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Abstract

Physiological effects of carbon dioxide and impact on genome-wide transcript profiles were analysed in chemostat cultures of

Saccharomyces cerevisiae. In anaerobic, glucose-limited chemostat cultures grown at atmospheric pressure, cultivation under

CO2-saturated conditions had only a marginal (<10%) impact on the biomass yield. Conversely, a 25% decrease of the biomass yield

was found in aerobic, glucose-limited chemostat cultures aerated with a mixture of 79% CO2 and 21% O2. This observation indicated

that respiratory metabolism is more sensitive to CO2 than fermentative metabolism. Consistent with the more pronounced physi-

ological effects of CO2 in respiratory cultures, the number of CO2-responsive transcripts was higher in aerobic cultures than in

anaerobic cultures. Many genes involved in mitochondrial functions showed a transcriptional response to elevated CO2 concentra-

tions. This is consistent with an uncoupling effect of CO2 and/or intracellular bicarbonate on the mitochondrial inner membrane.

Other transcripts that showed a significant transcriptional response to elevated CO2 included NCE103 (probably encoding carbonic

anhydrase), PCK1 (encoding PEP carboxykinase) and members of the IMD gene family (encoding isozymes of inosine monophos-

phate dehydrogenase).

� 2004 Published by Elsevier B.V. on behalf of the Federation of European Microbiological Societies.
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1. Introduction

Carbon dioxide is a common gaseous product of cel-

lular metabolism. It is well established that, at high con-

centrations, CO2 can negatively affect microbial
metabolism [1]. Indeed, storage of food products and

beverages under a CO2-enriched atmosphere is used to

delay microbial spoilage [2,3].

Inhibition of growth and product formation by

CO2 can be a problem in industrial fermentation.

During beer fermentation and bio-ethanol production
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with Saccharomyces cerevisiae, the fermentation broth

readily becomes saturated with the CO2 produced dur-

ing alcoholic fermentation. This effect is augmented in

large bioreactors, where hydrostatic pressure may lead

to very high dissolved CO2 concentrations. Effects of
CO2 on S. cerevisiae [4] include loss of biomass yield

and fermentative capacity [5] as well as inhibition of

cell division and bud formation [6]. Furthermore, high

partial pressures of CO2 affect flavour production in

beer fermentations and other important fermentation

parameters in yeasts and other fungi [7–9].

Despite the industrial relevance of CO2 effects on

yeast physiology, little is known or understood about
the molecular mechanisms involved in CO2 sensitivity

in S. cerevisiae. Proposed mechanisms for CO2 toxicity
ation of European Microbiological Societies.
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include alterations in membrane fluidity (the so-called

‘‘anaesthesia effect’’), direct inhibition of certain enzyme

activities and internal acidification by the hydration of

CO2 into H2CO3, but all of these are essentially hypo-

thetical [1].

The cellular responses of S. cerevisiae to many
stresses other than elevated CO2 concentrations have

been extensively studied [10,11]. Stress responses in

S. cerevisiae typically involve signal transduction path-

ways that trigger transcriptional upregulation of genes

encoding the proteins involved in adaptation to the

new environment, as well as downregulation of other

genes. These mechanisms may be generic (like the

General Stress Response), provoking the coordinate
response of a number of stress-responsive genes upon

exposure to a wide variety of conditions [12], or spe-

cific for a certain kind of stress. So far, transcriptional

responses of S. cerevisiae to CO2 stress have not been

documented.

Knowledge on the genome-wide transcriptional re-

sponse of S. cerevisiae to high CO2 concentrations

may provide a deeper insight into the molecular mech-
anisms of CO2 stress. Such insight is essential to de-

velop metabolic-engineering strategies for improving

CO2 tolerance. Furthermore, identification of �signa-
ture transcripts� that uniquely respond to CO2 stress

may be applicable for diagnosing the CO2 status of

industrial fermentations. It has recently been demon-

strated that the combination of chemostat cultivation

with DNA-microarray-based transcriptome analysis
offers a powerful and reproducible approach to iden-

tify the transcriptional responses of yeasts to environ-

mental parameters [13–17]. For this reason, in the

present study we used chemostat cultures of S. cerevi-

siae to quantify the effect of CO2 on respiring and fer-

menting cells, and to determine the genome-wide

transcriptional responses of this yeast to high CO2

concentrations.
2. Materials and methods

2.1. Strains and culture conditions

The prototrophic S. cerevisiae strain CEN.PK113-7D

[18] was used for this study. Cells were grown at 30 �C in
laboratory fermenters (Applikon, Schiedam, The Neth-

erlands) with a working volume of 1 l as described in

[19]. Cultures were fed with a defined synthetic medium

that was designed to allow for steady-state growth lim-

ited by either carbon or nitrogen [14], with all other

requirements in excess and at a constant residual con-

centration. The dilution rate was set to 0.10 h�1. The

pH was measured online and kept constant at 5.0 by
the automatic addition of 2-M KOH with the use of
an Applikon ADI 1030 Biocontroler. Stirrer speed was

800 rpm, and the gas flow was 0.5 lmin�1.

2.2. Media and gassing

Synthetic media were prepared as described [20] with
the following modifications: for carbon-limited cultiva-

tion, the medium contained 5.0 g l�1 of (NH4)2SO4, 3.0

g l�1 of KH2PO4, 0.5 g l�1 of MgSO4 Æ 7H2O, and either

7.5 g l�1 of glucose or 5.76 g l�1 of ethanol. For nitrogen-

limited cultures, 1.0 g l�1 of (NH4)2SO4, 5,3 g l�1 of

K2SO4, 3.0 g l�1 of KH2PO4, 0.5 g l�1 of MgSO4 Æ 7H2O,

and the necessary glucose to keep the residual glucose

concentration at 18 g l�1 (59 and 62.2 g l�1 for the
CO2-untreated and -treated cultures, respectively). This

was done to avoid differences in the degree of glucose

repression. For anaerobic cultivation, ergosterol (10

mg l�1) and Tween 80 (420 mg l�1) were added, and

the medium vessel was flushed with N2.

Cells were gassed with air or with N2 for aerobic or

anaerobic cultivation, respectively. For CO2-enriched

anaerobic cultivation, the nitrogen sparging gas was re-
placed by pure (>99.99%) CO2 (HoekLoos, Schiedam,

The Netherlands). For CO2-enriched aerobic cultiva-

tion, cultures were sparged with a defined gas mixture

containing 79% CO2 and 21% O2 (HoekLoos, Schiedam,

The Netherlands).

2.3. Culture monitoring

Dissolved oxygen was monitored online with an oxy-

gen probe (Ingold model 34-100-3002) and remained

above 70% of oxygen saturation in aerobic experiments.

The off-gas was cooled by a condenser connected to a

cryostat set at 2 �C, and O2 and CO2 were measured off-

line with an ADC 7000 gas analyser (White Rock, BC,

Canada). In CO2-enriched cultures, CO2 measurement

was not possible due to over-ranging of the device.
Due to the absence of nitrogen (used as reference gas),

respiratory quotients could not be calculated in these

cultures. Therefore, oxygen consumption and CO2 pro-

duction were estimated by assuming a 100% carbon bal-

ance. Dry weight was determined as previously

described [21]. Extracellular metabolites were measured

by HPLC [14]. Steady-state samples were taken after

7–10 volume changes to avoid strain adaptation due to
long-term cultivation [22,23]. Samples for RNA extrac-

tion were taken when weight, metabolite concentrations

and off-gas analysis differed by less than 2% over a

period of two volume changes.

