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Real-world multilayer networks feature nontrivial dependencies among links of different layers. Here we
argue that if links are directed, then dependencies are twofold. Besides the ordinary tendency of links of different
layers to align as the result of “multiplexity,” there is also a tendency to antialign as a result of what we call
“multireciprocity,” i.e., the fact that links in one layer can be reciprocated by opposite links in a different layer.
Multireciprocity generalizes the scalar definition of single-layer reciprocity to that of a square matrix involving all
pairs of layers. We introduce multiplexity and multireciprocity matrices for both binary and weighted multiplexes
and validate their statistical significance against maximum-entropy null models that filter out the effects of node
heterogeneity. We then perform a detailed empirical analysis of the world trade multiplex (WTM), representing
the import-export relationships between world countries in different commodities. We show that the WTM
exhibits strong multiplexity and multireciprocity, an effect which is, however, largely encoded into the degree or
strength sequences of individual layers. The residual effects are still significant and allow us to classify pairs of
commodities according to their tendency to be traded together in the same direction and/or in opposite ones. We
also find that the multireciprocity of the WTM is significantly lower than the usual reciprocity measured on the
aggregate network. Moreover, layers with low (high) internal reciprocity are embedded within sets of layers with
comparably low (high) mutual multireciprocity. This suggests that, in the WTM, reciprocity is inherent to groups
of related commodities rather than to individual commodities. We discuss the implications for international trade
research focusing on product taxonomies, the product space, and fitness and complexity metrics.
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I. INTRODUCTION

Several real-world systems are composed of intricately
interconnected units, thus exhibiting a nontrivial network
structure. The behavior and dynamics of such systems
are strongly dependent on how information can propagate
throughout the network. Both the directionality and the
intensity of connections crucially affect this process and
should possibly be incorporated in the network description.
For instance, most of the communication relations among
individuals, such as exchanges of letters, e-mails, or texts, are
intrinsically directional and are therefore best represented as
directed networks [1]. Furthermore, such interactions typically
have heterogeneous intensities, calling for a description in
terms of weighted networks [2].

Recently, it has been realized that many real-world systems
often require an even more detailed representation, because
a given set of units can be connected by different kinds of
relations. This property can be abstractly captured in terms of
so-called edge-colored graphs (where links of different colors
are allowed among the same set of nodes) or, equivalently,
multilayer or multiplex networks (where the same set of nodes
is replicated in multiple layers, each of which is an ordinary
network) [3,4]. The nontrivial properties of these systems,
with respect to ordinary single-layer (“monochromatic” or
“monoplex”) networks, arise from the facts that the various
layers are interdependent and the presence of a link in one
layer can influence the presence of a link in a different
layer. A clear example is represented by the different kinds

of relationships existing between employees in a university
department [5], where individuals can be connected by coau-
thorship, common leisure activities, online social networks,
etc. The interdependence of layers implies that the topological
properties usually defined for monoplex networks admit
nontrivial generalizations to multiplex networks and that some
properties which are uninteresting, or even undefined, for
single-layer networks become relevant for multiplexes.

This paper introduces metrics characterizing the depen-
dencies among layers in multiplexes with directed links.
While various measures of interlayer overlap for multiplexes
have already been introduced [6,7], they suffer from two
main limitations. First, most definitions are available only for
multiplexes with undirected links, and their straightforward
generalization to the directed case would overshadow impor-
tant properties that are inherent to directed networks, most
importantly the reciprocity (which is one of our main focuses
here). Second, even in “trivial” multiplexes where there is no
dependence among layers (i.e., in independent superpositions
of single-layer networks with the same set of nodes), a certain
degree of interlayer overlap can be created entirely by chance.
This effect becomes more pronounced as the density of the
single-layer networks increases and as the correlation among
single-node properties (like degrees or strengths) across layers
increases. For instance, if a node is a hub in multiple layers,
then there is an increased chance of overlap among these
layers, even if the presence of links in one layer is assumed
not to influence the presence of links in another layer.
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The two limitations discussed above highlight the need
to define metrics that appropriately filter out both global
(network-wide) and local (node-specific) density effects.
Correlation-based measures of interlayer overlap have been
proposed with this aim in mind [8]. However, as recently
pointed out [9], correlation-based metrics for multiplexes are
not a correct solution in general, because they implicitly
assume that edges observed between different pairs of nodes
are sampled from the same probability distribution. This
assumption is strongly violated in real-world networks, whose
markedly heterogeneous topology is a signature of very
different probabilities for edges emanating from different
nodes, e.g., the probability of links being found around more
important nodes clearly differs from the probability of links
being found around less important nodes.

The above considerations motivate us to introduce new mul-
tiplexity metrics that explicitly take the directionality of links
into account and appropriately filter out the spurious effects
of chance, while controlling for the extreme heterogeneity
of empirical node-specific properties. In this paper we carry
out this program by extending recent “filtered” definitions
of multiplexity [9], originally defined for undirected links,
to the case of directed links. Although this might seem a
straightforward procedure at first, we will in fact show that
it requires different null models, triggers concepts, and leads
to quantities that are undefined in the undirected case. Indeed,
while in the undirected case there is only one possible notion
of dependency among links in different layers, in the directed
case there are two possibilities, depending on whether links
are “aligned” or “anti-aligned.”

Aligned links between two layers are observed when a
directed link from node i to node j exists in both layers. This
situation is the straightforward analog of what can happen in
undirected multiplex networks and is a signature of the fact
that the connection from i to j is relevant for multiple layers.
We will denote this effect simply as multiplexity, in analogy
with the undirected case [9], and will study it in the general
case of an arbitrary number of layers. By contrast, antialigned
links form between two layers when a link from node i to node
j in one layer is reciprocated by an opposite link from node
j to node i in the other layer. This situation does not have
a counterpart in the case of undirected multiplexes and leads
us to the definition of the concept of multireciprocity, i.e., the
generalization of the popular concept of reciprocity to the case
of multiplex networks.

In monoplex networks—either binary [10] or weighted
[11]—reciprocity is defined as the tendency of vertex pairs
to form mutual connections. This property, which is one of the
best-studied properties of single-layer directed networks, can
crucially affect various dynamical processes such as diffusion
[12], percolation [13], and growth [14,15]. For instance, the
presence of directed, reciprocal connections can lead to the
establishment of functional communities and hierarchies of
groups of neurons in the cerebral cortex [16].

In binary graphs, a simple measure of reciprocity is the
ratio of the number of reciprocated links (i.e., realized links
for which the link pointing in the opposite direction between
the same two nodes is also realized) to the total number of
directed links. However, it has been shown [10] that this
measure is not per se informative about the actual tendency

towards reciprocation, because even in a random network
a certain number of reciprocated links will appear. So the
number of observed mutual interactions has to be compared
with the expected number obtained for a given random null
model if one wants to understand whether mutual links are
present in the real network significantly more (or less) often
than in the random benchmark [17]. It is therefore crucial
to make use of proper null models for networks. Since in
most real-world directed networks the distribution of the
number of in-coming and out-going links (i.e., the in-degree
and out-degree) of nodes is very broad, an appropriate null
model should fix the in- and out-degrees of all nodes equal
to their observed values. The null model of directed networks
with given in- and out-degrees often goes under the name
of the directed binary configuration model (DBCM) [18]. The
rationale underlying the DBCM is the consideration that the in-
and out-degree of a node might reflect some intrinsic “size,”
or other characteristic, of that node; therefore a null model
tailored for a specific network should preserve the observed
degree heterogeneity. Conveniently, the DBCM is also the
correct null model to use when measuring the multiplexity
among layers of a multiplex with directed links. Indeed, the
DBCM is the directed generalization of the undirected binary
configuration model used in Ref. [9] for the definition of
appropriately filtered, undirected multiplexity metrics. This
nicely implies that we can use the DBCM as a single null model
in our analysis of both multiplexity and multireciprocity.

Recently, the definition of reciprocity has been extended
to weighted networks [11]. A simple measure of weighted
reciprocity is the ratio of “total reciprocated link weight” to
total link weight, where the reciprocated link weight is defined,
for any two reciprocated links, as the minimum weight of
the two links. Similarly to the binary case, some level of
weighted reciprocity can be generated purely by chance. So
the empirical measure has to be compared to its expected value
under a proper null model, represented in this case by a random
weighted network where each node has the same in-strength
and out-strength (i.e., total in-coming link weight and total
out-going link weight, respectively) as in the real network.
This null model is sometimes called the directed weighted
configuration model (DWCM) [19] and, conveniently, is also
the relevant null model (generalizing its undirected counterpart
[9]) to study the multiplexity in presence of weighted directed
links.

We stress that the concept of reciprocity has not been
generalized to multiplex networks yet. Our definition of
multireciprocity represents the first step in this direction and
captures the tendency of a directed link in one layer of a
multiplex to be reciprocated by an opposite link in a possibly
different layer. While ordinary reciprocity can be quantified
by a scalar quantity, multireciprocity requires a square matrix
where all the possible pairs of layers are considered. Similarly,
the multiplexity also requires a square matrix. Together, the
multiplexity matrix and the multireciprocity matrix represent
the two “directed” extensions of the undirected multiplexity
matrix that has recently been introduced [9] to characterize
undirected (either binary or weighted) multiplexes.

The rest of the paper is organized as follows. In Sec. II we
introduce our methods, null models, and main definitions for
both binary and weighted multiplexes. In Sec. III we apply our
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techniques to the analysis of the world trade multiplex (WTM),
a directed weighted multiplex representing the import-export
relations between countries of the world in different products.
We identify a number of empirical properties of the WTM that
are impossible to access via the usual aggregate (monoplex)
analysis of the network of total international trade. We finally
conclude the paper in Sec. IV, where we discuss some
important implications of our results, both for the general
study of multiplex networks and for more specific research
questions in international trade economics. Several necessary
technical details are given in the Appendices.

II. MULTIPLEXITY AND MULTIRECIPROCITY METRICS

In this section we give definitions of multiplexity and
multireciprocity metrics for both binary and weighted mul-
tiplexes. These definitions require, as a preliminary step, the
introduction of appropriate null models. In turn, null models
require the choice of a convenient notation. We address these
points in the resulting order.

We represent a directed multiplex
−→
G = (G1, . . . ,GM ) as

the superposition of M-directed networks (layers) Gα (α =
1, . . . ,M), all sharing the same set of N nodes [3]. Links can
be either binary or weighted. In the binary case, each layer
α is represented by a N × N binary adjacency matrix Gα =
(aα

ij )Ni,j=1, where aα
ij = 0,1 depending on whether a directed

link from node i to node j is absent or present, respectively.
In the weighted case, each layer α is represented by a N × N

non-negative integer adjacency matrix Gα = (wα
ij )Ni,j=1, where

wα
ij = 0,1, . . . ,∞ is the weight of the directed link from node

i to node j (wα
ij = 0 indicating the absence of such link). We

denote by GN the set of all (binary or weighted) single-layer
graphs with N nodes and by GM

N ≡ (GN )M the set of all (binary
or weighted) M-layer multiplexes with N nodes.

A. Null models of multiplex networks: maximum entropy
and maximum likelihood

Since our purpose is that of measuring correlations between
directed links (possibly, in opposite directions) in different
layers, we define independent reference models for each layer
of the multiplex, thus creating an uncorrelated null model for
the entire multiplex [7,9]. This means that ifP(

−→
G |−→θ ) denotes

the joint probability of the entire multiplex
−→
G ∈ GM

N (given a

set of constraints enforced via the vector
−→
θ of parameters, see

Appendix A) and

P α(Gα|−→θα ) ≡
∑

G1∈GN

· · ·
∑

Gβ∈GN

· · ·
∑

GM∈GN︸ ︷︷ ︸
β �=α

P(
−→
G |−→θ ) (1)

denotes the (marginal) probability for the single-layer graph
Gα ∈ GN (given a set of layer-specific constraints enforced via
the partial vector

−→
θα ), then we require the null model to obey

the factorization property

P(
−→
G |−→θ ) =

M∏
α=1

P α(Gα|−→θα ). (2)

The above property ensures that the definition of the null model
for the entire multiplex reduces to the definition of independent
null models for each layer separately (see Appendix A for a
rigorous derivation).

