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ABSTRACT
Weak-lensing shear estimates show a troublesome dependence on the apparent brightness of
the galaxies used to measure the ellipticity: in several studies, the amplitude of the inferred
shear falls sharply with decreasing source significance. This dependence limits the overall
ability of upcoming large weak-lensing surveys to constrain cosmological parameters.

We seek to provide a concise overview of the impact of pixel noise on weak-lensing
measurements, covering the entire path from noisy images to shear estimates. We show
that there are at least three distinct layers, where pixel noise not only obscures but also
biases the outcome of the measurements: (1) the propagation of pixel noise to the non-linear
observable ellipticity; (2) the response of the shape-measurement methods to limited amount
of information extractable from noisy images and (3) the reaction of shear estimation statistics
to the presence of noise and outliers in the measured ellipticities.

We identify and discuss several fundamental problems and show that each of them is able
to introduce biases in the range of a few tens to a few per cent for galaxies with typical
significance levels. Furthermore, all of these biases do not only depend on the brightness of
galaxies but also depend on their ellipticity, with more elliptical galaxies often being harder to
measure correctly. We also discuss existing possibilities to mitigate and novel ideas to avoid
the biases induced by pixel noise. We present a new shear estimator that shows a more robust
performance for noisy ellipticity samples. Finally, we release the open-source PYTHON code to
predict and efficiently sample from the noisy ellipticity distribution and the shear estimators
used in this work at https://github.com/pmelchior/epsnoise.
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1 I N T RO D U C T I O N

Current and in particular upcoming wide-field imaging surveys such
as the Dark Energy Survey,1 the KIlo Degree Survey,2 the Hyper
Suprime Camera Survey, Euclid3 and Wide-Field Infrared Survey
Telescope (WFIRST)4 require highly accurate shape-measurement
methods to reach the forecasted accuracy of cosmological parameter
constraints, e.g. for the energy density of matter �m, the normaliza-
tion of the matter power spectrum σ 8, the dark energy equation-of-
state parameter w and its variation with time. The currently most
demanding lensing method, the cosmic shear two-point correlation

�E-mail: melchior.12@osu.edu
1 http://www.darkenergysurvey.org/
2 http://kids.strw.leidenuniv.nl/
3 http://sci.esa.int/euclid
4 http://wfirst.gsfc.nasa.gov/

function, allows for multiplicative errors (defined as the deviation
of actual shear from the measurement by a factor m), with |m|
not larger than some per mille (e.g. Huterer et al. 2006; Amara &
Refregier 2008). But with increasing survey volumes also tradition-
ally less demanding techniques, such as stacked cluster lensing, will
require |m| of the order of 1 per cent (Weinberg et al. 2012). Shear
measurement methods known so far can reach these requirements
in certain regimes, for instance for well-resolved and bright galax-
ies. However, they commonly struggle with small and especially
with faint galaxies (Massey et al. 2007; Bridle et al. 2010; Kitching
et al. 2012). Many suggestions have been brought forward as to
why prominent pixel noise hampers shape measurements, but often
it was difficult to disentangle the causes from their consequences.

Bernstein & Jarvis (2002) computed that this so-called noise rec-
tification bias generally scales inversely with the second power of
the object’s significance. Hirata et al. (2004) obtained an analytic
description of the dependence of this bias on the size of galax-
ies, but this derivation only applies to their adaptive moment-based
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measurement method. Recently, Refregier et al. (2012) showed that
biases in the maximum-likelihood estimators of model-fitting ap-
proaches are a direct consequence of the presence of non-linear fit
parameters. They also provide an analytic expression for the bias
of the ellipticity estimate, valid for Gaussian-shaped galaxies and
point spread functions (PSFs).

We seek to generalize and extend these previous findings. In
particular, we choose an approach, which is as method independent
as possible, offering insights into the several ways in which pixel
noise obscures the estimation of weak gravitational shear.

1.1 Approach

Throughout this work, we aim to identify conceptual problems P
for the shape estimation task, which give rise to deviations of the
measured source ellipticity ε ′(P) from the true ellipticity ε. We
assume a probabilistic approach, where we inspect the probability
distribution ofP under noise, p(P|ν), with ν denoting some suitable
characterization of the significance of the measurement, and its
consequence, the probability distribution of the measured ellipticity
caused by P ,

pP (ε′|ν) =
∫

dP ε ′(P) p(P|ν). (1)

The ellipticity distribution is thus given by the impact P has on ε′,
weighted by the probability that P actually occurs in a measure-
ment with significance ν. The key assumption here is that we could
measure the function ε′(P) perfectly, i.e. without pixel noise, while
the action of the noise is entirely contained in the width and shape
of the probability distribution of P .

In practice, both ε ′(P) and p(P|ν) additionally depend on the ap-
parent shape of the source, i.e. its intrinsic shape and the effects of
the convolution with the PSF. We therefore introduce a parametriza-
tion of the apparent source morphology with a parameter vector θ .

Although the true ellipticity ε could be regarded as one of these
source parameters, we choose to make the dependency of ε ′ on ε ex-
plicit, such that our most general form of the ellipticity distribution
caused by P reads as

pP (ε′|ε, θ , ν) =
∫

dP ε′(P|ε, θ ) p(P|ε, θ , ν). (2)

We can now define when we consider an ellipticity measurement to
be unbiased by P , namely if

〈pP (ε′|ε, θ , ν)〉 = ε, (3)

where the average is taken over independent noise realizations of
images of identical galaxies, parametrized by (ε, θ ). In Sections 2
and 3 we are going to inspect cases, where, for different reasons,
biases occur for fixed ε, whereas in Section 4 we are going to discuss
the application of statistics to samples of noisy ellipticity estimates,
whose true values are drawn from an underlying distribution p(ε).
We conclude in Section 5.

2 N O N - L I N E A R E R RO R P RO PAG AT I O N

An object’s ellipticity is necessarily a non-linear quantity since any
definition needs to invoke a ratio of the two key parameters of the
geometric ellipse, its semi-major and semi-minor axes. As with any
parameter that depends non-linearly on the data, even a symmetric
distribution of noise for each data points translates into much more
complicated, in general asymmetric and skewed, distribution of the
ellipticity. Refregier et al. (2012) describe this generic problem

specifically for the case of model-dependent galaxy shape measure-
ments and work out the bias on size and ellipticity of the best-fitting
model that occurs even if the functional form of the galactic shape
is perfectly known. We extend their finding by providing a theoreti-
cal form of the distribution of noisy ellipticity estimates that works
for model- and moment-based approaches. The key ingredient of
the derivation is the understanding that any attempt to measure the
ellipticity is affected by the spurious ellipticity pattern of the noise
realization recorded in the image, which is entirely describable by its
moments, whereas spatial models for arbitrary noise configurations
are not meaningful.

The second-order moments of the light distribution I (x), centred
at x̄,

Qij ≡
∫

d2x I (x)(xi − x̄i) (xj − x̄j ), (4)

give rise to a number of ellipticity estimators, two of which are in
widespread use,

χ ≡ Q11 − Q22 + 2iQ12

Q11 + Q22
and (5a)

ε ≡ Q11 − Q22 + 2iQ12

Q11 + Q22 + 2
√

Q11Q22 − Q2
12

. (5b)

We review their advantages and disadvantages in Appendix A.
In summary, ε is, at least theoretically, an unbiased estimator of the
shear, while χ has a much more favourable distribution under noise,
but requires higher-order corrections when used as shear estimator.
Since we seek to obtain a distribution of ellipticities under noise,
we choose χ for the derivation, but continue to use ε when referring
to the proper ellipticity of an object.

