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Abstract

In the nonparametric Gaussian sequence space model an ¢?-confidence ball
C,, is constructed that adapts to unknown smoothness and Sobolev-norm of
the infinite-dimensional parameter to be estimated. The confidence ball has
exact and honest asymptotic coverage over appropriately defined ‘self-similar’
parameter spaces. It is shown by information-theoretic methods that this ‘self-
similarity’ condition is weakest possible.
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1. Introduction

Successful statistical methodology in high-dimensional and nonparametric
models gives rise, either by construction or implicitly, to statistical procedures
that adapt to unknown properties of the parameter, such as smoothness or
sparsity. It is well-known by now (“l_AI], |, M], “Iﬂ], ﬂﬁ], “ﬁ], ﬂ], ﬂa], [@],
Nﬁ]) that such adaptive procedures cannot straightforwardly be used for un-
certainty quantification. Particularly, and unlike in the classical parametric
situation, adaptive estimators do not automatically suggest valid confidence
sets for natural high- or infinite dimensional parameters. Rather, some addi-
tional constraints on the parameter space have to be introduced.

In nonparametric models one such constraint that is naturally compatible
with the desired adaptation properties has been studied in HE], |, 1, [@],
“ﬂ] — the term ‘self-similarity assumption’ has been associated with this condi-
tion, for reasons that will become apparent below. Except for “E], the above
references have studied such parameter constraints in the ‘L*>-setting’ of con-
fidence bands, pertaining to the uniform-norm as a statistical loss function.
The situation in the ‘L2-setting’ — where the risk function is induced by the
more common intelérated squared loss — is in principle more favourable (see

“E], ﬂa], “ﬁ], ﬂﬂ], , [@]), and for certain ranges of parameter spaces such
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‘self-similarity’ conditions are simply not necessary. However, as will be ex-
plained below, for the most meaningful adaptation problems that range over a
full scale of Sobolev spaces with possibly unbounded Sobolev-norm of the func-
tion to be estimated, the situation becomes more delicate and ‘self-similarity
conditions’ are relevant again.

In the present article we consider the basic nonparametric sequence space
model and provide minimal /?-type self-similarity constraints on a Sobolev -
parameter space that cannot be improved upon from an information theoretic
point of view. We also show that an easy to construct, asymptotically ex-
act, confidence ball based on the idea of unbiased risk estimation performs
optimally under such constraints. In contrast to most constructions in the
literature, no ‘under-smoothing’ is necessary, and the confidence set adapts to
minimax rate of convergence and radius constant.

The interest in this problem is partly triggered by recent progress on the un-
derstanding of the frequentist properties of Bayesian uncertainty quantification
methods in “E], where L?-type self-similarity conditions have been employed
successfully. Combined with some arguments of HE] our results imply that
natural nonparametric Bayes approaches based on Gaussian priors with hier-
archical or maximum marginal likelihood empirical Bayes prior specification
of the smoothness parameter do not achieve the information theoretic limits
of uncertainty quantification.

As usual our ideas and techniques carry over from the sequence space model
to more common nonparametric regression and density estimation problems,
both constructively by virtue of the L? ~ (2 isometry of the loss functions,
and more fundamentally through asymptotic equivalence theory for statistical
experiments.

2. Main results

Consider observations Y = (y; : k € N) in the Gaussian sequence space
model

1 iid.
ot ——ge G REN(0,1), k€N, 1
Y = fr + \/ﬁgk Gk (0,1) (1)

and write Pry or Prgc") for the law of (yx : & € N). The symbol E; or E;")
denotes expectation under the law Pry;. Let us assume that the unknown
sequence of interest f = (fi) € (? belongs to a Sobolev ball, that is, an
ellipsoid in ¢? of the form

S*(B)={fe€l:|flls2< B} s>0, B>0,

where the Sobolev norm is given by
111132 = > fik™.
k=1

Note that || - |la = || - ||o.2 is the usual £?-norm.
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The parameters B, s > 0 are typically not available a priori, and the chal-
lenge arises to adapt to their unknown values in a data-driven way. We will
consider adaptation to ‘smoothness degrees’ s in any fixed window [Smin, Smax),
and to the ‘radius’ B € [b, 00). Here 0 < Spin < Smax < 00 are fixed and known
parameters whereas b > 0 is a (not necessarily known) lower bound for B.

It is well known and not difficult to prove that adaptive estimators fn =
fn(Y) exist that attain the minimax optimal ¢2-risk for every ellipsoid S*(B):

. s;lf()B) Efl|fo — flla < K(s)BY@sHDp=s/Cs+0) s 5 0, VB >0, (2)
E S

where the constant K(s) > 0 depends only on s. In fact even exact adaptation
to the minimax constant K (s) is possible by suitable Stein-type shrinkage
estimators (see Section 3.7 in [20]).

In this paper we focus on the construction of confidence sets C,, for f in

J $°(B), B=>barbitrary,

se€ [Smitnsmax]

that reflect the risk bound (2)) — that is, we want to find a data-driven subset
C,, of {5 that contains f with Pr -probability at least 1 — a (where 0 < oo < 1
is a chosen significance level), and we also want C,, to have (;-diameter of
correct order BY/(2st1)p=s/(s+1) yp to possibly a multiplicative constant K'(s)
(we do not consider adaptation to the exact minimax constant here). Just as
fu(Y) above, C, = C,(Y, @) should be adaptive and hence not depend on the
unknown values s, B.

