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Chapter 7

Nonparametric Bayesian approach to LR
assessment in case of rare type match

This chapter is based on:
Cereda, G. Nonparametric Bayesian approach to LR assessment in case of rare type match.
arXiv:1506.08444. Submitted to: Annals of Applied Statistics.

Abstract

The evaluation of a match between the DNA profile of a stain found on a crime
scene and that of a suspect (previously identified) involves the use of the unknown
parameter p = (p1, p2, ...), (the ordered vector which represents the frequencies of
the different DNA profiles in the population of potential donors) and the names
of the different DNA profiles. We propose a Bayesian nonparametric method
which models p through a random variable P distributed according to the two-
parameter Poisson Dirichlet distribution, and discards the information about the
names of the different DNA profiles. The ultimate goal of this model is to evaluate
the so-called ‘probative value’ of DNA matches in the rare type case, that is the
situation in which the suspect’s profile, matching the crime stain profile, is not in
the database of reference.

7.1 Introduction

The largely accepted method for evaluating how much some available data D (typically foren-
sic evidence) is helpful in discriminating between two hypotheses of interest (the prosecution
hypothesis Hp and the defense hypothesis Hd), is the calculation of the likelihood ratio (LR),
a statistic that expresses the relative plausibility of the data under these hypotheses, defined
as

LR =
Pr(D|Hp)

Pr(D|Hd)
. (7.1)
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Widely considered the most appropriate framework to report a measure of the ‘probative
value’ of the evidence regarding the two hypotheses (Robertson and Vignaux, 1995; Evett
and Weir, 1998; Aitken and Taroni, 2004; Balding, 2005), it indicates the extent to which data
is in favor of one hypothesis over the other. Forensic literature presents many approaches to
calculate the LR, mostly divided into Bayesian and frequentist methods (see Cereda (2016a,b)
for a careful differentiation between these two approaches).

This paper proposes a Bayesian nonparametric method for the LR assessment in the rare type
match case, the challenging situation in which there is a match between some characteristic
of the recovered material and of the control material, but this characteristic has not been
observed before in previously collected samples (i.e. database of reference). This constitutes a
problem because the value of the likelihood ratio depends on the unknown proportion of the
matching characteristic in a reference population, and the uncertainty over this proportion
is, in standard practice, dealt with using the relative frequency of the characteristic in the
available database. In particular, we will focus on Y-STR data, for which the rare type match
problem is often recurring (Cereda, 2016b).

To use a Bayesian nonparametric method we assume that there are infinitely many Y-STR
profiles: the parameter of the model is the infinite dimensional vector p, made of the (un-
known) sorted population proportions of all possible Y-STR profiles. As prior over p we
choose the two-parameter Poisson Dirichlet distribution, and we model the uncertainty over
its own parameters α and θ through the use of an hyperprior. The information contained in
the names of the profiles is discarded: this means to reduce the data D to a smaller amount
of information D.

The paper is structured in the following way: Section 7.2 introduces the notation, the assump-
tions of our model and the prior distribution chosen for parameter p. Section 7.3 presents
the model, along with some theory on random partitions useful to provide a convenient and
compact representation of the reduced data D. An alternative representation of the same
model via the two-parameter Chinese restaurant process is also described. Section 7.4 in-
troduces relevant known results regarding the two-parameter Poisson Dirichlet distribution,
along with a new lemma that will allow to derive the likelihood ratio in a very elegant way
(Section 7.5).

Section 7.6 proposes the application of this model to a real database of Y-STR profiles. We
will discuss data driven choices for the hyperpriors, and comparison with the frequentist
likelihood ratio values obtained both reducing and not the data in the ideal situation in
which vector p is known.

7.2 A Bayesian nonparametric model for the rare type match

7.2.1 The rare type match problem

The evaluation of a match between the profile of a particular piece of evidence and a suspect’s
profile depends on the proportion of that profile in the population of potential perpetrators.
Indeed, it is intuitive that the rarer the matching profile, the more the suspect is in trouble.
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Problems arise when the observed frequency of the profile in a sample from the population
of interest (i.e., in a reference database) is 0. Such characteristic is likely to be rare, but
it is challenging to quantify how rare it is. The rare type match problem is particularly
important in case a new kind of forensic evidence, such as results from DIP-STR markers
(see for instance Cereda et al. (2014a)) is involved, and for which the available database size
is still limited. The same happens when Y-chromosome (or mitochondrial) DNA profiles are
used, since the set of possible Y-STR profiles is extremely large. As a consequence, most
of the Y-STR haplotypes are not represented in the database. The Y-STR marker system
will thus be retained here as an extreme but in practice common and important way in
which the problem of assessing evidential value of rare type match can arise. This problem is
so substantial that it has been defined “the fundamental problem of forensic mathematics”
(Brenner, 2010).

The empirical frequency estimator, also called naive estimator, that uses the frequency of
the characteristic in the database, puts unit probability mass on the set of already observed
characteristics, and it is thus unprepared for the observation of a new type. A solution
could be the add-constant estimators (in particular the well-known add-one estimator, due
to Laplace (1814), and the add-half estimator of Krichevsky and Trofimov (1981)), which
add a constant to the count of each type, included the unseen ones. However, this method
requires to know the number of possible unseen types, and it performs badly when this
number is large compared to the sample size (see Gale and Church (1994) for an additional
discussion). Alternatively, Good (1953), based on an intuition on A.M. Turing, proposed the
Good Turing estimator for the total unobserved probability mass, based on the proportion
of singleton observations in the sample. An extension of this estimator is applied to the
frequentist LR assessment in the rare type match case in Cereda (2016b). For a comparison
between add one and Good-Turing estimator, see Orlitsky et al. (2003). As pointed out
in Anevski et al. (2013), the naive estimator, and the Good Turing estimator are in some
sense complementary: the first gives a good estimate for the observed types, and the second
for the probability mass of the unobserved ones. More recently, Orlitsky et al. (2004) have
introduced the high profile estimator, which extends the tail of the naive estimator to the
region of unobserved types. Anevski et al. (2013) improved this estimator and provided the
consistency proof. Papers that address the rare Y-STR haplotype problem in forensic context
are for instance Egeland and Salas (2008), Brenner (2010), and Cereda (2016a). The latter
applies the classical Bayesian approach (the beta binomial and the Dirichlet multinomial
problem) to the LR assessment in the rare haplotype case. Moreover, the Discrete Laplace
method presented in Andersen et al. (2013b), even though not specifically designed for the
rare type match case, can be successfully applied to that purpose (Cereda, 2016b).

