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Chapter 8

A solution for the rare type match
problem when using the DIP-STR marker
system

This chapter is based on: Cereda, G., Gill, R. D., and Taroni, F. “A solution for the rare
type match problem when using the DIP-STR marker system”. Submitted to Forensic Science
International: Genetics.

Abstract
The rare type match problem is an evaluative challenging situation in which the

analysis of a DNA profile reveals the presence of (at least) one allele which is
not contained in the reference database. This situation is challenging because an
estimate for the frequency of occurrence of the profile in a given population needs
sophisticated evaluative procedures.

The rare type match problem is very common when the DIP-STR marker
system, which has proven itself very useful for dealing with unbalanced DNA
mixtures, is used, essentially due to the limited size of the available database.
The object-oriented Bayesian network proposed in Cereda et al. (2014b) to assess
the value of the evidence for general scenarios, was not designed to deal with
this peculiar situation. In this paper, the model is extended and partially mod-
ified to be able to calculate the full Bayesian likelihood ratio in presence of any
(observed and not yet observed) allele of a given profile. The method is based
on the approach developed in Cereda (2016a) for Y-STR data. Alternative solu-
tions, such as the plug-in approximation and an empirical Bayesian methodology
are also proposed and compared with the results obtained with the full Bayesian
approach.
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8.1 Introduction

The most common task of a forensic scientist or statistician is to quantify the probative
value of the observation of some scientific findings (e.g. DNA profiles, fragment of paint,
fibres), under the hypotheses of interest for the court of justice. This is done through the
quantification of the likelihood ratio. In case the hypotheses of interest deal with whether the
recovered material has the same origin as some control material, it is important to be able
to quantify the rarity of the corresponding characteristics. For instance, the evidence can be
the correspondence between the DNA profile of a crime stain and of a suspect: the rarer the
profile, the more probative is the scientific finding regarding propositions about the source.
The rarity of the profile of interest is often used to assign the probability of the random
occurrence of the given stain, and some available (and relevant) database is used to support
the scientist’s assignment.

The ‘rare type match problem’, also called ‘the fundamental problem of forensic mathemat-
ics’ (Brenner, 2010) is the situation in which the corresponding characteristic has not been
observed in the relevant reference database for the case. One example is the DIP-STR marker
system, a rather novel genotyping technique, proposed in Castella et al. (2013), which turned
out to be very useful to analyse DNA mixtures if the proportion of the DNA quantities of the,
say, two contributors is more extreme than 1:10. Due to limited size of available databases,
rare DIP-STR profiles are often encountered.

A Bayesian framework for evaluating DIP-STR results was developed in Cereda et al. (2014b),
using object-oriented Bayesian networks, with the aim of calculating the likelihood ratio
for mixtures of two contributors, when the major contributor’s genotype is known and the
two competing hypotheses are ‘the minor contributor is the suspect’ (hp) and ‘the minor
contributor is an unknown person, unrelated to the suspect’ (hd), also extended to cases
where the suspect is missing.

This paper proposes a Bayesian solution for assigning the likelihood ratio for mixture results
in presence of a rare type match, that is when at least one of the DIP-STR alleles of the
contributors is not present in the reference database. This situation was not covered by
Cereda et al. (2014b).

The Bayesian model adopted is based on a similar one proposed in Cereda (2016a). Several
issues concerning Bayesian methodology, and notation, have been improved.

The paper is structured as follows. Section 8.2 discusses the use of the DIP-STR marker
system for extremely unbalanced mixtures, while Section 8.3 describes the object-oriented
Bayesian network that was built to evaluate DIP-STR profiling results in Cereda et al.
(2014b). The chosen notation and the definition of what a full Bayesian approach to like-
lihood ratio assessment is, can be found in Sections 8.4 and 8.5, respectively. The model
developed to evaluate results from mixtures of two contributors in presence of the rare type
match problem (described in Section 8.6) is detailed in Sections 8.7 and 8.8. More detailed
descriptions of the development of the full Bayesian likelihood ratio, which takes advantage
of the Lemma introduced in Section 8.9, are confined to the Appendix. A discussion about
the choice of the prior distribution for the parameters is also provided in Section 8.10, while
conclusions can be found in Section 8.11.
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8.2 DIP-STR marker system for extremely unbalanced mix-
tures

A DIP-STR marker is a compound marker made of a DIP (Deletion/Insertion polymorphism,
Weber et al. (e.g., 2002)), and of a standard STR polymorphism. These two polymorphisms
are chosen less than 500 bp apart, in order to be dependent on one another.

Standard methods for the analysis of DNA mixtures, such as STR markers (Butler, 2011),
fail to detect the DNA of contributors whose DNA constitutes less than the 10% of the
total DNA material (Clayton and Buckleton, 2005). On the other hand, as long as the minor
contributor has at a specific locus at least one DIP allele different from the DIP alleles of
the suspect, the DIP-STR marker system allows the selected amplification of its DIP-STR
genotype, up to mixture proportions as extreme as 1:1000,

At each DIP-STR locus, the possible configurations are the following (summarized in Ta-
ble 8.1).