In the special case Spax < 2Smin this is possible by adapting the proof of
Theorem 3A in “ﬂ] to the sequence space setting. However, in the general
setting Spax > 28min relevant in nonparametric statistics, the construction of
such a confidence set is not possible, and a valid confidence set always has
‘worst case’ diameter coming from the maximal model S*=i»(B) (this follows,
e.g., from the proof of Theorem 1 in ﬂa], see also Theorem 8.3.5 in “ﬂ]) New
constraints on the parameter space S*(B) need to be introduced. For instance,
if an upper bound By on the radius B known, a testing approach as in “ﬂ] could
be used to construct an adaptive confidence set that is honest over a sequence
of parameter spaces that asymptotically (n — 00) contains the mazimal pa-
rameter space S*=in(By). It is also proved in Theorem 4 in E] that such a result
is 1mpossible without the bound By on B — for unbounded B some functions
from the sy,;,-Sobolev space have to be permanently removed for ‘honest’ infer-
ence to be possible (the results in “ﬂ] are in the i.i.d. sampling model but apply
in our simpler setting too). In order to remove ‘as few functions as possible’
we shall consider — inspired by ﬂﬁ], HE], ﬂ] — a ‘self-similarity’ constraint,
which in effect enforces a certain signal-strength condition on the sequence

(fo: k € N).



2.1. Self-similarity conditions

For s € [Smin, Smax, ‘self-similarity’ function € : [Siin, Smax] — (0,1], Jo €
N, 0 < b < B < 00, and constant ¢(s) = 16 x 2%%1 define ‘self-similar’ classes

Szf(s) = ::(s)(bv Ba JO) = (3)

2‘]
{fe£2:||f||s,2€[b,BJ: 3 f;?ZC(S)HfH?,z?‘”SWGN,JZJo},

k=27 (1—¢e(s))

where the notation Ezza ¢k for a,b € R stands for Z}ﬂ (0] Ck throughout the
whole paper. Note that || f||s2 < co implies, for all J € N,

S SRS IfNR 2O < p|2,2720 x 92

kZQJ(l—s(s))

and for ‘self-similar’ functions this upper bound needs to be matched by a lower
bound, accrued repeatedly over coefficient windows k € [27 (=) 9J |, J > Jo,
that is not off by more than a factor of 22/5() /c(s). As a consequence the
regularity of f is approximately identified across all scales J > Jj.

If condition (B]) holds for some e(s) > 0 then it also holds for ¢(s) =
16 x 2251 replaced by an arbitrary small positive constant and any £'(s) > &(s)
(for Jy chosen sufficiently large). In this sense the particular value of ¢(s) is
somewhat arbitrary, and chosen here only for convenience.

Larger values of €(s) correspond to weaker assumptions on f: Indeed, in-
creasing the value of €(s) makes it easier for a function to satisfy the self-
similarity condition, as the lower bound is allowed to accrue over a larger
window of ‘candidate’ coefficients, and since the ‘tolerance factor’ 22/¢()s in
the lower bound increases. In contrast, smaller values of (s) require a strong
enough signal in blocks of comparably small size.

We shall demonstrate that signal strength conditions enforced through the

‘self-similarity’ function £(s) allow for the construction of honest adaptive con-
fidence balls over the parameter space

U S

sminSSSsmax

with performance resembling the adaptive risk bound (3). We will effectively
show that

e(s) < % Vs

is a necessary condition for the construction of such adaptive confidence sets
(when Syax > 2Smin ), whereas a sufficient condition is

(s)

S

<— s
21 1/2 "

As s — oo we have s/(2s + 1/2) — 1/2, showing that the necessary condition
cannot be improved upon.



Comparing to the self-similarity condition (3.4) in ﬂﬁ], which for f € S*(B)
and transposed into our notation, requires for some n > 0,

2J
Z f2>nB*27%% for all J > .J, and some p > 1, (4)
k=27/p

one can easily see that the self-similarity condition (3]) is strictly weaker, both
in terms of the window sizes along which the lower bound has to accrue, and
in terms of the lower bound itself. One can show that in the context of ﬂﬁ]
their stronger assumption is actually necessary (for the particular marginal
likelihood empirical Bayes procedure used there). Furthermore we note that
(as a consequence of [18]) hierarchical Bayes methods behave similarly to the
maximum marginal likelihood empirical Bayes method in the sense that the
self-similarity condition (@) can not be relaxed. Our results imply that this is
an artefact of the above mentioned adaptive Bayesian approaches, and that
more refined nonparametric techniques can reach the information-theoretic
limits for adaptive confidence sets in ¢2. It is conceivable, however, that an
appropriately modified empirical Bayes method might achieve the information
theoretic limits derived in the present paper; see [18] for some related results
and ideas.

Before we proceed with our main results let us clarify that the statistical
complexity of the estimation problem did not decrease quantitatively by in-
troducing the self-similarity constraint: The minimax estimation rate over the
class (@) is equal to the minimax rate over the Sobolev class S*(B).

Theorem 1. For any fized values of 0 < b < B,Jy € Nye € (0,1), the
minimax rate of estimation over all self-similar functions S = S2(b, B, Jy) in
the Gaussian sequence model ([Il) is of order

inf sup EfHTn o f||2 ~ n—s/(25+1).
To=Ta(Y) fE52

2.2. Construction of the confidence ball

In this subsection we give an algorithm which provides asymptotically hon-
est and adaptive confidence sets over the collection of self-similar functions. As
a first step we split the ‘sample’ into two parts y' = (y;) and y” = (y) (with
Gaussian noise g, and g, with variance 2, respectively, see NI%] for instance),
inflating the variance of the noise by 2, with distributions Pr; and Pr,, and
expectations E; and Es, respectively. Furthermore by slightly abusing our
notation introduced in the beginning of Section 2] we denote in this section
by Pry and Ey the joint distribution and the corresponding expected value,
respectively.