Bayesian nonparametric estimators for the probability of observing a new type have been
proposed by Tiwari and Tripathi (1989) using Dirichlet process, by Lijoi et al. (2007) using
general Gibbs prior, and by Favaro et al. (2009) with specific interest to the two-parameter
Poisson Dirichlet prior. However, the LR assessment requires not only the probability of ob-
serving a new species but also the probability of observing this same species twice (according
to the defense the crime stain profile and the suspect profile are two independent observa-
tions): to our knowledge, the present paper is the first one to address the problem of LR
assessment in the rare haplotype case using Bayesian nonparametric models. As prior for p
we will use the two-parameter Poisson Dirichlet distribution, which is proving useful in many
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discrete domains, in particular language modelling (Teh et al., 2006). In addition, it shows
a power-law behaviour which describes an incredible variety of phenomena (Newman, 2005).
Indeed it can be proved that

7.2.2 Notation

Throughout the paper the following notation is chosen: random variables and their values
are denoted, respectively, with uppercase and lowercase characters: x is a realization of X.
Random vectors and their values are denoted, respectively, by uppercase and lowercase bold
characters: p is a realization of the random vector P. Probability is denoted with Pr(·),
while density of a continuous random variable X is denoted alternatively by pX(x) or by
p(x) when the subset is clear from the context. For a discrete random variable Y , the density
notation pY (y) and the discrete one Pr(Y = y) will be alternately used. Moreover, we will
use shorthand notation like p(y | x) to stand for the probability density of Y with respect to
the conditional distribution of Y given X = x.

Notice that in Formula (7.1), D was regarded as the event corresponding to the observation
of the available data. However, later in the paper, D will be regarded as a random variable
generically representing the data. The particular data at hand will correspond to the value
d. In that case, the following notation will thus be preferred:

LR =
Pr(D = d|H = hp)

Pr(D = d|H = hd)
or

p(d|hp)
p(d|hd)

. (7.2)

Lastly, notice that “DNA types” is used throughout the paper as a general term to indicate
Y-STR profiles.

7.2.3 Model assumptions

Our model is based on the two following assumptions:

Assumption 1 There are infinitely many DNA types in Nature.

The reason for this assumption is that there are so many possible DNA types that they can
be considered infinite. This assumption, already used by e.g. Kimura (1964) in the ‘infinite
alleles model’, allows to use Bayesian nonparametric methods and avoids the problem of
specifying how many different types there are in Nature.

Assumption 2 The names of the different DNA types do not contain information.

Actually, the specific sequence of numbers that forms a DNA profile carries information: if
two profiles show few differences this means that they are separated by few mutation drifts,
hence the profiles share a relatively recent common ancestor. However, this information is
difficult to exploit and may be not so relevant for the LR assessment. This is the reason why
we will treat DNA types as “colors”, and only consider the partition into different categories.
Stated otherwise, we put no topological structure on the space of the DNA types.
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Notice that this assumption makes the model a priori suitable for any characteristic which
shows many different possible types, thus what written still holds, in principle, also replacing
‘DNA types’ with any other category. However, in this paper we will only test the model
with Y-STR profiles as categories.

7.2.4 Prior

In Bayesian statistics, parameter of interest are modeled through random variables. The
(prior) distribution over a parameter should represent the uncertainty about its value.

LR assessment for the rare type match involves two unknown parameters of interest: one is h ∈
{hp, hd}, representing the unknown true hypothesis, the other is p, the vector of the unknown
population frequencies of all DNA profiles in the population of potential perpetrators. The
dichotomous random variable H is used to model parameter h, and the posterior distribution
of this random variable, given the data, is the ultimate aim of the forensic inquiry. In a similar
way, random variable P is used to model the uncertainty over p. Because of Assumption 1,
p is an infinite dimensional parameter, hence the need of Bayesian nonparametric methods
(Hjort et al., 2010). In particular, p = (pt|t ∈ T ), with T a countable set of indexes, pt > 0,
and

∑
t pt = 1. Moreover, because of Assumption 2, data can be reduced to random partitions,

as explained in Section 7.3.1, and it will turn out that the distribution of these partitions
does not depend on the order of the pi. Hence, we can force the parameter p to have values in
∇∞ = {(p1, p2, ...)|p1 ≥ p2 ≥ ...,

∑
pi = 1, pi > 0}, the ordered infinite dimensional simplex.

The uncertainty about its value is expressed by the prior distribution over p, for which we
choose the two-parameter Poisson Dirichlet distribution (Pitman and Yor, 1997; Feng, 2010;
Buntine and Hutter, 2010; Carlton, 1999; Pitman and Picard, 2006), defined in the following
way:
Definition 1 (two-parameter GEM distribution). Given α and θ satisfying the following
conditions:

0 ≤ α < 1, and θ > −α. (7.3)

the vector W = (W1,W2, ...) is said to be distributed according to the GEM(α, θ), if

∀i Wi = Vi

i−1∏
j=1

(1− Vj),

where V1, V2,... are independent random variables distributed according to

Vi ∼ B(1− α, θ + iα).

It holds that Wi > 0, and
∑

iWi = 1.