• In the case where the major and minor contributors are DIP homozygous with different
alleles (i.e., one is L-L and the other is S-S) both DIP-STR alleles of the minor can be
detected. This is the best scenario the scientist can be faced with.

• If the major is DIP homozygous (for instance L-L) and the minor is DIP heterozygous,
only one of the two DIP-STR alleles of the minor can be detected: the one with the
other DIP allele (in the example the allele S).

• The worst situation is the one in which the major is DIP heterozygous, or both con-
tributors are homozygous for the same DIP alleles: in these cases the DNA profile of
the minor cannot be obtained.

DIP genotype of ma-
jor/minor contributor

DIP-STR alleles ob-
served in the trace

Information gained
for the second con-
tributor

Hom/Hom (different kind)
2 (if STR het) Yes completely
1 (if STR hom) Yes

Hom/Het 1 (regardless STR) Yes
Hom/Hom (same kind) 0 (regardless STR) No
Het/Hom 0 (regardless STR) No
Het/Het 0 (regardless STR) No

Table 8.1: Informativeness of genotypic configurations. ‘Hom’ denotes homozygous for the DIP
allele, and ‘Het’ heterozygous.

A first panel of 10 DIP-STR markers was presented in Castella et al. (2013). A second panel
with 9 additional DIP-STR markers has recently been provided in Oldoni et al. (2015). When
one analyses a mixed stain, each of the 19 available markers may present one of the three
situations described above.
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8.3 Bayesian network for evaluating DIP-STR profiling re-
sults from unbalanced DNA mixtures.

S1 S2 U1 U2

C1 C2

O

H

V

Figure 8.1: Bayesian network corresponding to the object-oriented Bayesian network of Cereda
et al. (2014b). The meaning of the nodes is described in Section 8.3.

In Cereda et al. (2014b) a locus specific object-oriented Bayesian network (OOBN), designed
to assist the evaluation of DIP-STR results obtained from mixtures with two contributors, is
proposed. The network, reproducing the mechanism described in Section 8.2 and in Table 8.1,
is proposed here in the form of a Bayesian network (see Figure 8.1). It is suitable for a situation
in which the DIP-STR profile of a suspect (potential contributor to the mixture) is available.
The two hypotheses of interest are ‘the minor contributor is the suspect’ (hp) and ‘the minor
contributor is an unknown person, unrelated to the suspect’ (hd). The major contributor is
often referred to as “the victim”, taken as a known contributor, and his/her DIP-STR profile
is generally available.

It is important to notice that the only information needed from the known major contributor
regards his DIP alleles. Hence, the only node in the network which concerns the victim,
V , has three possible states: HomoL, HomoS and Hetero. The node H represents the two
hypotheses of interest defined above.

With the exception of node O, the remaining part of the network deals with the unknown
minor contributor. Nodes S1 and S2 represent the two DIP-STR alleles of the suspect. Nodes
U1 and U2 represent the two DIP-STR alleles of the alternative (unknown) contributor in a
two-person mixture. Nodes C1 and C2 represent the DIP-STR alleles of the actual second
contributor (for example, the suspect). Depending on the state of node H, the second con-
tributor’s allele can be a copy of S1 and S2 (under state hp), or of U1 and U2 (under state
hd). The state of node O, which contains results obtained from the mixture, depends on the
combination of V , C1 and C2 (according to Table 8.1).

The probability tables for the nodes are of different types. In the scenario considered, node V
is observed, since the major contributor is known. As such, its probability table is not relevant
for the final result because its state is fixed, thus it is filled with equal prior probabilities
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for its three states. The same holds for node H, which is in turn instantiated to obtain the
numerator and the denominator of the likelihood ratio.

Nodes C1 and C2 are deterministic given H, S1, S2, U1, and U2: if H is in state hp, then C1

and C2 are copies of, respectively, S1 and S2, otherwise they are copies of U1 and U2. Also
node O is deterministic, given nodes V , H, C1 and C2: its probability table is filled out with
0’s and 1’s (according to the conditions defined in Table 8.1). The states of nodes S1, S2, U1,
U2, C1, and C2 are La, Lb, Lx, Sa, Sb, Sx. Notice that at each DIP-STR locus there may
be more than six possible alleles: La, Lb, Sa, Sb are used to represent the two alleles that
at most could be observed, while Sx and Lx represent all the other (not observed) alleles
different from a and b. In Cereda et al. (2014b), this solution was preferred to having the
entire list of DIP-STR alleles, in order to make the model simpler, and usable for different
loci. The disadvantage is that, at each new case, the meaning of these symbols changes,
and the probability tables have to be adapted accordingly. In this paper, we will develop a
methodology to overcome this constraint.