2.4. Fermentative capacity

The maximum fermentative capacity of culture sam-
ples was determined by following ethanol production

under anaerobic conditions in the presence of excess



J. Aguilera et al. / FEMS Yeast Research 5 (2005) 579–593 581
glucose [24]. Ethanol was spectrophotometrically deter-

mined from the samples using a commercial kit (Roche)

and following manufacturer�s instructions.

2.5. Total RNA purification, probe preparation and array

hybridisation

One hundred millilitres of culture was sampled di-

rectly from the fermentor into a beaker containing

200–300 ml of liquid nitrogen and then processed as de-

scribed [13]. Total RNA was extracted with phenol/chlo-

roform [25]. mRNA extraction, cDNA synthesis and

labelling, as well as array hybridisation against Affyme-

trix YG-S98 GeneChips� was performed as described in
the Affymetrix user�s manual [26]. Data acquisition was

performed using the software packages Microarray

Suite v5.0, MicroDB v3.0 and Data Mining Tool v3.0

(Affymetrix, Santa Clara, CA, USA).

2.6. Data processing and analysis

Before comparison, all arrays were globally scaled
to a target value of 150 using the average from all

the gene features. From the 9335 transcript features

on the YG-S98 arrays a filter was applied to extract

6383 open reading frames of which there were 6084

different genes. Signal values below 10 were discarded

from the analysis because they were considered below

the limit of detection of the system [13]. For statistical

analysis, the software packages SAM [27], dChip [28]
and Microsoft� Excel were used. Promoter analysis

was performed with the web-implemented software

RSA Tools [29].

2.7. Enzyme analysis

Two hundred and forty millilitres of the culture was

sampled directly from the fermentor, harvested by cen-
trifugation, washed twice with 10 mM potassium phos-

phate buffer (pH 7.5) containing 2 mM EDTA,

concentrated sixfold, aliquoted (4 ml aliquots) and

stored at �20 �C until use. Aliquots were thawed,

washed, and resuspended in 2 ml of 100 mM potassium

phosphate buffer (pH 7.5) containing 2 mM MgCl2 and

1 mM DTT (for phosphoenolpyruvate carboxykinase

(PEPCK) and pyruvate carboxylase determinations),
or in 2 ml of Tris-barbiturate (pH 8.3) containing

1 lM ZnSO4 and 1 mM DTT (for carbonic anhydrase

assays). Crude extracts were prepared by sonication

with 0.7-mm-diameter glass beads at 0 �C in a MSE

Soniprep 150 sonicator (150 W output, 8 lm peak-to-

peak amplitude) for 4 min at 0.5-min intervals. Cell deb-

ris was removed by centrifugation (20 min at 36,000g) at

4 �C. The supernatant was used as the cell extract. Phos-
phoenolpyruvate carboxykinase, pyruvate carboxylase

and carbonic anhydrase (CA) activity were determined
as described [30,31]. Total protein was determined fol-

lowing the Lowry method [32].
3. Results

3.1. Physiological effects of elevated carbon dioxide

concentrations

To quantify physiological effects of elevated CO2 con-

centrations on yeast physiology, biomass and product

formation were studied in chemostat cultures grown in

the presence or (virtual) absence of CO2 in the inlet

gas. Three different cultivation conditions were investi-
gated, each resulting in a different mode of glucose dis-

similation. A completely fermentative metabolism was

obtained in anaerobic, glucose-limited chemostat cul-

tures, and a completely respiratory glucose dissimilation

in aerobic, glucose-limited chemostat cultures (Table 1).

A mixed respiro-fermentative mode of glucose dissimila-

tion was obtained by nitrogen-limited, aerobic cultiva-

tion (Table 1).
The effects of CO2 on cellular physiology were most

pronounced in the aerobic, glucose-limited chemostat

cultures. Under these conditions, inclusion of 79%

CO2 in the inlet gas led to a 24% decrease of the biomass

yield on glucose (Table 1). Consistent with this reduced

biomass yield, respiration rates were higher in the CO2-

enriched respiratory cultures. The dissolved oxygen per-

centage in the culture broth remained as high as in the
non-CO2-enriched cultures, ensuring that the observed

effects were due to the excess of CO2 and not to O2

depletion. Conversely, biomass and product yields in

the anaerobic, fermentative cultures were not signifi-

cantly affected when the nitrogen gas used for sparging

was completely replaced by CO2 (Table 1). An interme-

diate situation (10% decrease of the biomass yield) was

observed in the nitrogen-limited, respiro-fermentative
cultures (Table 1).

To further explore the relationship between respira-

tory metabolism and CO2 sensitivity, we attempted to

establish CO2-enriched ethanol-limited chemostat cul-

tures. However, under these conditions the maximum

specific growth rate on ethanol was reduced from

�0.18 h�1 [33] to below 0.04 h�1 (data not shown).

While this precluded steady-state analysis in chemostat
cultures, it gives a further indication that detrimental

effects of CO2 are most pronounced in respiring

cultures.

In addition to affecting the biomass yield, elevated

CO2 concentrations resulted in changes of the levels of

pyruvate and acetate produced by the aerobic, nitro-

gen-limited and anaerobic, glucose-limited cultures

(Table 1). However, the absolute concentrations of these
metabolites were low and it is not clear whether their in-

creased concentrations indicated an increased perme-
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ability of the plasma membrane or constraints in pri-

mary metabolism.

Fermentative capacity, i.e. the maximum biomass-

specific rate of ethanol production under anaerobic con-

ditions in the presence of excess glucose, is a highly

relevant characteristic for baker�s yeast. This parameter
is strongly dependent on cultivation conditions [24,34].

A previous study reported that fermentative capacity

was drastically diminished in aerobic fed-batch cultures

of S. cerevisiae subjected to high CO2 concentrations [5].

In the present study, this parameter did not change sig-

nificantly in response to elevated carbon dioxide concen-

trations (data not shown). This apparent discrepancy

may be due to the inherent dynamic nature of fed-batch
cultivation, as compared to the steady-state conditions

studied here.

3.2. Transcriptional responses to elevated carbon dioxide

concentrations

DNA-microarray analysis was performed on all six

conditions (three aeration/nutrient limitation regimes,
with and without elevated CO2) to analyse the gen-

ome-wide transcriptional responses to elevated CO2

concentrations. The reproducibility of the data was as-

sessed by calculating the average coefficient of variation

(CV = SD/average · 100%) for the transcripts within

each set of independent triplicate samples [13]. With

the exception of the anaerobic reference cultures

(CV = 29%), the CV values for all datasets were below
20%.

To identify CO2-responsive transcripts, three pairwise

comparisons were performed between the CO2-enriched

and reference cultures (one for each aeration/nutrient

limitation regime). SAM software [27] was used for a

statistical analysis, with a minimum fold change of 2.

