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Chapter 2

Results

This Phd thesis consists of several challenging problems concerning statistical DNA evidence
evaluation, investigated in a series of distinct studies, whose details are presented in Chap-
ters 3 to 8. These studies, explained and summarized in the sections to come, are interrelated
and follow a logical and chronological path.

2.1 Object-oriented Bayesian networks for evaluating DIP-
STR profiling results from unbalanced DNA mixtures

This section is intended as a summary of the research contained in Cereda et al. (2014b),
reproduced in full in Chapter 3.

DIP-STR markers, described in Section 1.1.5, were proposed as a novel type of genetic mark-
ers in Castella et al. (2013). The available kit for the DIP-STR analysis allows one to obtain
the DIP-STR profile of a DNA mixture, to be compared with the DIP-STR profile of one
or more questioned contributors, at a certain number of loci. This new set of markers is
especially useful in case of extremely unbalanced mixtures, where the standard STR marker
system fails to detect the alleles of the minor contributor. However, to exploit completely
their potential, it is important to build an evaluative framework which helps in the assess-
ment of observed profiling results in the light of the hypotheses of interest. This amounts to
the calculation of the likelihood ratio, as described in Section 1.2.

To this extent, we decided to build an object-oriented Bayesian network to calculate the
likelihood ratio for the two source level hypotheses ‘the mixture contains the DNA of the
victim and the suspect’ (hp), and ‘the mixture contains the DNA of the victim and of an
unknown person, unrelated to the suspect’ (hd). The data to evaluate is made of the DIP-
STR results obtained from (i) DNA mixtures of two contributors, (ii) the known contributor
(for instance, the victim of a sexual assault), (iii) the questioned contributor (the suspect).
Figure 2.1 shows the OOBN whose details can be found in Chapter 3.

The probability tables of the class DIP-STR is filled with the so-called “Bayes estimates” of
the allelic frequencies, based on a Dirichlet prior. They are obtained putting a Dirichlet prior
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over the set of the allelic proportions, and updating this prior through the use of a database,
seen as a multinomial observation. The posterior mean of each allelic proportion is used as
estimate for the unknown allelic proportions. These estimates change from marker to marker,
and from case to case. For this reason, an additional RHugin function is made available to
automatise the procedure.

Homo V

Obs

outDIP STR1 outDIP STR2

p2gt

query inDIP STR1 inDIP STR2 uDIP STR1 uDIP STR2

p2isS?

DIP STR1 DIP STR2 DIP STR1 DIP STR2

sgt ugt

Figure 2.1: Expanded representation of the class Marker, modelling the mixture ob-
servation from a single locus. The victim is represented by the node Homo V, with
three states: HomL, HomS and Hetero, corresponding to his/her homozygosity or het-
erozygosity for the DIP allele. The right part of the network (i.e., all components other
than Homo V and Obs) models the minor contributor, that could be either the sus-
pect, or an unknown person, whose alleles are represented by nodes sgt and ugt. The
Boolean node p2isS? addresses the question of whether the second contributor is the
suspect or an unknown person, while Node p2gt represents the genotype of the actual
second contributor to the mixture. Node Obs, with states La, Lb, Lab, Sa, Sb, Sab, X,
nr, represents the observed (minor contributor’s) DIP-STR allele(s) in the trace. More
details on the structure of each instance node, and on conditional probability tables can
be found in Chapter 3.

Alternatively, several instances of the class Marker can be joined into the compound OOBN of
Figure 2.2. The only modification required is to change node p2isS? inside the class Marker
into an input node. Output node H is then linked to each node p2isS?.

Then, the compound likelihood ratio can be read as the ratio of the posterior probabilities
of the state of node H when DIP-STR are entered, in virtue of the choice of equal prior
probabilities over H.

A further step was that of modifying the interpretative model to be used when the suspect’s
DNA is not available for comparison, but that of a brother of the suspect is. The network
Marker for brother riproduced in Figure 3.2 of Chapter 3, was built with that purpose.
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Marker 1 Marker 2

Marker 3

Marker 4...

H

Figure 2.2: A compound object-oriented Bayesian network to be used for the evaluation
of DIP-STR results from several markers. Each rectangular node is an instance of the
class Marker, shown in Figure 2.1.

This is a good example of the flexibility of object-oriented Bayesian networks, which are
readily adapted to different scenarios, in addition to provide a concise representation of the
genotypic configuration of the various (assumed) contributors.