In the presence of noise equation (4) needs to be modified,

Q′
ij =

∫
d2x W (x − x̄)[I (x) + n(x)](xi − x̄i) (xj − x̄j ), (6)

where W is a centred weight function and n is the (uncorrelated)
noise term, which, in the background-dominated limit of faint ob-
jects, can be assumed to be drawn from an uncorrelated Gaussian
distribution with variance σ 2

n ,

n ∼ N (
0, σ 2

n

)
, 〈n(x)n(x′)〉 = σ 2

n δ(x − x′). (7)

Even though weight functions are only explicitly present in moment-
based approaches, model-based approaches effectively weigh pixels
according to their distance and the shape of the employed model,
so they too make use of a weight function.

Since moments are linear in the image data, they inherit the
Gaussian error distribution from n. By the same token, the algebraic
sum of moments defining the numerator and the denominator in
equation (5a) are Gaussian distributed. But what about their ratio?
It is basic knowledge in statistics that the ratio t of two uncorrelated
Gaussian variates with mean of zero and unit variance, N (0, 1), is
distributed according to the Cauchy distribution,

C(t) = 1

π(1 + t2)
. (8)

But for the ellipticity-measurement problem, the combination of
moments defining χ do not have zero mean nor are they uncorre-
lated. It is obvious that at least the denominator of χ does not vanish
for a source with non-negative brightness distribution. Also, the ori-
gin of the correlation quickly becomes apparent, when we choose a
frame such that |χ | = χ1 > 0, which can always be realized by a
suitable rotation. We can write the mapping of (Q11, Q22) on to new
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variables (w, z), the denominator and numerator of χ1, as a linear
operator

M =
(

1 1

1 −1

)
. (9)

The covariance matrix of (w, z) is then given by

Sw,z = MS11,22MT =
(

σ 2
11 + σ 2

22 σ 2
11 − σ 2

22

σ 2
11 − σ 2

22 σ 2
11 + σ 2

22

)

≡
(

σ 2
w ρσwσz

ρσwσz σ 2
z

)
, (10)

where S11,22 = Diag(σ 2
11, σ

2
22) denotes the diagonal covariance ma-

trix of the moments Qii. Thus, the correlation between w and z,

ρ = σ 2
11 − σ 2

22

σwσz

, (11)

only vanishes if the variances of the two moments Q11 and Q22

are equal, i.e. for circular galaxies. However, if the weight function
W is adjusted to match the apparent shape of the galaxy, then the
variances will generally be different. In our case with χ1 > 0, the
pixels along the 1-direction (the semi-major axis) have a larger
weight than those perpendicular to it. It follows that σ 11 > σ 22.
Thus, the variance of both w and z are driven by σ 11, and they
become more and more correlated the larger χ1 gets.

But this picture is not yet entirely complete because for equa-
tion (10) we assumed the moments Q11 and Q22 to be uncorrelated,
but for any given image they are determined by the same noise
realization. Imagine a perfectly noise-free image, where we add
a positive noise fluctuation in only one pixel. According to equa-
tion (6), both Q′

11 and Q′
22 will then be larger than their noise-free

counterparts since their distance-weighting factors (xi−x̄i)2 are pos-
itive or zero. Effectively, the errors of these two moments are not
independent. As we are unaware of a way to compute the expected
correlation theoretically, we measured it off images that contained
only noise, given by the Gaussian noise model of equation (7). The
result is shown in Fig. 1. We can see that there is a non-vanishing
correlation ρn ≈ 0.325, which, surprisingly, does not depend on the
ellipticity of the weight function. Additional tests showed that this
correlation is largely unaffected by changes in the size and radial

Figure 1. Correlation coefficient ρn between noisy moments Q′
11 and Q′

22
(black line) and between the moment combinations z = Q′

11 − Q′
22 and

w = Q′
11 + Q′

22 (red line) as a function of the ellipticity of the Gaussian
weighting function. Due to ρn ≈ 0.325, the errors of w and z are different
(their ratio: blue line). Dots indicate the measurement of these quantities
in numerical tests with 10 000 noise realizations for each galaxy image.
Variation in the size and radial profile of the weight function amounted to
sub-per-cent changes in the quantities shown above.

profile of the weight function. The consequence of this correlation
is a modification of equation (10),

Sw,z =
(

σ 2
11 + σ 2

22 + 2ρnσ11σ22 σ 2
11 − σ 2

22

σ 2
11 − σ 2

22 σ 2
11 + σ 2

22 − 2ρnσ11σ22

)
, (12)

which does not alter ρ but the variances of w and z. The ratio
σ z/σ w is also shown in Fig. 1, together with ρ. It is remarkable how
strongly correlated the two moment combinations become even at
modest ellipticities. Again, this result shows only marginal changes
under variation of weighting function size or radial profile.

We are now equipped with variances and correlation of w and
z and want to know the distribution of the ratio t = z

w
. Marsaglia

(1965, 2006) proved that the ratio of correlated Gaussian variates
w ∼ N (μw, σw) and z ∼ N (μz, σz) with correlation coefficient ρ

is given by

pM (t) = r f (r(s − t)), (13)

with constants defined as

r = σw

σz

√
1 − ρ2

and s = ρ
σz

σw

. (14)

The function f (τ ) describes the probability distribution of a+x
b+y

, with
x, y ∼ N (0, 1):

f (τ ) = e− 1
2 (a2+b2)

π (1 + τ 2)

⎛
⎝1 + π

2
q e

1
2 q2

Erf

⎛
⎝√

1

2
q

⎞
⎠

⎞
⎠, (15)

where

q = b + aτ√
1 + τ 2

, a = μz/σz − ρμw/σw√
1 − ρ2

, and b = μw

σw

. (16)

We will refer to equation (13) as the Marsaglia distribution.5 For
the ellipticity distribution we only have to substitute

μw = Q11 + Q22, μz = Q11 − Q22 (17)

and to take variances and correlation from equation (12).
A non-vanishing correlation ρ > 0 has important consequences,

foremost s > 0 and thus a shift of the peak of the ellipticity distribu-
tion towards higher values of χ . In Fig. 2, we show the distribution
for a fixed ellipticity, i.e. fixed ρ, as a function of the image sig-
nificance ν, varied in steps of 1 mag.6 We can see that even for
fairly bright galaxies, a substantial shift occurs, which grows with
decreasing ν. Less elliptical galaxies exhibit a weaker but still no-
ticeable shift of the peak.

There are two other remarkable features of the Marsaglia distri-
bution. First, it is not only shifted but in general also skewed (this is
true even for ρ = 0) with a long tail towards lower values of |χ |. It
is thus not obvious whether the expectation value 〈pM (χ ′|ε, θ , ν)〉
deviates from χ , constituting a bias according to equation (3). The
top panel of Fig. 3 shows the integral over the entire distribution
minus the true value of χ as a function of ε and different values of ν

(solid lines). As expected, there is almost no bias for bright objects
(black solid line), even up to large ellipticities. But with increasing
noise level, the bias becomes initially negative (long tail dominates)
before it turns positive (shift of the peak dominates). That means,
the simple fact that the ellipticity is related to the image data in
a non-linear way constitutes a bias of remarkable amplitude and
non-trivial behaviour.

5 Unsurprisingly, in the case of uncorrelated variates w, z ∼ N (0, 1), the
first term of equation (15) recovers the Cauchy distribution of equation (8).
6 For the entire paper, we use the definition of ν from Erben et al. (2001).
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Figure 2. The Marsaglia distribution (equation 13) of the ellipticity χ of a
galaxy with true ellipticity χ = 0.88 (equivalent to ε = 0.6, indicated by the
vertical dotted line) as a function of image significance ν. The correlation
strength ρ = 0.993 is characteristic of this value of ε (cf. equation 11 and
Fig. 1). The hatched region indicates the unphysical but possible range of
outliers with |χ | ≥ 1.