In the case of binary multiplexes, the null model we want to
use to control for the heterogeneity of nodes in each layer is,
as we have already mentioned, the DBCM [20,21], defined
as the ensemble of binary networks with given in-degree
and out-degree sequences. At this point, we have to make
a major decision, since the DBCM can be implemented either
microcanonically or canonically.

In the microcanonical approach, node degrees are “hard,”
i.e., enforced sharply on each realization. The most popular
microcanonical implementation of the DBCM is based on the
random degree-preserving rewiring of links [18] (or the local
rewiring algorithm), which, unfortunately, introduces a bias.
This bias arises because, if the degree distribution is suffi-
ciently broad (as in most real-world cases), the randomization
process explores the space of possible network configurations
not uniformly, giving higher probability to the configurations
that are “closer” to the initial one [22] (more details are given in
Appendix B). Another possible microcanonical implementa-
tion, based on the random matching of “edge stubs” (half links)
to the nodes, creates undesired self-loops and multiple edges
[18,23]. Besides these limitations, microcanonical approaches
are computationally demanding. Indeed, in order to measure
the expected value of any quantity of interest, it is necessary
to generate several randomized networks, on each of which
the quantity needs to be calculated. This sampling method is
per se very costly, and even more so in the case of multiplex
networks, due to the presence of several layers requiring a
further multiplication of iterations (see Appendix B).

By contrast, in the canonical implementation [20,21] of
the DBCM the in- and out-degrees are “soft,” i.e., preserved
only on average. The resulting probability distribution over
the ensemble of possible graphs is obtained analytically by
maximizing the entropy subject to the enforced constraints
[20,24–26] (see Appendix A for details). This procedure leads
to the class of models also known as exponential random
graphs or p� models [27–29]. In order to fit such exponential
random graphs to real-world networks, we adopt an exact,
unbiased, and fast method [20,21] based on the maximum
likelihood principle [30]. The method is summarized in
Appendix B and implemented in our analysis using the so-
called maximize-and-sample (MAX&SAM) algorithm [21].
The latter yields the exact probabilities of occurrence of any
graph in the ensemble and the explicit expectation values of
the quantities of interest. This has the enormous advantage
that an explicit sampling of graphs is not required: expectation
values are calculated analytically and not as sample averages.
In particular, the probability pα

ij that a link from node i to
node j is realized in layer α (aα

ij = 1) can be easily calculated.
From the set of all such probabilities, the expected value of
the multireciprocity can be computed analytically and directly
compared with the empirical value in order to obtain a filtered
measure.

We now come to the case of multiplexes with weighted
links. In this case, we want the enforced constraints to
be the in-strength and out-strength sequences of the real
network, separately for each layer. The corresponding model is
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sometimes referred to as the DWCM [11]. As for the binary
case, we want to build the null model canonically as a
maximum-entropy ensemble of weighted networks, leading
to a weighted exponential random graph model [11,20]. The
implementation we use is again based on the MAX&SAM
algorithm [21], which in this case calculates the exact
probability that, in the null model, the weight of the directed
link connecting node i to node j in layer α has a particular
value wα

ij for each pair of nodes and each layer. From this
probability, the expected weighted multireciprocity can be
computed analytically and compared with the empirical one,
thus producing a filtered value that, in this case as well, does
not require the explicit sampling of graphs.

B. Binary multiplexity and multireciprocity

Our first set of main definitions are specific for multiplexes
with binary links. Consider a directed and binary multiplex
�G with M layers. We quantify the similarity and reciprocity
between any two layers α and β by defining the binary
multiplexity m

α,β

b and multireciprocity r
α,β

b as follows:

m
α,β

b = 2
∑

i

∑
j �=i min

{
aα

ij ,a
β

ij

}
Lα + Lβ

= 2Lα⇒β

Lα + Lβ
, (3a)

r
α,β

b = 2
∑

i

∑
j �=i min

{
aα

ij ,a
β

ji

}
Lα + Lβ

= 2Lα�β

Lα + Lβ
, (3b)

where Lα = ∑
i

∑
j �=i aα

ij represents the total number of
directed links in layer α (analogously for layer β), Lα⇒β =∑

i

∑
j �=i min{aα

ij ,a
β

ij } is the number of links of layer α that are
multiplexed in layer β (clearly, Lα⇒β = Lβ⇒α), and Lα�β =∑

i

∑
j �=i min{aα

ij ,a
β

ji} is the number of links of layer α that
are reciprocated in layer β (clearly, Lα�β = Lβ�α). Note
that possible self-loops (terms of the type aα

ii) are deliberately
ignored because they are indistinguishable from links pointing
in the opposite direction, thus making their contribution to
either multiplexity or multireciprocity undefined.

Equations (3) can be regarded as defining the entries
of two M × M matrices, which we will call the binary
multiplexity matrix Mb = (mα,β

b )α,β and the binary multire-
ciprocity matrix Rb = (rα,β

b )α,β , respectively. The matrices Mb

and Rb represent the two natural extensions, to the case of
directed multiplexes, of the single binary multiplexity matrix
introduced in Ref. [9] for undirected binary multiplexes. Both
matrices provide information about the “overlap” between
directed links connecting pairs of nodes in different layers.
Their entries range in [0,1] and are maximal only when layers
α and β are, respectively, identical (i.e., aα

ij = a
β

ij for all i �= j )

and fully “multireciprocated” (i.e., aα
ij = a

β

ji for all i �= j ).
The matrix Mb has by construction a unit diagonal, since
the intralayer multiplexity trivially has the maximum value
m

α,α
b = 1 for all α. By contrast, the diagonal of Rb is nontrivial

and of special significance, as the intralayer multireciprocity
r

α,α
b reduces to the ordinary definition of binary reciprocity for

monoplex networks [10].
For “trivial,” uncorrelated multiplexes made of sparse

noninteracting layers with narrow degree distributions, the
matrix Mb would asymptotically (i.e., in the limit of large

N but not necessarily large M) be the M × M identity
matrix, and the matrix Rb would asymptotically be a M × M

diagonal matrix. This is because, in the presence of sparse
uncorrelated layers without hubs, the chance of a link in one
layer “overlapping” with a (mutual) link in a different layer
is negligible. For finite and/or dense networks and/or broad
degree distributions, however, positive values of m

α,β

b and r
α,β

b

(with α �= β) can be produced entirely by chance even in a
multiplex with no dependencies among layers. For instance, if
the same node is a hub in multiple layers, then the chance of
a large overlap of links among all pairs of such layers is very
high, even if the layers are noninteracting.

The above considerations imply that, in order to extract
statistically significant information about the tendency towards
multiplexity and multireciprocity in a real-world multiplex, it
becomes necessary to compare the empirical values of m

α,β

b

and r
α,β

b with the corresponding expected values calculated
under the chosen null model of independent multiplexes with
given degrees (i.e., the DBCM). Hence, we introduce the
transformed binary multiplexity and multireciprocity matrices
with entries

μ
α,β

b = m
α,β

b − 〈
m

α,β

b

〉
DBCM

1 − 〈
m

α,β

b

〉
DBCM

(α �= β), (4a)

ρ
α,β

b = r
α,β

b − 〈
r

α,β

b

〉
DBCM

1 − 〈
r

α,β

b

〉
DBCM

, (4b)

where 〈·〉DBCM denotes the expected value under the DBCM.
Note that, since 〈mα,α

b 〉DBCM = m
α,α
b = 1 for all α, we formally

set the diagonal terms μ
α,α
b ≡ 1, as the definition (4a) would

produce an indeterminate expression if extended to α = β. The
explicit calculation of the above expected values is provided in
Appendix C and more details are provided later in this section.

The filtered quantities (4) are directly informative about
the presence of dependencies between layers. Positive values
represent higher-than-expected multiplexity or multireciproc-
ity (correlated or “attractive” pairs of layers), while negative
values represent lower-than-expected quantities (anticorre-
lated or “repulsive” pairs of layers). Pairs of uncorrelated
(“noninteracting”) layers are characterized by multiplexity and
multireciprocity values comparable with 0. In principle, a layer
that is uncorrelated with all other layers can be separated from
the multiplex and analzed separately from it.

The choice of the denominator of (4a) and (4b), a priori
not obvious, guarantees that the maximum value for the
transformed multiplexity and multireciprocity is 1. Moreover,
it ensures that ρ

α,α
b reduces to the rescaled reciprocity ρb

defined for single-layer networks [10]. It should also be noted
that the multiplexity defined in (3a) is just the normalized
version of the interlayer overlap introduced in Refs. [6] and [7],
extended to directed multiplex networks. In this context, the
contribution that we give is the comparison with a null model.
Indeed, while (3a) only provides information about the raw
similarity of the layers, which is strongly density dependent,
the transformed measure (4a) is mapped to a universal interval.
In combination with the z scores that we introduce later, it can
be used to consistently compare the statistical significance of
the multiplexity of different systems. The quantity defined in
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(3b), which focuses explicitly on the reciprocity properties of
the multiplex, has never been introduced before, along with its
transformed quantity defined in (4b). The latter can be used for
a consistent comparison of the multireciprocity of mutiplexes
with different densities.

The calculation of the expected values of m
α,β

b and r
α,β

b

under the DBCM can be carried out analytically using the
MAX&SAM method [21], with no need to actually randomize
the empirical network or numerically sample the null model
ensemble. Ultimately, the calculation requires the computation
of the expected value of the minimum between two binary
random variables (see Appendix C). If pα

ij ≡ 〈aα
ij 〉DBCM de-

notes the probability that, under the DBCM, a directed link is
realized from node i to node j in layer α, then the adjacency
matrix entry aα

ij is described by the Bernoulli mass probability
function,

P
(
aα

ij

) = (
pα

ij

)aα
ij
(
1 − pα

ij

)(1−aα
ij )

. (5)

Using the above equation, and given the explicit expression
for pα

ij , it is possible to calculate μ
α,β

b and ρ
α,β

b analytically as
reported in Appendix C.

It is instructive to compare the multivariate quantities
measured on the multiplex with the corresponding scalar quan-
tities defined on the aggregate monoplex network obtained by
combining all layers together. This comparison can highlight
the gain of information resulting from the multiplex repre-
sentation, with respect to the ordinary monoplex projection
where all the distinct types of links are treated as equivalent.
The binary aggregate monoplex can be defined in terms of the
adjacency matrix with entries

amono
ij = 1 −

M∏
α=1

(
1 − aα

ij

) =
{

1 if ∃α : aα
ij = 1

0 otherwise
. (6)

For the quantities we defined so far, the only meaningful com-
parison between the multiplex and the aggregate network can
be done in terms of the reciprocity, because the multiplexity of
the aggregate is mmono

b = 1 by construction. The single, global
reciprocity of the aggregated monoplex network is given by

rmono
b =

∑
i

∑
j �=i min

{
amono

ij ,amono
ji

}
Lmono

, (7)

where Lmono = ∑
i

∑
j �=i a

mono
ij . Similarly, it is possible to

define the corresponding filtered quantity ρmono
b , in analogy

with (4b).
The transformed quantities μ

α,β

b and ρ
α,β

b defined in (4)
capture the similarity and reciprocity between layers of a
multiplex via a comparison of the empirical values with the
expected values under a null model. However, those quantities
do not consider any information about the variances of the
values of multiplexity and multireciprocity under the null
model, thus giving no direct information about statistical
significance. In particular, even multiplexes sampled from the
null model with independent layers would be characterized by
small, but in general nonzero, values of μ

α,β

b and ρ
α,β

b . This
makes it difficult to disentangle, for an observed real-world
multiplex, weak interlayer dependencies from pure noise.
Moreover, the random fluctuations around the expectation
values will in general differ for different pairs of layers,

potentially making the comparison of the values of μ
α,β

b and
ρ

α,β

b for different pairs of layers misleading. To overcome these
limitations, we define the z scores associated to m

α,β

b and r
α,β

b

as:

z
(
m

α,β

b

) = m
α,β

b − 〈
m

α,β

b

〉
DBCM√〈(

m
α,β

b

)2〉
DBCM − 〈

m
α,β

b

〉2
DBCM

(α �= β), (8a)

z
(
r

α,β

b

) = r
α,β

b − 〈
r

α,β

b

〉
DBCM√〈(

r
α,β

b

)2〉
DBCM − 〈

r
α,β

b

〉2
DBCM

. (8b)

As for the quantities defined in (4), it is possible to obtain
an analytical expression for the z scores as well. This is shown
in detail in Appendix C.