The probability tables for nodes S1, S2, U1, and U2 should be filled with the allelic proportions
corresponding to the alleles represented by names La, Lb, etc., in the population of interest.
These allelic proportions are unknown, but we a have a database of DIP-STR alleles, which
we can consider as a random sample from the population of interest. In Cereda et al. (2014b),
a Dirichlet distribution with all parameters equal to one was used as prior for the DIP-STR
allelic proportions, and the probability tables for nodes S1, S2, U1, U2 were filled out with
the posterior means (conditional to the observation of the database). However, as discussed
in Section 8.5, this approach suffers from some limitations and it can be improved and made
more consistent with the Bayesian theory. Moreover, the number of possible distinct DIP-STR
alleles was chosen by looking at those in the database. Thus, the model was not suitable to
be used when new alleles (not previously detected) were observed. This paper aims at solving
these problems.

8.4 Notation

Throughout the paper the following notation is chosen: random variables and their values
are denoted, respectively, with uppercase and lowercase characters: x is a realization of X.
Random vectors are denoted with bold characters: x is a realization of the random vector
X. Probability is denoted with Pr(·), while density of a continuous random variable X is
denoted alternatively by pX(x) or by p(x) when the subscript is clear from the context. For a
discrete random variable Y , the density notation pY (y) and the discrete one Pr(Y = y) will
be alternately used. Moreover, we will use shorthand notation like p(y | x) to stand for the
probability density of Y with respect to the conditional distribution of Y given X = x.

Given k ≥ 2, and α = (α1, ..., αk) such that αi > 0,

X ∼ Dirk(α1, ..., αk)

means that vector x follows a k-dimensional Dirichlet distribution (Press, 2009), whose den-
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sity is

p(x) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

k∏
i=1

xαi−1
i .

In the appendix, we will denote with z = (x, y) the vector z obtained by adding element y
at the end of vector x.

8.5 Full Bayesian approach

In the case of interest, for each analysed locus the forensic scientist or statistician is given
the following input data: the victim’s and the suspect’s DIP-STR profile (denoted as Ev
and Es respectively), along with the DIP-STR alleles obtained from the mixture (Em). This
data has to be evaluated in the light of the hypotheses of interest (hp and hd) as defined
in Section 8.1. The evaluation of such evidence heavily depends on the allelic proportions
of the DIP-STR alleles of the trace and of the suspect, which are unknown. The vector θ,
containing the population proportions of all the possible DIP-STR alleles at the considered
locus, is the nuisance parameter of the model. A database (denoted here as D), consisting of
a list of DIP-STR alleles from the population of interest is given to the statistician, in order
to support him in the assessment of the uncertainty about θ. The data to evaluate are thus
made of E=(Ev, Es, Em) and D. This notation reflects the distinction described in Cereda
(2016a) between ‘evidence’, data directly related to the crime, and ‘background’, data related
only to the nuisance parameter of the model.

The full Bayesian approach consists of modelling all these variables, including θ, as random
variables whose joint distribution Pr reflects prior belief of the expert.

The largely accepted method to evaluate the data in order to discriminate between the two
hypotheses of interest, is the calculation of the Bayes factor (BF), in forensic context regularly
called likelihood ratio (LR). It is defined as the ratio of the probabilities of observing the data
under the two competing hypotheses:

LR =
Pr(E = e,D = d | H = hp)

Pr(E = e,D = d | H = hd)
=

Pr(E = e | D = d,H = hp)

Pr(E = e | D = d,H = hd)
, (8.1)

where the last equality holds in virtue of the independence of database and hypotheses.

The nuisance parameter θ has been integrated out according to its prior distribution. Notice
indeed that θ does not appear in (8.1).

In Cereda et al. (2014b), we used a different approach: Bayesian estimates of the allelic
proportions were plugged into the probability tables for nodes S1, S2, U1, and U2. This is
equivalent to using a likelihood ratio for a given θ, such as

LR =
Pr(E = e | Θ = θ, D = d,H = hp)

Pr(E = e | Θ = θ, D = d,H = hd)
,

and to plug inside the estimates for θ.
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The plug-in method can be seen as an approximation to the full Bayesian method (Cereda,
2016a). To obtain it, a Bayesian network is built which allows one to use an integrated full
Bayesian approach, by introducing, among others, a node which represents the database D,
and a node that represents the nuisance parameter θ. The full Bayesian approach is then
compared to the plug-in method, to check the impact of the approximations.

8.6 Rare type match problem

When the findings to evaluate include a correspondence between the DNA profile of a par-
ticular piece of evidence (i.e., a trace of unknown origin) and a suspect’s DNA profile, but at
least one of the alleles of this profile are not present in the available database, it is difficult
to assess the uncertainty over the population proportion of that allele. It is likely to be a rare
allele (from which the term rare type match problem) but it is challenging to quantify how
rare. This assessment is important for the quantification of the likelihood ratio: the rarer the
matching profile, the larger is the likelihood ratio.

