we obtain from (2.18) the

estimate

‖Qt µ‖∗BL 6 exp(|v|L t) ‖µ‖∗BL +

∫ t

0

exp(|v|L (t− s))‖f‖BL ‖Qsµ‖∗BL ds.

Gronwall’s lemma now yields the statement of part (ii) of the lemma.

Corollary 2.9. For all µ, ν ∈M([0, 1]) and t > 0, we have that

‖Qt µ−Qt ν‖∗BL 6 ‖µ− ν‖∗BL exp(|v|L t+ ‖f‖BL t e
|v|L t).

Proof. Apply part (ii) of Lemma 2.8 to the measure µ− ν ∈M([0, 1]).

We write Qv and Qv
′

to distinguish between the semigroups Q on M([0, 1])
associated to v ∈ BL([0, 1]) and v′ ∈ BL([0, 1]), respectively.
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Lemma 2.10. For all v, v′ ∈ BL([0, 1]), µ ∈ M([0, 1]), and t > 0, the following
estimate holds:

‖Qvtµ−Qv
′

t µ‖∗BL 6 ‖v − v′‖∞ ‖µ‖TV exp(L t+ ‖f‖BL t e
L t) · [t+ t2‖f‖∞ e‖f‖∞ t],

where L := min(|v|L , |v′|L).

Proof. We have

(2.23) ‖Qvtµ−Qv
′

t µ‖∗BL 6 ‖P vt µ−P v
′

t µ‖∗BL+

∫ t

0

‖P vt−sFf (Qvsµ)−P v
′

t−sFf (Qv
′

s µ)‖∗BL ds.

Lemma 2.2 provides an appropriate estimate of the first term on the right-hand side.
For the integrand in the second term, we have

‖P vt−sFf (Qvsµ)− P v
′

t−sFf (Qv
′

s µ)‖∗BL 6 ‖P vt−sFf (Qvsµ)− P v
′

t−sFf (Qvsµ)‖∗BL

+ ‖P v
′

t−sFf (Qvsµ)− P v
′

t−sFf (Qv
′

s µ)‖∗BL

6 ‖v − v′‖∞ (t− s) ‖Ff (Qvsµ)‖TV e
L(t−s)

+ e|v
′|L (t−s) ‖Ff (Qvsµ)− Ff (Qv

′

s µ)‖∗BL,(2.24)

due to Lemma 2.2 and Lemma 2.1(ii). We proceed by estimating the right-hand side
of (2.24) and obtain

‖P vt−sFf (Qvsµ)− P v
′

t−sFf (Qv
′

s µ)‖∗BL 6 ‖v − v′‖∞ (t− s) ‖f‖∞ ‖µ‖TV e
‖f‖∞ s eL(t−s)

+ e|v
′|L (t−s) ‖f‖BL ‖Qvsµ−Qv

′

s µ‖∗BL,(2.25)

where we use part (i) of Lemma 2.8 in the first term on the right-hand side. Since
the estimate in (2.25) is symmetric in v and v′, we can replace |v′|L by L.

Substitution of the result of Lemma 2.2 and (2.25) in (2.23) yields

‖Qvtµ−Qv
′

t µ‖∗BL 6 ‖v − v′‖∞ t ‖µ‖TV e
Lt (1 + t ‖f‖∞ e‖f‖∞ t)

+ eLt ‖f‖BL

∫ t

0

‖Qvsµ−Qv
′

s µ‖∗BL ds.

The statement of the lemma follows from Gronwall’s lemma.

3. Measure-dependent velocity fields: Main results. This section contains
the main results of the present work. We generalize the assumptions on v from
[EHM15a] in the following way to measure-dependent velocity fields.

Assumption 3.1 (assumptions on the measure-dependent velocity field). Assume
that v :M([0, 1])× [0, 1]→ R is a mapping such that

(i) v[µ] ∈ BL([0, 1]) for each µ ∈M([0, 1]).
Furthermore, assume that for any R > 0 there are constants KR, LR, MR such that
for all µ, ν ∈M([0, 1]) satisfying ‖µ‖TV 6 R and ‖ν‖TV 6 R, the following estimates
hold:

(ii) ‖v[µ]‖∞ 6 KR,
(iii) | v[µ] |L 6 LR, and
(iv) ‖v[µ]− v[ν]‖∞ 6MR ‖µ− ν‖∗BL.

Example 3.2. An example of a function v satisfying Assumption 3.1 is

(3.1) v[µ](x) :=

∫
[0,1]

K(x− y) dµ(y) = (K ∗ µ)(x)
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for each µ ∈ M([0, 1]) and x ∈ [0, 1] with K ∈ BL([−1, 1]). This is a relevant choice,
because it models interactions among individuals.

Remark 3.3. Parts (ii) and (iii) of Assumption 3.1 are an improvement compared
to [Hoo13]. There, the infinity norm and Lipschitz constant are assumed to hold
uniformly for all µ ∈ M([0, 1]); cf. Assumption (F1) in [Hoo13, p. 40]. We note
that the convolution in Example 3.2 satisfies Assumption 3.1 but does not satisfy
Assumption (F1) in [Hoo13]. They require a uniform Lipschitz constant because their
Lemma 4.3 is an estimate in the ‖ · ‖∗BL-norm for which part (ii) of our Lemma 2.1 is
used. Our counterpart of Lemma 4.3 in [Hoo13] is Lemma 3.4. We give an estimate in
terms of the ‖ · ‖TV-norm using (2.12) which does not involve the Lipschitz constant.

Our aim is to prove well-posedness (in some sense yet to be defined) of (1.2).
That is,

∂

∂t
µt +

∂

∂x
(v[µt]µt) = f · µt

on [0, 1]. As said in section 2.3, we restrict ourselves to f that is bounded Lipschitz
on [0, 1].

We now introduce the aforementioned forward-Euler-like approach to construct
approximate solutions. Let T > 0 be given. Let N > 1 be fixed and define a set
α ⊂ [0, T ] as follows:

(3.2) α :=
{
tj ∈ [0, T ] : 0 6 j 6 N, t0 = 0, tN = T, tj < tj+1

}
.

A set α of this form is called a partition of the interval [0, T ] and N denotes the
number of subintervals in α.