Figure 3. Top: ellipticity bias b(χ ), defined as the difference between the
mean of the Marsaglia distribution of equation (13) and the ellipticity χ , as
a function of the proper ellipticity ε for different significance levels (solid
lines). The restriction of the integral to within |χ | = 1 leads to stronger
biases (dashed lines). Bottom: the fraction of measurements with |χ ′| > 1.

Similar findings, namely a shift of the peak and a skewed distri-
bution, are reported by Refregier et al. (2012) and Kacprzak et al.
(2012), but our derivation does not require us to adopt a model-
fitting approach or Gaussian likelihoods. It is thus not restricted to
a particular shape of the galaxy and can also deal with convolutions
with arbitrary PSF shapes as long as the process can be described
in terms of moments (cf. Melchior et al. 2011). It is, however, not
entirely obvious how to quantitatively compare to their distribution
of maximum-likelihood estimators of ε.

Secondly, the Marsaglia distribution it is not bound by |χ | ≤ 1.
In fact, it inherits the wide Cauchy-type wings and is thus capable
of generating outliers with unbounded errors. Still, most errors are
comparatively small such that outliers most often originate from
galaxies with large initial ellipticities, rendering the outlier fraction
strongly ellipticity dependent (bottom panel Fig. 3). With increasing
noise level, ever smaller ellipticities become possible outliers. The
exclusion of outliers from the integral over the distribution pM(χ )

leads to much stronger and mostly negative biases (dashed lines in
the top panel) as the positive impact of the shifted peak becomes
limited. How measurement codes and shear statistics respond to
such outliers will be a reoccurring topic in the remainder of this
work.

3 MEASUREMENT-RELATED
ELLI PTI CI TY BI ASES

As we laid out above, an ellipticity measurement cannot provide
an unbiased result, simply because the error distribution is shifted
and skewed for any ellipticity |ε| > 0. Instead of requiring a shape-
measurement method to yield unbiased ellipticity estimates, we
should rather require that it reproduces the theoretically expected
noisy distribution. In this section, we argue that in general not even
that is possible because the attempt to measure a shape necessarily
contributes its own uncertainties and, for non-linear shape parame-
ters such as the galaxy size, its own biases (Refregier et al. 2012).

Even though the biases arising from the limited amount of in-
formation extractable from a noisy image are highly specific to the
measurement method employed, there are general problems affect-
ing each method in a similar way. In this section, we highlight the
most relevant of these problems and seek to describe their level of
systematic contamination of the ellipticity estimates. The tests are
all carried out with the moment-based method DEIMOS (Melchior
et al. 2011), but great care has been taken to ensure that our ap-
proach and conclusions we draw from the tests can be generalized
to other methods.

The test galaxy images follow the Sérsic radial profile (Sersic
1968) with intrinsic parameters, including the ellipticity, taken from
model fits to galaxies in the GEMS Hubble Space Telescope sur-
vey (Häussler et al. 2007, see Fig. 4). The galaxies are convolved
with circular PSFs of Moffat-type (Moffat 1969). We choose two
different PSF widths to mimic ground- and space-based conditions.
The pixel noise follows equation (7) with two levels of pixel noise,
the first one corresponds to optimistic weak-lensing conditions of
ν = 35, defined as in Erben et al. (2001, equation 16 therein), while
the second one is 1 mag fainter (ν = 15). In both cases, the images

Figure 4. Ellipticity distribution of GEMS galaxies from Häussler et al.
(2007). Galaxies in the specified magnitude range are only considered if
GALFIT was able to fit a single-Sérsic model. For moderate ellipticities, the
distribution is well described by the Rayleigh function (solid line), the
expected distribution for the absolute value of the two-dimensional, or com-
plex, ellipticity if each ellipticity component followed a common Gaussian
distribution (here: σ e = 0.33). The measured distribution lacks highly el-
liptical galaxies, either because galaxies with large ellipticity are not as
abundant in nature as predicted by the Rayleigh distribution or because their
measurement is more difficult (Section 4.1 gives a possible explanation).

C© 2012 The Authors, MNRAS 424, 2757–2769
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How pixel noise affects shear estimates 2761

exhibit prominent pixel noise, but the galaxies remain clearly de-
tectable. The ground-based PSF has a Moffat-index of 9, and the
galaxy resolution factor R2 ≈ 0.4 (defined in Hirata et al. 2004,
equation 8). The space-based PSF has a Moffat-index of 3, and the
resolution is R2 ≈ 0.7.

3.1 Centroid errors

Determining the accurate centroid x̄ of an object is crucial for
any further shape analysis. This is obvious for moment-based ap-
proaches, for which the ellipticity definitions given in equation (5)
are sensible only if the centroid is chosen such that the dipole
moment

Di ≡
∫

d2x I (x)(xi − x̄i) = 0 for i ∈ {1, 2}, (18)

which therefore needs to be enforced by such methods.
Analogously, model-fitting approaches for galaxies or stars rely

on models with peaked light distributions and finite support. Due to
the limited amount of information in the image data, such models
are often derived from a radial profile p(r), whose radial coordinate
undergoes an ellipticity transformation, rendering the light distri-
bution axisymmetric. The radial coordinate is expressed relative to
the centroid or the peak position of the light distribution,

r =
∣∣∣∣∣
(

1 − ε1 −ε2

−ε2 1 + ε1

)
(x − x̄)

∣∣∣∣∣ , (19)

such that the estimation of the model parameters εi explicitly de-
pends on the estimation of x̄.

With non-vanishing pixel noise, any measured centroid position
is to some degree inaccurate, giving rise to an error �x̄ in the
measured location. It is useful to limit the discussion to perfectly
elliptical shapes, i.e. galaxies whose isophotes have the same centre,
orientation and ellipticity. By doing so, we can introduce polar
coordinates, �x̄ → (rc, φc), and rotate again into a frame with only
one non-vanishing ellipticity component (cf. Fig. 5). Then, we can
identify the centroid error with P in equation (2),

pc(ε′|ε, θ , ν) =
∫ ∞

0
drc

∫ π/2

−π/2
dφc ε ′(rc, φc|ε, θ ) p(rc, φc|ε, θ , ν).

(20)

The top panel of Fig. 6 shows the distribution of centroid errors
under noise. In general, centroid errors for an elliptical light distri-
bution show a similarly elliptical distribution, i.e. errors along the
semi-major axis are larger than along the semi-minor axis where

Figure 5. Sketch of a perfectly elliptical ‘galaxy’ affected by a positive
noise fluctuation (red area), causing a centroid offset of length rc at an angle
φc from the semi-major axis.

Figure 6. Top: distribution of centroid offsets in polar (rc, φc) coordinates
for well-resolved galaxies with morphologies from the GEMS survey in
images with high levels of pixel noise. Middle: ellipticity error as a function
of the miscentring angle φc for a noise-free galaxy image. The offsets rc were
set to the median values of the high-noise (ν = 15) simulations. Bottom:
ellipticity error as a function of intrinsic ellipticity for the same ensemble
used in the top panel, seen with two different noise levels (dashed and solid
lines) and with space-based or ground-based resolution (red and blue lines).
Error bars denote 1σ errors of the mean ellipticity in each bin. The scatter at
the high-ellipticity end is mainly driven by the lower number of simulated
galaxies (cf. Fig. 4).

the light distribution has a larger gradient (e.g. Lewis 2009). In the
polar coordinate frame this translates into

p(φc, rc) ∝ rc exp

(
− r2

c

a2
cos2(φc) − r2

c

b2
sin2(φc)

)
, (21)

where we assumed an elliptical Gaussian distribution for p(�x̄ ) with
semi-major axis a and semi-minor axis b. Remarkable about this
distribution is the enhanced probability of finding centroid errors
with small φc, and that this preferential alignment with the semi-
major axis is most prominent for galaxies with large ellipticities.
For this plot we chose the well-resolved galaxies with the high
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noise setting such as to emphasize the alignment of the centroid
errors with the semi-major axis. For a ground-based instrument the
distribution p(φc) would be much less peaked around zero for any
rc, and larger values of rc would be more likely. At lower noise, the
distribution would be shifted towards smaller values of rc.