The false discovery rate (FDR = percentage of called

genes that are expected to be false positives) was set to
1%. Under all three aeration/nutrient limitation regimes,

only a small fraction of the genome showed a significant

transcriptional response to elevated CO2 concentrations

(Tables 2–4). Consistent with the stronger physiological

response to CO2, the largest number of CO2-responding

genes was identified in the aerobic, glucose-limited cul-

tures (104 versus 33 and 34 for the anaerobic, glucose-

limited and aerobic, N-limited cultures, respectively,
Tables 2–4).

In the aerobic, glucose-limited cultures, almost 50%

of the annotated genes that showed an elevated tran-

script level in the CO2-enriched cultures encoded mito-

chondrial proteins (Fig. 1 and Table 4). Some of the

encoded proteins are directly involved in oxidative phos-

phorylation, such as Cox11p, Cox17p and Cox18p,

which are implied in the assembly of the cytochrome c

oxidase complex [35–37]. ATP11, which also showed

higher transcript levels in the respiratory, CO2-enriched



Table 2

Genes whose mRNA level changed at least twofold in anaerobic, carbon-limited, CO2-enriched cultures as compared to reference cultures without CO2 enrichments

Gene/ORF Description Subcellular localization Controla 79% CO2
a Fold change

Upregulated

AAR2 Splices pre mRNA of the MATa1 cistron Cytoplasm 1.5 ± 2.2 14.3 ± 3.1 9.77

YAR062W Putative pseudogene Cytoplasm 3.2 ± 2.3 19.0 ± 4.0 5.87

YIL059C Hypothetical protein Unclassified 22.4 ± 8.3 140.2 ± 32.3 6.26

YFR026C Hypothetical protein Unclassified 14.6 ± 4.9 77.6 ± 15.4 5.31

ALR2 Aluminium resistance Plasma membrane 35.9 ± 11.5 143.1 ± 13.7 3.98

YMR320W Hypothetical protein Cytoplasm 24.5 ± 18.1 96.6 ± 11.1 3.94

COS10 Protein with strong similarity to subtelomerically encoded proteins such as

Cos5p, Ybr302p, Cos3p, Cos1p, Cos4p, Cos8p, Cos6p, Cos9p

Cytoplasm 14.6 ± 10.3 56.3 ± 5.8 3.86

YDL038C Similarity to mucin proteins Unclassified 27.4 ± 13.6 105.2 ± 17.4 3.83

YHR032W Ethionine resistance protein Unclassified 32.0 ± 12.4 116.5 ± 6.3 3.64

YFR055W Strong similarity to b-cystathionases Unclassified 24.7 ± 11.8 86.7 ± 2.4 3.51

IMD1 IMP dehydrogenase Unclassified 308.5 ± 117.7 1068.4 ± 100.3 3.46

OPT2 Oligopeptide transporter Membranes 90.7 ± 44.7 307.3 ± 51.8 3.39

YGL101W Strong similarity to hypothetical protein YBR242W Cytoplasm 13.5 ± 7.4 42.1 ± 4.9 3.12

YBR108W Probable transcription factor Unclassified 7.7 ± 3.0 22.5 ± 0.5 2.93

FMS1 Multicopy suppressor of fenpropimorph resistance (fen2 mutant), shows similarity to

Candida albicans corticosteroid-binding protein gene CBP1

Cytoplasm 69.0 ± 22.7 191.2 ± 21.5 2.77

YOL031C Weak similarity to Y. lipolytica Sls1 protein precursor ER 58.8 ± 29.4 162.6 ± 6.1 2.76

YNL158W Hypothetical protein Unclassified 49.5 ± 23.9 132.0 ± 8.4 2.67

YPL245W Weak similarity to human mutL protein homolog Cytoplasm 37.7 ± 14.7 100.5 ± 5.4 2.66

YIL141W Questionable ORF Mitochondria 6.2 ± 3.3 20.4 ± 3.8 2.66

SPC29 Nuclear import protein Spindle pole body 27.4 ± 11.0 71.4 ± 7.4 2.61

ISU2 NifU-like protein A Mitochondria 200.7 ± 48.6 497.9 ± 23.8 2.48

MRH1 Strong similarity to putative heat shock protein gene YRO2 Bud 419.9 ± 85.5 1035.3 ± 126.1 2.47

BUD31 Involved in bud selection Cytoplasm 19.5 ± 7.0 47.9 ± 4.5 2.45

YCR087C Nucleic acid-binding protein Unclassified 65.7 ± 10.1 158.6 ± 19.2 2.41

PRM7 Pheromone-regulated protein, unknown function Unclassified 65.6 ± 6.6 156.8 ± 3.3 2.39

YGL041C Weak similarity to YJL109C Unclassified 7.6 ± 1.3 17.2 ± 1.6 2.26

KSS1 MAP protein kinase homolog involved in pheromone signal transduction Unclassified 16.7 ± 3.3 36.3 ± 4.0 2.18

YGL045W Hypothetical protein Unclassified 37.9 ± 7.7 82.5 ± 5.2 2.18

YPL095C Strong similarity to YBR177C Unclassified 530.9 ± 87.4 1143.3 ± 109.2 2.15

THI3 Positive regulatory factor with thiamin pyrophosphate-binding motif for thiamin metabolism Nucleus 74.9 ± 16.5 154.1 ± 15.7 2.06

Downregulated

AHP1 Similarity to C. boidinii peroxisomal membrane protein 20 KA Cytoplasm 889.1 ± 115.5 217.5 ± 64.0 �4.09

CVT19 Protein involved in the cytoplasm-to-vacuole targeting pathway and in autophagy ER 219.8 ± 15.7 99.7 ± 19.0 �2.20

PDR5 Multidrug resistance transporter Plasma membrane 262.3 ± 29.4 98.5 ± 19.7 �2.66

a Signal values given by the Affymetrix system. Values are expressed as average ± standard deviation of three independent replicates. As a reference, values for ACT1 (encoding actin) were

3936.0 ± 1189.7 (control cells) and 2974.6 ± 322.6 (CO2 treated cells).
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Table 3

Genes whose mRNA level changed at least twofold in aerobic, nitrogen-limited, CO2 enriched cultures as compared to reference cultures without CO2 enrichments

Gene/ORF Description Subcellular localization Controla 79%CO2
a Fold change

Upregulated

COS12 Protein with strong similarity to subtelomerically encoded proteins including

Cos2p, Cos4p, Cos8p, YIR040C, Cos5p, Cos9p, and Cos6p

Unclassified 3.9 ± 0.7 19.2 ± 2.0 4.97

MHT1 S-methylmethionine homocysteine methyltransferase Cytoplasm 19.5 ± 4.3 70.6 ± 9.4 3.63

MF(ALPHA)1 Mating factor alpha Extracellular 305.5 ± 45.4 891.7 ± 81.1 2.92

YHL042W Similarity to subtelomeric encoded proteins ER 41.6 ± 7.3 116.1 ± 10.4 2.79

HAC1 bZIP transcription factor that regulates the unfolded-protein response Cytoplasm 68.1 ± 14.2 160.7 ± 11.8 2.36

YAR075W Strong similarity to IMP dehydrogenases Unclassified 556.1 ± 24.7 1209.1 ± 64.7 2.17