Each z score in (8) has the same sign as the corresponding
quantity in (4), since the numerator is the same and both have
positive denominators. However, except for the common sign,
the two sets of quantities can have a priori very different
values. In particular, the z scores count the number of standard
deviations by which the observed raw quantities deviate from
their expected values under the null model. As such, they are
useful in order to understand whether small measured values
of μ

α,β

b or ρ
α,β

b are actually consistent with zero within a
small number of standard deviations, in which case we can
consider the layers α and β as uncorrelated. We point out that,
in general, z scores have a clear statistical interpretation only
if their distribution is Gaussian under repeated realizations of
the model. In our case, although the quantities m

α,β

b and r
α,β

b

are not truly normally distributed under the null model, they
are defined as the sum of many independent 0/1 random vari-
ables (of the type min{aα

ij ,a
β

ij } or min{aα
ij ,a

β

ji}, respectively),
which all have variance in the interval (0,1/4] and are thus
approximately described by a central limit theorem ensuring
an asymptotic convergence to the normal distribution. We can
therefore consider as statistically significant all the z scores
having an absolute value larger than a given threshold, which
we set at zc = 2. This selects the observed pairs of layers with
values of multiplexity and/or multireciprocity that differ from
their expectation values by more than 2 standard deviations,
i.e., with |z| > zc.

C. Weighted multiplexity and multireciprocity

We now move to our second set of definitions, valid for
weighted multiplexes. In analogy with (3), we define the
weighted multiplexity and multireciprocity matrices Mw and
Rw having entries

mα,β
w = 2

∑
i

∑
j �=i min

{
wα

ij ,w
β

ij

}
Wα + Wβ

= 2Wα⇒β

Wα + Wβ
, (9a)

rα,β
w = 2

∑
i

∑
j �=i min

{
wα

ij ,w
β

ji

}
Wα + Wβ

= 2Wα�β

Wα + Wβ
, (9b)

where Wα = ∑
i

∑
j �=i w

α
ij is the total weight of the

links in layer α (analogously for layer β), Wα⇒β =∑
i

∑
j �=i min{wα

ij ,w
β

ij } is the total link weight of layer α

that is multiplexed in layer β (clearly, Wα⇒β = Wβ⇒α), and
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Wα�β = ∑
i

∑
j �=i min{wα

ij ,w
β

ji} is the total link weight of
layer α that is reciprocated in layer β (clearly, Wα�β =
Wβ�α). The matrices Mw and Rw represent the two gen-
eralizations, for directed multiplexes, of the weighted multi-
plexity matrix introduced in Ref. [9] for undirected weighted
multiplexes. Like their binary counterparts, both matrices have
entries in the range [0,1], the maximum value being attained by
identical (wα

ij = w
β

ij for all i,j ) and fully “multireciprocated”

(wα
ij = w

β

ji for all i,j ) layers, respectively. In analogy with
the corresponding binary case, the diagonal of Mw has all unit
entries while that of Rw has entries that coincide with the recent
definition of reciprocity for weighted monoplex networks [11].

In this case as well, for trivial multiplexes with sparse
noninteracting layers and narrow strength distributions, the
two matrices are expected to be asymptotically diagonal.
However, this is no longer true in the presence of dense layers
and/or for broad strength distributions, and we therefore need
a comparison of the raw quantities with their expected value
under a null model (now the DWCM). This consideration leads
us to introduce the transformed weighted multiplexity and
multireciprocity matrices with entries

μα,β
w = mα,β

w − 〈
mα,β

w

〉
DWCM

1 − 〈
m

α,β
w

〉
DWCM

(α �= β), (10a)

ρα,β
w = rα,β

w − 〈
rα,β
w

〉
DWCM

1 − 〈
r

α,β
w

〉
DWCM

, (10b)

where 〈·〉DWCM denotes the expected value under the DWCM.
As in the binary case, we can derive an analytical expression
for the expected values that ultimately requires the expectation
of the minimum of wα

ij and w
β

ij (or w
β

ji). This is done
in Appendix D. It turns out that, under the DWCM, the
distribution of link weights is geometrical [11,21]:

P
(
wα

ij

) = (
pα

ij

)wα
ij
(
1 − pα

ij

)
, (11)

where pα
ij denotes again the probability that a directed link (of

any positive weight) from node i to node j is realized in layer
α. The above probability can be used to calculate μα,β

w and
ρα,β

w analytically as discussed in Appendix D.
The weighted multireciprocity of the multiplex can be

conveniently compared with the weighted reciprocity of the
aggregated monoplex network. The link weights of the latter
are defined by

wmono
ij =

M∑
α=1

wα
ij , (12)

and the associated aggregate weighted reciprocity [11] is

rmono
w =

∑
i

∑
j �=i min

{
wmono

ij ,wmono
ji

}
Wmono

(13)

(where Wmono = ∑
i

∑
j �=i wmono

ij ). The corresponding filtered
value ρmono

w can be defined as in (10b).

In analogy with the binary case, it is possible to define the
z scores associated to mα,β

w and rα,β
w as follows:

z
(
mα,β

w

) = mα,β
w − 〈

mα,β
w

〉
DWCM√〈(

m
α,β
w

)2〉
DWCM − 〈

m
α,β
w

〉2
DWCM

(α �= β), (14a)

z
(
rα,β
w

) = rα,β
w − 〈

rα,β
w

〉
DWCM√〈(

r
α,β
w

)2〉
DWCM − 〈

r
α,β
w

〉2
DWCM

. (14b)

The explicit analytical expressions for these z scores are
calculated in Appendix D. Again, the z scores (14) have the
same signs as the corresponding quantities (10), but in addition
they allow us to test for statistical significance using, e.g., a
threshold of zc = 2.

III. EMPIRICAL ANALYSIS OF THE WORLD
TRADE MULTIPLEX

In this section, we apply the framework defined so far to the
analysis of a real-world system. This system is the WTM, de-
fined as the multilayer network representing the directed trade
relations between world countries in different commodities.
At both the binary and the weighted levels, the structure of the
aggregate (monoplex) version of this network is well studied
[31–33], as well as that of many of its layers separately [8,34].
However, much less is known about the interlayer dependen-
cies in the WTM. In particular, an assessment of the interlayer
couplings that are not simply explained by the local topological
properties of the WTM has been carried out only for the
undirected version of the network [9]. Given the importance of
the directionality of trade flows, especially at the disaggregated
level of individual commodities, it is therefore important to
carry out a directed analysis of the WTM. The tools we have
introduced in the previous section allow us to make this step
and arrive at a novel characterization of the WTM where
the undirected multiplexity properties documented in Ref. [9]
are resolved into their two directed components, namely
multiplexity and multireciprocity. These results have important
potential implications for problems related to research on
international trade, such as the definition of trade-based
“product taxonomies” [8], the construction of the “product
space” [35], and the calculation of “fitness and complexity”
metrics [36]. These points are discussed later in Sec. IV.

A. Data

We use the BACI-Comtrade data set [37] where inter-
national trade flows among all countries of the world are
disaggregated into different commodity classes at the two-
digit resolution level, defined as in the standard HS1996
classification [38] of traded goods. It is possible to represent
this data set as a multiplex as in Refs. [8,9,34]. In particular, we
will consider a multilayer representation defined by N = 207
nodes (countries) and M = 96 layers (commodities) for the
year 2011. Since each trade exchange is reported by both the
importer and the exporter (and the two values may in general
differ), the data set uses a reconciliation procedure to get a
unique value for each flow (see Ref. [37] for details). All the
resulting trade volumes are expressed in thousands of dollars
in the data set. Since our approach works for integer link

042316-6



MULTIPLEXITY AND MULTIRECIPROCITY IN DIRECTED . . . PHYSICAL REVIEW E 94, 042316 (2016)

FIG. 1. Top panels: Color-coded binary multiplexity matrix Mb (a) and corresponding distribution of off-diagonal multiplexity values m
α,β

b

(with α �= β) (b). Bottom panels: Same as for the top panels but with raw binary multiplexity m
α,β

b replaced by rescaled binary multiplexity
μ

α,β

b .

weights, all the reported trade values have been rescaled by
first dividing by 10 and then rounding to the closest integer.
This defines our integer link weights {wα

ij } for all layers. For
each entry wα

ij , we then define aα
ij = 1 if wα

ij > 0 and aα
ij = 0

otherwise. We point out that the rounding procedure does not
significantly affect the structure of the system under study, as
the percentage of original links which are lost (i.e., rounded to
zero) is negligible.

From the multiplex trade flows we also compute the aggre-
gate binary and weighted links amono

ij and wmono
ij between any

two countries i and j in the collapsed monoplex trade network,
as in (6) and (12), respectively. This allows us to compare
the multiplex structure of trade with the aggregate one and
highlight relevant information that is lost in the aggregation
procedure. For instance, for both the binary and the weighted
representation of the system, we can compare the values of the
multireciprocity matrix measured on the commodity-resolved
multiplex with the usual scalar reciprocity measured on the
monoplex aggregate trade network.

B. Binary analysis

We start with a binary analysis of the WTM, thus taking
into account only the topology of the various layers while

disregarding the information about trade volumes. In Fig. 1(a)
we show the color-coded binary multiplexity matrix Mb. Next
to it, in Fig. 1(b), we show the corresponding frequency
distribution of off-diagonal matrix entries m

α,β

b (with α �= β).
In calculating the frequencies, we discard the diagonal entries
because they trivially evaluate to m

α,α
b = 1, as discussed above.

High values of multiplexity are observed for most of the pairs
of commodities. This result is in agreement with what has been
reported in Ref. [9] on the basis of an undirected analysis of the
WTM where imports and exports between any two countries
were combined together into a single trade link.

As we mentioned, the multiplexity matrix Mb would be
asymptotically diagonal for trivial multiplexes with sparse
noninteracting layers and narrow degree distributions. How-
ever, since the layers of the WTM are very dense and
their degree distributions significantly broad [8,9,34], this
system is an ideal case study requiring the use of a null
model in order to assess the presence of a genuine coupling
among layers. In Fig. 1(c), we show the color-coded matrix
of rescaled multiplexity values μ

α,β

b , which control for the
effects of the heterogeneity of the layer-specific in- and
out-degree sequences. Similarly, in Fig. 1(d), we show the
corresponding distribution of off-diagonal entries. We find
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FIG. 2. Top panels: Color-coded binary multireciprocity matrix Rb (a) and corresponding distribution of off-diagonal multireciprocity
values r

α,β

b (with α �= β) (b). Bottom panels: Same as for the top panels but with raw binary multireciprocity r
α,β

b replaced by rescaled binary
multireciprocity ρ

α,β

b . The dashed lines represent the value of (raw and rescaled) binary reciprocity rmono
b and ρmono

b of the aggregated monoplex
network.

that, after controlling for the degrees, a significant amount of
correlation is destroyed. However, all the values are still strictly
positive, indicating a tendency of all pairs of commodities to
be “traded together.” The statistical significance of this result
is discussed later in terms of z scores.