Let µ0 ∈ M([0, 1]) be fixed. For a given partition α := {t0, . . . , tN} ⊂ [0, T ],
define a measure-valued trajectory µ ∈ C([0, T ];M([0, 1])) by

(3.3)


µt := Q

vj
t−tj µtj if t ∈ (tj , tj+1];

vj := v[µtj ];

µt=0 = µ0,

for all j ∈ {0, . . . , N − 1}. Here, (Qvt )t>0 denotes the semigroup introduced in sec-
tion 2.3 associated to an arbitrary v ∈ BL([0, 1]). Note that by Assumption 3.1, part
(i), vj = v[µtj ] ∈ BL([0, 1]) for each j.

We call this a forward-Euler-like approach, because it is the analogon of the
forward Euler method for ODEs (cf., e.g., [But03, Chapter 2]). Consider the ODE
dx/dt = v(x) on R for some (Lipschitz continuous) v : R → R. The forward Euler
method approximates the solution on some interval (tj , tj+1] by evolving the approx-
imate solution at time tj , named xj , due to a constant velocity v(xj). That is,
x(t) ≈ xj + (t− tj) · v(xj) for all t ∈ (tj , tj+1].

In (3.3), we introduce the approximation µt, where µt results from µtj by the
evolution due to the constant velocity field v[µtj ]. The word constant here does not
refer to v being the same for all x ∈ [0, 1] but to the fact that v corresponding to the
same µtj is used throughout (tj , tj+1].

The conditions in parts (ii)–(iv) of Assumption 3.1 are only required to hold for
measures in a TV-norm bounded set, in view of the following lemma.

Lemma 3.4. Let µ0 ∈ M([0, 1]) be given and let v : M([0, 1]) × [0, 1] → R
satisfy Assumption 3.1(i). For a given partition α := {t0, . . . , tN} ⊂ [0, T ], let
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µ ∈ C([0, T ];M([0, 1])) be defined by (3.3). Then the set of all timeslices of µ, that is,

A := {µt : t ∈ [0, T ]},

is bounded in both ‖ · ‖TV and ‖ · ‖∗BL. The bounds are independent of the choice of α.

Proof. Fix j ∈ {0, . . . , N − 1} and let t ∈ (tj , tj+1]. By part (i) of Lemma 2.8, we
have that

‖µt‖TV = ‖Qvjt−tj µtj‖TV 6 ‖µtj‖TV exp(‖f‖∞ (t− tj))
6 ‖µtj‖TV exp(‖f‖∞ (tj+1 − tj))

for all t ∈ (tj , tj+1]. Iteration of the right-hand side with respect to j yields

‖µt‖TV 6 ‖µ0‖TV

j∏
i=0

exp(‖f‖∞ (ti+1 − ti)) = ‖µ0‖TV exp(‖f‖∞ (tj+1 − t0)).

Hence, for all t ∈ [0, T ]

‖µt‖TV 6 ‖µ0‖TV exp(‖f‖∞ (tN − t0)) = ‖µ0‖TV exp(‖f‖∞ T ).

This bound is in particular independent of t, N and the distribution of points within
α. The bound in ‖ · ‖∗BL follows from the inequality ‖ν‖∗BL 6 ‖ν‖TV that holds for all
ν ∈M([0, 1]).

In this paper we construct sequences of Euler approximations, each following from
a sequence of partitions (αk)k∈N that satisfies the following assumption.

Assumption 3.5 (assumptions on the sequence of partitions). Let (αk)k∈N be a
sequence of partitions of [0, T ] and let (Nk)k∈N ⊂ N be the corresponding sequence
such that each αk is of the form

(3.4) αk :=
{
tkj ∈ [0, T ] : 0 6 j 6 Nk, t

k
0 = 0, tkNk

= T, tkj < tkj+1

}
.

Define

(3.5) M (k) := max
j∈{0,...,Nk−1}

tkj+1 − tkj

for all k ∈ N. Assume that the sequence (M (k))k∈N is nonincreasing and M (k) → 0
as k →∞.

Example 3.6. The following sequences of partitions satisfy Assumption 3.5:
• For all k ∈ N, take Nk := 2k, and let tkj := jT/2k for all j ∈ {0, . . . , Nk}. This

implies that M (k) = T/2k for all k ∈ N. This specific sequence of partitions
was used in [Eve15, Chapter 5].
• Fix q ∈ N+. For all k ∈ N, take Nk := qk, and let tkj := jT/qk for all

j ∈ {0, . . . , Nk}. This implies that M (k) = T/qk for all k ∈ N. In the
discussion section of [Eve15, Chapter 5], the results of the current paper were
conjectured to hold for this case.

• For all k ∈ N, take Nk := k+1, and let tkj := jT/(k+1) for all j ∈ {0, . . . , Nk}.
This implies that M (k) = T/(k+ 1) for all k ∈ N. This is an elementary time
discretization (with uniform mesh size) used frequently when proving the
convergence of numerical methods.
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• Let α0 be a possibly nonuniform partition of [0, T ]. Construct the sequence
(αk)k∈N in such a way that any αk+1 is a refinement of αk. That is, αk+1 ⊂ αk
for all k ∈ N. Elements may be added in a nonuniform fashion to obtain αk+1

from αk, as long as M (k) → 0 as k →∞. In this case (Nk)k∈N is automatically
nondecreasing.

Also, some less straightforward sequences of nonuniform partitions are admissible, in
which subsequent partitions are not refinements. See, for example, Figure 1, in which
two subsequent elements from the sequence (αk)k∈N are given. These elements could
indeed occur, since M (k+1) < M (k). This example is rather counterintuitive, as there
is a local growth of the mesh size at the left-hand side of the interval [0, T ] when
we go from αk to αk+1. Note that even N (k+1) < N (k). However, admissibility of a
sequence of partitions is only determined by the local ordering of the maximum mesh
spacing (i.e., the condition M (k+1) 6M (k)) and its long-time behavior: M (k) → 0 as
k →∞.

αk

0

tk0

T

tk3tk1 tk2

αk+1

0

tk+1
0

T

tk+1
2tk+1

1

Fig. 1. Two possible subsequent partitions in a sequence (αk)k∈N satisfying Assumption 3.5.

Remark 3.7. Assumption 3.5 implies that Nk →∞ as k →∞.
If (M (k))k∈N is not nonincreasing, but still M (k) → 0, then it is possible to extract

a subsequence (αk`)`∈N such that (M (k`))`∈N is nonincreasing.

We define a mild solution in this context as follows.