Downregulated

YGR035C Hypothetical protein Unclassified 89.0 ± 15.0 3.8 ± 2.4 �23.42

YKL162C Hypothetical protein identified by SAGE Mitochondria 15.1 ± 2.8 1.6 ± 1.2 �9.66

DAL4 Allantoin permease Plasma membrane 238.4 ± 21.2 30.3 ± 3.7 �7.88

POT1 Peroxisomal 3-oxoacyl CoA thiolase Cytoplasm 65.3 ± 5.3 11.8 ± 2.5 �5.53

YJL213W Similarity to Methanobacterium aryldialkylphosphatase related protein Unclassified 364.9 ± 73.0 70.0 ± 11.9 �5.22

YAR068W Potential membrane protein Unclassified 41.9 ± 6.5 9.7 ± 5.2 �4.32

INO1 LL-myoinositol-1-phosphate synthase Cytoplasm 249.6 ± 29.2 61.9 ± 14.4 �4.03

HXT1 Low-affinity hexose (glucose) transporter Plasma membrane 313.1 ± 10.8 86.8 ± 20.2 �3.61

PDR12 Multidrug resistance transporter Cell periphery 523.1 ± 92.3 154.6 ± 30.2 �3.38

NCE103 Putative carbonic anhydrase Cytoplasm 1006.5 ± 23.7 303.1 ± 76.7 �3.32

YHR140W Hypothetical protein Cytoplasm 88.8 ± 3.4 30.7 ± 5.2 �2.89

NDT80 Meiosis-specific gene, mRNA is sporulation-specific Unclassified 22.4 ± 2.3 7.8 ± 2.2 � 2.89

DIP5 Dicarboxylic amino acid permease Cell periphery 696.8 ± 44.4 243.1 ± 50.2 �2.87

SPS19 Peroxisomal 2,4-dienoyl-CoA reductase Cytoplasm 134.0 ± 8.2 48.6 ± 13.5 �2.76

TPO4 Similarity to resistance proteins Bud 368.4 ± 47.4 134.2 ± 5.2 �2.75

YPL095C Strong similarity to YBR177C Unclassified 1032.3 ± 51.9 394.7 ± 16.4 �2.62

DDR2 Multi-stress responsive protein Unclassified 1288.4 ± 124.2 516.7 ± 33.8 �2.49

STE3 A factor recptor Plasma membrane 20.0 ± 0.6 8.8 ± 0.4 �2.27

BAT2 Branched-chain amino acid transaminase Cytoplasm 442.8 ± 57.1 199.8 ± 19.5 �2.22

OYE3 NAD(P)H dehydrogenase Cytoplasm 177.8 ± 13.1 80.5 ± 12.5 �2.21

YGR150C Hypothetical protein Mitochondria 25.2 ± 2.9 11.6 ± 2.0 �2.17

SPS4 Sporulation-specific protein Unclassified 109.8 ± 6.4 51.8 ± 13.1 �2.12

YJL037W Strong similarity to hypothetical protein YJL038C Unclassified 34.5 ± 0.7 16.4 ± 1.1 �2.11

BST1 Protein that negatively regulates COPII vesicle formation, required for proper vesicle cargo sorting ER 188.8 ± 21.3 90.5 ± 12.2 �2.09

FYV9 Weak similarity H.influenzae protoporphyrinogen oxidase (hemK) homolog Cytoplasm 112.3 ± 6.8 54.5 ± 7.8 �2.06

YLR089C Strong similarity to alanine transaminases Nucleus 1008.2 ± 67.2 496.0 ± 10.4 �2.03

FIT2 Involved in the retention of siderophore-iron in the cell wall Unclassified 25.2 ± 2.6 12.4 ± 2.6 �2.03

YMR041C Weak similarity to Pseudomonas LL-fucose dehydrogenase Mitochondria 99.6 ± 9.9 49.4 ± 4.9 �2.02

KNH1 KRE9 homolog Cytoplasm 45.6 ± 3.8 22.8 ± 3.1 �2.00

YHR140W Hypothetical protein Unclassified 89.0 ± 15.0 3.8 ± 2.4 �23.42

a Signal values given by the Affymetrix system. Values are expressed as average ± standard deviation of three independent replicates. As a reference, values for ACT1 (encoding actin) were

2265.3 ± 106.0 (control cells) and 2273.2 ± 225.1 (CO2 treated cells).
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Table 4

Genes whose mRNA level changed at least twofold in aerobic, carbon-limited, CO2 enriched cultures as compared to reference cultures without CO2 enrichments

Gene/ORF Description Subcellular localization Controla 79% CO2
a Fold change

Upregulated

DIP5 Dicarboxylic amino acid permease Cell periphery 28.1 ± 9.7 956.3 ± 201.7 34.07

PCK1 Phosphoenolpyruvate carboxykinase Cytoplasm 202.4 ± 28.2 2133.4 ± 408.2 10.54

COS12 Protein with strong similarity to subtelomerically encoded proteins

including Cos2p, Cos4p, Cos8p, YIR040c, Cos5p, Cos9p, and Cos6p

Unclassified 6.7 ± 3.0 46.1 ± 4.7 6.89

IMD2 IMP dehydrogenase Cytoplasm 262.2 ± 50.9 1545.0 ± 114.5 5.89

IMD1 IMP dehydrogenase Unclassified 100.2 ± 31.0 587.9 ± 87.4 5.87

YOL162W Strong similarity to hypothetical protein YIL166C Unclassified 13.8 ± 3.5 73.4 ± 5.5 5.31

YAR075W Strong similarity to IMP dehydrogenases Unclassified 348.5 ± 109.7 1795.0 ± 140.3 5.15

PIC2 Mitochondrial phosphate carrier Mitochondria 135.5 ± 14.7 575.2 ± 113.5 4.25

MHT1 S-methylmethionine homocysteine methyltransferase Cytoplasm 100.3 ± 17.5 384.8 ± 40.7 3.84

COS2 Protein with similarity to members of the Cos3, Cos5, Cos1, Cos4, Cos8,

Cos6, Cos9 family, coded from subtelomeric region

Vacuole 113.2 ± 10.1 426.7 ± 62.7 3.77

COS3 Protein with strong similarity to subtelomerically encoded proteins such as

Cos5p, Ybr302p, Cos3p, Cos1p, Cos4p, Cos8p, Cos6p, Cos9p

Vacuole 145.1 ± 26.8 513.7 ± 73.6 3.75

YER187W YER187W similarity to killer toxin KHS precursor Unclassified 21.1 ± 9.2 78.1 ± 6.2 3.71

COS3 Protein with strong similarity to subtelomerically encoded proteins such as

Cos5p, Ybr302p, Cos3p, Cos1p, Cos4p, Cos8p, Cos6p, Cos9p

Vacuole 145.1 ± 26.8 513.7 ± 73.6 3.54

YFR020W Hypothetical protein Unclassified 183.5 ± 19.2 637.5 ± 12.0 3.47

GIC2 Putative effector of Cdc42p, important for bud emergence Bud 204.8 ± 51.7 655.2 ± 48.4 3.20

YAR029W Uncharacterised ORF Unclassified 6.0 ± 1.9 18.8 ± 2.7 3.14

YLR343W Strong similarity to Gas1p and C. albicans pH responsive protein Cytoplasm 10.9 ± 2.7 32.6 ± 5.4 2.99