The GEM distribution (short for Griffin - Engen - McCloskey distribution’) is well known in
literature as the “stick breaking prior”, since it measures the random sizes in which a stick
is broken iteratively. This distribution is invariant under size-biased permutations (Engen,
1975), that is the random permutation defined by sampling from the population and assigning
to each type a label, based on the order in which the types are first sampled.
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Definition 2 (Two-parameter Poisson Dirichlet distribution). Given α and θ satisfying con-
dition (7.3), and a vector W = (W1,W2, ...) ∼ GEM(α, θ), the random vector P = (P1, P2, ...)
obtained by ordering W, such that Pi ≥ Pi+1, is said to be Poisson Dirichlet distributed
PD(α, θ). Parameter α is called discount parameter, while θ is the concentration parameter.

Notice that the vector P is obtained by sorting the vector W in nonincreasing order, while
the vector W can be obtained (in distribution) by the so-called size-biased permutation of
the indexes of P (Perman et al., 1992; Pitman and Yor, 1997).

The two-parameter Poisson Dirichlet distribution PD(α, θ) is the generalization of the well-
known Poisson Dirichlet distribution with a single parameter θ introduced by Kingman
(1975), which is the representation measure (Kingman, 1977, 1978) of the celebrated Ewens
sampling formula (Ewens, 1972), widely applied in genetics (Karlin and McGregor, 1972;
Kingman, 1980). For our model we will not allow α = 0, hence we will assume 0 < α <
1.

It is worth mentioning that an alternative choice for the parameters space is α < 0, θ = −mα
for some m ∈ N (Pitman, 1996; Gnedin and Pitman, 2006; Gnedin, 2009; Cerquetti, 2010).
It corresponds to a model with finitely many (m) DNA types, where P = (P1, ..., Pm) is
Dirichlet distributed with m parameters equal to −α. We will not consider this case.

Lastly, we point out that, in practice, we cannot assume to know parameters α and θ: we
will model the uncertainty about them using an hyperprior.

7.3 The model

The typical data to evaluate in case of a match is D = (E,B), where E = (Es, Et), and

• Es = suspect’s DNA type,

• Et = crime stain’s DNA type (matching with the suspect’s type),

• B = a reference database of size n, which contains a sample of DNA types, indexed by
i = 1, ..., n, from the population of possible perpetrators.

The hypotheses of interest for the case are:

• hp = The crime stain was left by the suspect,

• hd = The crime stain was left by someone else.

In agreement with Assumption 2, the model will ignore information about the names of the
DNA types: data D = (E,B) will be reduced to D accordingly. The Bayesian network of
Figure 7.1 encapsulates the conditional dependencies of the random variables of the proposed
model:

• H is a dichotomous random variable that represents the hypotheses of interest and can
take values h ∈ {hp, hd}, according to the prosecution or the defense, respectively. A
uniform prior on the hypotheses is chosen:

Pr(H = h) ∝ 1 for h ∈ {hp, hd}.
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A,Θ

HP

X1 X2
... Xn Xn+1 Xn+2

D

Figure 7.1: Bayesian network to show the conditional dependencies of the relevant
random variables in our model.

Notice that this choice is made for mathematical convenience, since it will not affect
the likelihood ratio.

• (A,Θ) is the random vector that represents the hyperparameters α and θ, satisfying
condition (7.3). The joint prior density of these two parameters (hyperprior) will be
generically denoted as p(α, θ):

(A,Θ) ∼ p(α, θ).

• The random vector P with values in ∇∞, represents the ranked population frequencies.
P = (p1, p2, ...) means that p1 is the frequency of the most common DNA type in the
population, p2 is the frequency of the second most common DNA type, and so on. As a
prior for P we use the two-parameter Poisson Dirichlet distribution (see Definition 2):

P|A = α,Θ = θ ∼ PD(α, θ).

• The database is assumed to be a random sample from the population. Integer valued
random variables X1, ..., Xn are here used to represent the ranks of the population
proportions of the DNA types in the database. For instance, X3 = 5 means that the
third individual in the database has the fifth most common DNA type in the population.
Given p they are an i.i.d. sample from p:

X1, X2, ..., Xn|P = p ∼i.i.d. p. (7.4)

To observe X1, ..., Xn, one would need to know the rank, in terms of population
proportion, of the frequency of each DNA types in the database. This is not known,
hence we don’t observe X1, ..., Xn.

• Xn+1 represents the rank of the suspect’s DNA type. It is again an indipendent draw
from p.
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Xn+1|P = p ∼ p.

• Xn+2 represents the rank of the crime stain’s DNA type. According to the prosecution,
given Xn+1 = xn+1, this random variable is deterministic (it is equal to xn+1 with
probability 1). According to the defense it is another sample from p, independent of
the previous ones:

Xn+2|P = p, Xn+1 = xn+1, H = h ∼

{
δxn+1 if h = hp

p if h = hd
.

As already mentioned, X1, ..., Xn+2 cannot be observed. They represent the database, where
the names of the DNA types have been replaced by their (unknown) ranks in p, and constitute
an intermediate layer.

Section 7.3.1 recalls some notions about random partitions, useful before defining node D,
the ‘reduced’ data that we want to evaluate.

7.3.1 Random partitions

A partition of a set A is an unordered collection of nonempty and disjoint subsets of A
the union of which forms A. Particularly interesting for our model are partitions of the set
A = [n] = {1, ..., n}, denoted as π[n]. The set of all partitions of [n] will be denoted as P[n].
Random partitions of [n] will be denoted as Π[n]. In addition, a partition of n is a finite
nonincreasing sequence of positive integers that sum up to n. Partitions of n will be denoted
as πn, random partitions as Πn.