We now move to the analysis of multireciprocity. It is known
that when the aggregate trade in all commodities is considered,
the binary monoplex representation of the world trade network
exhibits a high level of reciprocity [10,39,40]. It is interesting
to see whether such property is preserved also at the multiplex
level and how the values compare with the aggregate case.
Figure 2(a) shows the color-coded binary multireciprocity
matrix Rb and Fig. 2(b) the corresponding distribution of
off-diagonal entries [41], with a superimposed δ function
indicating the value of the binary reciprocity rmono

b of the
aggregate monoplex network as a comparison. The results are
comparable with those found above for the multiplexity. Also
in this case, the high multireciprocity values are consistent
with the high multiplexity values found for the undirected
representation of the WTM [9] (where pairs of reciprocated
links in each layer are merged into single undirected links).
However, for the multireciprocity this result is much less

trivial than for the multiplexity, given the chosen level of
disaggregation into many commodity classes. Indeed, one
would expect that, at such a relatively high resolution, it should
be not very likely (at least not as likely as in the undirected
representation) that the same commodity is traded “back and
forth,” i.e., both ways between the same two countries. In any
case, we do find, in accordance with what we expect, that for
all pairs of commodities the multireciprocity is significantly
smaller than the reciprocity rmono

b of the aggregate monoplex.
This means that, as layers are aggregated, there is a bigger
relative increment (with respect to individual layers) in the
overall number of reciprocated links than in the total number
of links.

As an interesting result, the intralayer reciprocity values
r

α,α
b lying along the diagonal of the multireciprocity matrix

are found to be very similar to the values of the matrix
entries r

α,β

b lying close to the diagonal. Indeed, in the matrix
plot of Fig. 2(a) the diagonal is visually indistinguishable
from the entries of the matrix that are “nearby.” Given
the order of the commodities in the matrix (as shown for
instance in Ref. [9]), these nearby entries represent the
multireciprocity between pairs of similar commodities. This
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FIG. 3. Scatter plots of off-diagonal binary multireciprocity values versus off-diagonal binary directed multiplexity values. Left:
Raw values (rα,β

b vs. m
α,β

b ); right: rescaled values (ρα,β

b vs. μ
α,β

b ).

result means that the high reciprocity of the aggregate trade
monoplex does not arise from the superposition of layers with
high internal reciprocity and low mutual multireciprocity (as
would be the case in presence of an approximately diagonal
multireciprocity matrix). Rather, we find that a trade flow in
one commodity α tends to be reciprocated by comparable
trade flows in several different commodities, including (but not
dominated by) the same commodity α and many other related
commodities. Specifically, it can be seen from Fig. 2(a) that
layers characterized by low (high) values of internal reciprocity
are embedded within groups of layers with low (high) mutual
multireciprocity. This suggests that the level of reciprocity
in international trade is not an intrinsic property of individual
commodities but rather a property of whole groups of mutually
reciprocated commodities with comparable multireciprocity
values.

In Figs. 2(c) and 2(d) we show the color-coded binary
rescaled multireciprocity matrix and the corresponding dis-
tribution of off-diagonal entries ρ

α,β

b (with α �= β). The
relatively small values (with respect to the non-rescaled
quantities) indicate that, in analogy with what we found for
the multiplexity, the apparent correlation between the topology
of pairs of layers is largely encoded in the relatedness of
the degree sequences of such pairs. For the vast majority
of pairs of commodities the multireciprocity is still lower
than that measured on the aggregate network. However, all
pairs of layers preserve a positive residual multireciprocity, the
statistical significance of which is studied later in our z-score
analysis.

When we look at the multiplexity matrix in Fig. 1(a) and
the corresponding multireciprocity matrix in Fig. 2(a), we see
the appearance of similar patterns. Such similarity is further
investigated in Fig. 3(a), where we report the scatter plots
of pairwise multireciprocity values versus the corresponding
multiplexity values. We observe a roughly linear trend, which

is, however, lost when we look at the filtered values, as shown
in Fig. 3(b). We see that, in the latter case, the relationship
between ρ

α,β

b and μ
α,β

b is nonlinear and significantly scattered.
Although the presence of a nonlinear relation may be related to
the particular choice of normalization adopted in (4), we point
out that the entity of the scatter is so big that it is not possible
to retrieve the value of multiplexity from the multireciprocity,
and vice versa. This illustrates that the two quantities convey
different pieces of information that are irreducible to each
other.

Similar considerations apply to the z scores. In Figs. 4(a)
and 4(b) we show the empirical relation between the trans-
formed multiplexity and multireciprocity and their corre-
sponding z scores. It is worth recalling that the information
provided by these two quantities can differ a priori, given
the lack of information about the standard deviation in the
rescaled multiplexity and multireciprocity metrics. Empiri-
cally, we, however, find a strong correlation between these
quantities, indicating that large values of binary multiplexity
or multireciprocity correspond to large z scores, and vice versa.
Moreover, even the smallest z scores (those found for the pairs
of layers showing very low multiplexity or multireciprocity)
are still quite high (i.e., positive and larger than zc = 2) in
terms of statistical significance. This means that even the pairs
of layers with smallest multiplexity or multireciprocity should
be considered as significantly and positively correlated. We
therefore conclude that, at a binary level, every commodity
of the WTM tends to be traded together with all other
commodities, both in the same and in the opposite directions.
As we show below, this is no longer the case when the weighted
version of the multiplex is considered.

Figure 4(c) shows the relation existing between z(rα,β

b ) and
z(mα,β

b ) for each pair of layers. If we compare this figure with
Fig. 3, then we see that in this case the trend is more linear,
although the scatter is again quite large. This confirms that it
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FIG. 4. Left: Binary transformed multiplexity μ
α,β

b versus its corresponding z score z(mα,β

b ); center: binary transformed multireciprocity
ρ

α,β

b versus its corresponding z score z(rα,β

b ); right: z(rα,β

b ) vs. z(mα,β

b ). Only off-diagonal values are reported.

is not possible to recover the values of multiplexity from those
of multireciprocity and vice versa.

C. Weighted analysis

We now perform a weighted analysis of the world trade
multiplex by taking into account the value of imports and
exports observed between countries.

In Figs. 5(a) and 5(b) we show the color-coded weighted
directed multiplexity matrix Mw and the distribution of
its off-diagonal entries. We clearly see that, even though
several pairs of commodities are still strongly overlapping,
the multiplexity distribution is concentrated over a range of
significantly smaller values with respect to the corresponding
binary distribution. Indeed, the notion of weighted multi-
plexity, by involving the minimum of the weights of two
reciprocated links, provides a stricter criterion with respect
to the unweighted case. In particular, for any pair of nodes
and any pair of layers, it is more unlikely to achieve the
maximum weighted value min{wα

ij ,w
β

ij } than the maximum

binary value min{aα
ij ,a

β

ij }. Lower values of multiplexity
with respect to Fig. 1(a) are therefore expected. We also
expect to find a similar reduction for the multireciprocity
later.

In Figs. 5(c) and 5(d) we report the color-coded weighted
rescaled multiplexity matrix and the corresponding distribu-
tion of off-diagonal entries μα,β

w . The fact that many values
are now mapped to zero means that a significant component of
the overlap between commodities can be explained simply in
terms of the correlated strength sequences of the various layers.
Importantly, we see that some pairs of layers actually exhibit
negative rescaled multiplexity, even though the distribution is
far from symmetric. This result, which is only visible in the
weighted analysis, means that there are pairs of commodities
for which the observed trade multiplicity is actually lower than
expected under the null model: these commodities prefer “not
to be traded together.”

We then analyze the weighted multireciprocity of the WTM.
Recently, it has been shown that the aggregated version

of the network has a strong weighted reciprocity [11], a
result that we can now complement with the analysis of the
disaggregated multiplex. In Figs. 6(a) and 6(b) we report
the color-coded weighted multireciprocity matrix Rw, along
with the distribution of its off-diagonal entries. In analogy
with the binary case, we see that the aggregated network
exhibits a reciprocity that is significantly higher than the
multireciprocity associated to any individual pair of layers.
Yet several pairs of commodities are characterized by a
substantial level of multireciprocity. In Figs. 6(c) and 6(d)
we show the corresponding results for the rescaled weighted
multireciprocity ρα,β

w . We see that many values become close
to zero and some become negative, in analogy with the
behavior of the multiplexity. The identification of pairs of
layers with negative rescaled multireciprocity indicates that
the corresponding commodities “prefer not to be traded in
opposite directions,” in contrast with the results we found in
the binary analysis.

In Fig. 7 we compare the weighted multireciprocity and the
weighted multiplexity. When we consider the raw values (a),
we observe a clear linear trend (although more scattered than in
the corresponding unweighted case). The trend becomes even
more robust, and less noisy, for the filtered values, as shown
in (b). In both panels, the most significant commodities (both
in terms of trade volumes and economic relevance) mainly lie
along the diagonal, while the outliers represent less relevant
products (for instance, some textiles or less traded craft goods).
We also see pairs of commodities whose multireciprocity is
similar to the reciprocity of the aggregate trade network. These
commodities, such as cereals and heavy industry products, are
not necessarily the most traded ones; still, they better represent
the reciprocity patterns of total trade among countries, possibly
because they give the main contribution to the reciprocity of
the aggregated network.

Quantitatively, another important difference between the
binary and the weighted approach lies in the statistical signifi-
cance of the values of multiplexity and multireciprocity, as we
can see from the analysis of the z scores (Fig. 8). Indeed, in the
unweighted case we found that even the smallest values of μ

α,β

b
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FIG. 5. Top panels: Color-coded weighted multiplexity matrix Mw (a) and corresponding distribution of off-diagonal multiplexity values
mα,β

w (with α �= β) (b). Bottom panels: Same as for the top panels but with raw weighted multiplexity mα,β
w replaced by rescaled weighted

multiplexity μα,β
w . Note that, in panel (c), white entries represent negative values.

and ρ
α,β

b are significant, as the corresponding z scores are larger
than the critical value zc. Instead, here we observe almost no
correlation (except for the aforementioned sign concordance)
between weighted multiplexity or multireciprocity and the
corresponding z scores [see Figs. 8(a) and 8(b), respectively].
Indeed, the same value of μ

α,β

b or ρ
α,β

b may even correspond to
z scores with different orders of magnitude. This means that,
even for two pairs of layers with the same observed value of
weighted multiplexity or multireciprocity, the statistical signif-
icance of the interlayer coupling can differ considerably. More-
over, the absolute value of many weighted z scores is found
below the significance threshold zc = 2, identifying pairs of
uncorrelated layers (a result that is unobserved in the binary
case). Finally, many pairs of commodities have a negative z

score below −zc for the multiplexity and/or multireciprocity.
For these pairs, the tendency not to be traded in the same
direction and/or in opposite direction is statistically validated
and confirms a difference with respect to the binary case.

As a final result, in Fig. 8(c) we show the relation existing
between z(mα,β

w ) and z(rα,β
w ). We find an overall level of

correlation which, however, leaves room for a significant
scatter of points around the identity line. This scatter is big

enough to imply that, for a given significance threshold zc, the
pairs of commodities can be partitioned in the following five
classes:

(1) a few pairs of commodities that tend to be traded in the
same direction [z(mα,β

w ) > zc] but not in opposite directions
[z(rα,β

w ) < −zc]: examples are apparel articles vs. ships and
boats; food industry residues, prepared animal feed vs. ores,
slag, and ash;

(2) a few pairs of commodities that tend to be traded in
opposite directions [z(rα,β

w ) > zc] but not in the same direction
[z(mα,β

w ) < −zc]: examples are ores, slag, and ash vs. footwear
and gaiters; apparel articles vs. ores, slag, and ash;

(3) a moderately sized group of pairs of commodities that
tend to be traded neither in the same direction [z(mα,β

w ) < −zc]
nor in opposite ones [z(rα,β

w ) < −zc]: examples are raw hides
and skins vs. arms and ammunitions; tobacco vs. ships and
boats;

(4) a large group of pairs of commodities for which
there is no statistically significant tendency in at least one
of the two directions [|z(mα,β

w )| < zc and/or |z(rα,β
w )| < zc]:

examples are tobacco vs. inorganic chemicals; explosives,
pyrotechnic products vs. vehicles (note that this class can be
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FIG. 6. Top panels: Color-coded weighted multireciprocity matrix Rw (a) and corresponding distribution of off-diagonal multireciprocity
values rα,β

w (with α �= β) (b). Bottom panels: Same as for the top panels but with raw weighted multireciprocity rα,β
w replaced by rescaled

weighted multireciprocity ρα,β
w . The dashed lines represent the value of (raw and rescaled) weighted reciprocity rmono

w and ρmono
w of the aggregated

monoplex network. Note that, in panel (c), white entries represent negative values.

further split in subclasses where commodities are uncorrelated
in one direction but correlated in different ways in the other
direction);

(5) a very large group of pairs of commodities that tend
to be traded both in the same direction [z(mα,β

w ) > zc] and in
opposite ones [z(rα,β

w ) > zc]: examples are sugar vs. cocoa;
soap, waxes, candles vs. sugar.