Using the first sample ¢y’ we denote by fn(j) the linear estimator with
‘resolution level” (=truncation point) j € N,

fa(G) = (y;c)1gk§2m Elfn(]) = (frh<r<o = K;(f), (5)



where K denotes the projection operator onto the first 27 coordinates. Let
us consider minimal and maximal truncation levels juin = cglog,n, Jmax =
o log, n — for concreteness we take o = 1/(2s' + 1) for arbitrary s’ > spax and

o = 1, but other choices are also possible. We define a discrete grid J of
resolution levels

j — {j & N ] € [jminujmax]}

that has approximately log, n elements. Using Lepski’s method define a first
estimator by

R . . 2l+1
w=min{ie g IR0 - hOB<1x s isgieg). ©

While j, is useful for adaptive estimation via fn(jn), for adaptive confi-
dence sets we shall need to systematically increase j, by a certain amount —
approximately by a factor of two. To achieve this let us take a fixed parameter
0 <m < 1 and choose parameters 0 < k1, ko < 1 that satisfy

28 + 1/2 1
m < Sin + 1/ <1 and 0< !
Smin + (Smin + 1/2) /K1 2Ko

< Ky < 1. (7)

Intuitively, given § > 0 we can choose m, k1, ko such that all lie in (1 —4,1) —
the reader may thus think of m and the k;’s as constants that are arbitrarily
close to one. Next an ‘under-smoothed estimate’ is defined as

1 11 11—k 1

jn: Jnl, h — =
[J.], where T

(8)

2/<;2j'_n 2Ky logyn’

With J,, in hand, we use again the sample Y’ to construct any standard adaptive
estimator f,, for which the conclusions of Theorem llin the Appendix hold true,
and use the second subsample 3" to estimate the squared ¢*-risk of f,: The

risk estimate R
2Jn+1

k<2Jn

has expectation (conditional on the first subsample /)

Baln(f) = 7 (fe— fur)? = 1K, (f = F)l13 (9)

k<2Jn

Our /?-confidence ball is defined as

n

R 5 R an/Q
Cn = {f Hf - ang < Un(fn) + \/@7& } ) (10)

where 7, denotes the 1 — a quantile of the standard normal N(0,1) random
variable, 0 < a < 1. We note that, unlike ﬂ],“ﬂ] or “E], we do not require
knowledge of any self-similarity or radius parameters in the construction; we
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only used the knowledge of s, in the construction of the discrete grid J and
the parameters m and s,,;, in the choice of ks.

However, the above construction has also its limitations, it will not work for
every self-similarity function ¢(+), hence we have to introduce some additional
restriction. Assume that the function &(-) satisfies

254+1/2 -

sup  &(s) <m <1, (11)

s€ [Sminvsmax]

S

for a fixed parameter m € (0, 1) introduced in ().

To formulate our main results let us introduce the notation
S(e) =S(e, b, B, Jy) = Use[smimsmax]Sj(s)(b, B, Jo). (12)

for the collection of self-similar functions with regularity ranging between
[Smins Smax] and function € : [Syin, Smax] — (0, 1).

Theorem 2. For any 0 < b < B < 00, Jy € N, and self-similarity function e
satisfying (LIl), the confidence set C,, defined in ([I0) has exact honest asymp-
totic coverage 1 — o over the collection of self-similar functions S(e), i.e.,

sup |Pry(feC,)—(1—-a)|—=0
f€S(e,b,B,Jo)
as n — oo. Furthermore the (*-diameter |C,| of the confidence set is rate

adaptive: For every s € [Smin, Smax)s B > b,Jo € N, and 6 > 0 there exists
C(s,6) > 0 such that

lim sup sup PI'f(‘Cn‘ > C((S’5)31/(2s+1)n78/(2s+1)> < 4.

n—oo  fes?, (b,B,Jo) -

2.3. Information theoretic lower bound

The assumption of self-similarity in Theorem [2] could be entirely removed
when Sy < 2Smin, by adapting the proof of Theorem 3A in ﬂﬂ] to the sequence
space setting considered here. In the more realistic setting Sy > 28, this is,
however, not the case, as our results below will imply. We shall prove that for
general adaptation windows [Smin, Smax], the self-similarity function e(s) > 0
can not exceed 1/2 for an honest and adaptive confidence set to exist over the
class S(e). This will be deduced from the following general lower bound on the
size of honest confidence sets for constant self-similarity function e(-) =& > 0
and two regularity levels s > r.

Theorem 3. Fiza € (0,1/2),0<e()=e<1,0<r<r" <r/(1-¢) <oo,

and let s € (r',r/(1 —€)) be arbitrary. Then there does not exist a confidence
set C,, in (% which satisfies for every 0 < b < B, .Jy € N,

lim inf inf P eC,) >1—a, 13
lrl;Ii)g} feSg(bB,}SUS;(b,B,JO) rf(f ) - @ ( )
sup  Prp(|C,| > 7r,) "7 0, (14)

feSE(b,B,Jo)

!
T

for any sequence r, = o(n‘m),



!

Remark 1. Theorem[3 also holds with r, = O(n_W-TH/Q), but for clarity of the

proof we decided to state it in the present form. The r, = o(n_Qr’:rl/Q) version
of the theorem is already sufficient to prove the next corollary.

Corollary 1. Assume that Spax > 28min and () =€ > 1/2. Then there does
not exist a confidence set C, in (* which satisfies for every 0 < b < B, Jy € N,

lim inf inf Pry(feCy) >1—a, (15)

n—oo erSE[S smaX]Sg(byByJO)

min’

and for all s € [Smin, Smax), 0 > 0, and some large enough any K > 0

limsup sup  Pry(|C,| > Kn~¥/@*t)) <. (16)
n—oo  feSs(b,B,Jo)

Proof. Assume that there exists a honest confidence set C,, satisfying (I5) and
([I6). Then take any s € (2Smin, Smax) and choose the parameters r, 7’ such that
they satisfy s/2 > 1" > r > max{(1 — &)s, Smin}. Following from Theorem [ if
assertion (IH) holds then (I4]) can not be true, i.e., the size of the confidence
set for any f € S*(b, B,.Jy) can not be of a smaller order than n~""/'+1/2),
However, since 7’ < 5/2 we have n=%/2st1) = o(n=""/""+1/2)) " Hence the size
of the honest confidence set has to be of a polynomially larger order than
n~*/s+1) which contradicts (I8]). O

Remark 2. In Theorem [2 we have proved that for e(s) < ms/(2s+1/2) (with
S € [Smin, Smax] and m arbitrary close to 1) the construction of adaptive and
honest confidence sets is possible. The upper bound tends to 1/2 as s goes
to infinity and m to one, showing that the restriction £ > 1/2 in Corollary [
cannot be weakened in general.