SUT1 Involved in sterol uptake Cytoplasm 37.5 ± 8.7 109.1 ± 6.5 2.91

MRPL3 Mitochondrial ribosomal protein MRPL3 (YmL3) Mitochondria 131.6 ± 16.0 358.0 ± 12.2 2.72

YIR043C Member of the COS family of subtelomerically encoded proteins Unclassified 7.8 ± 1.6 21.2 ± 0.7 2.71

YPS6 GPI-anchored aspartic protease Unclassified 44.4 ± 2.5 119.1 ± 8.8 2.68

YLR179C Similarity to Tfs1p Cytoplasm 279.5 ± 56.5 733.9 ± 90.4 2.63

DUR1 2 Urea amidolyase, contains urea carboxylase and allophanate hydrolase

activities fused together in a single polypeptide

Cytoplasm 99.5 ± 27.1 256.0 ± 29.9 2.57

MSE1 Mitochondrial glutamyl-tRNA synthetase Mitochondria 50.5 ± 2.6 127.9 ± 20.3 2.53

PYC1 Pyruvate carboxylase Cytoplasm 408.3 ± 127.3 1031.2 ± 109.6 2.53

PNT1 Pentamidine resistance protein Mitochondria 18.1 ± 1.4 44.7 ± 5.9 2.47

YBL029W Hypothetical protein Cytoplasm 17.1 ± 3.8 42.3 ± 5.7 2.47

MRS2 Splicing factor Mitochondria 36.7 ± 5.6 86.6 ± 7.8 2.36

IFM1 Mitochondrial initiation factor 2 Mitochondria 40.2 ± 6.2 94.2 ± 5.8 2.34

YDL045W Homologous to Yml37p, component of the 37 S subunit of mitochondrial

ribosomes

Mitochondria 197.7 ± 31.7 460.9 ± 49.8 2.33

YDR316W Hypothetical protein Mitochondria 139.3 ± 23.7 324.5 ± 19.7 2.33

COX11 Mitochondrial membrane protein required for assembly of active

cytochrome c oxidase

Mitochondria 183.2 ± 7.8 424.6 ± 52.4 2.32

YDR010C Hypothetical protein Unclassified 6.7 ± 0.2 15.4 ± 2.1 2.31

EDS1 Probable regulatory Zn-finger protein Unclassified 85.8 ± 13.2 197.2 ± 27.5 2.30

ECM29 Major component of the proteasome Cytoplasm 25.3 ± 5.2 56.9 ± 5.9 2.25

BNA1 Required for biosynthesis of nicotinic acid from tryptophan Cytoplasm 114.9 ± 6.1 256.0 ± 25.6 2.23

YDR539W Similarity to E. coli hypothetical 55.3 kDa protein in rfah-rfe intergenic

region

Cytoplasm 63.6 ± 13.1 141.4 ± 6.8 2.22

(continued on next page)
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Table 4 (continued)

Gene/ORF Description Subcellular localization Controla 79% CO2
a Fold change

RSM18 Mitochondrial ribosomal protein Mitochondria 173.5 ± 31.4 379.9 ± 21.5 2.19

YNR040W Hypothetical protein Cytoplasm 77.7 ± 9.0 167.8 ± 13.1 2.16

YER163C Weak similarity to E. coli cation transport protein Cytoplasm 84.6 ± 11.2 181.6 ± 19.5 2.15

YKR016W Weak similarity to mysoin heavy chain proteins Mitochondria 125.4 ± 29.3 267.7 ± 23.5 2.13

COS5 Protein with similarity to members of the Ybr302p, Ycr007p, Cos8p, Cos9p

family, coded from subtelomeric region

Vacuole 171.8 ± 27.2 381.1 ± 68.2 2.12

MUP3 Very low affinity methionine permease Plasma membrane 65.3 ± 9.2 138.7 ± 15.3 2.12

COX18 Cytochrome oxidase gene 18 Mitochondria 213.4 ± 3.1 451.2 ± 47.2 2.11

COX17 Required for delivery to cytochrome c oxidase Mitochondria 269.5 ± 29.9 565.8 ± 54.4 2.10

MIP6 PolyA-binding protein Cytoplasm 64.1 ± 3.5 134.5 ± 10.4 2.10

COS4 Protein with strong similarity to subtelomerically encoded proteins such as

Cos5p, Ybr302p, Cos3p, Cos1p, Cos4p, Cos8p, Cos6p, Cos9p

Vacuole 398.2 ± 36.5 832.0 ± 69.9 2.09

ECM22 Regulates transcription of the sterol biosynthetic genes ERG2 and ERG3 Cytoplasm 137.8 ± 12.4 286.3 ± 23.8 2.08

YBL062W Questionable ORF Unclassified 10.5 ± 0.9 21.7 ± 2.8 2.07

ATP11 Essential for assembly of a functional F1-ATPase Mitochondria 340.0 ± 42.2 701.3 ± 63.9 2.06

MRF1 Mitochondrial polypeptide chain release factor Mitochondria 56.7 ± 3.8 116.7 ± 8.8 2.06

MRPL27 Mitochondrial ribosomal protein MRPL27 (YmL27) Mitochondria 238.7 ± 8.0 488.5 ± 46.4 2.05

Downregulated

PRR2 Receptor signaling involved in pheromone response Cytoplasm 150.5 ± 27.7 4.9 ± 2.7 �30.93

FDH1 Putative formate dehydrogenase Unclassified 2028.9 ± 529.5 67.0 ± 73.9 �30.28

SIP18 Salt-induced protein Cytoplasm 954.8 ± 211.1 39.7 ± 7.9 �24.03

HSP26 Heat shock protein of 26 kDa, expressed during entry to stationary phase

and induced by osmostress

Cytoplasm 1769.5 ± 317.3 186.2 ± 159.7 �9.50

YML122C Hypothetical protein Unclassified 41.1 ± 5.4 4.9 ± 2.3 �8.38

YDR070C Hypothetical protein Mitochondria 1056.0 ± 188.3 156.2 ± 158.7 �6.76

GND2 6-phosphogluconate dehydrogenase Cytoplasm 316.4 ± 69.2 49.4 ± 24.2 �6.41

NCE103 Putative carbonic anhydrase Cytoplasm 1680.1 ± 102.5 263.4 ± 26.4 �6.38

OYE3 NAD(P)H dehydrogenase Cytoplasm 198.6 ± 36.9 31.2 ± 12.0 �6.37

YEL041W Strong similarity to Utr1p Unclassified 266.4 ± 12.9 55.4 ± 14.3 �4.81

HSP12 Heat shock protein of 12 kDa, induced by heat, osmotic stress, oxidative

stress and in stationary phase

Cytoplasm 3088.1 ± 342.0 657.4 ± 299.1 �4.70

SSA4 Member of 70 kDa heat shock protein family Cytoplasm 405.7 ± 55.8 90.1 ± 21.0 �4.50