It should be noted that, in contrast with the above
classification, the binary analysis concluded that all pairs of
commodities belong to the last class only.

IV. DISCUSSION AND CONCLUSIONS

The study of multilayer networks has received substantial
attention in the past few years, leading to the introduction of
several quantities characterizing the structure of multiplexes
as well as the behavior of several dynamical processes taking
place on them. The aim of all these studies is that of
highlighting the role of the interlayer couplings, the latter
being the ultimate reason why layers of a multiplex should
be analyzed together in the first place rather than separately. In
this paper we have argued that even the simplest definitions of

interlayer coupling, based merely on the structural overlap
of links across layers, are strongly biased by the density,
finiteness, and heterogeneity of the network. We have shown
that controlling for the above effects requires a quite elaborate
statistical treatment. Focusing on multiplexes with (binary
or weighted) directed links, we have introduced maximum-
entropy multiplex ensembles with given node properties as the
unbiased null models serving as a benchmark for the empiri-
cally observed properties. We have then defined multiplexity
and multireciprocity metrics, respectively quantifying the
tendency of pairs of links to “align” and/or “anti-align” across
each pair of layers of a real-world directed multiplex. Since
links can exist in both directions in every layer, the possible
tendencies of forming aligned (multiplexed) and antialigned
(multireciprocated) links do not conflict with each other and
can actually coexist. Both multiplexity and multireciprocity
are matrix valued, as they represent the possible couplings
among all pairs of layers. While multiplexity is a natural
extension of the corresponding definition for undirected
multiplexes, multireciprocity is a novel concept representing
a nontrivial extension of the notion of single-layer reciprocity
to multilayer networks.
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FIG. 7. Scatter plots of off-diagonal weighted multireciprocity values versus off-diagonal weighted directed multiplexity values. Left: Raw
values (rα,β

w vs. mα,β
w ); right: rescaled values (ρα,β

w vs. μα,β
w ).

We believe that our results can be of value for several
applications. For instance, they provide a statistically rigorous
way to identify possible (groups of) layers that are uncor-
related from the other layers, thus allowing us to simplify
the whole multiplex into mutually independent subsystems
with smaller numbers of layers. This problem has received
significant attention recently [42,43]. Our finding of a strong
influence of the local node properties on the overall level of
interlayer coupling suggests that many of the results found
with alternative techniques that do not control for these effects
might be subject to an uncontrolled level of bias.

Other more specific applications are relevant for the case
study of the WTM. Our detailed analysis of this system
confirmed that its multiplex structure contains much more
information than does the aggregated network of total trade.
At a binary level, we found that all pairs of commodities tend
to be traded together between countries, both in the same
direction (high multiplexity) and in opposite directions (high
multireciprocity). At a weighted level, this result only holds
for a subset of pairs of commodities. Other commodity pairs
are not correlated and others even tend to avoid being traded
together in the same direction and/or in opposite ones. The

FIG. 8. Left: Weighted transformed multiplexity μα,β
w versus its corresponding z score z(mα,β

w ); center: weighted transformed multireciproc-
ity ρα,β

w versus its corresponding z score z(rα,β
w ); right: z(rα,β

w ) vs. z(mα,β
w ). In panel (c), numbered circles correspond to the bullet points reported

in Sec. III C. Only off-diagonal values are reported.
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multireciprocity structure of the WTM highlights a tendency
of groups of commodities to have a comparably high mutual
reciprocity of the same entity of the internal single-layer
reciprocity of these commodities. When aggregated into the
monoplex network of total international trade, the WTM
has a resulting reciprocity that is much bigger than the
multireciprocity among its constituent layers.

In the light of the above results, our approach has impli-
cations relevant to various directions in international trade
research. In particular, it indicates concrete ways to refine
existing measures of intercommodity correlation or similarity
that are widely used to construct, among others, “product
taxonomies” [8], the “product space” [35], and “fitness and
complexity” metrics [36]. All these applications are briefly
explained below.

Intercommodity correlation metrics have been introduced
to quantify the coupling among layers of the WTM [8], with
the goal of constructing “product taxonomies” that reflect
empirical trade similarities, as opposed to predefined product
categories. However, as already pointed out in Ref. [9],
correlation metrics make an implicit and totally unrealistic
assumption of structural homogeneity of the network by
interpreting all the edges of a layer as independent observations
drawn from the same probability distribution. Our results
provide alternative metrics of interlayer coupling that replace
the homogeneity assumption with a much more realistic null
model that accurately controls for the observed degree of node
heterogeneity in each layer. The use of our metrics is likely to
change the structure of correlation-based product taxonomies
significantly.

The “product space” is defined as a network of commodities
connected by links whose weight quantifies the tendency
of a pair of commodities to be traded together (in the
same direction) between the same two countries [35]. Our
results clearly indicate that, to be statistically reliable, such
an analysis should include a way to filter out the strong
empirical heterogeneity of node degrees and/or node strengths.
Moreover, they highlight a second layer of information that
should be relevant for the product space construction, namely
the fact that, besides the tendency of pairs of commodities to
be traded together in the same direction (multiplexity), there
can be a substantial tendency of being traded in the opposite
direction (multireciprocity). We found that these two effects
have a comparable magnitude. We also found that pairs of
commodities with approximately the same multiplexity can be
characterized by very different levels of multireciprocity. This
suggests that neglecting multireciprocity in the construction
of the product space can represent a substantial loss of
information.

Finally, the “fitness and complexity” approach focuses on
the bipartite network of countries and their exported products
and uses the structure of this network to recursively define
metrics of product complexity and country competitiveness
(fitness) [36]. This method can reveal the “hidden” potential
of countries that is not (yet) reflected in their current GDP
levels. Clearly, the output of this approach entirely depends on
how the bipartite country-product matrix is constructed. This
matrix is ultimately a projection of the WTM but is generally
filtered using a null model based on the concept of “revealed
comparative advantage” [44], which, however, operates at the

aggregate country-product level and not at the level of the
underlying multiplex. As such, it does not control for the
size of importers. Our approach provides a way to enforce
a more accurate null model on the original WTM and obtain
an alternative bipartite country-product projection.

We believe that all the research directions outlined above
deserve future explorations and we expect the results reported
in this paper to be of use.
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APPENDIX A: MAXIMUM ENTROPY METHOD

We define null models of multiplexes as canonical

maximum-entropy ensembles satisfying a given set
−→C of K

constraints on average. If Gα ∈ GN denotes the graph realized
in layer α of the multiplex (recall that GN is the set of all
directed monoplex graphs with N nodes), and if

−→
G ∈ GM

N

denotes the entire multiplex (where GM
N is the set of all directed

multiplex graphs with N nodes and M layers), then we write−→
G = (Gα)Mα=1. Now let

−→C denote a vector-valued function on

GM
N , evaluating to

−→C (
−→
G ) on the particular multiplex

−→
G . The

vector
−→C (

−→
G ) is to be regarded as a set of structural properties

measured on
−→
G .

A canonical ensemble of binary (weighted) directed mul-

tiplex networks with the soft constraint
−→C is specified by a

probability distribution P(
−→
G |−→θ ) on GM

N , where
−→
θ is a vector

of Lagrange multipliers required to enforce a desired expected
value

〈−→C 〉−→
θ

=
∑

−→
G∈GM

N

P(
−→
G |−→θ )

−→C (
−→
G ) (A1)

of
−→C . Note that both

−→
θ and

−→C are vectors of numbers with the
same (but model-dependent) dimension K, while

−→
G is always

an M-dimensional vector of graphs. Obviously, an additional
constraint on the probability is the normalization condition∑

−→
G∈GM

N

P(
−→
G |−→θ ) = 1 ∀−→

θ . (A2)

We want our ensembles to produce multiplexes with indepen-
dent layers, as defined in Eq. (2). This requirement corresponds
to the enforcement of separate constraints on the different

layers, i.e.,
−→C = (

−→
Cα)Mα=1, where

−→
Cα is a Kα-dimensional

vector of structural properties of the network in layer α only,
evaluating to

−→
Cα(Gα) on the particular single-layer graph Gα .

This leads to a separation in the corresponding Lagrange

multipliers, i.e.,
−→
θ = (

−→
θα )Mα=1. Kα is the dimension of both

−→
Cα

and
−→
θα , and we must have

∑M
α=1 Kα = K. Consequently, we
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can express the entropy of the ensemble of multiplex networks
as

S(
−→
θ ) ≡ −

∑
−→
G∈GM

N

P(
−→
G |−→θ ) lnP(

−→
G |−→θ )

=
M∑

α=1

Sα(
−→
θα ), (A3)

where

Sα(
−→
θα ) ≡ −

∑
Gα∈GN

P α(Gα|−→θα ) ln P α(Gα|−→θα ) (A4)

is the entropy of the ensemble of monoplex graphs for the
individual layer α, with P α(Gα|−→θα ) defined as in (1) and
subject to the normalization condition∑

Gα∈GN

P α(Gα|−→θα ) = 1 ∀−→
θα α = 1,M. (A5)

At this point, we want to maximize the entropy S(
−→
θ ), subject

to the soft constraint
−→C , to find the functional form of

P(
−→
G |−→θ ) we are looking for. Equation (A3) ensures that

the maximization of S(
−→
θ ), subject to (A1), reduces to the

maximization of each single-layer entropy Sα(
−→
θα ), subject to

〈−→Cα〉−→
θα =

∑
Gα∈GN

P α(Gα|−→θα )
−→
Cα(Gα), (A6)

separately. Therefore the probability P(
−→
G |−→θ ) maximizing

S(
−→
θ ) reduces, via (2), to the product of all single-layer

probability distributions of the type P α(Gα|−→θα ), each of
which should separately maximize the corresponding entropy
Sα(

−→
θα ).

The general solution to the problem of maximizing Sα(
−→
θα ),

subject to (A6), for single-layer networks is extensively
discussed in Ref. [20] and, in our notation here, leads to the
probability distribution

P α(Gα|−→θα ) = e−Hα (Gα |−→θα )

Z(
−→
θα )

, (A7)

where

Hα(Gα|−→θα ) = −→
θα · −→

Cα(Gα) (A8)

is the graph Hamiltonian (the dot indicating a scalar product,
i.e., a linear combination of the enforced constraints) and

Z(
−→
θα ) =

∑
Gα∈GN

e−Hα (Gα |−→θα ) (A9)

is the partition function (representing the normalizing constant
for the probability).

Equation (A9), and, consequently, (A7), lead to different
explicit functional forms depending on the choice of the
constraint(s), i.e., depending on the functional form of

−→
Cα(Gα).

In Appendices C and D we explicitly discuss the cases of the

directed binary configuration model (where the constraints are
the in- and out-degrees of all nodes in each layer α) and of the
directed weighted configuration model (where the constraints
are the in- and out-strengths of all nodes in each layer α),
respectively.

Once an explicit expression for each P α(Gα|−→θα ) is found,
we can use (2) to find the final expression for the whole
multiplex probability in the null model:

P(
−→
G |−→θ ) =

M∏
α=1

e−Hα (Gα |−→θα )

Z(
−→
θα )

= e−H(
−→
G |−→θ )

Z(
−→
θ )

, (A10)

where

H(
−→
G |−→θ ) ≡

M∑
α=1

Hα(Gα|−→θα ) (A11)

and

Z(
−→
θ ) ≡

M∏
α=1

Z(
−→
θα ). (A12)

The last three equations rephrase the independence of all layers
explicitly.