To assess the impact of miscentring, we artificially shift the cen-
troid position assumed in our shape-measurement code, and record
the resulting deconvolved ellipticity in absence of any pixel noise.
The middle panel of Fig. 6 illustrates the impact of miscentring
on a typical disc-like galaxy as a function of the angle φc. Shown
are the ellipticity estimates for four different intrinsic ellipticities,
with either space-based resolution (solid curves) or ground-based
resolution (dashed curves). Several aspects of this plot are worth
mentioning: centroid shifts with small angles φc, i.e. aligned with
the semi-major axis, shift the flux of the peak to non-vanishing
distances without altering the orientation, thus leading to an in-
crease in the ellipticity. On the opposite end, centroid shifts with
large φc change the perceived orientation away from the actual one,
thus lowering the inferred ellipticity. Furthermore, while over- and
underestimate are fairly balanced for small ε, galaxies with large
ellipticity suffer much more strongly from miscentring. Finally, the
effects are stronger for the ground-based case since the PSF de-
convolution amplifies any ellipticity signal, both the true and the
spurious one. This is additionally enhanced by the larger offsets rc

encountered for the ground-based resolution at fixed ν.
The shape of the miscentring curves can be approximately de-

scribed by

|ε′| ≈ [|ε| + ε0 − ε90] cos2(φc) + ε90, (22)

where the parameters ε0,90 ≥ 0 depend on rc (which in turn depends
on ν) and ε, as well as other source parameters θ , most notably the
width of the PSF, and the method employed.

In the bottom panel of Fig. 6 we show the ellipticity error induced
by miscentring. We can see that the overall effect of the miscentring
is a small, but consistent underestimation of the inferred elliptic-
ity, which scales linearly with ε. This is not surprising, since large
ellipticities suffer more strongly from miscentring. This effect is
partially compensated by the preferential alignment of the cen-
troid with the semi-major axis such that the centroid errors are not
entirely isotropic and the average error bias is smaller than what
would naively be expected when only considering the middle panel
of Fig. 6. Qualitatively, this result is in good agreement with the
derivation by Bernstein & Jarvis (2002, see their section 8.2 and
equation 8.1) in that the bias depends linearly on ε and scales ap-
proximately as ν−2. However, we only find a mild dependence on
the image resolution R.

3.2 Misalignment

In noisy images, methods that employ either an elliptical model or
– in the case of moment-based approaches – an elliptical weight
function are subject to random errors in the determination of the
orientation. Like before, we choose a coordinate system aligned
with the semi-major axis of the elliptical source and introduce the
misalignment angle φm (cf. Fig. 7). Identifying misalignment as the
conceptual problem in equation (2) leads to

pm(ε′|ε, θ , ν) =
∫

dφm ε′(φm|ε, θ ) p(φm|ε, θ , ν), (23)

where ε′(φm|ε, θ ) denotes the ellipticity measurement performed
with a potentially erroneous orientation. As indicated in Fig. 7,
we expect the measured shape of the object to be biased towards

Figure 7. Sketch of a perfectly elliptical ‘galaxy’ (solid) affected by a
positive noise fluctuation (red area), which gives rise to a misalignment of
an elliptical model or weight function with respect to the true orientation by
an angle φm (dotted).

smaller sizes and ellipticities. Estimates with smaller sizes were
indeed reported by Kacprzak et al. (2012, fig. 1 therein) for model-
fitting approaches.

In Fig. 8 we show – from top to bottom – the measured distribu-
tion of misalignment angles φm from noisy images, the impact of
misalignment on the ellipticity estimates in noise-free images and
the net effect of misalignment on the inferred ellipticity as a func-
tion of the true ellipticity. For these tests, φm denotes the orientation
of the weight function used for the measurement, but since the PSF
is circular, the orientation is identical to the actual orientation of
the galaxy. That means ε′(φm) is obtained by rotating the correctly
matched elliptical weight function by the angle φm.7 Two essential
findings can be made with this test. Pixel noise leads to an error
on the orientation inferred from the image data, which becomes
smaller with increasing ellipticity. This is not surprising since a cir-
cular source has a uniform distribution of orientation angles, while
increasing the ellipticity renders the determination of the orienta-
tion easier, even in noisy images. The second finding is that for any
|φm| > 0 an underestimation of ε is observed with a characteristic
shape that approximately follows the relation

|ε′| ≈ (|ε| − ε90) cos2(φm) + ε90, (24)

with some ε90 that depends on the parameters θ of the apparent
galactic shape. Combining both findings, we obtain a low bias in-
duced in noisy images caused by misalignment. Looking at the
bottom panel of Fig. 8, we can see that the effects of misalignment
are more severe for modestly elliptical galaxies, where we observe
an underestimation also in the moderate noise case with ν = 35.
This is an immediate consequence of the poor alignment constraints
for galaxies with small |ε|, and as misalignment is dependent on the
apparent, i.e. convolved, ellipticity, ground-based imaging is more
prone to this kind of bias.

3.3 Method-related limitations

So far, we have dealt with the problem of pixel noise assuming that
a method for estimating the ellipticity is employed, whose validity
does not become questionable in presence of noise. Unfortunately,
we cannot expect shape-measurement methods to be entirely indif-
ferent to increasing amounts of noise.

7 In order to single out the effect of misalignment, we do not alter the size or
the total ellipticity of the weight function, even though these changes would
occur in practice.
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Figure 8. Top: width of the orientation error angle φm for the high noise
level. For better visibility, the space-based data have been shifted horizon-
tally by 0.01. Error bars denote 1σ intervals. Middle: error of the ellipticity
when the weight function is rotated by the angle φm for four different galac-
tic ellipticities. Bottom: error of the ellipticity in noisy images caused by
misalignment as a function of galactic ellipticity. Error bars denote the 1σ

errors of the mean in each ellipticity bin.

Moment-based methods, such as KSB (Kaiser, Squires &
Broadhurst 1995), HOLICS (Okura & Futamase 2009) or FDNT

(Bernstein 2010), need to apply a weight function to the data to
suppress the impact of pixel noise at large distance from the source.
The application of the weight function leaves an imprint on the mea-
sured moments, which can be corrected, albeit only approximately.
With increasing amplitude of the noise, the only way to limit the
variance of the ellipticity estimates is to shrink the weight function.
Then, the approximation for the weight function correction be-
comes increasingly inaccurate, leading to errors in the deweighted
moments. The direction and amplitude of the errors are a function
of the apparent galaxy shape, in particular its slope, and properties
of the PSF (e.g. Melchior et al. 2011, fig. 1 therein).

Model-fitting approaches do not need an artificial weight func-
tion as they make use of the compactness of their galaxy model,

which is often related to the Sérsic radial profile. One problematic
aspect is the validity of this model – or model family – to faithfully
describe the morphologies of all galaxies present in the observation.
If data with a higher significance and possibly also a higher spatial
resolution are available, the model assumptions can be verified, but
this is often unfeasible. Bayesian approaches in model-fitting (e.g.
LENSFIT, Miller et al. 2007; Kitching et al. 2008) additionally employ
priors on some parameters of the model, which are hard to estimate
from the data alone. These priors are themselves derived from data
of higher quality, and do not necessarily apply to the data at hand.
But even if galaxies were purely elliptical – as many models assume
– unbiased shear estimates require the radial profile to be accurately
matched to the observed galaxies (Voigt & Bridle 2010), which
cannot be guaranteed with images of severely limited significance.