Definition 3.8 (mild solution of (1.2)). Let the space of continuous maps
from [0, T ] to M([0, 1])BL be endowed with the metric defined for all µ, ν ∈ C([0, T ];
M([0, 1])) by

(3.6) sup
t∈[0,T ]

‖µt − νt‖∗BL.

Let (αk)k∈N be a sequence of partitions satisfying Assumption 3.5. For each k ∈ N,
let µk ∈ C([0, T ];M([0, 1])) be defined by (3.3) with partition αk. Then, for any
such sequence of partitions (αk)k∈N, any limit of a subsequence of (µk)k∈N is called a
(measure-valued) mild solution of (1.2).

The name mild solutions is appropriate, because they are constructed from piece-
wise mild solutions in the sense of Definition 2.4.

Remark 3.9. Consider the solution of (3.3) for any partition α ⊂ [0, T ]. Mass
that has accumulated on the boundary can move back into the interior of the domain
whenever the velocity changes direction from one time interval to the next. This is
due to the definition of the maximal interval of existence Ix0

and the hitting time
τ∂(x0) in section 2.2.
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In the rest of this paper we focus on positive measure-valued solutions, because
these are the only physically relevant solutions in many applications. The main result
of this paper is the following theorem.

Theorem 3.10. Let µ0 ∈ M+([0, 1]) be given and let v : M([0, 1]) × [0, 1] → R
satisfy Assumption 3.1. Endow the space C([0, T ];M([0, 1])) with the metric defined
by (3.6). Then, there is a unique element of C([0, T ];M+([0, 1])) with initial con-
dition µ0, that is a mild solution in the sense of Definition 3.8. That is, for each
sequence of partitions (αk)k∈N satisfying Assumption 3.5, the corresponding sequence
(µk)k∈N defined by (3.3) is a sequence in C([0, T ];M+([0, 1])) and has a unique limit
as k →∞.

Moreover, this limit is independent of the choice of (αk)k∈N.

Corollary 3.11 (global existence and uniqueness). For each µ0 ∈ M+([0, 1])
and v :M([0, 1])× [0, 1]→ R satisfying Assumption 3.1, a unique mild solution exists
for all time t > 0.

Theorem 3.12 (continuous dependence on initial data). For all T > 0 and R̃ >
0 there is a constant CR̃,T such that for all µ0, ν0 ∈M+([0, 1]) satisfying ‖µ0‖TV 6 R̃

and ‖ν0‖TV 6 R̃, the corresponding mild solutions µ, ν ∈ C([0, T ];M+([0, 1])) satisfy

sup
τ∈[0,T ]

‖µτ − ντ‖∗BL 6 CR̃,T ‖µ0 − ν0‖∗BL.

The proofs of these theorems and this corollary are given in the next section,
section 4. The key idea of the proof of Theorem 3.10 is to show that the sequence
(µk)k∈N is a Cauchy sequence in a complete metric space and hence converges. We
use estimates between approximations µk and µm, m > k. Similar estimates are
employed to obtain the result of Theorem 3.12. To prove Corollary 3.11, we show
that a solution at time t > 0 is provided by Theorem 3.10 if T > 0 is chosen such that
t ∈ [0, T ]. Moreover, this solution at time t is independent of the exact choice of T .

4. Proofs of Theorems 3.10 and 3.12 and of Corollary 3.11. In this section
we prove the main results of this paper: Theorem 3.10, Corollary 3.11, and Theorem
3.12. The essential part of the proof of Theorem 3.10 is provided by the following
lemma.

Lemma 4.1. For fixed µ0 ∈ M+([0, 1]) and (αk)k∈N satisfying Assumption 3.5,
the corresponding sequence (µk)k∈N defined by (3.3) is a Cauchy sequence in C([0, T ];
M+([0, 1])). In particular, there is a constant C such that

sup
τ∈[0,T ]

‖µkτ − µmτ ‖∗BL 6 C max
j∈{0,...,Nk−1}

(
tkj+1 − tkj

)
for all k,m ∈ N satisfying m > k.

Proof. Fix k,m ∈ N with m > k, let τ ∈ [0, T ] be arbitrary, and let j ∈
{0, . . . , Nk − 1} be such that τ ∈ (tkj , t

k
j+1]. Define, for appropriate N (j) > 1, the

ordered set

(4.1) {τ` : 0 6 ` 6 N (j)} := {tkj } ∪
(
αm ∩ (tkj , t

k
j+1]

)
∪ {tkj+1}.

The set αm ∩ (tkj , t
k
j+1] contains all tm` , ` ∈ {1, . . . , Nm} such that tkj < tm` 6 tkj+1.

For the sake of being complete, we emphasize that any duplicate elements that might
occur on the right-hand side of (4.1) are not “visible” in the set on the left-hand side.
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Assume that i ∈ {0, . . . , N (j)− 1} is such that τ ∈ (τi, τi+1]. To simplify notation, we
write vκ` := v[µκτ` ] for all κ ∈ N and ` ∈ {0, . . . , N (j)}. Define i0 ∈ {0, . . . , Nm} to be

the smallest index such that tmi0 > tkj .

Case 1. tmi0 = tkj . In this case, there is a q ∈ {0, . . . , Nm − 1} such that τi = tmq .
Hence,

µkτ = Q
vk0
τ−τi µ

k
τi and µmτ = Q

vmi
τ−τi µ

m
τi .

We estimate

‖µkτ − µmτ ‖∗BL 6 ‖Qv
k
0
τ−τi(µ

k
τi − µ

m
τi )‖

∗
BL + ‖

(
Q
vk0
τ−τi −Q

vmi
τ−τi

)
µmτi‖

∗
BL

6 ‖µkτi − µ
m
τi‖
∗
BL exp

(
|vk0 |L (τ − τi) + ‖f‖BL (τ − τi) e|v

k
0 |L (τ−τi)

)
+ ‖vk0 − vmi ‖∞ ‖µmτi‖TV exp

(
L (τ − τi) + ‖f‖BL (τ − τi) eL (τ−τi)

)
·
[
(τ − τi) + (τ − τi)2‖f‖∞ e‖f‖∞ (τ−τi)

]
(4.2)

using Corollary 2.9 and Lemma 2.10. Here, L denotes min(|vk0 |L , |vmi |L). In view of
Lemma 3.4, we define R := ‖µ0‖TV · exp(‖f‖∞ T ). From Lemma 2.7 (with s = 0),
and parts (ii) and (iv) of Assumption 3.1 it follows that