APPENDIX B: MAXIMUM LIKELIHOOD METHOD

The maximization of the entropy is a constrained, func-

tional maximization of S(
−→
θ ) in the space of probability

distributions. As such, its result is the functional form of
the maximum-entropy distribution P(

−→
G |−→θ ), given by (A10),

but not its numerical values. In fact, the distribution depends
on the whole vector of parameters

−→
θ , and any expectation

value calculated analytically using the explicit expression of
P(

−→
G |−→θ ) can only be evaluated numerically after a value of−→

θ is specified. This leads to the problem of choosing
−→
θ .

Since we are interested in the case where all layers of the
multiplex are independent, choosing a value of

−→
θ reduces to

the problem of choosing
−→
θα separately for each layer.

The problem of finding the parameter values of a maximum-
entropy model of single-layer networks is solved in the general
case in Ref. [30] using the maximum likelihood principle. In
our notation here, this solution can be restated as follows.
Let Gα

∗ denote, among all graphs Gα ∈ GN , the particular
empirical network realized in layer α of the multiplex. Given
Gα

∗ , the log-likelihood function

Lα(
−→
θα ) ≡ ln P (Gα

∗ |−→θα ) (B1)

represents the log of the probability to generate the empirical
graph Gα

∗ , given a value of
−→
θα . The maximum likelihood

principle [30] states that the optimal choice for
−→
θα is the one

that maximizes the chances to obtain Gα
∗ from the model, i.e.,

the one that maximizes Lα(
−→
θα ). Let this parameter choice be

denoted by
−→
θα
∗ , where

−→
θα
∗ ≡ arg max

−→
θα

Lα(
−→
θα ). (B2)
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As a general result [30], the value
−→
θα
∗ defined above is such

that

〈−→Cα〉−→
θα
∗

= −→
Cα(Gα

∗ ), (B3)

i.e., the expectation value of each constraint coincides with the
empirical value measured on the empirical network Gα

∗ . This is
precisely the outcome we desire, given that our ultimate goal
is the construction of ensembles of networks with the same
numerical value of the constraints as in the real network.

From a practical point of view, Eqs. (B2) and (B3) represent
two equivalent ways to determine

−→
θα
∗ . The former requires

the maximization of a scalar function over a Kα-dimensional
space, while the latter requires the solution of a system of
Kα nonlinear coupled equations. For various choices of the
graph ensemble GN and of the constraints

−→
Cα (including those

required for our analysis), both approaches are implemented
in the MAX&SAM algorithm [21]. More details are given in
Appendices C and D. Once the value

−→
θα
∗ is found, it is used to

find the numerical value P (Gα|−→θα
∗ ) of the probability of any

graph Gα ∈ GN . So, while the maximization of the entropy
generates the functional form of the graph probability, the
maximization of the likelihood fixes its numerical values. If
Xα denotes any single-layer structural property X of interest,
then the above procedure allows us to evaluate the expected
value

〈Xα〉 ≡ 〈Xα〉−→
θα
∗

=
∑

Gα∈GN

P (Gα|−→θα
∗ )Xα(Gα) (B4)

(and similarly the standard deviation) of Xα explicitly over the
desired ensemble [20,21,30]. For many properties of interest,
the expected value (B4) can be calculated analytically given the
explicit expression of P (Gα|−→θα

∗ ), without the need to sample
the graph ensemble explicitly [20]. For more complicated

properties, one can instead use the knowledge of P (Gα|−→θα
∗ )

to sample graphs from the ensemble in an unbiased way and
then calculate expectations as sample averages [21].

The multiplexity and multireciprocity metrics introduced
in Sec. II are not single-layer properties like Xα , as they
require measurements on multiple layers simultaneously.
Using Eq. (2), we therefore need to generalize Eq. (B4) to
the case of an arbitrary multiplex quantity X , evaluating to
X (

−→
G ) on a specific multiplex

−→
G ∈ GM

N , as follows:

〈X 〉 ≡ 〈X 〉−→
θ∗

=
∑

−→
G∈GM

N

P(
−→
G |−→θ∗ )X (

−→
G ), (B5)

where
−→
θ∗ = (

−→
θα
∗ )Mα=1 contains the Langrange multipliers (B2)

for all layers and
−→
G∗ = (Gα

∗ )Mα=1 ∈ GM
N denotes the whole

empirical multiplex. Both the expected values and the standard
deviations of multiplexity and multireciprocity can be calcu-
lated explicitly, and we will therefore follow the analytical
approach, which is exact and faster than the sampling approach
(see Appendices C and D).

From a computational point of view, the above canonical
approach based on soft constraints has many benefits with
respect to the microcanonical approach with hard constraints
[20,21]. Indeed, the microcanonical approach cannot be

controlled analytically and necessarily requires sampling
many randomized multiplexes explicitly from the ensemble.
Generating even only a single randomized multiplex requires
the iteration of many random constraint-preserving “rewiring
moves,” which is computationally costly. Such a procedure
must be repeated several times to produce a large sample of
R randomized multiplexes, on each of which any topological
property X of interest has to be calculated. Finally, a sample
average should be performed to obtain an estimate of 〈X〉.

For instance, on single-layer networks with constrained
degree sequence, one should iterate the “local rewiring
algorithm” [18] that preserves the degrees while randomizing
the network. On a monoplex network with L links, the
above approach would require a computational time of order
O(L), only to generate a single realization of the randomized
network. On such a realization, one would then need to
measure X (for instance, the monoplex reciprocity), which
would require a certain time TX. The total time needed for a
single realization would therefore be TX + O(L) and for all
realizations R · TX + O(R · L).

In a multiplex network with M layers, the corresponding
time required to generate a single randomized multiplex would
in principle be of order O(

∑M
α=1 Lα), where Lα is the number

of links in the αth layer. However, if layers are independent in
the null model, then the randomization could (if computational
resource allows) be run in parallel on the different layers, thus
reducing the above time to O(L̄) where L̄ is the average
number of links per layer, which does not scale with M .
However, the calculation of multiplex quantities X (e.g., the
multireciprocity) which would require a time TX for a single
layer (e.g., the monoplex reciprocity) would now need to be
iterated for each pair of layers, thus requiring a time O(TXM2).
In total, this means that the total microcanonical computational
time for a multiplex is Tmic = O(RTXM2) + O(R · L̄), before
carrying out the final sample averages.

By contrast, our canonical approach does not require
the sampling of any multiplex. For individual layers, the
calculation of the expected value of most properties of
interest basically requires replacing the adjacency matrix
of the network with the corresponding expected matrix (or
more complicated replacements that in any case require
a comparable calculation time). Therefore calculating the
expected value 〈X〉 takes the same time TX that it would take
for the empirical property X to be calculated on the real system.
The same holds true for the entire multiplex. Therefore the
total canonical time needed is Tcan = O(TXM2) + TL, where
TL is the one-off time required to preliminary maximize the
likelihood (possibly of each layer in parallel) defined in (B1).

As already mentioned above, the time TL required to
maximize the likelihood function can be proxied by the time
required to solve a system of coupled, nonlinear equations
(2N equations in the case of directed networks, as shown
below). However, since such systems can be further simplified
by rewriting them only in terms of the sequences of distinct
directed degrees or strengths (which are always less than
2N ), the computational time drops to the order of seconds
or minutes (depending on the chosen constraints) for each
layer. Moreover, further analyses on synthetic networks have
shown that this time scales roughly quadratically with the
number of nodes; it is in any case considerably shorter than
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the corresponding total microcanonical time Tmic estimated
above.

Besides the computational advantages described above, the
canonical approach has the statistical advantage of being a truly
unbiased method [21], in the sense that its maximum-entropy
nature implies that no preference is given to specific graph
configurations other than on the basis of the enforced con-
straints. So unbiasedness is ensured by the maximum degree
of randomness encoded in the graph probability, given the
constraints. By constrast, microcanonical approaches are not
guaranteed to ensure the same property. In the microcanonical
case, unbiasedness means that the realizations of the network
should be sampled uniformly (i.e., with exactly the same
probability) from the whole set of configurations compatible
with the constraints. Ensuring uniform sampling is highly
nontrivial and often impossible. For instance, in the case of
graphs with fixed degree sequence, it can be proved that the
local rewiring algorithm is biased, as it preferentially samples
configurations that are “close” to the empirical one [22]. It
is in principle possible to remove this bias by calculating
the “mobility” function (which is a quantity that depends on
the current configuration being randomized) and accepting
the “next” randomized configurations with a probability that
depends on the mobility itself. This requirement further
increases the already heavy computational requirements of
the microcanonical approach, because the mobility should be
continuously recalculated during the randomization process.

APPENDIX C: DIRECTED BINARY
CONFIGURATION MODEL

In this Appendix we explicitly discuss the DBCM model
[20,21], obtained through the maximum entropy and maximum
likelihood methods in the specific case where GN contains all
binary directed graphs with N nodes and

−→
Cα is a vector of

dimension Kα = 2N containing the out-degree kout
i and the

in-degree kin
i of all nodes (i = 1,N ). Correspondingly, the

2N -dimensional vector
−→
θα contains the associated Lagrange

multipliers φα
i and χα

i for all nodes. Note that we enforce the
in- and out-degree sequences on all layers, which means that,

as a function,
−→
Cα = (

−→
kout,

−→
kin) is the same for all α. However,

the numerical values of the degrees in different layers will in

general differ, i.e.,
−→
C (Gα) �= −→

C (Gβ) for α �= β, thus
−→
θα =

(
−→
φα,

−→
χα) must still depend on α explictly.

For single-layer networks, this model is discussed, e.g., in
Refs. [20,21]. Here we simply summarize the main steps lead-
ing to the final expressions for the expected binary multiplexity
and binary reciprocity. Using the notation introduced in Sec. II
and in Appendix A, the single-layer Hamiltonian (A8) reads

H (Gα|−→φα,
−→
χα) = −→

φα · −→
kout(Gα) + −→

χα · −→
kin(Gα)

=
N∑

i=1

[
φα

i kout
i (Gα) + χα

i kin
i (Gα)

]

=
N∑

i=1

∑
j �=i

(
φα

i + χα
j

)
aα

ij (C1)

and the partition function (A9) can be calculated as:

Z(
−→
φα,

−→
χα) =

N∏
i=1

∏
j �=i

(
1 + e−φα

i −χα
j

)

=
N∏

i=1

∏
j �=i

(
1 + xα

i yα
j

)
, (C2)

where we have set xα
i ≡ e−φα

i and yα
i ≡ e−χα

i . This implies
that the probability (A7) can be written explicitly as

P α(Gα|−→φα,
−→
χα) =

N∏
i=1

∏
j �=i

(
xα

i yα
j

)aα
ij

1 + xα
i yα

j

=
N∏

i=1

∏
j �=i

(
pα

ij

)aα
ij
(
1 − pα

ij

)1−aα
ij , (C3)

where

pα
ij = xα

i yα
j

1 + xα
i yα

j

(C4)

is the probability of a directed link from i to j in layer α.
Equation (C3) shows that the random variable aα

ij is drawn,
for all i �= j , from a Bernoulli distribution with success
probability pα

ij , thus leading to Eq. (5).

Given the real-world multiplex
−→
G ∗ = (Gα

∗ )Mα=1, the single-
layer log-likelihood function (B1) to be maximized is then
given by

L(
−→
xα,

−→
yα ) =

N∑
i=1

[
kout
i (Gα

∗ ) ln xα
i + kin

i (Gα
∗ ) ln yα

i

] +

−
N∑

i=1

∑
j �=i

ln
(
1 + xα

i yα
j

)
, (C5)

and the equivalent set of 2N coupled nonlinear equations (B3)
to be solved is

∑
j �=i

xα
i yα

j

1 + xα
i yα

j

= kout
i (Gα

∗ ) ∀i = 1,N (C6)

∑
j �=i

xα
j yα

i

1 + xα
j yα

i

= kin
i (Gα

∗ ) ∀i = 1,N. (C7)

Once found, the values of {xα
i } and {yα

i } providing the
unique solution to the above problem can be put back into
Eqs. (C3) and (C4), allowing us to analytically calculate the
expected values 〈·〉DBCM of the quantities of interest via the
corresponding probabilities pα

ij (where for simplicity we drop
the asterisk indicating that pα

ij is evaluated at the specific values
that maximize the likelihood).