At the time when Cereda et al. (2014b) was written only 9 DIP-STR loci were avail-
able (Castella et al., 2013). However, the classes Marker and Marker for brother are usable
with any marker. It is enough to adapt the meaning of the states and the probability tables
of the input nodes. Hence, the same model can be used with the additional 9 loci that have
recently been identified (Oldoni et al., 2015).

The paper contains also the application of the model to a casework example, where a relevant
blood stain was collected on the body of a dead woman, and circumstantial evidence led to
three suspects: a man and his two sons. The likelihood ratio for the hypotheses hp and hd
defined above, was calculated marker by marker. Also, the likelihood ratio for the case in
which the suspect’s DIP-STR profile is not available, but that of a brother of the suspect is, is
calculated, using the class Marker for brother. These examples allowed also to check that
the likelihood ratio values obtained with the help of the probabilistic graphical model was
the same as that obtained using a traditional formulaic approach. The advantage over the
formulaic approach, which take different forms depending on the allelic configuration is clear,
since except for the input values (i.e., the initial numerical specification), the structure of the
OOBN remains constant. Moreover, formulae may become complicated when the scenario
involves other members of the family of the suspect, depending on his degree of relatedness
with the typed individuals. Thus, the use of an OOBN could also help to make evaluative
procedures less prone to possible errors, since computations are entirely confined to the model.
Note that the model presented in Figure 2.1 does not take into account extra variables of
(potential) influence, such as typing errors and subpopulation effects.

2.2 An investigation of the potential of DIP-STR markers
for DNA mixture analyses

This section is intended as a summary of the research contained in Cereda et al. (2014a),
reproduced in full in Chapter 4.

The STR marker system is the most used set of markers for the analysis of DNA mixtures.
It proved itself reliable for mixtures of any kind, except for extremely unbalanced mixtures,
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for which it fails to detect the alleles of the minor contributor (see Section 1.1.5). This
problem is usually overcome by the use of Y-STR markers, but they only work in case one
contributor is female and the other is male. Also, they do not allow to distinguish between
patrilineal relatives of the male contributor. The DIP-STR marker system hasn’t got any
of these limitations, and certainly can be preferred to STR markers and Y-STR markers
in case of extremely unbalanced mixtures with a male major contributor (or a female minor
contributor), or if it is necessary to distinguish between male relatives of the suspect, as in the
casework example described in Section 2.1. However, an unconditional use of the DIP-STR
technology, for any recovered trace, may not be the best option, given that available databases
are sensibly smaller than the enormous amount of data already collected for STR and Y-STR.
Also, the newness of this technology makes it more expensive. The question of which marker
system is to be chosen is thus at the same time interesting and challenging.

In order to answer this interesting question, we decided to compare the DIP-STR marker
system to the STR and Y-STR marker systems, from a statistical and forensic perspective.
To do so, we contrasted the distribution of the likelihood ratio results obtained from 100,000
simulated cases using DIP-STR markers, with the distribution obtained (i) using traditional
STR markers (assuming that we are in presence of moderately unbalanced mixture), and (ii)
using Y-STR markers (assuming we are in presence of female-male mixtures). The comparison
is performed under the prosecution’s and the defence’s case. For each marker system, each
of the 100,000 simulated cases consists in the DNA profiles of the victim, of the suspect,
and of another contributor. These are simulated by drawing locus by locus the alleles of the
three individuals, independently and according to the allelic proportions in the population
of interest. Under the prosecution’s point of view, we “compose” a virtual mixture whose
profile, at each locus, is made of the alleles of the victim and of the suspect. Under the
defence’s point of view, the profile contains alleles of the victim and of the other contributor.
The virtual mixture obtained in this way is the one that could have been observed if we were
in presence of real two-person mixtures, when the major contributor’s genotype is available
and under a set of assumptions, detailed in Chapter 4, concerning its quality.

For each simulated case, and each point of view, the likelihood ratio under the hypotheses
“the mixture contains DNA material from the victim and the suspect” (hp), “the mixture
contains DNA material from the victim and an unknown contributor” (hd) is calculated. All
the likelihood ratios obtained for the prosecution’s case are expected to be higher than 1, since
we don’t take into account the possibility of errors of laboratory. The higher the likelihood
ratios obtained, the more the chosen marker system is interesting from the prosecution’s point
of view. On the other hand, in the defence’s case, every time the genotype of the suspect
is not compatible with the alleles in the mixture, a likelihood ratio of zero is obtained. The
higher the number of zero values obtained, the more attractive is the chosen method from
the defence’s point of view.