3. Proof of Theorem

As a first step in the proof we investigate the estimator of the optimal
resolution level j, balancing out the bias and variance terms in the estimation.
The linear estimator f,(j) defined in (Bl has bias and variance so that

1B fu(G) = FI3 < 1fI12227%° = B(. f) (17)
and

2j+1

Eillfa() = Efu()II3 = (1/m)E1 ) g = - (18)
k=1

Our goal is to find an estimator which balances out these two terms. For
this we used Lepski’s method in (@). For f € S*(B) we define

Jn=0dn(f) =min{j € 7 : B(j, f) < 2" /n} (19)
which implies, by monotonicity, that

4 iy 20+ S
B =2l € = Vizgn i d. e

8



. 27 2 2j+1 . . .
B(.]7f) =2 Js”f”s,2 > Ta v.] <~]:L7 S J.
We note that for n large enough (depending only on b and B) the inequalities
Ji < |logyn] and jf > [(logyn)/(2s" + 1)] hold (recall that s' > spax is an
arbitrary parameter defined below display ({)), hence we also have

Jntl
92s+19—2j}s 27n

2
st,2 Z
Therefore we can represent j and the given value of s as

o Tomn + 20081/ ) + )
" 2s +1

(21)

n

, and (22)

1 1 1
(oo o e ten 1
275 Jn 2

respectively, where ¢, € [—1/2,s] C [—1/2, Smax]-

: (23)

The next lemma shows that j, is a good estimator for the optimal resolution
level j» in the sense that with probability approaching one it lies between
(1 —e(s))jy and j;; whenever f is a self-similar function in the sense of ().

Lemma 1. Assume that f € S*(B) for some $ € [Smin, Smax] and any B > 0.
a) We have for alln € N,

Pri(jn > j5) < Cexp{—2/n/8},
with C = 2/(1 — e~ 1/8)2,
b) Furthermore, if the self-similarity condition ([B) holds we also have for all
n € N such that 35 > Jy that

Pri (ju < ji(1 - £(s))) < j; exp{—(9/8)2%"}.
Proof. See Section 3.1 -

We note that by definition j > log,n/(2s' + 1) — oo hence for n large
enough j* > Jy holds uniformly over f € S(e, b, B, Jo).

As a next step we examine the new (under-smoothed) estimator of the
resolution level .J,. Assuming f € Sj(s)(b, B, Jy), the estimate Jn of Jr can be
converted into an estimate of s. We note that a given f does not necessarily
belong to a unique self-similar class Sj(s)(b,B ,Jo), but the following results
hold for any class f belongs to. We estimate s simply by

B log,m 1

n

2 2
ignoring ‘lower order’ terms in (23)). We then have from (23) that

o lomn 1 lmn log(lfla) ten 1

Sp— S = ~ ;
2j, 2 2 Jn 2
_logyn (gn—Ja ) logy([Iflls2) +cn
2 Jidn Jn



Now choose a constant k3 € (k2, 1) so that

1+/€1
R9

< Ko < kg < 1,

recalling (7). From Lemma la) we have Pry(j, — j& < 0) — 1 uniformly over
I € Usclsmmsma] S°(B), hence from the inequality j: > (logyn)/(2s" + 1) we
have for some constant C' = C(B, "), B > || f|s.2,

Pry (8, < k3s) = Pry (5, — s < (kg — 1)s)
1 jn— s\ 1
<py, 0827 (I dn) 0g2(||f|.|:*,2) ton s (1= 13)$min
2 G I
< Pry (C/logyn > (1 — K3)Smin) + o(1)=o(1).

On the other hand we also have from Lemma 1b), (22), and 0 < £(s) < 1 that

<o, (Toran (=0 _omlfl) e
2 Jidn 7
oy (B 2ms | 2008(1fla) + )
- i log, n Jilogymn
2 1— 2 2(1 — (1
< o, (st » 2D | 20 =B w6 | o
log, n log, n
2r18(1 —€(s 2r18(1 —€(s
) > 2= Tl el
208, ([|flls2) +en) | 2(1 = £(s))(ogy([[ f1]s.2) +0n))+0<1)
log, n log, n
2k15(1 —e(s))  2(k1 +1)s+1 2logy(b/2) AO
<P 1
= r1(€<5)> 25+ 1 235+ 1 logyn +ol)
K18 2log,(b/2) N O
=P 1).
b (8<S) ” (1+kK1)s+1/2 - log, n +ol)

The probability on the right hand side tends to zero for n large enough (de-
pending only on b), since

s K1 (28min + 1/2) " s - K1S
m
254+1/2 (1 +K1)Smin +1/2  254+1/2 = (1 +ky)s+1/2

e(s) <

following from the definition of k; given in () and the monotone increasing
property of the function g(s) = (2s+1/2)/[(1+ k1)s + 1/2]. Therefore we see
that on an event of probability approaching one we have

Sn € (R3s, (14 K1)s), (24)

10



and hence if we define
Sp = Sn/(2K2)