‖vk0 − vmi ‖∞ 6MR

(
‖µkτ0 − µ

m
τ0‖
∗
BL +

i∑
`=1

‖µmτ` − µ
m
τ`−1
‖∗BL

)
6MR ‖µkτ0 − µ

m
τ0‖
∗
BL +MR

i∑
`=1

‖Qv
m
`−1

τ`−τ`−1
µmτ`−1

− µmτ`−1
‖∗BL

6MR ‖µkτ0 − µ
m
τ0‖
∗
BL +MR

i∑
`=1

R
(
‖f‖∞ +KR

)
e‖f‖∞ T (τ` − τ`−1)

6MR ‖µkτ0 − µ
m
τ0‖
∗
BL +MRR

(
‖f‖∞ +KR

)
e‖f‖∞ T (τi − τ0).(4.3)

We combine (4.2) and (4.3) and use part (iii) of Assumption 3.1 and the basic estimates
τ − τi 6 τi+1 − τi and τi+1 − τi 6 T (in suitable places) to obtain that

‖µkτ − µmτ ‖∗BL 6 exp
(
A1 (τi+1 − τi)

)
‖µkτi − µ

m
τi‖
∗
BL

+ A2 (τi+1 − τi) ‖µkτ0 − µ
m
τ0‖
∗
BL

+ A3 (τi+1 − τi)(τi − τ0)(4.4)

for some positive constants A1, A2, and A3 that depend on f , T , and R but not on i
or j. This upper bound holds for all τ ∈ (τi, τi+1].

Case 2. tkj < tmi0 and i = 0. Note that j 6= 0 and i0 6= 0 must hold. We recall the

notation vκ` := v[µκτ` ] for all κ ∈ N and ` ∈ {0, . . . , N (j)}. In this case,

µkτ = Q
vk0
τ−τ0 µ

k
τ0 and µmτ = Qv̄τ−τ0 µ

m
τ0 ,
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1944 J. H. M. EVERS, S. C. HILLE, AND A. MUNTEAN

where v̄ := v[µmtmi0−1
]. Similar to (4.2), we have

‖µkτ − µmτ ‖∗BL 6 ‖Qv
k
0
τ−τ0(µkτ0 − µ

m
τ0)‖∗BL + ‖

(
Q
vk0
τ−τ0 −Q

v̄
τ−τ0

)
µmτ0‖

∗
BL

6 ‖µkτ0 − µ
m
τ0‖
∗
BL exp

(
|vk0 |L (τ − τ0) + ‖f‖BL (τ − τ0) e|v

k
0 |L (τ−τ0)

)
+ ‖vk0 − v̄‖∞ ‖µmτ0‖TV exp

(
L (τ − τ0) + ‖f‖BL (τ − τ0) eL (τ−τ0)

)
·
[
(τ − τ0) + (τ − τ0)2‖f‖∞ e‖f‖∞ (τ−τ0)

]
,(4.5)

where L = min(|vk0 |L , |v̄|L). We define R := ‖µ0‖TV · exp(‖f‖∞ T ); cf. Lemma 3.4.
The analogon of (4.3) is

‖vk0 − v̄‖∞ 6MR

(
‖µkτ0 − µ

m
τ0‖
∗
BL + ‖µmτ0 − µ

m
τ̄ ‖∗BL

)
= MR ‖µkτ0 − µ

m
τ0‖
∗
BL +MR ‖Qv̄τ0−τ̄ µ

m
τ̄ − µmτ̄ ‖∗BL

6MR ‖µkτ0 − µ
m
τ0‖
∗
BL +MRR

(
‖f‖∞ +KR

)
e‖f‖∞ T (τ0 − τ̄)(4.6)

with τ̄ := tmi0−1. Together (4.5) and (4.6) yield

‖µkτ − µmτ ‖∗BL 6
[

exp
(
A1 (τ1 − τ0)

)
+A2 (τ1 − τ0)

]
‖µkτ0 − µ

m
τ0‖
∗
BL

+ A3 (τ1 − τ0)(τ0 − τ̄)(4.7)

for the same positive constants A1, A2, and A3 as in (4.4). Here, we used part (iii)
of Assumption 3.1 and the estimates τ − τ0 6 τ1 − τ0 and τ1 − τ0 6 T . The upper
bound (4.7) holds for all τ ∈ (τ0, τ1].

Case 3. tkj < tmi0 and i > 1. In this case, tkj < τi < tkj+1 and hence there is a
q ∈ {1, . . . , Nm − 1} such that τi = tmq . We have

µkτ = Q
vk0
τ−τi µ

k
τi and µmτ = Q

vmi
τ−τi µ

m
τi .

Estimate (4.2) also holds in this case. Because tmi0 > tkj there is no q ∈ {0, . . . , Nm−1}
such that τ0 = tmq , and therefore v[ · ] is not to be evaluated at µmτ0 . Consequently, we
have instead of (4.3),

‖vk0 − vmi ‖∞ 6 ‖vk0 − v̄‖∞ + ‖vm1 − v̄‖∞ +

i∑
`=2

‖vm` − vm`−1‖∗BL

6 ‖vk0 − v̄‖∞ +MR ‖Qv̄τ1−τ̄ µ
m
τ̄ − µmτ̄ ‖∗BL

+ MR

i∑
`=2

‖Qv
m
`−1

τ`−τ`−1
µmτ`−1

− µmτ`−1
‖∗BL

with v̄ := v[µmtmi0−1
] and τ̄ := tmi0−1. Note that the sum on the right-hand side might

be empty. Using the idea of (4.3) and the result of (4.6), we obtain

‖vk0 − vmi ‖∞ 6MR ‖µkτ0 − µ
m
τ0‖
∗
BL +MRR

(
‖f‖∞ +KR

)
e‖f‖∞ T (τ0 − τ̄)

+ MRR
(
‖f‖∞ +KR

)
e‖f‖∞ T (τi − τ̄)

6MR ‖µkτ0 − µ
m
τ0‖
∗
BL + 2MRR

(
‖f‖∞ +KR

)
e‖f‖∞ T (τi − τ̄).(4.8)
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Due to (4.2) and (4.8), we have

‖µkτ − µmτ ‖∗BL 6 exp
(
A1 (τi+1 − τi)

)
‖µkτi − µ

m
τi‖
∗
BL

+ A2 (τi+1 − τi) ‖µkτ0 − µ
m
τ0‖
∗
BL

+ 2A3 (τi+1 − τi)(τi − τ̄)(4.9)

for all τ ∈ (τi, τi+1], where A1, A2, and A3 are the same constants as in (4.4) and
(4.7).