In summary, the following conclusions can be made:

• For cases of, at worst, moderately unbalanced mixtures, the distributions of the likeli-
hood ratio values both from the prosecution’s and the defence’s point of view suggest
that the traditional STR marker system should be preferred.

• In case of extremely unbalanced mixtures STR markers are not reliable, but Y-STR
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markers and DIP-STR markers can be used, the DIP-STR method should be preferred
from the prosecution’s point of view. From the the defence’s point of view, preferences
depend on whether one is more concerned with the strength of support obtained in case
of a wrong association (i.e., when the likelihood ratio supports the wrong proposition),
or on the number of times in which such a wrong indication is obtained.

The research went on with a discussion about the proportion of cases in which each of the
three methods cannot be used: this has clearly a great influence on the choice of an analytical
methodology.

The STR method is generally not useful to detect the minor contributor of extremely un-
balanced mixtures, but in current practice, many (or most) extremely unbalanced mixtures
probably go undetected (Oldoni et al., 2015), hence it is difficult to assess the proportion of
cases in which such mixtures are encountered. In turn, it is easier to circumscribe the pro-
portion of cases in which Y-STR markers are not usable: this happens whenever the major
and the minor contributors are not female and male, respectively.

With regards to DIP-STR markers, the probability that an actual two-person mixture will
not be recognised as such (i.e., the presence of a second contributor cannot be pointed out
because the mayor is heterozygous or both contributors have the same DIP alleles) has been
calculated. It turned out that about 4% of recovered stains, which are actually mixtures, will
leave one with the uncertainty about the presence of a second contributor.

This allowed to conclude that the use of DIP-STR markers can be desirable for all those
kind of traces that appear as a single stain with the use of STR and Y-STR markers, but for
which one suspects the presence of a second contributor. In these cases, DIP-STR markers
can also complement Y-STR results to discriminate paternally related individuals. Also, the
use of DIP-STR markers could be of interest for all kinds of DNA stains, since one can
establish in advance if they could be used, given that one starts by determining the DIP-
STR genotype of the assumed known major contributor. In the case of a favourable outset,
DIP-STR profiling can provide information about the second contributor in terms of one,
two or no alleles. Although the likelihood ratio distributions obtained under the defence’s
and the prosecution’s point of view are not as marked as those that can be obtained with
traditional STR markers, they can still be regarded as practically useful. Moreover, new
DIP-STR markers have been recently located (Oldoni et al., 2015). This will favourably
improve the likelihood ratio distributions that could be obtained under the various competing
points of view in a near future. However, analysts should also remind that the definition of
the practical procedures will also encompass additional factors such as time and monetary
constraints.

2.3 Some methodological issues

The research explained in the sections to come combines the attempt of finding a solution to
the rare type match problem described in Section 1.2.4, and the treatment of some method-
ological issues encountered while working with DIP-STR data and, more generally, studying
the state of the art of forensic DNA evaluation. There are four main methodological issues
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discussed:

Plug-in likelihood ratio assessment. While building the interpretative framework for
DIP-STR results, we were confronted with the necessity of quantifying DIP-STR allelic
proportions having only a small database to represent the population of interest. A “full
Bayesian” procedure would consist in choosing a prior distribution for this nuisance param-
eter, and integrating it out. However, in the researches summarized in Sections 2.1 and 2.2,
we decided to follow the common forensic procedure, which estimates the allelic proportions
using the posterior mean, after the observation of the database. In fact, this is only (at best)
an approximation to the full Bayesian procedure. In Chapter 6 we call this approach ‘hybrid’
since it is reminiscent of the frequentist approach. The use of these plug-in methods, seen
as an approximation of the exact Bayesian likelihood ratio, is not a problem in itself, and
may present advantages in terms of computability, but the accuracy of these approxima-
tions should be carefully investigated. Moreover, we will show that often the full Bayesian
procedure is not more difficult to use.