Model assumptions could be avoided by using a decomposition
into complete basis function sets, such as shapelets (Refregier 2003)
or Sérsiclets (Ngan et al. 2009). However, the pixel noise limits the
number of modes used in the fit such that the resulting model be-
comes dominated by the shape of the zeroth order. In the case of the
circular shapelet basis function set, this introduces a bias towards
circular objects (Melchior et al. 2010). For Sérsiclets, which can
be considered a generalization of shapelets, using a finite number
of modes leads to a relation between the slope of the radial profile
and the spatial scale of higher-order fluctuations, which is not nec-
essarily obeyed by observed galaxies (Andrae, Melchior & Jahnke
2011).

In summary, any method that deals with severely degraded data
invokes additional assumptions about the data, which may turn
out to be wrong once an adequate assessment can be devised, e.g.
with data of higher quality. It needs to be shown that the methods
employed are able to meet requirements demanded to reach the
scientific goals of the project at hand. Therefore, simulations with
simplified galaxy models (e.g. Heymans et al. 2006; Bridle et al.
2010; Kitching et al. 2012) provide a clean way of comparing several
methods, but should be complemented by simulations with realistic
galaxy morphologies (such as Massey et al. 2004; Meneghetti et al.
2008; Mandelbaum et al. 2012).

Additional problems arise from the occurrence of outliers, i.e.
|ε′| ≥ 1. From the discussion in Section 2 and by looking at Fig. 3,
we know that outliers must occur if the combination of apparent el-
lipticity and pixel noise exceeds some value. Moment-based meth-
ods will just let these outliers pass (unless they try to avoid them
by shrinking the weight function) and expect a subsequent lensing
analysis to deal with them. We revisit this problem in Section 4.1. On
the other hand, by construction model-fitting methods cannot have
such outliers, but they will encounter catastrophic events, such as
convergence failures, and flag these objects, which again excludes
them from the analysis later on.

Alternatively, model-fitting approaches might invoke a prior on
the ellipticity, which could in principle completely prevent the oc-
currence of outliers or modelling failures. However, this comes at
the price of essentially recovering the prior for data with very little
constraining power on the ellipticity. As we said above, this prior
does not necessarily describe the actual data accurately. Moreover,
even if the prior is an accurate description of the ensemble ellipticity
distribution, the fact that at fixed noise level outliers preferentially
occur for galaxies with large ellipticity leads to a stronger impact of
the prior on those galaxies. Since large ellipticities are less abundant
than those around |ε| = 0.3 (cf. Fig. 4), we expect a bias towards
the prior which grows with galaxy ellipticity.

For years, attempts have been made to calibrate the bias away
based on simulated images, e.g. by introducing global ‘fudge’
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factors that boost the measured ellipticities (e.g. Heymans et al.
2006, table A1 therein). More recently, sophisticated supervised
learning methods have been employed to correct for the bias as a
function of several input parameters (Gruen et al. 2010; Kacprzak
et al. 2012; Tewes et al. 2012). Although they acknowledge and ac-
count for the presence of biases in the measurements, irrespective
of their origin, they hinge on quality, size and representative nature
of the training set. We thus regard these methods to work well for
galaxies that are abundant in the training data (cf. Kitching et al.
2012) and whose properties accurately resemble those of actually
observed galaxies.

4 INA D EQUATE SHEAR STATISTICS

We now turn to a different type of systematic problem caused by
the pixel noise, which does not occur at the level of individual ellip-
ticity estimates but later on, namely when statistics of the measured
ellipticity distribution are calculated. Pixel noise can render these
statistics difficult to interpret or entirely inappropriate by violating
their fundamental assumptions. One such assumption in virtually
every lensing analysis is that a proper definition of ellipticity pro-
vides an unbiased estimator of the (reduced) shear,

〈ε〉 ≡
∫

d2ε ε p(ε) = g. (25)

For a noise-free measurement of the ellipticity in the form of equa-
tion (5b), this is in fact the case (Seitz & Schneider 1997; Bartelmann
& Schneider 2001).

For what follows, we are going to assume the optimistic sce-
nario, in which the measurement methods provide ellipticity esti-
mates, which follow directly the Marsaglia distribution of equa-
tion (13). That means all complications discussed in Section 3 are
eliminated. In practice, this can be realized by using the sampling
method outlined in Appendix B, which provides a realistic ellip-
ticity distribution of Gaussian-shaped galaxies under noise but is
not affected by shape-measurement biases. We recall the two main
distinctions between the two popular moment-based ellipticity es-
timators from Appendix A: ε has a problematic distribution under
noise (cf. Fig. A1), while χ depends on the shear in a non-linear
way. Both features will prove to be problematic.

4.1 Outliers and their rejection

As we have stressed several times now, the pixel noise can lead
to ellipticity outliers with |ε ′| ≥ 1 (cf. Fig. 3) and thus gives rise
to a second population of ellipticity measurements, namely those
on the unit circle in ε-space. If the resulting sample is naively
inserted in equation (25), the presence of these outliers, whose
position on the ring is still loosely correlated with their noise-free
location, should lead to an overestimation of the inferred shear,
simply because they all have unit ellipticity and thus large impact
on the mean of the distribution. Weirdly, this is not observed in
the top-left panel of Fig. 9, where we show the mean ellipticity
as a function of shear and noise level. If the shear only has one
non-vanishing component, the population on the unit circle almost
perfectly compensates the underestimation we expect from the mean
of the Marsaglia distribution (cf. Fig. 3). This balance is delicate,
and it is quite possible that it is not maintained for galaxies with a
different radial profile, where the means and errors of the measured
moments deviate from our Gaussian calculation. But even if the
balance persisted, statistics other than the mean, e.g. the two-point
correlation function, will in general pick up the presence of outliers

Figure 9. Performance of shear statistics under pixel noise. Top left: average
of the entire ε distribution, following equation (25). Top right: same as in
the left-hand panel, but after rejection of outliers with |ε| ≥ 1. Bottom
left: non-linear solver for the shear from measurements of χ , based on
equation (27). Bottom right: linearized relation between χ and the shear,
following equation (A2). For all panels, shear was only applied on one-
direction (solid lines; dashed lines in the top-left panel: g2 = 0.1), and
the ellipticity noise was of Marsaglia-type, simulated with the algorithm
described in Appendix B. Means and errors are taken from 10 independent
noise realizations at each value of the shear, each realization comprised
10 000 samples.

and perform erratically. Another concerning aspect of 〈ε〉 as shear
estimator becomes apparent when the other shear component comes
into play. Because the noise affects the outliers by altering their
phase on the unit circle, the estimate g̃1 becomes dependent on g2

(dashed lines). The cross-talk between the two shear components
is relevant for the faintest two noise settings, where the outliers
constitute a significant portion of the entire sample.8

On the other hand, excluding these outliers would be absolutely
justified since any ellipticity definition needs to be bound by 1,
otherwise the ratio of semi-minor to semi-major axis is non-sensical.
Unfortunately, this commonly adopted approach also leads to biases
because we now sample from

po(ε′|ε, θ , ν) =
∫

|ε+n|<1
d2n (ε + n) p(n|ε, θ , ν). (26)

Even if p(n) were isotropic and had zero mean, the truncation of
the integration range at the ellipticity unit circle poses a bias for all
galaxies with sufficiently large ellipticity. If p(n) is monotonically
decreasing with increasing |n| as it is common, this bias will be
negative because the outlier-excluded distribution is more compact
than the actual noisy distribution. In other words, this negative bias
increases with ellipticity or, equivalently, with the probability of
obtaining a noise contribution that can push the measured ellipticity

8 The other estimators shown in Fig. 9 do not suffer significantly from this
sort of cross-talk since they either do not have outliers (top right panel) or
the outlier population has a well-behaved shape (both estimators based on
χ ). Hence, we only show the effect for 〈ε〉.
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beyond the unit circle. Consequently, sampling from po(ε′|ε) rather
than from p(ε) in equation (25) results in a low bias on g since any
coherent distortion of the ellipticity distribution will increase the
probability of falling outside of the unit circle for all galaxies, whose
intrinsic ellipticity is aligned with the additional distortion. Hence,
this distortion becomes suppressed in the outlier-rejected sample.
This is shown in the top-right panel of Fig. 9. The bias becomes more
prominent with increasing shear since large ellipticities become
more abundant and the entire distribution thus more likely to create
outliers at any non-vanishing noise level.