Using DIP-STR data, it is very likely to encounter the rare type match problem, because
the available database size is still limited (Oldoni et al., 2015). The same happens when Y-
chromosome (or mitochondrial) DNA profiles are used, since the set of possible Y-STR profiles
is extremely large. As a consequence, most of the Y-STR haplotypes are not represented in
the database. In Cereda (2016a,b,c) several (Bayesian and frequentist) solutions are proposed
for the rare type match problem for Y-STR data. The object-oriented Bayesian network
of Cereda et al. (2014b), here presented in Figure 8.1, cannot be used in the case of a rare
type match problem: there, the number of different alleles at a given locus was considered
as fixed, and equal to that observed in the database. This makes that model useless in cases
where new DIP-STR alleles are observed.

As a solution, we will consider the number of different DIP-STR alleles present in the pop-
ulation as random, by introducing additional variables in the model, explained in detail in
Section 8.7. This is based on one of the Bayesian methods proposed in Cereda (2016a).

8.7 A prior for θ

Let us denote with L-STR (or S-STR) the DIP-STR alleles which have the DIP part equal
to L (or S). Assume that, at a specific locus, there are at most m theoretically possi-
ble L-STR alleles and m theoretically possible S-STR alleles. The random vector Θ =
(ΘL

1 , ...,Θ
L
m,Θ

S
1 , ...,Θ

S
m) contains the population proportions of all the potential 2m DIP-

STR alleles at that locus (for instance, alphabetically ordered).

Only kL (kS) of the m possible L-STR (S-STR) alleles are actually present in nature (or
more specifically in the population of interest), but kL and kS are unknown. Which of the m
L-STR alleles are those kL and kS is not known either.

The vector tL contains the ordered positions (from 1 to m) of the kL L-STR alleles present

167



in the population of interest. tL is modelled through a random variable TL: each possible
configuration tL is assumed as equiprobable, hence it is chosen uniformly at random from
the possible

(
m
kL

)
configurations. Random vector TS is defined similarly. Notice that θLi =

0,∀i /∈ tL, and θSi = 0,∀i /∈ tS.

Specifying Θ is equivalent to specifying three random variables ΦL, ΦS, Ψ. Ψ is the sum of
the occurrence probabilities of the L-STR alleles

ψ =
m∑
i=1

θLi ,

while φL is the normalized vector of the occurrence probabilities of the L-STR alleles. Stated
otherwise,

φL = (
θL1
ψ
, ...,

θLm
ψ

).

Similarly, φS is the normalized vector of the frequencies of the S-STR alleles:

φS = (
θS1

1− ψ
, ...,

θSm
1− ψ

).

The prior distribution for θ can be described in terms of the prior over ΦL, ΦS, and Ψ,
which will be taken to be independent. The latter is distributed according to a Beta(1,1),
while the positive entries of φL, i.e., (φLi | i ∈ tL) are Dirichlet distributed, given tL, with
all hyperparameters equal to α. The same holds for φS given tS. Hence, the distribution of
node θ can be described in terms of the distribution of seven additional random variables,
whose conditional dependencies can be described by the Bayesian network of Figure 8.2.
Bayesian networks using beta and Dirichlet distributions in forensic contexts are presented
in Biedermann et al. (2011a). Other examples can also be found in Taroni et al. (2014).

kL kS

tL tS

ΦL ΦS

Θ

Ψ

Figure 8.2: The conditional dependency relationships of the random variables used to build the
distribution of θ. The definition of the nodes can be found in Section 8.7.
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8.8 Full model

Θ

D

S1 S2 U1 U2

C1 C2

O1 O2

H

V1 V2

Figure 8.3: Bayesian network for the Dirichlet-multinomial model with a random number of types,
to be used for DIP-STR data. The definition of the nodes can be found in Section 8.8.

This model is represented by the Bayesian network of Figure 8.3. Notice that there are
differences from the model depicted in Figure 8.1, among which is the presence of node θ
distributed as described in Section 8.7. The first difference lies in the definition of nodes S1,
S2, U1, U2, C1, and C2. Their values are couples (L,i) or (S,i) where i ∈ {1, ...,m}, describing
the position in θ of the corresponding DIP-STR allele. The same holds for nodes V1 and V2,
which replace node V of Figure 8.1, and represent the two DIP-STR alleles of the victim. All
these nodes are now linked to node Θ because, given Θ = θ, the random variables S1, S2,
U1, U2, V1, V2 have the following density (with parameter θ):

p((j, i) | θ) = θji , ∀j ∈ {L, S},∀i ∈ {1, ...,m}. (8.2)

The second difference is the presence of two nodes O1 and O2, instead of a single node O
as in Figure 8.1. O1 represents one of the DIP-STR alleles observed from the mixture (if
any, 0 otherwise). O2 is always 0 unless we are in the situation described by the first row of
Table 8.1, where two DIP-STR alleles are observed. In this case, the convention is for O1 and
O2 to be ordered alphabetically.