N K3 1"—/{1
Pr, (5, € [ 25, 1 25
. ( e(%s e )) (25)

as n — 0o. By choice of the k;’s we see that §,, systematically “underestimates”
the smoothness s and is contained in a closed subinterval of (s/2,s) with
probability approaching one. The ‘resolution level’” J corresponding to 5, is
J: Easy (but somewhat cumbersome) algebraic manipulations imply

we see

opl/(28n+1/2) an > nl/(28n+1/2) (26)

(where .J,, was defined in (§)). Furthermore we note that from () and j, € J
also follows

j |: 21‘{/2

n 25 + 1y log, 1, [2log, ”1] : (27)

Next we turn our attention to the analysis of the confidence set C), given in
(I0). First of all note that

= r > r 1 " 2 r "
Un(fa) = EoUn(fa) = ~ ;2: ((gh)” =2) + 7= g;n(fk ~ Fui)oi

We deal with the two random sums A,, and A’,, on the right hand side sepa-
_ 2s41/2

rately. First we show that A’ = Op,,(n” 2+ ). Note that conditionally on
the first sample the random variable A’ has Gaussian distribution with mean
zero and variance (8/n) Y, (fr—Ffur)® < (8/n)||f = full3 . Furthermore note

that || f — ang = Op, (n*22—+1) following from the adaptive construction of the
estimator f,,. Hence we can conclude following from the independence of the
samples 3y’ and y”, and Chebyshev’s inequality that for every § > 0 there exists

a large enough constant K such that A’, > K n_% with Prs-probability
less than ¢.

It remains to deal with A,,. In view of sample splitting the centered vari-
ables (2 — (g/')?) are independent of .J,, have variance o> = 8 and finite skew-
ness p > 0. From the law of total probability, ([24), (27)) and Berry-Esseen’s
theorem (Theorem (4.9) in B]) we deduce that

Pry (4, < %m) ~(1-a)|=
< [Qbfn] }Pr ( 1 223'(2_( //)2) < ) B (1—a)}Pr (j _ )
- =2k logy 1/ (28 +r2) *\2i/2 p Ik)") = Ya (=
< (3p/o®)2Kalosan/ (25 +r2) — (1), -

11



Next note that in view of f € S5(B) and Theorem H (using that || f,||ss is
uniformly bounded for f € S*(B)) the bias satisfies that

PR (F = ) = (F = F)l = O(2%5 222 (712 + 1 fall22)) = op (1),
(30)

since s > [(k1+1)/(2k2)]s > 8,, with Pry-probability tending to 1. Furthermore

following from (28) we have 22/»%» > n2-72/2. Then by using Pythagoras’
theorem, ([B0) and (28) we deduce

n2 P = fully = 2 (11K, (F = B3+ 1K, (F = £ = (F = F)I5)
=n2” Jn/2E2 (fn) + OPr1<1>
= 0202 (O(fa) + An+ A% ) + 0, (1) (31)

Following from (28]) and (26]) we obtain that (uniformly over S(e, b, B, Jy)) with
Pri-probability tending to one

s(I+k7) /Ko
2J"/2/n >n- s(tnr1)/(r2)+1/2

2s
where the right hand side is of larger order than n 2:+1/2 by the definition of
2;:—&?) and n- 2;:—;{2 —

k1 and ko. Furthermore following from A’,, = Op, ; (n
o(n” 23?1/2) we see that the right hand side of (31]) can be rewritten as

02720, (fu) + An + opr, (1) (32)

Therefore following from (B1), (82) and (29) we deduce that the confidence set
C,, given in ([I0) has exact asymptotic coverage 1 — «

Pr(f € Cu) = Pry (n2 ™21 = full3 < n2™/20,(£,) + V)

= Pry (nQ*J"/zAn < V87, + Oprf<1)> =1—a+o(1).

Finally we show that the radius of the confidence set is rate adaptive. First
we note that

2jn/4/\/ﬁ < 91/4),=5n/(28n+1/2) _ OPr, (nfs/(2s+1)>

)

following from s >3§,, > sk3/(2ks) > s/2 with Pry-probability tending to 1 and
(24). Then following from (@) and Theorem [ we conclude

EUn(fa) = Bill K (f = )l S ELlf = full3 < K(s)BY 20 s/1529),

so that the second claim of Theorem [ follows from Markov’s inequality.
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3.1. Proof of Lemma Il
a) Pick any j € J so that j > j and denote by J-=J—12=j, the
previous element in the grid. One has, by definition of 7,

Pry(j, = j) < Z Pry ()

leJg:1>j5

R -5 =< 20) 0 e

n

and we observe that

i) = fo Z gi + Z fi = Z fik.

=277 +1 =277 +1 =277 +1

Since f € S*(B) and [ > j~ > j* we have

2]‘*—1—1 2l+1
S I
n n

Z i S FIE27 =B, f) <

k=217 41

(34)

Therefore each probability in (B3]) are bounded from above by the sum of the
following probabilities

2l+1 2t 5
p 2>0x 2 ) < 129y > l+1)
r1< Z g~ > 2% - ) < Pr1< Z (g, —2)>2 (35)
k=217 41 k=277 41

and

+1 2l
<p <Z> )
n) nllzl= 7=

PI'1 (

Wherle 7 1s a Gaussian distributed random variable with mean zero and variance
QZi:y-Hf,? <242 /n following from (34). Then by Theorem @ (with t = 21+,
02 =2, and n = 2! — 277) the right hand side of (BH) is bounded from above
by

Z fran| =

k21 +1

(36)

{ 221+2/4 } - { 22l } - —21/8

exp{ — , expy — ——— e :
PUTa@ 212 —oiy S =PV gy S =

Furthermore by a standard Gaussian tail bound the probability in ([B€) is
bounded by

exp{—2'"2} < ¢ /4,

2
) /27T21/2—1

We thus obtain that

log, 1

ol 2 Y C
Pl =) £ 3 27 s y—mme ™ g 240
loggn 9 .
—2In
Pri(jn > j3) < D Pri(jn = ) (1 (Er=Toes s,
J=i%