Given a sequence of integer valued random variables X1, ..., Xn, let Π[n](X1, X2, ..., Xn) be
the random partition defined by the equivalence classes of their indexes using the random
equivalence relation i ∼ j if and only if Xi = Xj. This construction allows to build a map
from the set of values of X1, ..., Xn to the set of the partitions of [n] as in the following
example (n = 10):

N10 → P[10]

X1, ..., X10 7−→ Π[10](X1, X2, ..., X10)

(2, 4, 2, 4, 3, 3, 10, 13, 5, 4) 7−→ {{1, 3}, {2, 4, 10}, {5, 6}, {7}, {8}, {9}}

In agreement with Assumption 2, in our model we can consider the reduction of data which
ignores information about the names of the DNA types: this is achieved, for instance, by
retaining from the database only the equivalence classes of the indexes of the individuals,
according to the equivalence relation “to have the same DNA type”. Stated otherwise, the
database is reduced to the partition πDb

[n] , obtained using these equivalence classes. However,
data is not only made of the database B. There are also two new DNA profiles which are
equal one another and different from the already observed ones. When the suspect’s profile
is considered we obtain the partition πDb+

[n+1], where the first n integers are partitioned as in
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πDb
[n] , and n+ 1 constitutes a class by itself (at least in the rare type match case). When the

crime stain profile is considered we obtain the partition πDb++
[n+2] where the first n integers are

partitioned as in πDb
[n] , and n+ 1 and n+ 2 belongs to the same (new) class.

Random variables ΠDb
[n] , ΠDb+

[n+1], and ΠDb++
[n+2] are used to model πDb

[n] , π
Db+
[n+1], and πDb++

[n+2] , respec-
tively.

Since prosecution and defense agree on the distribution of X1, ..., Xn+1, but not on the distri-
bution of Xn+2, they also agree on the distribution of ΠDb+

[n+1] but disagree on the distribution

of ΠDb++
[n+2] .

The crucial point of the model is that, by construction, the same random partitions can be
defined through random variables X1, ..., Xn+2. Indeed, it holds that:

ΠDb
[n] = Π[n](X1, ..., Xn),

ΠDb+
[n+1] = Π[n+1](X1, ..., Xn+1),

ΠDb++
[n+2] = Π[n+2](X1, ..., Xn+2).

Moreover, although X1, ..., Xn+2 were not observable, the random partitions ΠDb
[n] ,Π

Db+
[n+1], and

ΠDb++
[n+2] are observable.

To clarify, consider the following example of a database (B) with k = 6 different DNA types,
from n = 10 individuals:

B = (h1, h2, h1, h2, h3, h3, h4, h5, h6, h2),

where hi is the name of the ith DNA type according to the order chosen for the database.
This can be reduced to the partition of [10]:

πDb
[10] = {{1, 3}, {2, 4, 10}, {5, 6}, {7}, {8}, {9}}.

Then, the part of data whose distribution is agreed on by prosecution and defense is

πDb+
[11] = {{1, 3}, {2, 4, 10}, {5, 6}, {7}, {8}, {9}, {11}},

while the entire (reduced) data D can be represented as

πDb++
[12] = {{1, 3}, {2, 4, 10}, {5, 6}, {7}, {8}, {9}, {11, 12}}.

Now, assume that we know the rank in the population of each of the DNA types in the
database: we know that h1 is, for instance, the second most frequent type, h2 is the fourth
most frequent type, and so on. Stated otherwise, we are now assuming that we observe
the variables X1, ..., Xn+2: for instance, X1 = 2, X2 = 4, X3 = 2, X4 = 4, X5 = 3,
X6 = 3, X7 = 10, X8 = 13, X9 = 5, X10 = 4, X11 = 9, X12 = 9. It is easy to check that
Π[10](X1, ..., X10) = πDb

[10], Π[11](X1, ..., X11) = πDb+
[11] , and Π[12](X1, ..., X12) = πDb++

[12] .

As already mentioned, data D is defined as:
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• D = πDb++
[n+2] , obtained partitioning the database enlarged with the two new observations

(or partitioning X1, ..., Xn+2).

Node D of Figure 7.1 is defined accordingly. Notice that, given X1, ..., Xn+2, D is determin-
istic. An important result is that, according to Proposition 4 in Pitman (1992) it is possible
to derive directly the distribution of D | α, θ,H. In particular, it holds that if

P | α, θ ∼ PD(α, θ),

and
X1, X2, ... | P = p ∼i.i.d p,

then, for all n ∈ N, the random partition Π[n] = Π[n](X1, ..., Xn) has the following distribu-
tion:

Pα,θn (π[n]) := Pr(Π[n] = π[n]|α, θ) =
[θ + α]k−1;α

[θ + 1]n−1;1

k∏
i=1

[1− α]ni−1;1, (7.5)

where ni is the size of the ith block of π[n] (the blocks are here ordered according to the least

element), and ∀x, b ∈ R, a ∈ N, [x]a,b :=

{∏a−1
i=1 (x+ ib) if a ∈ N\{0}

1 if a = 0
. This formula is also

known as the Pitman sampling formula, further studied in Pitman (1995). Notice that for
α = 0 we obtain the Ewens’s sampling formula.

A,Θ

H

D

Figure 7.2: Simplified version of the Bayesian network in Figure 7.1

It follows that we can get rid of the intermediate layer of nodesX1, ...,Xn+2, and Pr(D|α, θ, hp) =

Pα,θn+1(πDb+
[n+1]), while Pr(D|α, θ, hd) = Pα,θn+2(πDb++

[n+2] ). The model of Figure 7.1 can thus be sim-
plified to the one in Figure 7.2.

7.3.2 Chinese Restaurant representation

There is an alternative characterization of this model, called “Chinese restaurant process”,
due to Aldous (1985) for the one parameter case, and studied in details for the two-parameter
version in Pitman and Picard (2006). It is defined as follows: consider a restaurant with infinite
many tables, each one infinitely large. Let Y1, Y2, ... be integer valued random variables that
represent the seating plan: tables are ranked in order of occupancy, and Yi = j means that the
ith customer seats at the jth table to be created. The process is described by the following
transition matrix:

Y1 = 1,
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Pr(Yn+1 = i|Y1, ..., Yn) =


θ + kα

n+ θ
if i = k + 1

ni − α
n+ θ

if 1 ≤ i ≤ k

(7.6)

where k is the number of tables occupied by the first n customers, and ni is the number of
customers that occupy table i. The process depends on two parameters α and θ with the
same conditions (7.3).