The random vector D represents the available database of size n, through the list of labels
((L, i) or (S, i)) of the DIP-STR alleles contained in the database. The order does not matter,
so we can choose the order in which the alleles appear in the database. A particular config-
uration of D is denoted as d = (d1, ..., dn), where, given θ, each component is i.i.d. with the
same density as in (8.2).
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According to this notation, the likelihood ratio for the scenario of interest can be written
as

LR =
p(o1, o2, s1, s2, v1, v2,d | hp)
p(o1, o2, s1, s2, v1, v2,d | hd)

=
p(o1, o2 | s1, s2, v1, v2,d, hp)

p(o1, o2 | s1, s2, v1, v2,d, hd)
. (8.3)

Due to the complexity of the chosen distribution, the Bayesian network cannot be treated
with available software, such as Hugin, or OpenBUGS. However, the likelihood ratio can be
obtained analytically using the Lemma presented in Section 8.9.

8.9 Lemma

A H

X Y

Figure 8.4: Conditional dependencies of the random variables of the Lemma

Lemma 3. Given four random variables A, H, X and Y , whose conditional dependencies
are represented by the Bayesian network of Figure 8.4, the likelihood function for h, given
X = x and Y = y satisfies

lik(h | x, y) ∝ E(p(y | x,A, h) | X = x).

This Lemma, proven in Cereda (2016c), is very general: it applies to every group of random
variables whose conditional dependencies are represented by the Bayesian network of Fig-
ure 8.4, and it is very useful due to the possibility of applying it to a very common forensic
situation: the prosecution and the defence disagree on the distribution of part of the data
(Y ) but agree on the distribution of the other part (X), when the distribution of X and
Y depends on some parameters (A). This Lemma can also be used for the DIP-STR model
presented in Section 8.7. However, it is not straightforward to identify in the Bayesian net-
work of Figure 8.3 the required structure shown in Figure 8.4. Luckily, the same model can
be represented in several ways: we will propose a modification of the Bayesian network of
Figure 8.3 into something which more clearly shows the required structure. This will be done
in two steps: first, we will remove unnecessary nodes, and then we will group some of the
others.

Step 1. The Bayesian network presented in Figure 8.5 is obtained by removing from the
Bayesian network of Figure 8.3 nodes U1, U2, C1, and C2. The conditional probability tables
of nodes O1 and O2 can be directly expressed in terms of S1, S2, V1, V2, and H, in a way
that makes the model equivalent to the previous one (Figure 8.5).
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Θ

D V1 V2S1 S2

O1 O2

H

Figure 8.5: An alternative representation of the DIP-STR mixture model presented in Figure 8.3.

Step 2. The Bayesian network of Figure 8.6 can be obtained by substituting some of the
nodes of the Bayesian network of Figure 8.5 with a single node. Indeed, instead of having the
random vector D and four additional random variables (S1, S2, V1, and V2), we can group all
these together into a random vector B, of length n + 4. The first n elements are the labels
contained in D, the fourth to last and third to last are the labels in S1 and S2, while the
second to last and the last are the labels in V1, and V2, respectively.

Θ

B

O1 O2

H

A

Y

X

Figure 8.6: A simpler structure for the Bayesian network, suitable to be used for the Lemma.
Dashed lines show the choice for the corresponding variables A, X, and Y of Figure 8.4.

The Bayesian network of Figure 8.6 can be used to represent the same model as that repre-
sented by Figure 8.1, by carefully adapting the conditional distribution of O1, and O2. We
can apply the Lemma to our model by defining Y = (O1, O2), X = B, and A = Θ. This leads
to

LR =
p(o1, o2,b | hp)
p(o1, o2,b | hd)

=
lik(hp | o1, o2,b)

lik(hd | o1, o2,b)
=

E(p(o1, o2 | b,Θ, hp) | B = b)

E(p(o1, o2 | b,Θ, hd) | B = b)
.

Notice that we assume that under the prosecution’s hypothesis, p(o1, o2 | b,Θ, hp) = 1.
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Therefore, the likelihood ratio can be simplified:

LR =
1

E(p(o1, o2 | b,Θ, hd) | B = b)
. (8.4)

Victim’s DIP alle-
les

o1 o2 p(o1, o2 | b,Θ, hd)

L-L
(S, i) (S, j) 2ΘS

i ΘS
j

(S, i) 0 (ΘS
i )2 + 2ΘS

i Ψ

0 0 Ψ2

S-S
(L, i) (L, j) 2ΘL

i ΘL
j

(L, i) 0 (ΘL
i )2 +2ΘL

i (1−Ψ)

0 0 (1−Ψ)2

Table 8.2: Different forms that p(o1, o2 | b,Θ, hd) can take, based on the DIP-STR alleles observed
from the trace and on the victim’s DIP alleles. The case in which the victim is heterozygous is not
of interest.

p(o1, o2 | b,Θ, hd) is a function of some components of the vector Θ. The form of this
function depends on the combination of the DIP-STR alleles of the victim and of the trace
(see Table 8.2). The expectation in the denominator of (8.4) is to be taken using the posterior
distribution Θ | B = b. This is developed in detail in the Appendix.