SWM1 Spore wall maturation Nucleus 198.2 ± 39.0 46.3 ± 5.8 �4.28

YNL335W Similarity to M. verrucaria cyanamide hydratase, identical to hypothetical

protein YFL061W

Cytoplasm 158.1 ± 20.7 39.3 ± 25.5 �4.02

CPA2 Carbamyl phosphate synthetase Cytoplasm 441.3 ± 83.0 113.0 ± 10.3 �3.90

AMS1 Vacuolar alpha mannosidase Vacuole 302.4 ± 49.5 79.8 ± 17.6 �3.79

GPM2 Similar to GPM1 (phosphoglycerate mutase) Cytoplasm 66.2 ± 5.6 17.6 ± 4.2 �3.75

YOL153C Strong similarity to Cps1p Unclassified 31.9 ± 2.9 9.0 ± 2.8 �3.55

SSE2 HSP70 family member, highly homologous to Sse1p Cytoplasm 357.5 ± 59.6 101.7 ± 28.3 �3.51

HOR2 DLDL-glycerol-3-phosphatase Cytoplasm 66.5 ± 1.2 19.8 ± 5.6 �3.36

FUN34 Putative transmembrane protein, involved in ammonia production Nucleus 1617.8 ± 147.9 517.5 ± 101.2 �3.13

KNH1 KRE9 homolog Cytoplasm 142.9 ± 22.0 47.4 ± 8.6 �3.02

YNL115C Weak similarity to S. pombe hypothetical protein SPAC23C11 Vacuole 141.7 ± 20.7 47.1 ± 6.3 �3.01

YDL199C Similarity to sugar transporter proteins Membranes 68.6 ± 5.9 25.1 ± 9.2 �2.73

ARO10 Similarity to Pdc6p, Thi3p and to pyruvate decarboxylases Cytoplasm 67.2 ± 3.9 24.8 ± 3.7 �2.71
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YJL037W Strong similarity to hypothetical protein YJL038C Unclassified 177.1 ± 20.6 65.7 ± 7.3 �2.69

STP2 Transcription factor for amino acid permeases Cytoplasm 158.6 ± 21.0 60.3 ± 5.9 �2.63

YBL049W Hypothetical protein Unclassified 392.0 ± 16.1 149.2 ± 43.0 �2.63

NEJ1 Hypothetical protein Cytoplasm 33.2 ± 3.9 12.7 ± 3.0 �2.62

PST1 Strong similarity to SPS2 Plasma membrane 735.8 ± 113.9 283.6 ± 46.2 �2.59

NHP6A 11-kDa non-histone chromosomal protein Nucleus 321.1 ± 17.8 124.9 ± 6.4 �2.57

HYR1 Putative glutathione-peroxidase Cytoplasm 705.3 ± 114.4 280.6 ± 16.7 �2.51

SSK1 Two-component signal transducer that with Sln1p regulates osmosensing

MAP kinase cascade(suppressor of sensor kinase)

Cytoplasm 54.9 ± 7.6 22.0 ± 0.7 �2.49

RME1 Zinc finger protein, negative regulator of meiosis. Cytoplasm 389.4 ± 56.3 157.5 ± 30.4 �2.47

YNL274C Similarity to glycerate- and formate-dehydrogenases Cytoplasm 302.5 ± 26.6 124.9 ± 37.6 �2.42

AIP1 Protein localizes to actin cortical patches. Probable binding site on actin lies

on front surface of subdomain 3 and 4.

Cytoplasm 420.7 ± 39.7 187.6 ± 9.3 �2.24

YOR215C Similarity to M. xanthus hypothetical protein Mitochondria 322.5 ± 40.6 144.8 ± 20.5 �2.23

YOR086C Weak similarity to synaptogamines cell periphery 111.4 ± 11.4 51.2 ± 3.1 �2.18

YOL107W YOL107W weak similarity to human PL6 protein Cytoplasm 69.4 ± 8.1 32.4 ± 5.2 �2.14

PPT1 Serine/threonine phosphatase Cytoplasm 48.5 ± 1.4 22.7 ± 5.5 �2.14

OSH2 Involved in sterol metabolism Cytoplasm 176.4 ± 13.8 83.5 ± 17.7 �2.11

MSC3 Protein with unknown function cell periphery 277.4 ± 27.3 131.5 ± 29.2 �2.11

UME1 Transcriptional modulator Cytoplasm 36.3 ± 4.8 17.4 ± 0.5 �2.08

YIM1 Mitochondrial inner membrane protease Cytoplasm 68.7 ± 6.2 33.0 ± 3.8 �2.08

ECM39 a-1,6-mannosyltransferase ER 97.9 ± 8.8 47.1 ± 9.2 �2.08

DDR48 Flocculent specific protein Cytoplasm 823.9 ± 52.3 399.7 ± 11.3 �2.06

PEP4 Vacuolar proteinase A Mitochondria 1555.9 ± 65.4 755.3 ± 76.4 �2.06

YOR152C Hypothetical protein Cytoplasm 31.5 ± 2.6 15.3 ± 0.7 �2.06

RHK1 Putative Dol-P-Man dependent alpha(1–3) mannosyltransferase involved in

the biosynthesis of the lipid-linked oligosaccharide

Cytoplasm 196.6 ± 8.7 97.1 ± 5.5 �2.02

YKL207W Hypothetical protein Unclassified 654.0 ± 52.2 323.2 ± 65.0 �2.02

PST2 Protein secreted by regenerating protoplasts Cytoplasm 2053.2 ± 115.5 1014.9 ± 221.0 �2.02

DFG5 Protein required for filamentous growth, cell polarity, and cellular elongation ER 393.2 ± 29.8 196.0 ± 23.6 �2.01

a Signal values given by the Affymetrix system. Values are expressed as average ± standard deviation of three independent replicates. As a reference, values for ACT1 (encoding actin) were

2488.8 ± 81.0 (control cells) and 2329.2 ± 155.4 (CO2 treated cells).

J
.
A
g
u
ilera

et
a
l.
/
F
E
M
S
Y
ea
st

R
esea

rch
5
(
2
0
0
5
)
5
7
9
–
5
9
3

5
8
7



Fig. 1. Subcellular localization of genes whose mRNA levels were increased (a) or decreased (b) in the CO2-treated cells (According to the MIPS

database). F = anaerobic (fermentative). R + F = aerobic, N-limited (respiro-fermentative). R = aerobic, C-limited (respirative).
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cultures, is necessary for assembly of the ATP-synthase

complex [38].

PCK1, which encodes the gluconeogenic enzyme

phosphoenolpyruvate carboxykinase [39] was strongly
upregulated in the CO2-enriched, aerobic glucose-lim-

ited chemostat cultures. Transcription of this gene is

known to be extremely sensitive to glucose availability

[40]. However, as other glucose-sensitive genes (includ-

ing some of the HXT genes [41]) did not show clear

responses to CO2, it is unlikely that any changes in the

low residual glucose concentrations contributed to the

observed up-regulation of PCK1 in the CO2-enriched
cultures. Consistent with the observed PCK1 upregula-

tion, PEPCK activity was strongly increased in the

CO2-treated cells with respect to the controls (values

of 50.5 ± 13.3 and 5.6 ± 1.2 mUmg�1, respectively). An-

other important carbon metabolism-related gene with

an increased mRNA level in the CO2-enriched aerobic,

glucose-limited cultures was PYC1, one of the two genes

for the anaplerotic enzyme pyruvate carboxylase. This
enzyme is the only source of C-4 intermediates in glu-

cose/ammonia-growing cells, and its absence prevents

growth [42]. Pyruvate carboxylase activity was also in-

creased upon CO2 treatment (141.9 ± 6.1 with respect

to 106.5 ± 3.6 mUmg�1), although this minor difference

hardly suggests biological significance. A strong tran-

scriptional downregulation by CO2 was observed for
the FDH1 gene, encoding formate dehydrogenase [43].