It is important to note that even though we have discussed the out-
lier problem solely in terms of moment-based measurements, shear
estimates from model-fitting methods are susceptible to the same
bias: any filtering on catastrophic modelling failures is equivalent to
outlier rejection, and if such failures become more prominent with
increasing source ellipticity, the shape of the bias curves will follow
the one in the top-right panel of Fig. 9.

4.2 Non-linear statistics

Using χ rather than ε provides the advantage of a much simpler
noise distribution with a closed description: the Marsaglia distri-
bution of equation (13). However, the relation between χ and g is
non-linear. As before, we are thus faced with error propagation in
a non-linear system and have to expect biased shear estimates even
from a perfect measurement.

The theoretically correct way of obtaining shear estimates from
the measurements of χ is solving for the shear g that nulls the mean
of the source-plane ellipticity (Schneider & Seitz 1995),

χ s = χ − 2g + g2χ∗

1 + |g|2 − 2R(gχ∗)
(27)

as the distribution of unlensed galaxy ellipticities is assumed to be
isotropic, i.e. with zero mean. To our knowledge, the bottom-left
panel of Fig. 9 shows the first application of this estimator. While
unbiased for all shears at zero noise, and being still unbiased for
ν = 35 and g1 < 0.15, the solver exhibits negative bias for the two
faintest noise settings.

In practice, equation (27) is approximated to first order in the
shear, which leads to equation (A2) and the usage of the so-called
responsivity correction. Unsurprisingly, this simplified relation in-
troduces its own bias that grows with the shear, which is shown in
the bottom-right panel of Fig. 9. Moreover, this simplified estimator
does not perform any better than the fully non-linear solver in the
left panel. In fact, our novel estimator appears to cope well with out-
liers in the noisy ellipticity distribution and to perform more reliably
than the other three. It has the highest computational demands as it
involves the minimization of an objective function, the modulus of
χ s in equation (27), but can be implemented efficiently.

4.3 Ellipticity weights

Often, ellipticity estimates do not directly enter equation (25), but
get weighted before. Such a weighted average is tempting for two
reasons. First, one can reduce the noise-induced variance by pe-
nalizing faint galaxies. Secondly, one might even be able to re-
duce systematic biases by down-weighting galaxies from regimes,
where the employed method yields consistently wrong ellipticity
estimates. For instance, as the outlier problem increases with ap-
parent ellipticity (cf. Section 4.1) while the responsivity to shear
becomes weaker, applying larger weights for less elliptical galaxies
seems logical.

Figure 10. Ellipticity weights: inverse variance denotes the scheme that
attempts to minimize the mean square error, considering the ellipticity-
dependent measurement noise σ n and the intrinsic scatter σ e, according
to w ∝ [σ 2

n + σ 2
e ]−1 (Hoekstra, Franx & Kuijken 2000). S/N denotes

a scheme where the weight is directly proportional to the measurement
significance, which often favours circular objects. Measurement errors and
S/N are obtained from the DEIMOS method, and the intrinsic dispersion was
assumed to be σ e = 0.3.

But a weighting scheme can introduce a bias on its own, even for
perfectly unbiased, noise-free ellipticity estimates, namely in this
seemingly beneficial case of ellipticity-dependent weights. If we
replace the theoretically unbiased average 〈ε〉 from equation (25)
by its weighted and properly normalized equivalent

〈wε〉 =
∫

d2ε wε p(ε)∫
d2ε w p(ε)

, (28)

we can immediately see that the result is the same, i.e. unbiased, only
if w does not depend on ε. If the weight decreases with increasing
ellipticity, we are confronted with an altered and more compact
distribution

pw(ε′) = w(ε′)p(ε′), (29)

similar to the case of the outlier-rejected distribution. Even if we do
not explicitly want the weighting scheme to penalize large elliptici-
ties, the measurement method might report statistics of the effective
signal-to-noise ratio level ν that are turned into weights. Due to the
more difficult task to measure large ellipticities, these statistics tend
to implicitly depend on the source ellipticity (cf. Fig. 10 for two
plausible weighting schemes). For the simple case of an approxi-
mately linear relation of the weight on ε, described by the intercept
w0 and the slope c, we show in Appendix C that the resulting bias
on the shear estimate is to the first order purely multiplicative,

〈wε〉 − 〈ε〉 ≈ g

√
2

π

c

w0
σe, (30)

where σ e denotes the dispersion of the ellipticity estimates. With
reasonable values of c

w0
≈ −0.1, we obtain a bias of −2.5 per cent.

Also the two-point correlation function of (post-lensing) elliptic-
ities

〈εiεj 〉(θ ) = ξg(θ ), (31)

which averages over pairs of galaxies with separation θ = |xi −xj |,
is expected to be sensitive to an ellipticity-dependent weighting
scheme. Relevant for the estimation of cosmological parameters
are the amplitude and shape of the shear correlation function ξ g(θ ).
A straightforward calculation (outlined in Appendix C1) shows that
the normalized correlation function is given by

〈wiεiwjεj 〉
〈wiwj 〉 ≈ c2

w2
0

[
σ 2

e + σ 2
g

]2
+ ξg(θ ) + c2

w2
0

ξ 2
g (θ ) (32)
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Table 1. Overview of the ellipticity and shear estimation biases described in this work.

Description Section Effect References

Error propagation Section 2 Noise distribution shifted and skewed, average biased low, This work
strongly ellipticity-dependent

Centroiding error Section 3.1 Bias ∝ ε/ν2 Bernstein & Jarvis (2002)
Misalignment Section 3.2 Bias most problematic for intermediate ellipticities This work
Various shape estimation issues Section 3.3 Deviation of measured ellipticity distribution from its expectation See Section 3.3
Ellipticity outliers Section 4.1 Cross-talk between shear components (with outliers) This work

or multiplicative shear underestimation (after outlier rejection)
Non-linear shear statistics Section 4.2 Multiplicative shear underestimation This work
Ellipticity-dependent weighting Section 4.3 Multiplication shear underestimation, negligible in correlation function ξg This work

where σ 2
g denotes the variance of the shear field. Since the con-

stant terms in the above equation can be determined by looking at
separations θ where we expect the cosmological lensing signal to
vanish, the correlation function is, surprisingly, largely unaffected
by the weighting scheme. Only at very small scales, it is steepened
due to the last term in equation (32), but we expect this effect to be
clearly subdominant compared to the influence of baryonic physics
at these small scales.

In contrast to the outlier rejection bias – which corresponds to
a binary weight: either 1 or 0 – this bias is less severe for large
ellipticities, but it generally affects all galaxies, including those
with smaller ellipticities, for which the creation of outliers is not a
significant issue. Consequently, whenever weighted ellipticities are
inserted into statistics that have been derived for unweighted ellip-
ticities, correction terms (such as equation 30) need to be applied,
which requires accurate knowledge of the ellipticity-dependence of
the weighting scheme.

5 SU M M A RY, C O N C L U S I O N S A N D O U T L O O K

We compiled theoretical and practical evidence that pixel noise
biases shear estimates at three subsequent levels: (1) the propa-
gation of the pixel noise into the non-linear quantity ellipticity;
(2) additional uncertainties and biases introduced by ellipticity-
measurement methods and (3) the application of statistics to infer
the gravitational shear from a sample of ellipticity measurements,
which are either unaware of the presence of pixel noise or them-
selves non-linear and thus biased.