Evidence and background This issue is deeply related to the discussion about the use of
hybrid plug-in methods described here above. In Section 1.2, the likelihood ratio is defined
as the ratio of the probabilities of observing data D under the competing hypotheses of
interest. It is important to discuss what to consider as D, since there are diverging options
in literature. In our opinion, the data available to the expert can be divided into evidence

Θ H

EB

Figure 2.3: Bayesian network representing the dependency relations between E (ev-
idence of the case), B (background data in the form of a database), Θ (population
parameter), and H (hypotheses of interest).

and background. The first refers to data related to the crime, directly useful to discriminate
between hypotheses of interest. The second refers to data which is not related to the crime,
but is made available to the expert in order to help him to deal with the nuisance parameter(s)
of the model. For instance, the evidence may consist of the DNA stain found at the crime
scene, and of a suspect with the same DNA profile. The nuisance parameter of this model is
θ, the population proportion of this DNA profile, and background data is a database from the
population of possible perpetrators. Let us denote with E, B and Θ the random variables
that correspond to evidence, background data, and nuisance parameter, respectively. The
conditional dependency relation between these variables (together with H) are represented
by the Bayesian network of Figure 2.3.

We believe that a Bayesian statistician or a Bayesian forensic scientist would use all available
data to assign the value of the evidence. Hence, the Bayesian likelihood ratio should be
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defined as

LR =
Pr(E = e, B = b | H = hp)

Pr(E = e, B = b | H = hd)
. (2.1)

This is in discrepancy with the definition of the likelihood ratio which can be found in much
literature where only evidence data E is considered, with no mention for B.

It is true that B is independent of H, and that under the frequentist approach B and E are
independent given H. This allows to simplify B from the formula 2.1. However, as can be
deduced from the Bayesian network of Figure 2.3, this is not valid in a Bayesian framework,
unless Θ is known.

Levels of uncertainty For a frequentist statistician, the likelihood ratio is a ratio of prob-
abilities usually based on a model which is at best only a good approximation to the truth,
and whose parameters have to be estimated using a limited sample. Thus, in a frequentist
framework, along with the first basic initial uncertainty about the hypotheses, two more
levels of uncertainty arise in the attempt of calculating the likelihood ratio. Some forensic
literature (Morrison, 2010; Stoel and Sjerps, 2012; Curran et al., 2002; Curran, 2005) already
pointed out the necessity for uncertainty assessment in the estimation of the likelihood ratio,
even though they don’t differentiate among levels.

On the other hand, for a true Bayesian individual these additional levels of uncertainty are
part of the model, so that the definition of the Bayesian Pr includes not only beliefs about
chances when picking people from the population, but also beliefs about parameters of the
model, and beliefs about model. Hence, these levels could in principle be taken care of within
the same framework.

There is a debate in literature (e.g. Taroni et al., 2016; Sjerps et al., 2016; Berger and Slooten,
2016; Curran, 2016) as to whether it makes sense to talk about ‘estimation’ and ‘uncertainty
assessment’ regarding the likelihood ratio. Both the points of view are valid, depending on
the context: if a frequentist approach to probability definition is chosen, it is pertinent to
talk about estimations and uncertainty assessment. On the other hand, in a full Bayesian
context, with Bayesian probabilities subjectively defined, they are misplaced. Moreover, most
of the time, the Bayesian procedure consists of choosing priors (and hyperpriors) which are a
compromise between personal beliefs and mathematical convenience. Additionally, Bayesian
forensic statistics makes use of approximations, which may be seen as frequentist. It is thus
interesting to investigate how good the choice of such priors is. Hence, whether Bayesian or
frequentist approaches are chosen, the attempt at producing the likelihood ratio may lead to
several levels of uncertainty which should be accounted for.

This subject matter is studied and discussed in the research summarized in Section 2.4.

Different data different likelihood ratios The evaluation of the totality of the data at
the expert’s disposal is often of difficult fulfilment. This is why often statisticians resort to
reducing data to something less informative, but of more feasible evaluation. Especially in
presence of many nuisance parameters, it can be wise to discard the part of data which
primarily regards the nuisance parameters, and only indirectly regards which hypothesis is
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more likely to be true. The more the data is reduced, the easier and more precisely the
likelihood ratio for that reduction is estimated. However, each reduction comes with a cost:
the stronger the reduction, the less the corresponding likelihood ratio value is helpful to
discriminate between the two hypotheses. A compromise has to be made, between the gain
in terms of precision and the loss in terms of strength of the evidence. Thus, one has to
strike a balance between weakening the likelihood ratio and gaining in the precision of the
estimate.

Many different methods to calculate the likelihood ratio are proposed in the literature. They
are divided into Bayesian and frequentist, and most of the time they use different reductions
of the data. In practice, the different methods are not suggesting different ways to obtain
the same likelihood ratio. On the contrary, they are providing different methods to obtain
different likelihood ratios: each reduction corresponds to a different likelihood ratio to be
estimated. The choice of the reduction is often only implicit and one of the aim of this
research is to make explicit the reduction corresponding to the proposed methods.