The highly similar FDH2 gene also showed strongly de-

creased mRNA levels (37-fold, p < 0.05 in a t-test,

although it did not pass the more restrictive SAM anal-
ysis). ARO10, encoding for a decarboxylase involved in

phenylalanine metabolism [44,45] was also downregu-

lated in the presence of elevated CO2 concentrations.

Other decarboxylase-encoding genes (e.g. PDC1,

PDC5 and PDC6) did not show a transcriptional re-

sponse to CO2.

In an attempt to identify robust CO2-responsive �sig-
nature transcripts�, the three pairwise comparisons were
combined (Fig. 2). When applying the robust criteria

used in the SAM analysis, no genes were identified that

showed a consistent response to carbon dioxide under

all three aeration/nutrient limitation regimes (Fig. 2).

In view of the relative insensitivity of the anaerobic

cultures to CO2 (Table 1), special attention was subse-

quently paid to the overlap between the CO2-responsive

gene sets for the glucose- and nitrogen-limited aerobic
cultures. This comparison yielded eight genes, of which

DIP5, encoding a dicarboxylic amino acid permease

with high affinity for LL-glutamine and LL-aspartate [46],

was regulated in opposite directions in the nitrogen-

and carbon-limited cultures. Of the seven remaining

genes, three (YAR075W, COS12 and MHT1) were

upregulated, and four (KNH1, OYE3, NCE103, and



Fig. 2. Strategy for the identification of specifically CO2-responsive

genes. Among the three pools (corresponding to the three different

metabolic conditions studied) of genes whose mRNA levels varied

significantly at least twofold in the CO2-treated cells, no genes were

found in all three categories. Eight genes were commonly regulated in

the aerobic experiments, and only one matched between the two

carbon-limited cultures. Further analysis showed that this gene

(IMD1) is highly homologous to YAR075W, which is in fact a

putative pseudogene of the IMD family (see text for details).
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YJL037W) showed decreased mRNA levels. YAR075W
and COS12 belonged to gene families. As, because the

high degree of sequence identity, the Affymetrix micro-

arrays cannot always discriminate accurately between

the members of large gene families, the response of all

genes of the family was considered, using a t-test to

investigate significance (Table 5).

YAR075W is probably a pseudogene of the IMD

family. This family, which further comprises IMD1,
IMD2, IMD3 and IMD4, is involved in the conversion

of inosine mono-phosphate (IMP) into xanthosine-5-

phosphate, the metabolic step that redirects flux to

dGTP formation in the purine biosynthetic pathway

[47]. Three of the four IMD genes showed an increased
Table 5

mRNA levels of IMD and COS genes in response to high CO2

Gene name Aerobic, N-limited Aero

Fold change p value Fold

IMD1 3.1 0.015 5.9

IMD2 2.0 0.004 5.9

IMD3 1.2 0.002 1.8

IMD4 (probe I) 1.7 0.008 2.4

IMD4 (probe II) 2.9 0.115 3.6

COS2 1.6 0.012 3.8

COS3 1.6 0.002 3.5

COS4 1.2 0.093 2.1

COS5 1.4 0.163 2.2

COS6 1.3 0.134 1.5

COS7 1.4 0.272 3.0

COS8 1.3 0.425 1.2

COS9 0.9 0.663 1.7

COS10 3.5 0.14 3.5

COS12 5.0 0.002 6.9
transcript level in response to elevated CO2 under at

least one of the aeration/nutrient limitation regimes

(Table 5, p < 0.05 in a t-test, not all these differences

passed the more stringent SAM analysis). A similar sit-

uation was observed for COS12. Members of the COS

gene family are subtelomeric genes with unknown func-
tion [48]. Again, we found higher signal values of differ-

ent members of the COS family in the CO2-exposed

cultures of the three metabolic situations (Table 5).

However, since the expression level of COS10 and

COS12 were only slightly above the detection limit,

the biological significance of this observation is ques-

tionable (data not shown).

MHT1 was also transcriptionally upregulated in re-
sponse to elevated CO2 in both aerobic cultures. This

gene encodes S-methylmethionine homocysteine methyl-

transferase, which is involved in the conversion of

S-adenosylmethionine (AdoMet) into methionine [49].

AdoMet is the principal methyl donor for methylation

of several cellular components, and is essential for cell

cycle regulation [50].

With respect to the downregulated genes in the CO2-
enriched aerobic cultures (both under glucose limitation

and under nitrogen limitation), KNH1 has been impli-

cated in cell wall synthesis, because its overexpression

restored the low levels of b-1,6-glucan found in a kre9

mutant [51]. OYE3 is an intriguing gene. Together with

its homologue OYE2, it encodes for an NADPH oxido-

reductase (known as �old yellow enzyme�). In spite of the

existence of OYE proteins in several species [52], its
physiological role is still unknown. NCE103 is of special

interest as it has sequence identity with carbonic anhydr-

ase genes. Although its physiological role was initially

enigmatic [31], a recent study reported that the Nce103

protein does indeed have carbonic anhydrase activity

[53]. However, consistent with an earlier report [31],
bic, C-limited Anaerobic, C-limited

change p value Fold change p value

0.006 3.46 0.001

0.001 1.50 0.007

0.001 1.21 0.139

0.04 1.86 0.059

0.15 5.30 0.017

0.011 1.17 0.506

0.007 1.04 0.859

0.002 0.88 0.04

0.022 1.30 0.236

0.125 1.13 0.666

0.075 1.34 0.653

0.558 1.37 0.5

0.066 1.66 0.121

0.162 3.86 0.008

0.001 1.31 0.357
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we were unable to detect carbonic anhydrase activity in

cell extracts. This may indicate that published proce-

dures for assaying this enzyme activity are not suitable

for crude extracts of S. cerevisiae. The mRNA level of

NCE103 was also significantly reduced in the anaerobic

CO2-exposed cultures (p < 0.05 in a t-test, rejected by
the more stringent SAM analysis). With respect to

YJL037W, little is known about its biological role. Gen-

ome-wide analysis revealed a transcriptional up-regula-

tion of this ORF in respiratory-deficient petite mutants

[54], and also in cells defective in NAD+ synthesis [55],

suggesting a possible role in mitochondrial redox

metabolism.