Y1, ..., Yn are not i.i.d., nor exchangeable, but it holds that Π[n](Y1, ..., Yn) is distributed as
Π[n](X1, ..., Xn), with X1, ..., Xn defined as in (7.4) (in particular they are both distributed
according to the Pitman sampling formula (7.5)).

Stated otherwise, we can use the seating plan of n customers Y1, ..., Yn, or X1, ..., Xn (the
database) and we obtain the same partition πDb

[n] . Similarly πDb+
[n+1] is obtained when a new

customer has chosen an unoccupied table (remember we are in the rare type match case),
and πDb++

[n+2] is obtained when the n + 2nd customer goes to the table already chosen by the

n + 1st customer(suspect and crime stain have the same DNA type). In particular, thanks
to (7.6), we can write

p(πDb++
[n+2] | hp, π

Db+
[n+1], α, θ) = 1, (7.7)

and

p(πDb++
[n+2] | hd, π

Db+
[n+1], α, θ) =

1− α
n+ 1 + θ

, (7.8)

since the n+2nd customer goes to the same table as the n+1st (who was sitting alone).

7.4 Some results

This section presents some useful results that will be used in the forthcoming sections. In
particular, Lemma 2, suitable to broader applications, is here applied to simplify the likeli-
hood ratio development. Then, some results from Pitman and Picard (2006) regarding the
two-parameter Poisson Dirichlet distribution, are listed.

7.4.1 A useful Lemma

The following lemma is a result regarding four general random variables A, X, Y , H whose
conditional dependencies are described by the Bayesian network of Figure 8.4. The impor-
tance of this result is due to the possibility of applying it to a very common forensic situation:
the prosecution and the defense disagree on the distribution of the entirety of data (Y ) but
agree on the distribution of a part it (X), and these distributions depend on parameters
(A).
Lemma 2. Given four random variables A, H, X and Y , whose conditional dependencies
are represented by the Bayesian network of Figure 7.3, the likelihood function for h, given
X = x and Y = y satisfies

lik(h | x, y) ∝ E(p(y | x,A, h) | X = x).
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A H

X Y

Figure 7.3: Conditional dependencies of the random variables of Lemma 2

Proof. The model of Figure 7.3 represents four variables A, H, X and Y whose joint proba-
bilty density can be factored as

p(a, h, x, y) = p(a) p(x | a) p(h) p(y | x, a, h).

By Bayes formula, p(a) p(x | a) = p(x) p(a | x). This rewriting corresponds to reversing the
direction of the arrow between A and X:

A H

X Y

The random variable X is now a root node. This means that when we probabilistically
condition on X = x, the graphical model changes in a simple way: we can delete the node
X, but just insert the value x as a parameter in the conditional probability tables of the
variables A and Y which formerly had an arrow from node X. The next graph represents
this model:

A H

x
x Y

This tells us, that conditional on X = x, the joint density of A, Y and H is equal to

p(a | x)p(h)p(y | x, a, h).

The joint density of H and Y is obtained by integrating out the variable a. It can be expressed
as a conditional expectation value, since p(a | x) is the density of A given X = x. We find:

p(h)E(p(y | x,A, h) | X = x).
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Recall that this is the joint density of two of our variables, H and Y , after conditioning on
the value X = x. Let us now also condition on Y = y. It follows that the density of H given
X = x and Y = y is proportional (as function of H, for fixed x and y) to the same expression,
p(h)E(p(y | x,A, h) | X = x).

This is a product of the prior for h with some function of x and y. Since posterior odds equals
prior odds times likelihood ratio, it follows that the likelihood function for h, given X = x
and Y = y satisfies

lik(h | x, y) ∝ E(p(y | x,A, h) | X = x).

Corollary 3. Given four random variables A, H, X and Y , whose conditional dependencies
are represented by the network of Figure 8.4, the likelihood ratio for H = h1 against H = h2

given X = x and Y = y satisfies

LR =
E(p(y|x,A, h1)|X = x)

E(p(y|x,A, h2)|X = x)
. (7.9)

The importance of Lemma 2, and Corollary 3 is due to the possibility of applying it to our
model. Indeed, as already noticed, since defense and prosecution agree on the distribution of
πDb+

[n+1], but not on the distribution of πDb++
[n+2] , and data depends on parameters α and θ.

7.4.2 Known results about the two-parameter Poisson Dirichlet distri-
bution

We will now list some theoretical results which will be useful in the forthcoming analysis.
Most of these results can be found in Pitman and Picard (2006).

Denote as Kn the random number of blocks of a partition Π[n] distributed according to the
Pitman sampling formula with parameters α and θ.

• There exists a positive random variable Sα such that

lim
n→+∞

Kn

nα
= Sα a.s. (7.10)

the distribution of Sα is a generalization of the Mittag-Leffler distribution (Gorenflo
et al., 2014).

• If P ∼ PD(α, θ), then

Pi
Zi−1/α

→ 1, a.s., when i→ +∞ (7.11)

for a random variable Z such that Z−α = Γ(1− α)/Sα.

• For a fixed α ∈ (0, 1), the PD(α, θ) (for different θ) are all mutually absolutely continu-
ous. This means that θ cannot be consistently estimated for α in the range of interest.
On the other hand, the power-baw behavior described above tells us that α can be
consistently estimated.
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• Studying (7.6) one can see that when n increases, the parameter θ becomes less and
less important. However, it describes how much “social” are the customers: the smaller
θ the more the customers tend to seat to already occupied tables. Thus, it determines
the sizes of the big tables, but it won’t be much important for our application (the
more rare DNA types correspond to small tables).