We summarize our findings in Table 1. In practice, lensing anal-
yses are affected by a combination of the aforementioned biases,
most of which are negative. Considering these findings, it is not
surprising that every investigation of any shear estimation method-
ology the authors are aware of shows a weakening response to shear
with increasing noise level. It is inevitable. Even though the details
differ, the biases we revealed or reinvestigated generally not only
depend on the object significance but also depend on its ellipticity.
We therefore recommend to extend shear accuracy test programs to
also inspect trends with ellipticity.

That biases occur at several stages of the analysis pipeline leads to
an unfortunate interdependence of the idiosyncrasies of the image
data (foremost the galaxy ellipticity and signal-to-noise distribu-
tions), shape-measurement method and shear statistic. This means
that a setup which has been found to work well in one situation does
not necessarily perform so well in others. Given the scope and fun-
damental nature of the majority of these biases, we do not believe
that the needs of upcoming lensing surveys in terms of accuracy

and reliability can be met without a substantial effort in correcting
for or avoiding biased ellipticity and shear estimates.

Method-dependent biases can be studied with simulated images.
Special attention should be paid to cases where the measured ellip-
ticity distribution deviates from the expected Marsaglia distribution.
For instance, a pile-up of samples shortly before the unit circle is
a clear indication of a bias introduced by the shape-measurement
code in order to prevent unphysical outliers.

To correct biases in an actual measurement, one needs to be able
to identify those parameters that determine the bias. As we argued,
this is mainly the significance and the ellipticity, but other factors,
such as the radial profile or changes of the ellipticity with radius
(Bernstein 2010), will also play a role. Therefore, correction
schemes need to fully consider the performance of the shape-
measurement method as a function of all relevant parameters as
well as the fact that these parameters themselves can only be in-
ferred with a certain precision from the image data (Kacprzak et al.
2012). This is computationally and practically challenging.

Instead of correcting ellipticity estimates, which also does not
completely eliminate the problem of noise for the shear statistic, we
should seek solutions that avoid the biases, for instance by staying
linear in the data for as long as possible (exemplified by stacking
methods in Bridle et al. 2010). We conclude by sketching out an
alternative idea. Since we worked out the theoretical form of the
noisy ellipticity distribution, we are able to predict the (biased)
outcome of a measurement given an assumed galaxy ellipticity
and noise level. As we showed in Section 3, we can also model the
errors shape-measurement methods exhibit once we assume to know
the underlying galaxy parameters. We can thus ask the question:
how likely is a certain ellipticity given a measured one and its
measurement errors. The result will be an ellipticity likelihood for
each galaxy that incorporates the non-linearities of the measurement
process. Combining full likelihoods should finally lead to unbiased
shear estimates. Whether this idea works in practice remains to be
seen.

To facilitate the review of our findings and to support forth-
coming development, we make the code used in this work pub-
lic. The PYTHON implementation comprises the computation of the
Marsaglia distribution with efficient sample generation as well as all
shear estimators of Section 4 and is available at https://github.com/
pmelchior/epsnoise.
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APPEN D IX A: MOMENT-BASED ELLIPTICI TY
D E F I N I T I O N S

In equation (5) we have introduced two particular forms of the
complex ellipticity, which are related according to (Bartelmann &
Schneider 2001)

χ = 2ε

1 + |ε|2 or ε = χ

1 +
√

1 − |χ |2 . (A1)

Since the only significant difference between the two definitions
occurs in the denominator, they share the same complex phase,
but have different amplitude. There are two important distinctions

between these definitions. First, the relation between gravitational
shear g and mean ellipticity is

g = 〈ε〉 or g = 〈χ〉
2 + σ 2

χ

+ O(〈χ3〉), (A2)

where the averages are taken over galaxies affected by a constant
shear g. That means, ε is an unbiased estimator of the shear (Seitz &
Schneider 1997), while χ needs a so-called responsivity correction
(the denominator in the equation above), and even then it remains
an approximate estimator of g (see Viola, Melchior & Bartelmann
2011 for a discussion of higher-order corrections to this relation).

The reason for the wide-spread use of χ as shear estimator rather
than ε stems from their second distinction, the distribution un-
der pixel noise. If we assume the pixel noise to be uncorrelated
and Gaussian, the second-order moments share this property due
to their linearity in the data. However, both ε and χ are ratios
of combinations of second-order moments. In the case of χ , nu-
merator and denominator are linear combination of moments and
thus still follow Gaussian distributions such that their ratio follows
the Marsaglia distribution of equation (13), a generalization of the
Cauchy distribution (equation 8). The Cauchy distribution is known
for its diverging variance, which allows arbitrarily large errors with
finite probability, namely when Q11 + Q22 → 0. In contrast, due to
the non-linear term

√
Q11Q22 − Q2

12 in the denominator of equa-
tion (5b), ε has a much more complicated distribution. Instead of
allowing infinite errors, the additional term in the denominator can
lead to a complex phase, which alters the orientation of ε in the
cases where χ would come to lie outside the unit circle of viable
ellipticities. This effectively couples the two components of ε and
leads to two separate distributions, the ordinary one within the unit
circle and the one on the unit circle, which renders a theoretical
description much more difficult.

We show the different distributions of ε and χ under noise in
Fig. A1. While χ ′ shows a continuous distribution across the edge
of the unit circle, outlier ellipticities (red points) are located right
on the unit circle in ε′-space. Performing a projection on to one
component or computing the absolute value of ε′ would thus lead
to an enhanced probability of measurements close to the unit circle.
Moreover, global statistics such as the mean or the variance of the
ε′ distribution are significantly altered by the presence of the ring
at |ε′| = 1.

In summary, while ε is theoretically an unbiased estimator of
the shear, its distribution under noise effectively undermines this
property. On the other hand, the distribution of χ is much easier
to describe and statistics thereof are fairly robust against noise,
but the interpretation of these statistics is hampered by the non-
linear relation to shear. One therefore needs to choose the ellipticity
estimator based on the application at hand, depending on what kind
of drawback can most effectively be dealt with.

A P P E N D I X B : SA M P L I N G T H E N O I S Y
ELLI PTI CI TY DI STRI BUTI ON

We present the recipe to simulate a realistic ellipticity distribution,
considering the effects of non-linear error propagation discussed
in Section 2. Instead of sampling from the complicated Marsaglia
distribution of equation (13), we follow the path of the pixel noise,
i.e. we compute the means and errors for the moment combinations
w = Q11 + Q22 and z = Q11 + Q22 and then their ratio χ = z

w
.

For a fast and analytic moment calculation, we assume an ellip-
tical Gaussian shape for both galaxy and/or weight function and
rotate into a frame, such that its semi-major axis is aligned with the
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2768 P. Melchior and M. Viola

Figure A1. Ellipticity distributions of measured χ ′ (top) and measured ε′
(bottom) from a synthetic catalogue of 5000 objects with intrinsic dispersion
σ e = 0.3, constant shear g = (0.15, 0.05), indicated by red cross markers,
and pixel noise equivalent to ν = 15. The circle in the top plot corresponds
to the limit of intrinsic |ε| < 1, and the red points in the bottom plot indicate
galaxies with |ε′| ≥ 1. The distributions are created with the algorithm
outlined in Appendix B.

one-direction,

W (x) = exp

[−(1 − ε)2x2
1 − (1 + ε)2x2

2

2s2

]
. (B1)

The size of the galaxy is then defined by s and its flux F =∫
d2xW (x). Errors of the moments, measured with weight func-

tion W, are given by (Melchior et al. 2011)

σ 2
i,j = σ 2

n

∫
d2x W 2(x)x2i

1 x
2j
2 , (B2)

where σ 2
n denotes the pixel noise variance and i, j describe a moment

{W }i,j = ∫
d2x W (x)xi

1x
j
2 . Note that this notation differs from

the notation used throughout the rest of this work. In the case of
a Gaussian-shaped W, these errors can be analytically evaluated.
The algorithm can trivially be extended to work on moments from
arbitrarily shaped galaxies, measured from noise-free images. With

the convolution relation in moment-space (Melchior et al. 2011,
equation 9 therein), also the effect of the PSF convolution can be
taken into account.