13



For Part b), fix j € J such that j < j;(1 —¢), where € = £(s). Then by
definition of 7,

Pri(jn = 5) < Pra(fa(i) = falin) 2 < 2¢/25450 /). (37)

Now, using the triangle inequality

~ ~

1£n() = FalGll2 = 170 (5) = Fa () = Ba(fa(d) = Fa(52) + Ba(fn(G) = a2
> [|E1(fald) = faGiD 2 = 1) = Jali) = Ex(fald) = JalGi))l2

Since j < ji(1 — ) we have from the definition of self-similarity ([B]) and (2I])
that

29h 297 27+l
DRz X A2 > x5
k=27+4+1 k=2Jn(1—¢) "

so that the probability on the right hand side of (37) is less than or equal to

2in, 201 ~
1 .2 9 Qintl
Pro | —= | > ai2=4 Y -2
\/ﬁ - - n
k=27+1 k=2741

-k
2In

<Pry | ) g’ > (4—2)%20"
k=1

205
=Pry [ D (g —2) >3 x 2!
k=1

This probability on the right hand side is bounded by exp{—(9/8)2%} following
from Theorem [B (with ¢t = 3 x 29271 6% = 2 and n = 2/»). The overall result
follows by summing the above bound in j < (1 —&)j* < j.

4. Proof of Theorem

The proof of the theorem adapts ideas from the proof of Theorem 4 of
E] In this section we use the notation Prgfn) and ES”N) introduced in Section
for the distribution and expected value of y, defined in (), respectively
(there is no sample splitting in this case as in Section 2.2]). As a special case
we note that Pr(()") and Eé") denotes the distribution and expected value of
Ur = gr//n, k € N, respectively.

Let us assume that such a confidence set C,, exists and derive a contra-
diction with the help of a particularly constructed sequence (f,, : m € N) of

14



s-self-similar functions. We denote the limit of these sequences by f., which
will also be shown to be r-self-similar. Then we show that along a subsequence
Ny, of n, and for 6 = (1 — 2a)/5 > 0,

supPr (fOOEC W) <l—a—=90 (38)

contradicting (I3]).

We partition N into sets of the form Z? = {2¢,2" 4+ 1,...,2 + 21 — 1} and
Zl = {20 42171 2t 4 27t 1 2 — 1}. Let us choose a parameter s > s
satisfying r > s'(1—¢) > s(1—¢) and define self-similar sequences f,, = (fin.x),
for m € N,

9—(s/+1/2)] for | € NU{0} and k € Z?,
fog = 27CHU2iig o for i <m and k € Z}i,
0 else,

for some monotone increasing sequence j; € N tending to infinity and coeffi-
cients fj, , = £1 to be defined later. First we show that independently of the
choice of the monotone increasing sequence j; and of the coefficients 5, , = %1,
the signals f,,, and f,, satisfy the self-similarity condition.

Using the definition of f,,, the monotone decreasing property of the function
f(z) = 27 2"=%)and the inequality s > r’ one can see that

Hfm”i Z f2 kk2s < 92s'+1 Z f1m2(s'=s) 4 928 Z Z 9Ji(2s—2r'~1)

=1 keZl

< 22s/+1(1 + /00 x7172(s’7s)dx) + 92s—1 Z 2ji(2372r/)
1 i=1

25'+1 gaq  20ms72r) I
2 (1+m)+2 wEB(S,S,T,]m), (39)
where the constant B(s, s',7’, j,,) depends only on s, s’, 7’ and j,,. Furthermore
2.7
Z 2> Z f @ [(=el] o of(1=0)T1=1 _ 9=25/[(1=2)J] Jo
h=201ma ZRa-e)n
(40)

for J > [(1 —€)J] + 1, which holds for J > Jy (where Jy depends only on ¢).
Then following from the upper bound on the norm (B9) and the inequalities
s'(1 —¢€) <r < s the right hand side of ({A0) is further bounded from below by

27217 /2 > 16 x 22 B(s, 8,1, jim) 277 > 16 x 27| £, [12,27,

for J > Jy (where Jy depends on s,s' 71" e and j,,). [We note that the
dependence of Jy on j,, is harmless since n,, is defined independently of j,,,
see below. | Finally the lower bound on the Sobolev norm can be obtained via

fnl2a > D7 20 =272 s e =2 )

keZ?

15



Next we show that f., is r-self-similar. First we note that the existence of
[0 follows from the Cauchy property of the sequence (f,,) in ¢?. Furthermore
by definition we have that f. = fnr for all & < 2/m m € N. Therefore
similarly to () and (B9) the signal f. satisfies || fwl|r2 > b and

00 00
||foo||g72 _ Z fi)’kkjr < 22r/+1 Z k—1—2(r/_r)
k=1 k=1

1
2(r' —r)
hence it belongs to the Sobolev ball S™(B) with radius B = B(r,r’) depending

only on r and 7’. Then similarly to ([#0) we deduce from ([@2]) and the inequality
(1 —¢)s’ < r that

<221 4 )= B(r, 1), (42)

2J
> fh 270972 > 16 x 2 B(r, )27
k=2(1—e)J
Z 16 % 22r+1Hf00”3,2272rJ’

for J > Jy (where Jy depends only on 7', s" and ¢).