• Given Πn distributed according to Pitman sampling formula (7.5), it holds that

lim
n→+∞

mj(n)

nα
=
αΓ(j − α)

Γ(1− α)j!
Sα a.s. ∀j (7.12)

where mj(n), j = 1, ..., n the random number of blocks of the partition Π[n] of size j.
This result is presented in Gnedin et al. (2007), based on Karlin (1967).

7.5 The likelihood ratio

Using the hypotheses and the reduction of data D defined in Section 7.3, the likelihood ratio
will be defined as

LR =
p(πDb++

[n+2] |hp)
p(πDb++

[n+2] |hd)
=
p(πDb+

[n+1], π
Db++
[n+2] |hp)

p(πDb+
[n+1], π

Db++
[n+2] |hd)

.

The last equality holds due to the fact that ΠDb+
[n+1] is a deterministic function of ΠDb++

[n+2] .

Now, we can apply Corollary 3 with (A,Θ) playing the role of A, X = ΠDb+
[n+1], and Y = ΠDb++

[n+2]

to obtain:

LR =
E(p(πDb++

[n+2] | π
Db+
[n+1], A,Θ, hp) | Π

Db+
[n+1] = πDb+

[n+1])

E(p(πDb++
[n+2] | π

Db+
[n+1], A,Θ, hd) | Π

Db+
[n+1] = πDb+

[n+1])

=
1

E
(

1−A
n+1+Θ

| ΠDb+
[n+1] = πDb+

[n+1]

) .
where the last equality is due to (7.7) and (7.8). By defining the random variable Φ = n

1− A
n+ 1 + Θ

we can write the LR as
LR =

n

E(Φ | ΠDb+
[n+1] = πDb+

[n+1])
. (7.13)

7.5.1 True LR

It is now interesting to study the frequentist likelihood ratio values obtained with (7.13), and
to compare it with the ‘true’ ones, meaning the LR values obtained when vector p is known.
This corresponds to having the list of the frequencies of all the DNA types in the population
of interest. Then, the model can be represented by the Bayesian network of Figure 7.4.
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X1, ..., Xn+1 H

ΠDb+
[n+1] ΠDb++

[n+2]

Figure 7.4: Bayesian network for the case in which p is known.

The LR in this case can be obtained using again Corollary 3, where now X1, ..., Xn+1 play
the role of A.

LR|p =
p(πDb++

[n+2] , π
Db+
[n+1] | hp,p)

p(πDb++
[n+2] , π

Db+
[n+1] | hd,p)

(7.14)

=
E(p(πDb++

[n+2] | π
Db+
[n+1], X1, ..., Xn+1, hp,p) | ΠDb+

[n+1] = πDb+
[n+1],p)

E(p(πDb++
[n+2] | π

Db+
[n+1], X1, ..., Xn+1, hd,p) | ΠDb+

[n+1] = πDb+
[n+1],p)

(7.15)

=
1

E(pXn+1|ΠDb+
[n+1] = πDb+

[n+1],p)
. (7.16)

Notice that, in the rare type case, Xn+1 is observed only once among the X1, ..., Xn+1. Hence,
we call it a singleton. Let s1 denote the number of singletons, and S the set of indexes of
singletons observations in the database. Notice also that the knowledge of p and πDb+

[n+1], is

not enough to observe X1, ..., , XN+1. On the other hand, given πDb+
[n+1], both s1 and S are

fixed and known. Given p and πDb+
[n+1], it holds that the distribution of Xn+1 is the same as

the distribution of all other singletons. This implies that:

s1E(pXn+1|πDb+
[n+1],p) = E(

∑
i∈S

pXi
|πDb+

[n+1],p).

Let us denote as X∗1 , .., X∗K the K different values taken by X1, ..., Xn+1, ordered according to
the frequency of their values. Stated otherwise, if ni is the frequency of x∗i among x1, ..., xn+1,
then n1 ≥ n2 ≥ ... ≥ nK . Moreover, in case X∗i and X∗j have the same frequency (ni = nj),
then they are ordered according to their values. For instance, if X1 = 2, X2 = 4, X3 = 2,
X4 = 4, X5 = 3, X6 = 3, X7 = 10, X8 = 13, X9 = 5, X10 = 4, X11 = 9, then X∗1 = 4, X∗2 =
2, X∗3 = 3, X∗4 = 5, X∗5 = 10, X∗6 = 13.

By definition, it holds that

E(
∑
i∈S

pXi
|πDb+

[n+1],p) = E(
∑
j:nj=1

pX∗
j
|πDb+

[n+1],p).

Notice that (n1, n2, ..., nK) is a partition of n + 1, which will be denoted as πDb+
n+1 . In the

example, πDb+
n+1 = (3, 2, 2, 1, 1, 1, 1). Since the distribution of

∑
j:nj=1

px∗j only depends on πDb+
n+1 ,
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the latter can replace πDb+
[n+1]. Thus, it holds that

LR|p =
s1

E(
∑
j:nj=1

pX∗
j
|πDb+
n+1 ,p)

. (7.17)

For the same reason explained above, the knowledge of p and πDb+
n+1 is not enough to observe

X∗1 , ..., X
∗
K . A more compact representation for πDb+

n+1 can be obtained by using two vectors
a and r where aj are the distinct numbers occurring in the partition, ordered, and each rj
is the number of repetitions of aj. J is the length of these two vectors, and it holds that

n + 1 =
∑J

j=1 ajrj. In the example above we have that πDb+
n+1 can be represented by (a, r)

with a = (1, 2, 3) and r = (4, 2, 1).

There is a function, χ, treated here as latent variable, which assigns all DNA types, ordered
according to their frequency in Nature, to one of the number {1, 2, ..., J} corresponding to
the position in a of its frequency in the sample, or to 0 if the type if not observed. Stated
otherwise,

χ : {1, 2, ...} −→ {1, 2, ..., J}.