We now combine the estimates obtained in Cases 1, 2, and 3: it follows from
(4.4), (4.7), and (4.9) that

sup
τ∈(τi,τi+1]

‖µkτ − µmτ ‖∗BL 6 exp
(
A1 (τi+1 − τi)

)
sup

τ∈(τi−1,τi]

‖µkτ − µmτ ‖∗BL

+ A2 (τi+1 − τi) ‖µkτ0 − µ
m
τ0‖
∗
BL

+ 4A3M
(k) (τi+1 − τi)

for all i ∈ {1, . . . , N (j) − 1}, while for i = 0

sup
τ∈(τ0,τ1]

‖µkτ − µmτ ‖∗BL 6
[

exp
(
A1 (τ1 − τ0)

)
+A2 (τ1 − τ0)

]
‖µkτ0 − µ

m
τ0‖
∗
BL

+ A3M
(k) (τ1 − τ0).

We have used that τi − τ0 6 M (k) in (4.4), τ0 − τ̄ 6 tmi0 − t
m
i0−1 6 M (m) 6 M (k) in

(4.7), and

τi − τ̄ 6 τN(j) − τ0 + τ0 − τ̄ 6 M (k) + tmi0 − t
m
i0−1 6 M (k) +M (m) 6 2M (k)

in (4.9). This is the place where we use explicitly that partition αm is “finer” (or
“not coarser”) than αk in the sense that M (m) 6 M (k); cf. Assumption 3.5. By an
induction argument one can show that the upper bound

sup
τ∈(τi,τi+1]

‖µkτ − µmτ ‖∗BL 6
i∑

`=0

 i∏
q=`+1

exp
(
A1 (τq+1 − τq)

)
·
[
A2 (τ`+1 − τ`) ‖µkτ0 − µ

m
τ0‖
∗
BL + 4A3M

(k) (τ`+1 − τ`)
]

+

(
i∏

q=0

exp
(
A1 (τq+1 − τq)

))
‖µkτ0 − µ

m
τ0‖
∗
BL(4.10)

holds for all i ∈ {0, . . . , N (j)−1}. The products in brackets are equal to exp
(
A1 (τi+1−

τ`+1)
)

and exp
(
A1 (τi+1 − τ0)

)
, respectively. By using these explicit expressions and

by taking the supremum over i on the left-hand and right-hand sides of (4.10), we
obtain

sup
τ∈(τ0,τN(j) ]

‖µkτ − µmτ ‖∗BL 6
N(j)−1∑
`=0

exp
(
A1 (τN(j) − τ`+1)

)
·
[
A2 (τ`+1 − τ`) ‖µkτ0 − µ

m
τ0‖
∗
BL + 4A3M

(k) (τ`+1 − τ`)
]

+ exp
(
A1 (τN(j) − τ0)

)
‖µkτ0 − µ

m
τ0‖
∗
BL.(4.11)
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Since τN(j)−τ`+1 6 τN(j)−τ0 for all ` ∈ {0, . . . , N (j)−1}, and τ0 = tkj and τN(j) = tkj+1,
it follows from (4.11) that

sup
τ∈(tkj ,t

k
j+1]

‖µkτ − µmτ ‖∗BL

6

[
1 +A2

N(j)−1∑
`=0

(τ`+1 − τ`)
]
· exp

(
A1 (tkj+1 − tkj )

)
· ‖µktkj − µ

m
tkj
‖∗BL

+ 4A3M
(k) (tkj+1 − tkj ) exp

(
A1 (tkj+1 − tkj )

) N(j)−1∑
`=0

(τ`+1 − τ`)

=
[
1 +A2 (tkj+1 − tkj )

]
· exp

(
A1 (tkj+1 − tkj )

)
· ‖µktkj − µ

m
tkj
‖∗BL

+ 4A3M
(k) (tkj+1 − tkj ) exp

(
A1 (tkj+1 − tkj )

)
.(4.12)

Hence, we have that

sup
τ∈(tkj ,t

k
j+1]

‖µkτ − µmτ ‖∗BL

6
[
1 +A2 (tkj+1 − tkj )

]
· exp

(
A1 (tkj+1 − tkj )

)
· sup
τ∈(tkj−1,t

k
j ]

‖µkτ − µmτ ‖∗BL

+ 4A3M
(k) (tkj+1 − tkj ) exp

(
A1 (tkj+1 − tkj )

)
(4.13)

for all j ∈ {1, . . . , Nk − 1}, and for j = 0 we have

(4.14) sup
τ∈(tk0 ,t

k
1 ]

‖µkτ − µmτ ‖∗BL 6 4A3M
(k) (tk1 − tk0) exp

(
A1 (tk1 − tk0)

)
,

because µk
tk0

= µ0 = µm
tk0

. By an induction argument similar to the one leading to

(4.10), we obtain that

sup
τ∈(tkj ,t

k
j+1]

‖µkτ − µmτ ‖∗BL 6
j∑
`=0

 j∏
q=`+1

[
1 +A2 (tkq+1 − tkq )

]
· exp

(
A1 (tkq+1 − tkq )

)
· 4A3M

(k) (tk`+1 − tk` ) exp
(
A1 (tk`+1 − tk` )

)
(4.15)

for all j ∈ {0, . . . , Nk − 1}. Note that
[
1 + A2 (tkq+1 − tkq )

]
6 exp

(
A2 (tkq+1 − tkq )

)
for

all q ∈ {0, . . . , Nk − 1}. Define A4 := A1 +A2. It follows from (4.15) that

sup
τ∈(tkj ,t

k
j+1]

‖µkτ − µmτ ‖∗BL

6 4A3M
(k) exp(A1 T )

j∑
`=0

 j∏
q=`+1

exp
(
A4 (tkq+1 − tkq )

) · (tk`+1 − tk` )

6 4A3M
(k) exp(A1 T )

j∑
`=0

exp
(
A4 (tkj+1 − tk`+1)

)
· (tk`+1 − tk` )

6 4A3M
(k) exp((A1 +A4)T ) (tkj+1 − tk0).(4.16)

We take the supremum over j on both sides of the inequality (4.16) and get

(4.17) sup
τ∈[0,T ]

‖µkτ − µmτ ‖∗BL 6 4A3M
(k) T exp((A1 +A4)T ).
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Note that we extended the supremum from τ ∈ (0, T ] to τ ∈ [0, T ], but this does not
change the upper bound. Define C := 4A3 T exp((A1 + A4)T ) to get the result of
the lemma. Because M (k) → 0 as k →∞, the estimate (4.17) implies that (µk)k∈N is
a Cauchy sequence.