In particular, we can calculate the rescaled metrics defined
in Eqs. (4) as follows. First, since in the DBCM the in-
and out-degrees of all nodes in all layers are equal to their
expected values, we necessarily have 〈Lα〉DBCM = Lα

∗ for all
α, where Lα

∗ ≡ Lα(Gα
∗ ) is the number of links of the observed,

layer-specific graph Gα
∗ . This means that Lα is a constrained

quantity, and we therefore expect the denominators of Eqs. (3)
to fluctuate around their expected values Lα

∗ + L
β
∗ much less
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than how the numerators fluctuate around the corresponding
expected values. We therefore approximate the expected values
of Eqs. (3) as follows:

〈
m

α,β

b

〉
DBCM = 2〈Lα⇒β〉DBCM

Lα∗ + L
β
∗

(α �= β), (C8a)

〈
r

α,β

b

〉
DBCM = 2〈Lα�β〉DBCM

Lα∗ + L
β
∗

. (C8b)

Consequently,

μ
α,β

b = 2L
α⇒β
∗ − 2〈Lα⇒β〉DBCM

Lα∗ + L
β
∗ − 2〈Lα⇒β〉DBCM

(α �= β),

ρ
α,β

b = 2L
α�β
∗ − 2〈Lα�β〉DBCM

Lα∗ + L
β
∗ − 2〈Lα�β〉DBCM

.

Since aα
ij and a

β

ij (for β �= α), and similarly aα
ij and a

β

ji

(for any β), are independently drawn from two Bernoulli
distributions, the expected values of min{aα

ij ,a
β

ij } (with β �= α)

and min{aα
ij ,a

β

ji} are easily calculated as

〈
min

{
aα

ij ,a
β

ij

}〉
DBCM = pα

ijp
β

ij (α �= β), (C9a)〈
min

{
aα

ij ,a
β

ji

}〉
DBCM = pα

ijp
β

ji . (C9b)

Therefore the final expressions for the transformed multi-
plexity and multireciprocity are

μ
α,β

b = 2L
α⇒β
∗ − 2

∑
i

∑
j �=i pα

ijp
β

ij

Lα∗ + L
β
∗ − 2

∑
i

∑
j �=i pα

ijp
β

ij

(α �= β) (C10a)

ρ
α,β

b = 2L
α�β
∗ − 2

∑
i

∑
j �=i pα

ijp
β

ji

Lα∗ + L
β
∗ − 2

∑
i

∑
j �=i pα

ijp
β

ji

, (C10b)

where the probabilities are defined according to Eq. (C4).
Similarly, we need to calculate the z scores defined in

Eqs. (8). To do this, we need to calculate the standard
deviations of m

α,β

b and r
α,β

b at the denominator of the z scores.
Neglecting again the fluctuations of the constrained quantities
Lα and Lβ around their average values (with respect to the
fluctuations of the unconstrained quantities), and since all pairs
of nodes are independent, we calculate the variances of m

α,β

b

and r
α,β

b in a way similar to what we did for the expressions in
Eq. (C11):

Var
[
m

α,β

b

] = 4
∑

i

∑
j �=i Var

[
min

{
aα

ij , a
β

ij

}]
(Lα∗ + L

β
∗ )2

(α �= β),

Var
[
r

α,β

b

] = 4
∑

i

∑
j �=i Var

[
min

{
aα

ij , a
β

ji

}]
(Lα∗ + L

β
∗ )2

. (C11)

Now we note that the minimum of two 0/1 quantities is also
a 0/1 quantity. This implies that the square of the minimum
is equal to the minimum itself and that the expected square of
the minimum is equal to the expected value of the minimum.

In formulas:

〈
min2

{
aα

ij ,a
β

ij

}〉
DBCM = pα

ijp
β

ij (α �= β), (C12)〈
min2

{
aα

ij ,a
β

ji

}〉
DBCM = pα

ijp
β

ji . (C13)

It then follows that the variance of the minimum is

Var
[

min
{
aα

ij ,a
β

ij

}] = pα
ijp

β

ij

(
1 − pα

ijp
β

ij

)
(α �= β),

Var
[

min
{
aα

ij ,a
β

ji

}] = pα
ijp

β

ji

(
1 − pα

ijp
β

ji

)
.

Putting these expressions into those for Var[mα,β

b ] and
Var[rα,β

b ], and taking the square root to obtain the standard
deviations, we finally arrive at the explicit calculation of the z

scores:

z
(
m

α,β

b

) = L
α⇒β
∗ − ∑

i

∑
j �=i pα

ijp
β

ij√∑
i

∑
j �=i pα

ijp
β

ij

(
1 − pα

ijp
β

ij

) (α �= β)

z
(
r

α,β

b

) = L
α�β
∗ − ∑

i

∑
j �=i pα

ijp
β

ji√∑
i

∑
j �=i pα

ijp
β

ji

(
1 − pα

ijp
β

ji

) .

From a direct comparison between the above equations and
Eqs. (C10), we immediately observe the sign concordance
reported in the main text.

APPENDIX D: DIRECTED WEIGHTED
CONFIGURATION MODEL

Here we consider the DWCM model [20,21], obtained when
GN contains all weighted directed graphs (with non-negative
integer edge weights) with N nodes and

−→
Cα is a vector of

dimension Kα = 2N containing the out-strength sout
i and the

in-strength s in
i of all nodes (i = 1,N ). The 2N -dimensional

vector
−→
θα contains the associated Lagrange multipliers φα

i and

χα
i . As for the DBCM,

−→
Cα = (

−→
sout,

−→
s in) is the same function

for all α. However, the numerical values
−→
θα = (

−→
φα,

−→
χα) still

depend on α.
For single-layer networks (see, e.g., discussion in

Refs. [20,21]), the Hamiltonian (A8) reads

H (Gα|−→φα,
−→
χα) = −→

φα · −→
sout(Gα) + −→

χα · −→
s in(Gα)

=
N∑

i=1

[
φα

i sout
i (Gα) + χα

i s in
i (Gα)

]

=
N∑

i=1

∑
j �=i

(
φα

i + χα
j

)
wα

ij (D1)

and the partition function (A9) can be calculated as

Z(
−→
φα,

−→
χα) =

N∏
i=1

∏
j �=i

(
1 − e−φα

i −χα
j

)−1

=
N∏

i=1

∏
j �=i

(
1 − xα

i yα
j

)−1
, (D2)
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where we have set xα
i ≡ e−φα

i and yα
i ≡ e−χα

i . This implies
that the probability (A7) can be written as

P α(Gα|−→φα,
−→
χα) =

N∏
i=1

∏
j �=i

(
xα

i yα
j

)wα
ij
(
1 − xα

i yα
j

)

=
N∏

i=1

∏
j �=i

(
pα

ij

)wα
ij
(
1 − pα

ij

)
, (D3)

where

pα
ij = xα

i yα
j (D4)

denotes again the probability that a directed link (of any
positive weight) from node i to node j is realized in layer α.
Equation (D3) gives the interpretation of wα

ij as a geometrically
distributed variable, constructed as the iteration of many
random events, each defined as incrementing wα

ij by 1, starting
from wα

ij = 0. In this interpretation, pα
ij is the elementary

probability of a “success” event, and the probability that
wα

ij = w coincides with the probability (pα
ij )w(1 − pα

ij ) of
having w consecutive successes followed by one failure. This
leads to the geometric distribution in Eq. (11).

The single-layer log-likelihood function (B1) to be maxi-
mized is now given by

L(
−→
xα,

−→
yα ) =

N∑
i=1

[
sout
i (Gα

∗ ) ln xα
i + s in

i (Gα
∗ ) ln yα

i

]

+
N∑

i=1

∑
j �=i

ln
(
1 − xα

i yα
j

)
, (D5)

and the corresponding equations (B3) are

∑
j �=i

xα
i yα

j

1 − xα
i yα

j

= sout
i (Gα

∗ ) ∀i = 1,N, (D6)

∑
j �=i

xα
j yα

i

1 − xα
j yα

i

= s in
i (Gα

∗ ) ∀i = 1,N. (D7)

The expected values 〈·〉DWCM of the relevant quantities can be
found through Eqs. (D3) and (D4), evaluated at the values of
{xα

i } and {yα
i } that solve the above problem (again, in what

follows we drop the asterisk indicating that pα
ij is evaluated at

the specific values that maximize the likelihood).
We start with the calculation of the expected values of the

multiplexity and multireciprocity metrics defined in Eq. (9).
In analogy with what we did for the DBCM, we expect the
(constrained) denominators of Eqs. (9) to fluctuate much less
than the (unconstrained) numerators and we therefore replace
the denominators with their expected values Wα

∗ + W
β
∗ . We

therefore write

〈
mα,β

w

〉
DWCM = 2〈Wα⇒β〉DWCM

Wα∗ + W
β
∗

, (D8a)

〈
rα,β
w

〉
DWCM = 2〈Wα�β〉DWCM

Wα∗ + W
β
∗

, (D8b)

and

μα,β
w = 2W

α⇒β
∗ − 2〈Wα⇒β〉DWCM

Wα∗ + W
β
∗ − 2〈Wα⇒β〉DWCM

(α �= β),

ρα,β
w = 2W

α�β
∗ − 2〈Wα�β〉DWCM

Wα∗ + W
β
∗ − 2〈Wα�β〉DWCM

.

Since wα
ij and w

β

ij (for β �= α), and similarly wα
ij and w

β

ji

(for any β), are independently drawn from two geometric
distributions, the expected values of min{wα

ij ,w
β

ij } (with β �=
α) and min{wα

ij ,w
β

ji} are easily calculated as

〈
min

{
aα

ij ,a
β

ij

}〉
DBCM = pα

ijp
β

ij

1 − pα
ijp

β

ij

(α �= β), (D9a)

〈
min

{
aα

ij ,a
β

ji

}〉
DBCM = pα

ijp
β

ji

1 − pα
ijp

β

ji

. (D9b)

Therefore the transformed multiplexity and multireciproc-
ity read

μα,β
w =

2W
α⇒β
∗ − 2

∑
i

∑
j �=i

pα
ij p

β

ij

1−pα
ij p

β

ij

Wα∗ + W
β
∗ − 2

∑
i

∑
j �=i

pα
ij p

β

ij

1−pα
ij p

β

ij

(α �= β) (D10a)

ρα,β
w =

2W
α�β
∗ − 2

∑
i

∑
j �=i

pα
ij p

β

ji

1−pα
ij p

β

ji

Wα∗ + W
β
∗ − 2

∑
i

∑
j �=i

pα
ij p

β

ji

1−pα
ij p

β

ji

, (D10b)

where the probabilities are defined in Eq. (D4).
We then calculate the z scores. Following an argument

similar to the binary case, we write

Var
[
mα,β

w

] = 4
∑

i

∑
j �=i Var

[
min

{
wα

ij ,w
β

ij

}]
(Wα∗ + W

β
∗ )2

(α �= β),

Var
[
rα,β
w

] = 4
∑

i

∑
j �=i Var

[
min

{
wα

ij ,w
β

ji

}]
(Wα∗ + W

β
∗ )2

.