8.10 Choice of priors

The Appendix shows the form of the denominator of the likelihood ratio for the different cases
which one may encounter (for any m, any parameter α > 0 for the Dirichlet distribution,
and any prior p(k) over kL and kS). The choice of a value for α, m, and of a prior over
kL is very delicate. If the expert has strong opinions about the number of L-STR (S-STR)
alleles potentially present in nature (m) and in the population of interest (kL and kS), he
can choose a prior which reflects his beliefs. Otherwise, he can try to use classical priors such
as the Poisson distribution, the Negative binomial distribution (both of them truncated so
as to have support only over {1, ...,m}), or the uniform prior over {1, ...,m}.

8.10.1 Alternative solutions

The most natural choice is to give a uniform prior (over {1, ...,m}) to kL and kS, combined
with that of having all the kL + kS hyperparameters of the Dirichlet priors over φLb and φSb
equal one another. These choices represent the lack of knowledge on the number of categories
and make the computations tractable.

One of the limitations of having all the hyperparameters α equal one another is that the
posterior for kL, given b uses only the number of distinct alleles of type L as information, and
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ignores other useful information contained in b. An alternative solution, which compensates
for this undesired feature, consists of estimating kL through the database, instead of putting a
prior on it. This can be called an empirical Bayesian approach. Notice that such an undesired
situation does not appear if personal beliefs are used to specify the prior distribution. Let us
define the vector φb

L made of the allelic proportions of the L-STR alleles observed in the
augmented database, and of a last component φ̄Lb which is the sum of the allelic proportions
of all the L-STR alleles not observed in b. φ̄Lb is the probability of observing a new L-STR
allele in the n+ 1th draw from the population. φb

L given kL and b is Dirichlet distributed,
hence we can obtain the posterior expected values of φ̄Lb:

E(φ̄Lb | kL,b) =
(kL − kLb)α

kLα + nL
. (8.5)

The so-called Good-Turing estimator (Good, 1953) says that the expected value for the prob-
ability of the unobserved types can be approximated by the proportion of L-STR singletons
(i.e, alleles observed only once) in the database. Stated otherwise,

E(φ̄Lb|kL,b) ≈ nL1
nL
. (8.6)

where nL1 is the number of DIP-STR alleles observed only once in the augmented database.
The two quantities (8.5) and (8.6) can be equated in order to obtain an empirical Bayesian
estimate of kL as

k̂L =
nL1n

L + kLbαn
L

αnL − αnL1
.

The likelihood ratio for this choice can be obtained using the same formulas developed in
the Appendix by using prior over kL the degenerate prior which gives a probability of one to

value k̂L. This solution allows one to use more information (nL1 and nS1 ) from b.

The third option is to use the plug-in approximation proposed by some literature, which
estimates the allelic frequencies by their posterior expectation, after the observation of a
database. One of the aims of this paper is to investigate the goodness of this approximation,
in the case of a rare type match problem.

We did some experiments using marker MID1950-D20S473 (Castella et al., 2013), and con-
sidering the two cases described in Table 8.3.

Victim’s alleles Suspect’s alleles Observed alleles
Case 1 S11 - S11 L2 - L13 L2 - L13
Case 2 S11 - S11 L2 - S12 L2

Table 8.3: Allelic configurations of the victim and of the suspect in the two cases of interest, at
marker MID1950-D20S473.

Allele L2 was not contained in the database of reference, hence we are in presence of the rare
type match case. The available database, augmented with the victim’s and the suspect’s DIP-
STR alleles, contains 11 different DIP-STR alleles, for a total number of 210 observations
(from 105 individuals).

173



0.5 1.0 1.5 2.0

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

case 1

α

lo
g 1

0(L
R

)

Full Bayesian
Bayesian plug−in
Good−Turing plug−in

0.5 1.0 1.5 2.0

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

case 2

α

lo
g 1

0(L
R

)

Full Bayesian
Bayesian plug−in
Good−Turing plug−in

Figure 8.7: Sensitivity analysis for the log10(LR) obtained with (i) the full Bayesian approach,
(ii) the hybrid Good-Turing plug-in (iii) classical Bayesian plug-in, for the two cases described in
Table 8.3 when the prior over kL and kS is uniform over {1, ...,m}.

The sensitivity analysis for the log10(LR), shown in Figure 8.7, has been conducted for dif-
ferent loci and different combinations of alleles, without showing substantial differences (in
terms of sensitivity). Moreover, it tells us that the two plug-in approaches represent accept-
able solutions in terms of quantification. Varying m does not change Figure 8.7 much.

8.11 Conclusion

Mostly due to the limited size of the available database (about one hundred people in a
given relevant population), the rare type match situation is very likely to be encountered
when DIP-STR data is used. The recipients of this new technology should be prepared for
such an eventuality, which was not taken into account in the OOBN proposed in Cereda
et al. (2014b). This paper provides a methodology that allows one to obtain the full Bayesian
likelihood ratio also when there are DIP-STR alleles which are not present in the reference
database among the alleles of the known contributor and of the suspect. This is done by
extending the OOBN, and introducing a more complex prior over the allelic frequencies (a
mixture of Dirichlet and uniform distribution) based on a previously developed solution for
Y-STR data (Cereda, 2016a). Notice that this issue also represents an opportunity to discuss
the use of plug-in approximations which are compared with the full Bayesian likelihood ratio.
They proved to be valid approximations.