Remark 4.2. It is crucial that we use ‖ · ‖∗BL and not ‖ · ‖TV in Lemma 4.1. The
factor ‖vk0−vmi ‖∞ appears in (4.2) due to Lemma 2.10. Due to Assumption 3.1(iv) we
subsequently obtain an estimate in which ‖µkτ0−µ

m
τ0‖
∗
BL appears. Analogous estimates

apply to ‖vk0 − v̄‖∞ in (4.5). Note that Lemma 2.10 builds on Lemma 2.2. In (2.14)
the Lipschitz property of the test functions is explicitly used and hence there is no
direct way to formulate the result of Lemma 2.2 in terms of ‖ · ‖TV. Consequently,
we do not have an estimate of ‖µkτ −µk+1

τ ‖TV against ‖v− v′‖∞ comparable to (4.2).

We are now ready to prove Theorem 3.10.

Proof. By definition, M([0, 1]) is complete in the metric induced by the norm
‖ · ‖∗BL. The space M+([0, 1]) is a closed subspace of M([0, 1]), so M+([0, 1]) is
complete. Hence, the space

{ν ∈ C([0, T ];M+([0, 1])) : ν(0) = µ0}

is complete for the metric defined for all µ, ν ∈ C([0, T ];M+([0, 1])) by (3.6).
For each initial measure µ0 ∈ M+([0, 1]) and for each k ∈ N, consider the Euler

approximation µk defined by (3.3) corresponding to partition αk. This approximation
µk is an element of C([0, T ];M+([0, 1])), because the semigroup (Qvt )t>0 preserves
positivity for all v ∈ BL([0, 1]); see [EHM15a, Corollary 3.4]. In Lemma 4.1, we
showed that for given (αk)k∈N the sequence (µk)k∈N is a Cauchy sequence in {ν ∈
C([0, T ];M+([0, 1])) : ν(0) = µ0}, which is a complete space, as was argued above.
Hence, the sequence (µk)k∈N converges in {ν ∈ C([0, T ];M+([0, 1])) : ν(0) = µ0}.

The limit is independent of the sequence of partitions chosen from the class char-
acterized by Assumption 3.5. If (αk)k∈N and (βk)k∈N are two such sequences, then
it is possible to construct a sequence (γk)k∈N that has a subsequence that is also a
subsequence of (αk)k∈N and that has (another) subsequence that is a subsequence of
(βk)k∈N. Moreover, (γk)k∈N can be constructed such that the corresponding sequence
of maximal interval lengths is nondecreasing.

Let (µαk)k∈N, (µβk)k∈N and (µγk)k∈N be the corresponding sequences of Euler
approximations. The sequence (µγk)k∈N can be shown to converge to the same limit as
(µαk)k∈N and to the same limit as (µβk)k∈N. Hence, (µαk)k∈N and (µβk)k∈N converge
to the same limit. This finishes the proof.

The proof of Corollary 3.11 builds on the result of Theorem 3.10.

Proof. Fix t > 0 and let T > 0 be such that t ∈ [0, T ]. For given µ0 ∈M+([0, 1])
and v : M([0, 1]) × [0, 1] → R satisfying Assumption 3.1, a unique mild solution
µ ∈ C([0, T ];M+([0, 1])) exists, hence µt, the solution at time t, exists. We now show
that this µt is independent of the choice of T .

Let T1, T2 > 0 and assume without loss of generality that T1 < T2. For the given
µ0 ∈ M+([0, 1]) and v : M([0, 1]) × [0, 1] → R, let µ denote the mild solution in
C([0, T1];M+([0, 1])) obtained by partitioning [0, T1]. Take a sequence of partitions
(αk)k∈N ⊂ [0, T1] satisfying Assumption 3.5 with corresponding Euler approximations
(µk)k∈N. Next, construct a sequence of partitions (βk)k∈N ⊂ [0, T2] satisfying As-
sumption 3.5 such that αk ⊂ βk for each k ∈ N. More specifically, restricted to [0, T1]
each partition βk coincides with αk. Note that such (βk)k∈N exists. Let (νk)k∈N be
the sequence of Euler approximations corresponding to (βk)k∈N.
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For each k ∈ N, the restriction νk
∣∣
[0,T1]

is defined by (3.3) with respect to the

partition βk ∩ [0, T1] = αk. Hence νk
∣∣
[0,T1]

is defined in the same way as µk, and thus

supτ∈[0,T1] ‖µkτ − νkτ ‖∗BL = 0 or simply νk
∣∣
[0,T1]

= µk. Consequently, the same must

hold in the limit as k →∞, because of the triangle inequality:

sup
τ∈[0,T1]

‖µτ − ντ‖∗BL 6 sup
τ∈[0,T1]

‖µkτ − νkτ ‖∗BL+ sup
τ∈[0,T1]

‖µkτ − µτ‖∗BL+ sup
τ∈[0,T1]

‖νkτ − ντ‖∗BL

6 sup
τ∈[0,T1]

‖µkτ − νkτ ‖∗BL︸ ︷︷ ︸
=0

+ sup
τ∈[0,T1]

‖µkτ − µτ‖∗BL︸ ︷︷ ︸
→0

+ sup
τ∈[0,T2]

‖νkτ − ντ‖∗BL︸ ︷︷ ︸
→0

.

So, supτ∈[0,T1] ‖µτ − ντ‖∗BL = 0. Hence, µτ = ντ for all τ ∈ [0, T1] and thus the
solution at time τ is independent of the final time chosen.

Finally, we prove Theorem 3.12.

Proof. Let the mild solutions µ and ν be given and let (αk)k∈N be an arbitrary
sequence of partitions of [0, T ] satisfying Assumption 3.5. Let (µk)k∈N and (νk)k∈N
denote the sequences of Euler approximations defined by (3.3), both for the sequence
of partitions (αk)k∈N and with initial conditions µ0 and ν0, respectively.