Next we give a recursive algorithm for the choice of the sequence j,, and
the parameters (5,4 : k € Zjlz) We start the sequence with jo = 1 and ng = 1.
If we assume that for 0 <4 < m —1 the parameters j; and (8),x : k € Z}) are
already chosen, then for n,, large enough (depending only on j,,_1 (through
fm-1), 0 and not on j,,) we have from (I3) and (I4) that

P (ft ¢ Cu,) S @4, (43)
Pr{"™ (|Co,| > 7,.) <6, (44)

with f,,—1 € S5(b, B, Jy), where b, Jy and B depend only on s,s, 7,7, ju_1,€
and are independent of n,,. Then we choose j,, such that

Ny = €292 +1/2), (45)
with a small enough constant ¢ satisfying
2 <14 6% (46)

We note furthermore that n, has to be chosen large enough such that j,, /7,1
is at least 14 1/(2r).
Next we define the coefficients {3, : k € Zj }. Let the kth coefficient of

the sequence f,, 3 be
Fnpk = Fmeix + Bjm,kgf(rurl/z)jm1{kez;m}7 k€N,

denote the sequence derived from the sequence f,, 1 by adding the coefficients
{827 FDim | € Z! 3. Then define

d Prgc:lm;

28 = )
dPr F

m—1
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and set Z = 272" 5 Zp, 8O E(m) (Z) = 1. Let us introduce the notation

fmwil
’7/n — nm2_(27'l+1)jm.
Then from Proposition [I] we have that
(nm) (nm)
Jp—— Z dPry ™ /d Pr,
d Pr%”ii /d Pré"’”)

B
=272 S exp{m D sk = S 1)+ (Lol = 1 fn113)/2)
Jé] k=1

— g m! Zexp{ Z (V1B Vrom Yie) — 2"y, [2) }
B

1
kez;

=277 T exp{VmmBio b/ Tk — Yo/ 2}

B kez!
Jm

By applying Fubini’s theorem, Proposition [Il the formula E(()")e\/ﬁ“yk = ev’/2
and that f,,—1, =0 for k € Z}m we see that

, 2
N, N, —92im—1
EE‘leQ - ngmf)l (2 ? Z H XD/ M B kv Vrim Yk — %m/Q})

B kezj
=272 STEM (T eplvm B+ B )V e = Y}
8,8 kez!

exp{iim > i = ol frn13/2})
k=1

_9im - fynm
=277 > 1 exp{ " (Bjuk + B i)t = Yo }

BB kezj

=272 " exp{Vnn > BinkBnt
B,8' kezj

= E(exp{7n,, Vi }):

where Y; = Efg_l R; for i.i.d. Rademacher random variables R; and E is

the corresponding expectation.
Note that following (@3 ¢ = n,,2- @' *+1/2im = 4 2im/2 and recall the
definition of the hyperbolic cosine function cosh(z) = (e¢* 4+ e *)/2. Then we

17



deduce that
21m*1
E(exp{7m,.Y;,}) = E(exp{e27"* Y R})
=1

B <6—c21'm/2 Jrec2fm/2)21'm—1
— >
— cosh(c279m/2)2m

= (14227 (1+0(1)"
<exp{c®(1/2+0(1))}
<1+6%

using the definition of ¢ given in ([@6]). Conclude that therefore

B (2 - 1)* =E{'"™) (2 — E\'"™) 7)?

fmfl
=E{'"™ 72 — (B Z)? <1+ 6% 1< 8% (47)

As a consequence of the preceding inequality if we consider the test T, =
H3f € C,., IIf — fmill2 = 7n,,} then by the Cauchy-Schwarz and Jensen’s
inequality

Pr%@l (T, =1)+ mﬁax Pr(Z'f)(T
> pri"(T,, = 1) + 272" ZPr(Z’")(Tnm =0)
=1+ Ep (2 - YT, = 0})
>1-0. (48)
We set f,, equal to f,, g maximizing the preceding expression in /3.

Then for the limiting sequence f,, we can likewise compute the likelihood
ratio

, dPrSc:om)
i
We have that ESCZ:”)[Z’] =1 and
e fuli= 3 Y 20 < (1) 3 2
i=m-+1 keZl, i=m-+1
y i oo i

S 92— 21—27” S 2 21—27"’ ) (49)

following from the definition of j,,. Let us denote by 7, j, = 1,2~ '+,
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Then similarly to the computation of E;Z"i)l [Z?%] we have

i 2
(22 =B (T T explBioky/Amimate = i /2})

i=m+1 ezl
Jiq

=B ((TT TT expl2vim B/ T = Yo} %

i=m+1 kez?!
Ji

exp{n 3 Frost — 1 fnl3/2})
k=1

o0
2
- H H exp{ 285, kVrmjs — Vmoi }
i=m+lkeZ]
1

= eXp{anfoo - me%},

where the right hand side following from ({5 and ([@J) is bounded from above
by

exp{D279m/?} < 1 4 62,

for some positive constant D (depending only on 7 and ¢) and m large enough.
Hence similarly to (47]) ES”:Z”)[(ZI —1)?] < 42 which together with (Eg)) leads to

P (T,

=1) + P N(T,, = 0) = Pr{"")(T;, =1) + E{"[Z'1{T,,, = 0}]
>1-6+E[(Z - )T, = 0}]
>1— 20. (50)

Now if C,,,, is a confidence set as in the theorem satisfying ([43)) and (44)
then we have from the definition of the test 7}, that

Pl (T, = 1) < Pt (fros ¢ Cu) + PP (10, 2 10,) < 0+ 26,

which combined with the previous display gives
P (T, =0)>1—a - 40.
By construction and (43]) we have
Voo = frn a3 > 57 B2 Cr ¥ — 9=2im jo _ (3473 o2/ 2 41/2),
kezj

and r2 = O(n;LQTI/ @r'+1/ ?)) hence the event fs, € C,, implies that C,, con-
tains an element (f.,) that is at least r,,  far away from f,,_;. We deduce the
desired contradiction

Pr{")(foo € Cp,) S PYY" (T, =1) < a+46=1—a 6.