The sensitivity analysis of the hyperparameters of the prior is also studied. The results show
that the likelihood ratio moderately depends on the choices of the parameters α of the
Dirichlet prior. Hence, there is the need for further investigations to find better priors, either
less sensitive to hyperparameters, or more realistic, such as it was done for Y-STR data in
Cereda (2016c).
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Appendix. Full Bayesian likelihood ratio development

In Table 8.4, a summary of the relevant symbols used is reported. The aim of this Appendix is
to develop the conditional expectation of the functions reported in Table 8.2, which constitute
the denominator of the likelihood ratio (8.4). Those conditional expectations can be rewritten
in terms of φL, φS, and ψ, in the following way:

E(2ΘL
i ΘL

j | b) = E(2ΦL
i ΦL

j Ψ2 | b) = 2E(ΦL
i ΦL

j | b)E(Ψ2 | b),

E((ΘL
i )2 + 2ΘL

i (1−Ψ) | b) = E((ΦL
i )2 | b)E(Ψ2 | b) + 2E(ΦL

i | b)E(Ψ | b)E(1−Ψ | b).

The distribution of Ψ given B.

As explained in Section 8.7, θ can be represented through a set of three independent variables
(φL, φS, ψ). The vector b can also be reduced by sufficiency to three random variables:
(nL,nL,nS), where nL is the total number of observed L-STR alleles in the enlarged database,
nL is the vector of length m containing the counts in the augmented database of each of the
m L-STR alleles, in an order that corresponds to that of φL, nS is the vector of counts of
each of the m S-STR alleles. nL is binomial distributed with parameters (n+ 4, ψ), while nL

is multinomial distributed with parameters (nL,φL). Similarly, nS is multinomial distributed
with parameters (nS,φS), where nS = n + 4 − nL is the number of S-STR alleles in the
augmented database.

It holds that the likelihood for φL,φS, and ψ factors:

p(nL,nL,nS | φL,φS, ψ) = p(nL | ψ)p(nL | nL,φL)p(nS | nS,φS).

The priors for φL,φS, and ψ factors as well, since they are independent. Therefore, the
posteriors for φL,φS, and for ψ given b factors as the product of three independent posteriors.
Thus, it holds that

p(ψ | b) ∝ p(nL | ψ)p(ψ),

which is a product of the density of a binomial distribution and of a beta prior. By conju-
gacy,

Ψ | B = b ∼ Beta(1 + nL, 1 + nS).

In conclusion, by using properties of the Beta distribution, it holds that

E(Ψ2 | b) =
(nL + 1)(nL + 2)

(n+ 6)(n+ 7)
, (8.7)

and

E((1−Ψ)2 | b) =
(nS + 1)(nS + 2)

(n+ 6)(n+ 7)
. (8.8)
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Name Description Type
m number of theoretically possible L-STR (and S-

STR) alleles
fixed

kL number of L-STR allele types present in the pop-
ulation

random

kS number of S-STR allele types present in the pop-
ulation

random

tL positions (from 1 to m) of the kL L-STR allele
types in the population

random

tS positions (from 1 to m) of the kS S-STR allele
types in the population

random

θ population proportions of the 2m possible DIP-
STR alleles

random

ψ sum of the relative frequencies of the L-STR al-
leles

random

φL normalised vector of the relative frequencies of
L-STR alleles

random

φS normalised vector of the relative frequencies of
S-STR alleles

random

n size of the available database observed
nL total number of L-STR alleles in the augmented

database
observed

nS total number of S-STR alleles in the augmented
database

observed

b labels (j, i) corresponding to each of the n + 4
DIP-STR alleles in the augmented database

observed

bL labels (L, i) corresponding to each of the nL L-
STR alleles in the augmented database

observed

bS labels (S, i) corresponding to each of the nS S-
STR alleles in the augmented database

observed

kLb number of distinct L-STR alleles in the aug-
mented database

observed

kSb number of distinct S-STR alleles in the aug-
mented database

observed

nL counts of all m L-STR alleles in the augmented
database

observed

nS counts of all m S-STR alleles in the augmented
database

observed

Table 8.4: Some relevant symbols used in the paper.
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The distribution of φL and φS given B.

Let p(k) be the prior distribution over kL and kS. In this section we will omit superscripts
L and S from k, t, φ, and n, in order to obtain general results valid for both cases. Notice
that n will stand for nL or nS, and b will stand for bL or bS as described in Table 8.4
(so temporarily, the meaning of n, and b is different from its meaning in the rest of the
paper).