Since µ and ν are mild solutions

µ = lim
k→∞

µk and

ν = lim
k→∞

νk

hold, with convergence in the metric (3.6). It follows from Lemma 3.4 that all ele-
ments of

{µkt : k ∈ N, t ∈ [0, T ]} ∪ {νkt : k ∈ N, t ∈ [0, T ]}
are bounded by R := R̃ exp(‖f‖∞ T ) in both ‖ · ‖TV and ‖ · ‖∗BL. Fix k ∈ N, let
αk := {tk0 , . . . , tkNk

}, and take j such that τ ∈ (tkj , t
k
j+1]. Consider the difference

‖µkτ − νkτ ‖∗BL.
We use an estimate in the spirit of (4.2)–(4.3)–(4.4). Note that the proof of

Lemma 4.1 also holds if k = m, which implies N (j) = 1 and hence i = 0. It follows
from (4.2)–(4.3), with i = 0 and with νk instead of µm, that

(4.18) ‖µkτ − νkτ ‖∗BL 6
[
1 +B2 (tkj+1 − tkj )

]
exp

(
B1 (tkj+1 − tkj )

)
‖µktkj − ν

k
tkj
‖∗BL

for some positive constants B1 and B2 that depend on f , T , and R̃ but not on j or k.
This estimate holds for all τ ∈ (tkj , t

k
j+1] and resembles (4.4). We take the supremum

over τ ∈ (tkj , t
k
j+1] on the left-hand side of (4.18), apply this relation recursively, and

take the supremum over j to obtain that

sup
τ∈[0,T ]

‖µkτ − νkτ ‖∗BL 6

(
Nk−1∏
`=0

[
1 +B2 (tk`+1 − tk` )

]
exp

(
B1 (tk`+1 − tk` )

))
‖µ0 − ν0‖∗BL

6

(
Nk−1∏
`=0

exp
(
B2 (tk`+1 − tk` )

)
exp

(
B1 (tk`+1 − tk` )

))
‖µ0 − ν0‖∗BL

6 exp
(
(B1 +B2) (tkNk

− tk0)
)
‖µ0 − ν0‖∗BL

= exp((B1 +B2)T ) ‖µ0 − ν0‖∗BL(4.19)
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for all k ∈ N. The triangle inequality yields

sup
τ∈[0,T ]

‖µτ − ντ‖∗BL 6 sup
τ∈[0,T ]

‖µkτ − νkτ ‖∗BL + sup
τ∈[0,T ]

‖µkτ − µτ‖∗BL︸ ︷︷ ︸
→0

+ sup
τ∈[0,T ]

‖νkτ − ντ‖∗BL︸ ︷︷ ︸
→0

,

whence the same estimate as in (4.19) holds for supτ∈[0,T ] ‖µτ − ντ‖∗BL.

Remark 4.3. We would have been inclined to use directly (2.19) on the interval
(tkj , t

k
j+1], instead of deriving (4.18). We need, however, the exact dependence on

(tkj+1 − tkj ) of the prefactor, to make sure that—after iteration over j—the prefactor
in (4.19) is bounded. This dependence is not (directly) provided by (2.19), nor by the
proof of [EHM15a, Proposition 3.5].

Remark 4.4. The result of Theorem 3.12 relies—via Corollary 2.9 and Lemma
2.10—on Gronwall’s inequality. This is possible here because we restrict ourselves
to Lipschitz perturbations. In our previous work [EHM15a] we considered the more
general class of piecewise bounded Lipschitz perturbations. Hence, there we stated
explicitly (see the paragraph before [EHM15a, Proposition 3.5]) that the standard
approach did not work.

5. Discussion. In this paper we have generalized the results of [EHM15a] to
measure-dependent velocity fields via a forward-Euler-like approach. Our motivation
was to derive flux boundary conditions for situations in which the dynamics are driven
by interactions. Such dynamics are in general more interesting than the dynamics
that follow from prescribed velocity fields as in [EHM15a]. We managed to obtain
a converging procedure, but only for bounded Lipschitz continuous right-hand sides.
Hence, compared to [EHM15a], our results hold, e.g., for boundary layers in which
mass decays, but not for the limit case of vanishing boundary layer. We start off
this discussion section (see section 5.1) by commenting on the possibility to extend
to piecewise bounded Lipschitz right-hand sides and to obtain the limit of vanishing
boundary layer. Second, we point out (in section 5.2) how this paper generalizes
the results of [Eve15, Chapter 5] and how a number of open problems mentioned in
[Eve15, section 5.5] are now resolved. Ultimately, we suggest possible future research
(section 5.3).

5.1. Piecewise bounded Lipschitz perturbations. To obtain the technical
results in section 2.3, we explicitly used the assumption that the perturbation f is
bounded Lipschitz on [0, 1]. Theorems 3.10 and 3.12 rely on the results in section 2.3.
We would have liked to obtain these results for piecewise bounded Lipschitz f , in
particular to model decay of mass at one of the boundaries only (cf. [EHM15a]). In
[EHM15a] we circumvent the arising problems by providing the solution explicitly in
[EHM15a, Proposition 3.3]. In the setting of the present paper, this explicit form
would be given for each interval (tkj , t

k
j+1], k ∈ N, in (3.3) by

(5.1) µkt :=

∫
[0,1]

exp

(∫ t−tkj

0

f(Φ
vkj
s (x)) ds

)
· δ

Φ
vk
j

t−tk
j

(x)
dµktkj

(x),

where vkj := v[µk
tkj

]. In [EHM15a] we showed that it is possible to obtain the estimates

needed to establish continuous dependence on initial data, because this explicit form
has a regularizing effect on f and its discontinuities due to the integration in time.
The key ingredient there, which is absent in the approach of the present work, is the
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fact that the velocity field is the same for all time. If one wants to prove Theorem
3.12 using (5.1) instead of the properties of the semigroup Q, one encounters that at
some point for any ∆t > 0 fixed a Lipschitz estimate of the form

(5.2)

∥∥∥∥∥
∫ ∆t

0

f(Φvs(·)) ds−
∫ ∆t

0

f(Φus (·)) ds

∥∥∥∥∥
∞

6 C ‖u− v‖∞

is required for all u and v taken from a class of admissible velocity fields. One would
then proceed to estimate ‖u − v‖∞ against the bounded Lipschitz distance of the
corresponding measures, using part (iv) of Assumption 3.1.