(1) For a source with ellipticity ε, we compute the modulus ε =
|ε|, its equivalent χ from equation (A1), and the phase φ = arg(ε).

(2) For a Gaussian shape, the scale s defines the sum of second
moments, w = Fs2. Then, z = χw.

(3) We adopt the definition of significance from Erben et al.
(2001, equation 16 therein) and insert the error of the flux
F (the {W}0,0 moment in the notation used above): ν =

F
σn

√
πs

√
(1 + ε)(1 − ε). Thus, if we specify ν we get the pixel noise

level σ n.
(4) The Gaussian errors σ ij for the second moments Qij are then

given by

σ 2
11 = σ 2

2,0 = σ 2
n

3π

4

s6

(1 − ε)5(1 + ε)

σ 2
12 = σ 2

1,1 = σ 2
n

π

4

s6

(1 − ε)3(1 + ε)3

σ 2
22 = σ 2

0,2 = σ 2
n

3π

4

s6

(1 − ε)(1 + ε)5
. (B3)

(5) For the errors �Q11 and �Q22, we sample from a correlated
bi-variate Gaussian, whose covariance matrix is given by

S11,22 =
(

σ 2
11 ρnσ11σ22

ρnσ11σ22 σ 2
22.

)
(B4)

[cf. discussion that led to equation (12)]. This can be realized by
applying the Cholesky decomposition

S11,22 = AAT → A =
(

σ11 0

ρnσ22 σ22

√
1 − ρ2

n

)
(B5)

to a vector of two N (0, 1) variates.
(6) Then, noisy samples w′ = w + �Q11 + �Q22 and z′ = z +

�Q11 − �Q22 exhibit the correct variances and correlation given
by equation (12), and their ratio χ ′

1 = z′
w′ is distributed according to

the Marsaglia distribution of equation (13).
(7) The second component of χ has an independent numerator

�Q12 ∼ N (0, σ 2
12), but the same denominator: χ ′

2 = 2�Q12
w′ .

(8) The original orientation is recovered by χ ′ → χ ′eiφ . Then,
ε′ can be obtained from equation (A1).

Since the only terms entering the Marsaglia distribution are ratios
of moments and errors, and both scale as s2, we can set s = 1.
Similarly, the significance ν depends on the ratio of flux F and
noise dispersion σ n, so that we can also set F = 1 without changing
the results. Effectively, one only has to specify the ellipticity ε

and the significance ν to uniquely describe the effects of noise
on the ellipticity. All information about the galactic shape, which
determines the moments of the brightness distribution and their
errors, is then internally computed (assuming a Gaussian radial
profile).

Realistic distributions, such as the ones shown in Fig. A1, addi-
tionally need to start from a decent intrinsic distributions of elliptici-
ties εs . With the common assumption of each ellipticity component
being drawn from an independent Gaussian distribution of some
dispersion σ e ≈ 0.3, their modulus is drawn from the Rayleigh
distribution f (ε) = ε

σ 2
e

e−ε2/2σ 2
e (cf. Fig. 4 for an observed elliptic-

ity distribution), and the orientation is uniform, U (0,π). Finally,
a sheared ellipticity distribution can be obtained from (Seitz &
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Schneider 1997)

ε = εs + g
1 + εs g∗ . (B6)

We implemented the entire sampling procedure (as well as the
theoretical form of the Marsaglia distribution and the shear estima-
tors described in Section 4) in PYTHON. The code is open-source and
available at https://github.com/pmelchior/epsnoise.

A P P E N D I X C : W E I G H T I N G - S C H E M E
I N D U C E D B I A S

We seek an approximate analytical description of the bias an
ellipticity-dependent weighting scheme introduces on globally act-
ing statistics such as the average and the two-point correlation func-
tion. Therefore, we choose a coordinate frame, which is aligned with
the semi-major axis of each galaxy, such that we only have to con-
sider the one component of ε. We start by Taylor-expanding the
ellipticity dependence of the weighting scheme to the first order,

w(ε′) = w0 + ∂w(ε)

∂ε

∣∣∣∣
ε′

ε′ + O(ε′2). (C1)

Assuming the most simple form of a positive offset w0 > 0 and
small, constant slope ∂w(|ε|)/∂|ε| = c, we can simplify the previ-
ous equation to

w(ε) = w0

{ + cε′ if ε > 0

− cε′ if ε < 0.
(C2)

Now we split the integrals in equation (28) into the lower and upper
half (which allows us to apply the reduced weights also to negative
ε):

∫
dε w(ε)ε p(ε) = w0

0∫
−∞

dε ε p(ε) − c

0∫
−∞

dε ε2p(ε)

+ w0

∞∫
0

dε ε p(ε) + c

∞∫
0

dε ε2p(ε) (C3)

and likewise for the denominator. Since there is no sign-flip in the
terms with w0, we can combine these integrals again and exploit∫

dε p(ε) = 1 and
∫

dε ε p(ε) = g. For the c-terms, we need to carry
out the integration over the ellipticity distribution explicitly, simply

because the presence of the shear shifts and skews the distribution
such that the c-terms in the equation above do not exactly cancel.
We therefore assume the pre-lensing distribution to be Gaussian
with dispersion σ e and the shear to only shift the entire distribution
without changing its shape: p(ε) → N (ε −g, σe). This assumption
will restrict our derivation to small shears. We thus linearize the
resulting integrals to the first order in the shear and obtain

0∫
−∞

dε ε N (ε − g, σe) −
∞∫

0

dε ε N (ε − g, σe) ≈ −
√

2

π
σe

0∫
−∞

dε ε2N (ε − g, σe) −
∞∫

0

dε ε2N (ε − g, σe) ≈ −2

√
2

π
σe g.

(C4)

Inserting all terms into equation (28) yields equation (30). The result
is accurate to the first order in w(ε), g and c

w0
.

C1 Shear correlation function

In the limit of small shear, we can simplify equation (B6) between
observed and pre-lensing ellipticities, ε → εs + g, which corre-
sponds to the above case: the shear only shifts the ellipticity dis-
tribution, but does not skew it. When considering the weighting
scheme from equation (C2), we get the correlation functions of the
weights

〈wiwj 〉(θ ) = 〈(w0 + cεi)(w0 + cεj )〉 = w2
0 + c2〈εiεj 〉(θ ) (C5)

and of the weighted ellipticities

〈wiεiwjεj 〉(θ ) = w2
0〈εiεj 〉(θ ) + c2

〈
ε2

i ε
2
j

〉
(θ ), (C6)

where 〈εiεj 〉 is given by equation (31) and〈
ε2

i ε
2
j

〉
(θ ) = σ 4

e + 2σ 2
e σ 2

g + σ 4
g + 2ξ 2

g (θ ) (C7)

with σ 2
g ≡ 〈g2

i 〉 being the variance of the shear field. In this deriva-
tion we assumed the intrinsic ellipticity field to be uncorrelated for
separation θ > 0 and the shear field to be uncorrelated with the in-
trinsic ellipticity field, such that terms like 〈εi gi〉 and 〈εi gj 〉 vanish.
Expanding the ratio of equations (C5) and (C6) to the first order in
c2

w2
0

yields equation (32).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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