χ(i) =

{
0 if the ith most common species is not observed in the sample,

j if the ith most common species is one of the rj observed aj times in the sample.

Given πDb+
n+1 = (a, r), χ must satisfy the following conditions:

∞∑
i=1

1χ(i)=j = rj, ∀j. (7.18)

The map χ can be represented by a vector χ = (χ1, χ2, ...) such that χi = χ(i). In the
example above we have that χ = (0, 2, 2, 3, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, ..., 0).

Notice that, given πDb+
n+1 = (a, r), the knowledge of χ implies the knowledge of X∗1 , ..., X∗K :

indeed it is enough to sort the positive values among the χi and take their positions in χ, and
solving ties by considering the positions themselves (if χi = χj, than the order is given by i
and j). For instance, in the example, if we sort the values of χ and we collect their positions
we get (4, 2, 3, 5, 10, 13): the reader can notice that we got back to X∗1 , ..., X

∗
6 .

This means that to obtain the distribution of X∗1 , ..., X
∗
K |πDb+

n+1 ,p, which appears in (7.17), it
is enough to obtain the distribution of χ|πDb+

n+1 ,p, and since we are only interested in the mean
of the sum of singletons in samples of size n+ 1 from the distribution of X∗1 , ..., X

∗
K |πDb+

n+1 ,p,
we can just simulate samples from the distribution of χ|πn+1,p and sum the pa such that
χa = 1.

To simulate samples from the distribution of χ|πn+1,p we use a Metropolis-Hastings algo-
rithm, on the space of the vectors χ satisfying condition (7.18). Notice that for the model we
assumed p to be infinitely long, but for simulations we will use a finite p̄, of length m. This
is equivalent to assume that only m elements in the infinite p are positive, and the remain-
ing infinite tail is made of zeros. Then the state space of the Metropolis-Hastings Markov
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chain is made of all vectors of length m whose elements belong to {0, 1, ..., J}, and satisfy
the condition (7.18). If we start with a initial point χ0 which satisfies (7.18) and, at each
allowed move of the Metropolis-Hastings, we swap two different values χa and χb inside the
vector, condition (7.18) remains satisfied. The algorithm is based on a similar one proposed
in Anevski et al. (2013).

This method allows us to obtain the ‘true’ LR when the vector p is known. This is rarely the
case, but we can put ourselves in a fictitious world where we know p, and compare the true
values for the LR with the one obtained by applying our model when p is unknown. This
will be done in the forthcoming section.

7.6 Analysis on a real database

In this section we present the study we made on a database of 18,925 Y-STR 23-loci pro-
files from 129 different locations in 51 countries in Europe (Purps et al., 2014)1. Different
analyses are performed by considering only 7 Y-STR loci (DYS19, DYS389 I, DYS389 II,
DYS3904, DYS3915, DY3926,DY3937) but similar results have been observed with the use
of 10 loci.

First, we calculated the maximum likelihood estimators αMLE and θMLE using the entire
database. Their values are αMLE = 0.5 and θMLE = 216.

In order to check if the two-parameter Poisson Dirichlet prior is a sensible choice we first
compare the ranked frequencies from the database with the relative frequencies of several
samples of size n obtained from realisations of PD(αMLE, θMLE). The asymptotic behaviour
described in (7.11) is also discussed. Lastly, we will analyse the loglikelihood function for the
hyperparameters, given the data πDb+

[n+1], in order to a perform a data driven choice for the
hyperprior.

7.6.1 Model fitting

In Figure 7.5, the ranked frequencies from the database are compared to the relative frequen-
cies of samples of size n obtained from several realizations of PD(αMLE, θMLE). To do so we
run several times the Chinese Restaurant seating plan (up to n = 18, 925 customers): each
run is equivalent to generate a new realization p from the PD(αMLE, θMLE). The partition of
the customers into tables is the same as the partition obtained from an i.i.d. sample of size
n from p. The ranked relative sizes of each table (thin lines) are compared to the ranked fre-
quencies of our database (thick line). One can see that for the most common haplotypes (left
part of the plot) there is some discrepancy. However, we are interested in rare haplotypes,
which typically have a frequency belonging to the right part of the plot. In that region the
two-parameter Poisson Dirichlet follows the distribution of the data quite well.

1The database has previously been cleaned by Mikkel Meyer Andersen (http://people.math.aau.dk/

~mikl/?p=y23).
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Figure 7.5: Log scale ranked frequencies from the database (thick line) are compared
to the relative frequencies of samples of size n obtained from several realizations of
PD(αMLE , θMLE) (thin lines). Asymptotic power-law behavior is also displayed (dotted
line).

The asymptotic behavior described in (7.11) is shown in Figure 7.5 with the dotted line. In
the limit over i the thin curves are expected to bend to follow that line. This is not what we
observe, but we saw from further simulation studies that we should not expect this power-law
behaviour to hold at this sample size for such a big value of θ.

7.6.2 Loglikelihood

It is also interesting to investigate the shape of the loglikelihood function for α and θ given
πDb++

[n+1] . It is defined as

ln+1(α, θ) := log p(πDb++
[n+1] |α, θ).

In Figure 7.6 the loglikelihood reparametrized using φ = n
1− α

n+ 1 + θ
, and θ instead of α and

θ, is displayed. The Gaussian distribution is also displayed (in dashed lines). This is not done
to show an asymptotic property, but to show the simmetry of the loglikelihood, which allows
to approximate E(Φ | ΠDb+

[n+1] = πDb+
[n+1]) with the marginal mode ΦMLE, if the prior p(φ, θ) is

flat around (φMLE, θMLE), since it holds that p(φ, θ | πDb+
[n+1]) ∝ ln+1(φ, θ)× p(φ, θ).