In view of [EHM15a], the restriction that the velocity should not be zero at
discontinuities of f is reasonable, but even if we are willing to obey that condition,
an estimate like (5.2) cannot be expected to hold. Let f(x) = 0 if x ∈ [0, 1) and
f(1) = −1. Take ε > 0 and take v ≡ ε, u ≡ −ε. Then (for ε < 1/∆t)∥∥∥∥∥

∫ ∆t

0

f(Φvs(·)) ds−
∫ ∆t

0

f(Φus (·)) ds

∥∥∥∥∥
∞

>

∣∣∣∣∣
∫ ∆t

0

f(Φvs(1)) ds−
∫ ∆t

0

f(Φus (1)) ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∆t

0

f(1) ds−
∫ ∆t

0

f(1− ε s) ds

∣∣∣∣∣ = ∆t.

Since ∆t > 0 is fixed and ‖u− v‖∞ = 2ε can be made arbitrarily small, (5.2) cannot
be satisfied.

An additional difficulty is that it remains to be seen how we can ensure that a
condition like v(1) 6= 0 is satisfied by a velocity field that depends on the solution
itself.

5.2. Uniqueness of mild solutions and generality of partitions. In [Eve15,
section 5.5] we point out that there are two reasons why we obtained uniqueness of
mild solutions there. On the one hand, this is because the constructed approximating
sequence converges, thus inevitably each subsequence (cf. Definition 3.8) converges to
the same limit. This statement still holds true for the present work. On the other
hand, uniqueness holds in [Eve15, Chapter 5] because there we only constructed one
approximating sequence, namely, by partitioning the interval [0, T ] into 2k subinter-
vals. In this respect, the present paper is a considerable improvement. The class of
admissible partitions (see Assumption 3.5) includes partitions into qk equal subinter-
vals for arbitrary q ∈ N+; see Example 3.6. We conjectured in [Eve15, section 5.5] that
the sequence of corresponding Euler approximations converges, and the results of this
paper confirm that conjecture. The fact that, in this case, each interval (tkj , t

k
j+1] is

split into qm−k subintervals (tm` , t
m
`+1] is generically treated by introducing the number

N (j) and using a recursion over index i ∈ {0, . . . , N (j)−1} to obtain (4.11). In [Eve15,
Chapter 5], however, we performed explicit calculations, using that each (tkj , t

k
j+1] is

split into two subintervals.
In [Eve15, section 5.5] anticipated that using a sequence of nonuniform partitions

of [0, T ] would imply the need for a condition regularizing the variation in subinterval
lengths to make sure that all subintervals become small sufficiently fast as k →∞. In
the present work we show that it suffices to have for the maximum subinterval length
M (k) → 0 as k →∞.

The iterative argument in [Eve15, Chapter 5] requires that the partition for index
k+ 1 is a refinement of the partition for index k (more particularly, a division of each
subinterval into two). The complications expected to occur if subsequent partitions
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are not refinements are resolved in the current work by introduction of the index i0
in the proof of Lemma 4.1 and allowing for the case tkj 6= tmi0 .

The final contribution of the present work to be mentioned here is that in Theorem
3.10 we have positively answered the question posed in [Eve15, section 5.5] of whether
the mild solutions obtained as limits of distinct sequences of partitions are actually
identical.

5.3. Future directions. The extension of the results stated in section 3 to
functions f with discontinuities would clear the way for an approximation procedure
like the one treated in [EHM15a], that is, to have f nonzero only on the boundary
of the domain and to approximate it with a sequence of bounded Lipschitz functions
(fn)n∈N ⊂ BL([0, 1]). In [EHM15a] we showed convergence of the corresponding
solutions as n→∞ (for v ∈ BL([0, 1]) fixed). The challenge would be (i) to establish
the well-posedness of the problem for discontinuous f and (ii) to show that the Euler
approximation limit and the boundary layer limit commute.

Let us focus on the vanishing boundary layer like in [EHM15a]. Assume there are
regions around 0 and 1 in which mass decays and that these regions shrink to zero
width. That is, there is a sequence (fn)n∈N ⊂ BL([0, 1]) and there is an f satisfying
f(x) = 0 if x ∈ (0, 1) and, e.g., f(0) = f(1) = −1, such that fn → f pointwise,
and the Lebesgue measure of the set {x ∈ [0, 1] : fn(x) 6= f(x)} tends to zero as
n → ∞. If we assume that we can extend the results of this paper to piecewise
bounded Lipschitz f , then well-posedness for the limit case is guaranteed. It remains
to be proven, however, that the solution for finite boundary layer actually converges
to the solution of the limit problem.

This is the same question as asking whether the two limits that we take actually
commute. The first limit is in the forward-Euler-like approach to obtain a mild so-
lution. We assigned an index k to the elements in the approximating sequence and
proved in Theorem 3.10 that the limit “limk→∞” exists (for f ∈ BL([0, 1])). The sec-
ond limit “limn→∞” is the one involving the sequence (fn)n∈N ⊂ BL([0, 1]). Proving
the well-posedness for f piecewise bounded Lipschitz is the same as proving that the
limit “limk→∞ limn→∞” exists. Proving that the sequence of solutions corresponding
to each fn actually converges to some limit in C([0, T ];M+([0, 1])) is equivalent to
proving that “limn→∞ limk→∞” exists. To conclude that the two limits commute, an
additional argument is needed. It requires a characterization of “limn→∞ limk→∞”
that can be compared to “limk→∞ limn→∞.” Both proving that “limn→∞ limk→∞”
exists and characterizing the limit can be a difficult task, however, since our cur-
rent results do not provide an explicit expression for “limk→∞.” A possible way to
characterize the limit “limk→∞” could be to show that the mild solution obtained in
this paper is actually a weak solution and to use the weak formulation of (1.2) as a
characterization. If the solutions obtained in this paper are weak solutions, this is
also a further justification of the terminology “mild solutions.”

An additional result to be derived concerns the stability with respect to parame-
ters, in particular with respect to f and the specific form of v. Stability statements are
essential in view of parameter identification. It is important to know how measurement
errors in the parameters affect the solution of our model. In fact, Lemma 2.10 already
provides stability in v for the solution of [EHM15a], provided that f ∈ BL([0, 1]).

Moreover, we would like to study the long-term dynamics of the solutions t 7→ µt
for various initial conditions.

Acknowledgment. We thank the anonymous reviewer for valuable suggestions,
especially with respect to Remark 2.3 and the counterexample given there.
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