3.3. Promoter analysis

With the aim to find possible regulatory sequences

involved in CO2-dependent regulation of transcription,

promoter sequences of CO2-responsive genes were ana-

lysed via two approaches. First, RSA Tools software

[29] was used to identify over-represented motifs in the

promoter sequences. We analysed the 800 bp upstream
of the start codon (avoiding possible overlaps with pre-

ceding genes) in the CO2 up- and downregulated genes

all together and separately. This yielded a six-base

sequence (ACTCTA) present at least once in five of

the matching CO2-responsive genes (Table 6). This se-

quence was also found in the IMD1 and IMD3 promot-

ers, but not in the promoters of the other IMD and COS

genes. Secondly, promoter sequences were aligned to
identify homologous regions. We found a sequence of

eight nucleotides (TTCCTCCC) at �192 and �185 base

pairs of the start codon of YJL037W and NCE103,

respectively. This sequence has a very low genomic cov-

erage in S. cerevisiae promoter regions: only 0.84% of

the yeast ORFs have this sequence within the 300 bp

preceding the start codon (Table 6). This sequence does

not match any described regulatory consensus sequence
and was not found in the promoters of other genes

downregulated by CO2.
Table 6

Common sequences found in the promoter regions of CO2-responsive genes

Sequence Gene Positio

ACTCTA YAR075W �255

DIP5 �10 �1

COS12 �627

NCE103 �144 �
YJL037W �128 �
IMD1 �730

IMD3 �760 �

TTCCTCCC NCE103 �195

YJL037W �192

a Percentage of yeast genes holding the sequence in the promoter (accord
b Considering as promoter the 800 nucleotides upstream the start codon
c Considering as promoter the 300 nucleotides upstream the start codon
4. Discussion

4.1. Physiological responses to CO2

Exposure of aerobic fed-batch cultures to elevated

CO2 concentrations has been previously reported to
have strong negative effects on S. cerevisiae [5]. In an-

other study, CO2 only weakly affected biomass yield in

oxygen-limited chemostat cultures [7]. The present study

supports the notion that, under atmospheric pressure,

CO2 saturation does not have a strong impact on fer-

mentative growth and metabolism of S. cerevisiae. From

an evolutionary perspective, this is not surprising. Nat-

ural and man-made environments in which S. cerevisiae

exhibits a fermentative metabolism are likely to become

saturated with CO2. Conversely, environments in which

S. cerevisiae exhibits a completely respiratory metabo-

lism are fully aerobic [56], which requires efficient gas

transfer, thus making CO2 saturation less likely. In view

of the higher oxygen consumption rate in the aerobic,

glucose-limited chemostat cultures exposed to high

CO2, the effects of CO2 could be described as metabolic
uncoupling: a decrease of the biomass yield on glucose

coinciding with an increased flux through dissimilatory

glucose metabolism. Together with the transcriptional

responses of several genes involved in mitochondrial res-

piration, this suggests that energy coupling of respira-

tion may be the primary target of CO2 in respiring

yeast cultures. A molecular mechanism consistent with

our observations is bicarbonate activation of ATP
hydrolysis by the mitochondrial F1/F0 ATPase/synthase,

a phenomenon that has been extensively investigated in

vitro [57–59].

The decrease of biomass yield observed in the aero-

bic, glucose-limited chemostat cultures grown at ele-

vated CO2 concentrations (�24%) was not as

pronounced as the yield decrease previously reported

for fed-batch cultures exposed to CO2 excess [5]. While
effects of strain background or experimental details can-

not be ruled out, this suggests that steady-state chemo-
n Genome coveragea

19%

19 �554

704

266

177

1.4% (�800 to 0)b; 0.84% (�300 to 0)c

ing to RSA Tools, 6450 ORFs considered).

(unless overlapping with the preceding ORF).

(unless overlapping with the preceding ORF).
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stat cultivation allows for a better physiological adapta-

tion to excess CO2 than the dynamic conditions of fed-

batch cultivation. A similar phenomenon has been

observed in Aspergillus [60].

4.2. Transcriptional responses to CO2

In comparison with other changes in environmental

parameters in chemostat cultures, such as oxygen avail-

ability [13,61] and nature of the growth-limiting nutrient

[14], increasing the CO2 concentration had a relatively

small impact on the S. cerevisiae transcriptome. The

number of CO-responsive genes correlated well with

the physiological effects of elevated CO2 levels, being
highest in aerobic, respiratory cultures. This observation

supports the notion that, under anaerobic, glucose-lim-

ited conditions and at atmospheric pressure, �CO2 stress�
does not exist in S. cerevisiae. Further research should

address the question to what extent and how CO2 affects

physiological performance and transcriptional regula-

tion of anaerobic yeast cultures under other nutrient

limitation regimes and at hyperbaric pressures.
For most of the eight genes that showed a consistent

transcriptional response to CO2 in the aerobic cultures,

we were unable to establish a clear link with carbon

dioxide. A clear exception was NCE103, which has orig-

inally been reported to encode a protein involved in

non-classical protein secretion [62]. Recent sequence

comparisons and heterologous complementation studies

[53] have indicated, however, that NCE103 encodes car-
bonic anhydrase, the enzyme that catalyses the intercon-

version of CO2 + H2O and H2CO3. In spite of this,

carbonic anhydrase activity could not be detected in

crude extracts of wild-type cells or NCE103 overexpress-

ing strains [31], which is consistent with our results. Cells

lacking NCE103 are unable to grow aerobically on glu-

cose, but are not pH-sensitive, suggesting that this gene

may also be involved in protection against oxidative
stress [31]. NCE103 is transcriptionally induced by a

variety of natural stresses, including high pH [12,63],

as well as in respiratory-deficient mutants [54]. A possi-

ble physiological role of carbonic anhydrase is the

provision of HCO�
3 for the anaplerotic pyruvate carbox-

ylase reaction. This would be consistent with the ob-

served upregulation of NCE103 under low-CO2

conditions, where spontaneous bicarbonate formation
may be too slow to meet metabolic demands. It remains

to be investigated whether the common sequence motif

found in the promoters of NCE103 and YJL037W is in-

deed involved in CO2 sensing.

An unexpected result from the transcriptome analysis

was the strong upregulation, in aerobic glucose-limited

cultures grown with elevated CO2, of PCK1, the gene

for the gluconeogenic enzyme phosphoenolpyruvate
carboxykinase. This enzyme activity was also increased

in these cultures. The physiological direction of the reac-
tion catalysed is towards phosphoenolpyruvate [64], but

the reaction is reversible in vitro [65]. Based on our

observations, it is tempting to speculate that PEPCK

may function as an alternative anaplerotic enzyme

under high-CO2 conditions.

The transcriptional response of several of the mem-
bers of the IMD gene family, involved in purine biosyn-

thesis, was remarkable. Lack of a functional member of

this gene family results in guanine auxotrophy [66].

IMD1 has been reported to be transcriptionally silent,

but the expression of IMD2, IMD3 and IMD4 is re-

pressed by guanine. In addition, IMD2 transcription is

increased by the addition of mycophenolic acid

(MPA), a drug that inhibits IMDp activity [47,66]. A
clear relationship between purine biosynthesis and

CO2 has been reported in the literature: the adenine aux-

otrophy of ade2 null mutants can be complemented by

incubation with high CO2 concentrations [67]. However,

since Ade2p functions in the common branch of purine

metabolism, it is unclear whether and how this CO2 ef-

fect is related to the transcriptional upregulation of

IMD genes.
Most of the CO2-responsive transcripts identified in

this study have previously been shown to respond to

other cultivation conditions as well. Still, when used in

combination, they may be applicable for diagnosing

the CO2 status of aerobic S. cerevisiae cultures. How-

ever, a more detailed analysis of the physiological role

of the encoded proteins under high-CO2 conditions is re-

quired before true �signature transcripts� for CO2 stress
can be identified.
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