Joo
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5. Proof of Theorem [

The proof is a standard minimax lower bound after checking that the least
favourable ‘prior’ concentrates on self-similar functions. Note that S7 ) (b, B, Jy)
is a subset of S*(B) hence it is sufficient to show that the minimax rate
over Sj(r)(b, B, Jp) is bounded below by a small enough constant multiplier
of n=*/(1+25) _ For notational simplicity we write & = £(s).

For fixed 0 < b < B < oo and given noise level we construct a set of s-
self-similar functions {f,, : m € M} and a benchmark s-self-similar function
fo. First we show that the signals f,, are sufficiently far away from each other
with respect to the £%.-norm (constant times the minimax rate far away). Then
we show that their Kullback-Leibler divergence K (-, -) from fj is small enough
to apply Theorem [ in the Appendix.

Take r > s such that s > (1 —¢&)r and using the notations of Theorem [3] let
79 =1{20204+1,...,20 42" 1} and Z} = {21+ 2071 204 2071 1, .., 20 — 1],
Then we define fo, fin; € (% as

K, 270+1U20 for € Nand k € 7,
Jor =

0 else,
and
K2~ (r+1/2)i for | € Nand k € Z?,
fmgk = § 6Bm 27 CTYDI for k € Z},
0 else,

for some coefficients §,, ;1 € {0,1} and K7,d > 0 to be defined later. Next we
show that all the above defined sequences fy and f,, ; are s-self-similar.

First of all we show that their || - ||;2-norm is bounded from below by b.
From definition we have

fmsllie = I foll2e = K3y 2702,

leN kez?

where the right hand side is finite and depends only on the choice of s and 7.
We choose K such that the right hand side of the preceding display is equal
to b2

As a next step we verify that f, and f,, ; are in S*(B)

[e.e]
follZa < W fmallia =D Frnjuk™
k=1

S K12 Z Z 2__(1-1—27")1]{:25 + 22552 Z BE{L,J‘JgZ_j

leN kezp keZ}
:b2 _'_5222371

It is easy to see that for small enough choice of the parameter § > 0 the right
hand side is bounded above by B? (the choice §* < (B*—b%)2'72 is sufficiently
good) hence both f; and f,, ; belong to the Sobolev ball S*(B). Then we show
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that fy satisfies the lower bound (B)) as well. Similarly to the proof of Theorem
we have following from (1 —¢) < s that

2J
Yo k= ) fow=(Kij2)2 0

—9(1—¢e)J 0
k=2(1—¢) kEZY o0

Z 16 x 21-‘,—25322—28] Z 16 x 21+28||f0||§’22—28‘]’

for J > Jy (where the parameter .Jy depends only on r,s, B and ). The
s-self-similarity of the functions f,, ; follows exactly the same way.

Next we define the sequences f,, (m € M) with the help of the sequences
fm.;, such that the ¢2-distance between them is sufficiently large. It is easy to
see that

| fmgite = Forgill3 = 277062 " (B — B jur)-

1
ker

Then following from the Varshamov-Gilbert bound (@]) there exist a subset
M, c {0,114 with cardinality M; = 22'/'6 such that

> Bk = B i) > 216,

keZj
for any m # m’e M. Therefore
1 fong = fr sll3 = (6%/16)27%%,

for m # m’ € M. Then choosing j = j, such that j,, = [logyn/(1 + 2s)| the
fn = [, sequences are 2 x (62/25)n=2s/(1429) geparated and are satisfying
the self-similarity condition.

The KL-divergence is bounded by

n nN__; (2s
K(Prg,, Pry,) = Sllfm — folly = 27@ 4062 37 52
kezj
225+12jn52 225—}—352

< <
- 4 ~— In2

In M]n

Therefore we can conclude the proof by applying Theorem [ with 0 < ¢ <
V/2725-41n 2 (since in this case a = (22°73/1In2)§? < 1/2, hence the constant
on the right hand side of (A1) is positive) and r, = (§2/2%)n=2/(1+29),

Appendix A.

We collect here some basic background material used in the proofs, most
of which can be found or proved as in M] or [Iﬂ]

Theorem 4. Consider the Gaussian sequence model ([Il) and assume that the
true sequence [ € €% belongs to a collection of Sobolev balls Useps, .. 5....15%(B)

Smax
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for some fized 0 < spin < Smax < 00 and (unknown) B > 0. Then there
exists a rate adaptive estimator f, € (2 over Usels,.. smax] S (B), i.€., for every
s e [Smina Smax]7 B > O

sup Ef||fn — flla < K(s)BY@ s/ @51,
fess(B)

where 0 < K (s) < 0o is a fired constant. We can moreover take fn such that
| falls.2 = Opr, (1) uniformly in f € S*(B).

Theorem 5. Suppose F contains {f, : m = 0,1,..M}, M > 1, that are
2r, separated (d(fm, fmr) > 2rn, Ym # m'), and such that the Pry, are all
absolutely continuous with respect to Pry, . Set M = max{e, M} and assume
that for some o > 0

M
1 _
i E K(Pry,,,Pry) < alog M.
m=1

Then the minimaz risk from is lower bounded by

. M 2
wtsup By ) 2 (12— [20)
fn feF 1+VM log M
Proposition 1. For the Gaussian vector (yx : k € Z) from (1) denote by
Prgcn) the product corresponding law on the cylindrical o-algebra C of RZ. If

(fr.: k€Z) € (? then Prgc") is absolutely continuous with respect to Pri", and

the likelihood ratio, for Pr(()") 1S given by

dPI'(n) n
oo o 2

oty = e {n ) fun— 51} (A1)
0 keZ

Theorem 6. Let g;, i = 1,...,n, be i.i.d. N(0,0?%) and set X = """ (g7 —0?).
Then for any t > 0,

Pry(X > 1) <exp{ - %}

and the same inequality holds for —X.
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