After calculating the variance of the minimum of two
geometrically distributed random variables, we get

Var
[

min
{
wα

ij ,w
β

ij

}] = pα
ijp

β

ij(
1 − pα

ijp
β

ij

)2 (α �= β),

Var
[

min
{
aα

ij ,a
β

ji

}] = pα
ijp

β

ji(
1 − pα

ijp
β

ji

)2 .
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Combining all the relevant expressions together, we get for the z scores:

z
(
mα,β

w

) =
W

α⇒β
∗ − ∑

i

∑
j �=i

pα
ij p

β

ij

1−pα
ij p

β

ij√∑
i

∑
j �=i

pα
ij p

β

ij(
1−pα

ij p
β

ij

)2

(α �= β)

z
(
rα,β
w

) =
W

α�β
∗ − ∑

i

∑
j �=i

pα
ij p

β

ji

1−pα
ij p

β

ji√∑
i

∑
j �=i

pα
ij p

β

ji(
1−pα

ij p
β

ji

)2

Comparing with Eqs. (D10), we confirm the concordance of the signs.
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[4] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno,
and M. A. Porter, J. Complex Netw. 2, 203 (2014).
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[19] M. A. Serrano and M. Boguñá, AIP Conf. Proc. 776, 101 (2005).
[20] T. Squartini and D. Garlaschelli, New J. Phys. 13, 083001

(2011).
[21] T. Squartini, R. Mastrandrea, and D. Garlaschelli, New J. Phys.

17, 023052 (2015).
[22] E. S. Roberts and A. C. C. Coolen, Phys. Rev. E 85, 046103

(2012).
[23] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. E

64, 026118 (2001).

[24] G. L. Robins, P. E. Pattison, Y. Kalish, and D. Lusher, Soc. Netw.
29, 173 (2007).

[25] J. Park and M. E. J. Newman, Phys. Rev. E 70, 066117 (2004).
[26] J. Park and M. E. J. Newman, Phys. Rev. E 68, 026112 (2003).
[27] P. W. Holland and S. Leinhardt, J. Am. Stat. Assoc. 76, 33

(1981).
[28] S. Wasserman and K. Faust, Social Network Analysis

(Cambridge University Press, Cambridge, 1994).
[29] T. A. B. Snijders, P. E. Pattison, G. L. Robins, and M. S.

Handcock, Sociol. Methodol. 36, 99 (2006).
[30] D. Garlaschelli and M. I. Loffredo, Phys. Rev. E 78, 015101

(2008).
[31] D. Garlaschelli and M. I. Loffredo, Phys. Rev. Lett. 93, 188701

(2004).
[32] T. Squartini, G. Fagiolo, and D. Garlaschelli, Phys. Rev. E 84,

046117 (2011).
[33] T. Squartini, G. Fagiolo, and D. Garlaschelli, Phys. Rev. E 84,

046118 (2011).
[34] R. Mastrandrea, T. Squartini, G. Fagiolo, and D. Garlaschelli,

Phys. Rev. E 90, 062804 (2014).
[35] C. A. Hidalgo, B. Klinger, A.-L. Barabási, and R. Hausmann,

Science 317, 482 (2007).
[36] A. Tacchella, M. Cristelli, G. Caldarelli, A. Gabrielli, and L.

Pietronero, Sci. Rep. 2, 723 (2012).
[37] G. Gaulier and S. Zignago, CEPII Working Paper 23 (2010).
[38] http://www.wcoomd.org.
[39] F. Ruzzenenti, D. Garlaschelli, and R. Basosi, Symmetry 2, 1710

(2010).
[40] F. Picciolo, T. Squartini, F. Ruzzenenti, R. Basosi, and D.

Garlaschelli, in Proceedings of the Eighth International Con-
ference on Signal-Image Technology & Internet-Based Systems
(SITIS 2012) (IEEE, Piscataway, NJ, 2013), pp. 784–792.

[41] We discard the diagonal entries in order to make the distribution
compatible with the corresponding distribution for the multi-
plexity shown above; in any case, if the diagonal entries are
included, then the distribution looks very similar.

[42] M. De Domenico, V. Nicosia, A. Arenas, and V. Latora,
Nat. Commun. 6, 6864 (2015).

[43] J. Iacovacci, Z. Wu, and G. Bianconi, Phys. Rev. E 92, 042806
(2015).

[44] B. Balassa, Manchest. Sch. 33, 99 (1965).

042316-20

https://doi.org/10.1103/PhysRevE.66.035103
https://doi.org/10.1103/PhysRevE.66.035103
https://doi.org/10.1103/PhysRevE.66.035103
https://doi.org/10.1103/PhysRevE.66.035103
https://doi.org/10.1103/PhysRevE.70.056131
https://doi.org/10.1103/PhysRevE.70.056131
https://doi.org/10.1103/PhysRevE.70.056131
https://doi.org/10.1103/PhysRevE.70.056131
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1093/comnet/cnu016
http://arxiv.org/abs/arXiv:1303.4986
https://doi.org/10.1103/PhysRevE.89.032804
https://doi.org/10.1103/PhysRevE.89.032804
https://doi.org/10.1103/PhysRevE.89.032804
https://doi.org/10.1103/PhysRevE.89.032804
https://doi.org/10.1103/PhysRevE.87.062806
https://doi.org/10.1103/PhysRevE.87.062806
https://doi.org/10.1103/PhysRevE.87.062806
https://doi.org/10.1103/PhysRevE.87.062806
https://doi.org/10.1103/PhysRevE.81.046104
https://doi.org/10.1103/PhysRevE.81.046104
https://doi.org/10.1103/PhysRevE.81.046104
https://doi.org/10.1103/PhysRevE.81.046104
https://doi.org/10.1038/srep09120
https://doi.org/10.1038/srep09120
https://doi.org/10.1038/srep09120
https://doi.org/10.1038/srep09120
https://doi.org/10.1103/PhysRevLett.93.268701
https://doi.org/10.1103/PhysRevLett.93.268701
https://doi.org/10.1103/PhysRevLett.93.268701
https://doi.org/10.1103/PhysRevLett.93.268701
https://doi.org/10.1038/srep02729
https://doi.org/10.1038/srep02729
https://doi.org/10.1038/srep02729
https://doi.org/10.1038/srep02729
https://doi.org/10.1016/j.jtbi.2005.10.004
https://doi.org/10.1016/j.jtbi.2005.10.004
https://doi.org/10.1016/j.jtbi.2005.10.004
https://doi.org/10.1016/j.jtbi.2005.10.004
https://doi.org/10.1103/PhysRevE.72.016106
https://doi.org/10.1103/PhysRevE.72.016106
https://doi.org/10.1103/PhysRevE.72.016106
https://doi.org/10.1103/PhysRevE.72.016106
https://doi.org/10.1142/S0129183106009473
https://doi.org/10.1142/S0129183106009473
https://doi.org/10.1142/S0129183106009473
https://doi.org/10.1142/S0129183106009473
https://doi.org/10.1016/j.physa.2005.02.075
https://doi.org/10.1016/j.physa.2005.02.075
https://doi.org/10.1016/j.physa.2005.02.075
https://doi.org/10.1016/j.physa.2005.02.075
https://doi.org/10.1103/PhysRevLett.97.238103
https://doi.org/10.1103/PhysRevLett.97.238103
https://doi.org/10.1103/PhysRevLett.97.238103
https://doi.org/10.1103/PhysRevLett.97.238103
https://doi.org/10.1103/PhysRevE.66.035101
https://doi.org/10.1103/PhysRevE.66.035101
https://doi.org/10.1103/PhysRevE.66.035101
https://doi.org/10.1103/PhysRevE.66.035101
https://doi.org/10.1126/science.1065103
https://doi.org/10.1126/science.1065103
https://doi.org/10.1126/science.1065103
https://doi.org/10.1126/science.1065103
https://doi.org/10.1063/1.1985381
https://doi.org/10.1063/1.1985381
https://doi.org/10.1063/1.1985381
https://doi.org/10.1063/1.1985381
https://doi.org/10.1088/1367-2630/13/8/083001
https://doi.org/10.1088/1367-2630/13/8/083001
https://doi.org/10.1088/1367-2630/13/8/083001
https://doi.org/10.1088/1367-2630/13/8/083001
https://doi.org/10.1088/1367-2630/17/2/023052
https://doi.org/10.1088/1367-2630/17/2/023052
https://doi.org/10.1088/1367-2630/17/2/023052
https://doi.org/10.1088/1367-2630/17/2/023052
https://doi.org/10.1103/PhysRevE.85.046103
https://doi.org/10.1103/PhysRevE.85.046103
https://doi.org/10.1103/PhysRevE.85.046103
https://doi.org/10.1103/PhysRevE.85.046103
https://doi.org/10.1103/PhysRevE.64.026118
https://doi.org/10.1103/PhysRevE.64.026118
https://doi.org/10.1103/PhysRevE.64.026118
https://doi.org/10.1103/PhysRevE.64.026118
https://doi.org/10.1016/j.socnet.2006.08.002
https://doi.org/10.1016/j.socnet.2006.08.002
https://doi.org/10.1016/j.socnet.2006.08.002
https://doi.org/10.1016/j.socnet.2006.08.002
https://doi.org/10.1103/PhysRevE.70.066117
https://doi.org/10.1103/PhysRevE.70.066117
https://doi.org/10.1103/PhysRevE.70.066117
https://doi.org/10.1103/PhysRevE.70.066117
https://doi.org/10.1103/PhysRevE.68.026112
https://doi.org/10.1103/PhysRevE.68.026112
https://doi.org/10.1103/PhysRevE.68.026112
https://doi.org/10.1103/PhysRevE.68.026112
https://doi.org/10.1080/01621459.1981.10477598
https://doi.org/10.1080/01621459.1981.10477598
https://doi.org/10.1080/01621459.1981.10477598
https://doi.org/10.1080/01621459.1981.10477598
https://doi.org/10.1111/j.1467-9531.2006.00176.x
https://doi.org/10.1111/j.1467-9531.2006.00176.x
https://doi.org/10.1111/j.1467-9531.2006.00176.x
https://doi.org/10.1111/j.1467-9531.2006.00176.x
https://doi.org/10.1103/PhysRevE.78.015101
https://doi.org/10.1103/PhysRevE.78.015101
https://doi.org/10.1103/PhysRevE.78.015101
https://doi.org/10.1103/PhysRevE.78.015101
https://doi.org/10.1103/PhysRevLett.93.188701
https://doi.org/10.1103/PhysRevLett.93.188701
https://doi.org/10.1103/PhysRevLett.93.188701
https://doi.org/10.1103/PhysRevLett.93.188701
https://doi.org/10.1103/PhysRevE.84.046117
https://doi.org/10.1103/PhysRevE.84.046117
https://doi.org/10.1103/PhysRevE.84.046117
https://doi.org/10.1103/PhysRevE.84.046117
https://doi.org/10.1103/PhysRevE.84.046118
https://doi.org/10.1103/PhysRevE.84.046118
https://doi.org/10.1103/PhysRevE.84.046118
https://doi.org/10.1103/PhysRevE.84.046118
https://doi.org/10.1103/PhysRevE.90.062804
https://doi.org/10.1103/PhysRevE.90.062804
https://doi.org/10.1103/PhysRevE.90.062804
https://doi.org/10.1103/PhysRevE.90.062804
https://doi.org/10.1126/science.1144581
https://doi.org/10.1126/science.1144581
https://doi.org/10.1126/science.1144581
https://doi.org/10.1126/science.1144581
https://doi.org/10.1038/srep00723
https://doi.org/10.1038/srep00723
https://doi.org/10.1038/srep00723
https://doi.org/10.1038/srep00723
http://www.wcoomd.org
https://doi.org/10.3390/sym2031710
https://doi.org/10.3390/sym2031710
https://doi.org/10.3390/sym2031710
https://doi.org/10.3390/sym2031710
https://doi.org/10.1038/ncomms7864
https://doi.org/10.1038/ncomms7864
https://doi.org/10.1038/ncomms7864
https://doi.org/10.1038/ncomms7864
https://doi.org/10.1103/PhysRevE.92.042806
https://doi.org/10.1103/PhysRevE.92.042806
https://doi.org/10.1103/PhysRevE.92.042806
https://doi.org/10.1103/PhysRevE.92.042806
https://doi.org/10.1111/j.1467-9957.1965.tb00050.x
https://doi.org/10.1111/j.1467-9957.1965.tb00050.x
https://doi.org/10.1111/j.1467-9957.1965.tb00050.x
https://doi.org/10.1111/j.1467-9957.1965.tb00050.x