Given k, t is uniformly distributed over the ordered vectors containing k indexes from 1 to
m. Let us denote with kb the number of distinct L-STR (or S-STR) alleles observed in the
augmented database, and with φb the vector of length kb containing only the frequencies of
the L-STR alleles observed in the augmented database in the order in which they appear in
φ. φb does not sum to one, since there are L-STR alleles of positive frequency, which are
not observed: the total probability mass of the unobserved alleles is φ̄b = 1−

∑kb
i=1 φbi. The

vector φb
∗ = (φb, φ̄b) sums up to one.

We can look for the posterior distribution of φb
∗ given the vector b.

p(φb
∗ | b) =

∑
k

∑
t

p(φb
∗ | b, t)p(t | k,b)p(k | b) (8.9)

It can be proved that

• the posterior density p(φb
∗ | b, t) depends on t only through k. Hence, we can denote

it as p(φb
∗ | b, k)

• if k is less than kb, then p(k | b) = 0.

• let us denote with Tk,b the set of ordered vectors t of length k and compatible with
b (i.e., which contain among others the positions corresponding to the elements in b).
For all the t which are not in Tk,b, then p(t | k,b) = 0.

We can change the summation indexes in (8.9) to obtain:

p(φb
∗ | b) =

m∑
k=kb

p(k | b)p(φb
∗ | k,b)

∑
t∈Tk,b

p(t | k,b).

For any of the
(
m−kb
k−kb

)
vectors t in Tk,b, p(t | k,b) has the same value 1

(m−kb
k−kb

)
. Thus, in the

end we have that

p(φb
∗ | b) =

m∑
k=kb

p(k | b)p(φb
∗ | k,b).

The distribution p(k | b) can be obtained in the following way.

p(k, t,φ,b) = p(k)p(t | k)p(φ | t)p(b | φ).

Integrating out φ, we obtain

p(k,b, t) = p(k)p(t | k)

∫
φ

p(φ | t)p(b | φ)dφ, (8.10)
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where the integral contains a Dirichlet density and the categorical density defined in (8.2).
They are conjugate, thus we obtain

p(k, t | b) ∝ p(k)p(t | k)
Γ(kα)

Γ(n+ kα)
.

Now we can sum over the t compatible with b, to get to

p(k | b) ∝
(
k

kb

)
p(k)

Γ(kα)

Γ(n+ kα)
. (8.11)

In conclusion,

p(φb
∗ | b) ∝

m∑
k=kb

(
k

kb

)
p(k)

Γ(kα)

Γ(n+ kα)
p(φb

∗ | k,b), (8.12)

where Φb
∗ | K = k,B = b ∼ Dirkb+1(α + ñ1, ..., α + ñkb , (k − kb)α), and ñ is the vector of

length kb with the positive elements of n.

Therefore, (8.12) is a mixture of Dirichlet distributions with weights w(k) =
(
k
kb

)
p(k) Γ(kα)

Γ(n+kα)
.

Using properties of the Dirichlet distribution we obtain that, ∀i, j corresponding to different
observed DIP-STR alleles:

E(ΦiΦj | b) = (α + ni)(α + nj)

∑m
k=kb

w(k)g(k)∑m
k=kb

w(k)
, (8.13)

E(Φ2
i | b) = (α + ni)(α + ni + 1)

∑m
k=kb

w(k)g(k)∑m
k=kb

w(k)
, (8.14)

where g(k) = 1
(kα+n)(kα+n+1)

.

The conditional expectations in Table 8.2

Using (8.7), (8.8), (8.13) and (8.14), we obtain that, ∀i, j corresponding to different observed
alleles,

E(ΘL
i ΘL

j | b) = E(ΦL
i ΦL

j Ψ2 | b) = E(ΦL
i ΦL

j | b)E(Ψ2 | b) (8.15)

= (α + nLi )(α + nLj )

∑m
k=kLb

wL(k)gL(k)∑m
k=kLb

wL(k)

(nL + 1)(nL + 2)

(n+ 6)(n+ 7)
, (8.16)

E((ΘL
i )2 | b) =E((ΦL

i )2Ψ2 | b) = E((ΦL
i )2 | b)E(Ψ2 | b) = (8.17)

=(α + nLi )(α + nLi + 1)

∑m
k=kLb

wL(k)gL(k)∑m
k=kLb

wL(k)

(nL + 1)(nL + 2)

(n+ 6)(n+ 7)
, (8.18)
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E(ΘL
i (1−Ψ) | b) =E(ΦL

i | b)(E(Ψ | b)− E(Ψ2 | b)) = (8.19)

=(α + nLi )

∑m
k=kLb

wL(k)
kα+nL∑m

k=kLb
wL(k)

(nL + 1)(nS + 1)

(n+ 6)(n+ 7)
, (8.20)

where n and b have now their original meaning, and wL(k) =
(
k
kLb

)
p(k) Γ(kα)

Γ(nL+kα)
, and gL(k) =

1
(kα+nL)(kα+nL+1)

.

These formulas can be directly used to obtain the conditional expectations of the last three
rows of Table 8.2. In a very similar way one can easily obtain the conditional expectations
contained in the first three rows.
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