Hence, one can approximate the LR itself in the following way:

LR ≈ n+ 1 + θMLE

1− αMLE

. (7.19)

Notice that this is equivalent to an hybrid approach, in which the parameters are estimated
through the MLE (frequentist) and their values are plugged into the Bayesian LR.
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Figure 7.6: Relative loglikelihood for φ = n 1−α
n+1+θ and θ compared to a Gaussian

distribution displayed with 95% and 99% confidence intervals

The Gaussian behavior of Figure 7.6 was unexpected. We expect that increasing n, α and θ
would become independent, thus the ellipses will rotate.

7.6.3 Analyzing the error

A real Bayesian statistician chooses the prior and hyperprior according to his beliefs. Depend-
ing on the choice of the hyperprior over α and θ he may or may not believe in the approxima-
tion (7.19), but he does not really talk of ‘error’. However, hardliner Bayesian statisticians
are a rare species, and most of the time the Bayesian procedure consists in choosing priors
(and hyperpriors) which are a compromise between personal beliefs and mathematical conve-
nience. It is thus interesting to investigate how good it is the choice of such priors. This can
be done by comparing the Bayesian likelihood ratio with the likelihood ratio a frequentist
would obtain if the vector p was known, and for the same reduction of data. This is what we
call ‘error’: in other words, at the moment we are considering the Bayesian nonparametric
method proposed in this paper as a way to estimate (notice the frequentist terminology) the
true LR|p. If we denote by px the population proportion of the matching profile, another
interesting comparison is the one between the Bayesian likelihood ratio and the frequentist
likelihood ratio 1/px (here denoted as LRf ) that one would obtain knowing p, but not re-
ducing the data to partition. This is a sort of benchmark comparison, and tells us how much
we lose by using the Bayesian nonparametric methodology, and by reducing data. In order
to evaluate how much we lose due to the sole reduction of the data, one can compare LR|p
with LRf . In total there are three quantities of interest (log10 LR, log10 LR|p, and log10 LRf ),
and three differences of interest, which will be denoted as

• Diff1 = log10 LR− log10 LR|p

• Diff2 = log10 LR− log10 LRf
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• Diff3 = log10 LRf − log10 LR|p

(a) Comparisons (b) Differences
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Figure 7.7: (a) comparison between the distribution of log10 LR and LR|p. (b) the error
log10 LR|p − log10 LR.

In order to make the computational effort feasible, instead of using the big database of Purps
et al. (2014), we consider the hapolotype frequencies for the sole Dutch population (of size
2037), and we pretend that they are the frequencies from the entire population of possible
perpetrators, and we simulate the distribution of the three likelihood ratios of interest.

In Table 7.1 and Figure 7.7 (left part) we compare the distribution of log10(LR|p), log10 LR,
and LR|f obtained by 100 samples of size 100 from this population. The Metropolis-Hastings
algorithm explained in Section 7.5.1 can be used to obtain LR|p.

The distribution of the benchmark likelihood ratio (log10(LRf ) has more variation than the
distribution of the Bayesian likelihood ratio, while log10(LR|p) appears to be the most con-
centrated around its mean. This is probably due to the small size of the population and of
the sampled databases.

In Table 7.2 and Figure 7.7 (right part) we consider the distribution of the three differences, as
defined above. Diff1 is the smallest and the most concentrated: it ranges between -0.4 and 0.23
and has a small standard deviation. It means that the nonparametric Bayesian likelihood ratio
obtained as in (7.19) can be thought of as a good approximation of the frequentist likelihood
ratio for the same reduction of data (log10 LR|p). This difference has three components: the
approximation (7.19), the MLE estimation of the hyperparameters, and the choice of a prior
distribution (two-parameter Poisson Dirichlet) which is quite realistic, as shown in Figure 7.5,
but not perfectly fitting the actual population. Moreover, log10(LR|p) is not derived exactly,
but is obtained using the Metropolis Hasting approximation.

Notice that the difference increases if the Bayesian nonparametric likelihood is compared to
the benchmark likelihood ratio (Diff2). However, it ranges between -1 and +1, but most of
the time the difference is between about -0.6 and 0.2, thus small.

The analysis of the distribution Diff3 tells us that reducing data to the partitions implies a
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Min 1st Qu. Median Mean 3rd Qu. Max sd
log10 LR 2.365 2.501 2.585 2.596 2.676 2.897 0.116
log10 LR|p 2.476 2.536 2.543 2.547 2.563 2.599 0.024
log10 LRf 1.336 2.355 2.832 2.794 3.309 3.309 0.481

Table 7.1: Summaries of the distribution of log10 LR, log10(LR|p), and log10 LRf .

Min 1st Qu. Median Mean 3rd Qu. Max sd
Diff1 -0.23 -0.058 0.037 0.049 0.149 0.391 0.134
Diff2 -0.905 -0.611 -0.346 -0.198 0.228 1.067 0.492
Diff3 -1.247 -0.19 0.302 0.247 0.748 0.833 0.484

Table 7.2: Summaries of the distribution of Diff1, Diff2, and Diff3.

loss in the capability to discriminate between the competing hypotheses of at most one order
of magnitude, thus not terribly bad.

7.7 Conclusion

This paper discusses the first application of a Bayesian nonparametric method to likelihood
ratio assessment in forensic science, in particular to the challenging situation of the rare
type match. If compared to traditional Bayesian methods such as those described in Cereda
(2016a), it presents many advantages. First of all, the prior chosen for the parameter p is
more realistic for the population whose frequencies we want to model. Moreover, although
the theoretical background on which it lies may seem very technical and difficult, the method
is extremely simple to apply for practical use, thanks to the discussed approximation: indeed,
simulation experiments show that an hybrid empirical approach is justified, at least using Y-
STR data from European populations. The likelihood ratio obtained with this method is also
compared to the frequentist likelihood ratio obtained, knowing the population frequencies of
each type, both reducing and not reducing the data. The differences are quite small, reaching
at most 1 order of magnitude. More could be done in the future: for instance, investigate
other nonparametric priors, and use more realistic populations.
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