In the research described in the sections to come, several models for the likelihood ratio
assessment in the rare type match case for Y-STR data are proposed, each using a different
reduction of the data. The entirety of data to evaluate would be D = (E,B), where E is
composed by Es (suspect’s Y-STR hayplotype), Et (crime stain’s Y-STR haplotype, matching
with the suspect), and B is a reference database of size n, containing a sample of n Y-STR
haplotypes from the population of possible perpetrators. Each method corresponds to a
different reduction of the data D, to be evaluated in the light of the two hypotheses hp
(‘The crime stain was left by the suspect’), and hd (‘The crime stain was left by someone
else’).

2.4 Impact of model choice on LR assessment in case of
rare haplotype match (frequentist approach)

This section is intended as a summary of the research published in Cereda (2016b), repro-
duced in full in Chapter 5.

Even though the likelihood ratio – seen as a way to update prior beliefs in the light of
new observations – is motivated by Bayes’ theorem, it may be of interest for frequentist
statisticians as well, as a tool to measure the evidential value of data. With the aim of
discussing the last two methodological aspects listed in Section 2.3, we studied and compared
two frequentist methods to estimate the likelihood ratio in the rare type match case: the
discrete Laplace method (see Section 1.2.5), and a modification of the nonparametric Good-
Turing estimator (Good, 1953). Beside representing two interesting solutions to the rare type
match problem with Y-STR data, they are also useful to show that:

(i) when the likelihood ratio is defined and estimated in a frequentist way, there are differ-
ent levels of uncertainty that come into play, which have to be investigated and carefully
discussed.

(ii) in a frequentist framework, the data to evaluate can be reduced in several ways, each
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entailing the definition of a different likelihood ratio. The reduction is usually performed
in order to reduce the error, since likelihood ratios for reduced data are more precisely
estimated than likelihood ratios for more data, but it has to be clearly discussed, and
justified. It is also important to understand that any reduction comes with a cost.

The discrete Laplace method First proposed in Andersen et al. (2013b), the discrete
Laplace method is based on the model assumption that a single locus Y-STR allele is dis-
tributed according to the discrete Laplace distribution described in Section 1.2.5. The R
package disclapmix (Andersen, 2013) allows one to estimate the frequency of any Y-STR
haplotype, performing some statistical inference on a limited database. The method estimates
the frequencies of unobserved haplotypes as well, hence we decided to apply it to the Y-STR
rare type match problem. The data to evaluate is the Y-STR haplotype of the suspect and
of the recovered stain, along with the list of Y-STR haplotypes in the available database.
The data is not reduced, and the likelihood ratio that we want to estimate is equal to 1/f ,
where f is the unknown frequency of the suspect’s Y-STR haplotype in the population, to
be estimated with the use of the disclapmix package. The reciprocal of this estimate is used
as an estimate of the likelihood ratio.

The generalized Good method The Good-Turing estimator, first described in the famous
paper Good (1953), is a nonparametric nearly unbiased estimator for the total probability of
the species which are unseen in a sample of size n, obtained by drawing species independently
from the population. This estimator is equal to N1

n
, where N1 is the number of singletons in

the sample. We decided to build an estimator of the likelihood ratio for the rare type match
problem, based on the Good-Turing estimator. Indeed, by reducing the data to the simple fact
that the Y-STR haplotype of the crime stain matches the Y-STR haplotype of the suspect,
but they are not in the database (hence, discarding information about the specific Y-STR
haplotype of the suspect, and those in the database), the numerator of the likelihood ratio
is precisely the probability of observing an unseen species at the n + 1st observation. The
denominator is the probability of observing the same unseen species twice (both in the n+1st
and n + 2nd observations). We proved that, as N1/n is nearly unbiased for the numerator,

2N2

n(n−1)
is nearly unbiased for the denominator (at least when n is big enough). Thus, N1n

2N2
can

be used as estimate for the likelihood ratio. We call this estimator the “generalized Good
estimator”.

These two methods are a good example of different reductions of the data. The discrete
Laplace method allows one to estimate a likelihood ratio that evaluates almost1 the entirety
of the data at disposal, while the generalized Good method is suitable to estimate likelihood
ratios that only evaluate part of the data: information about the particular Y-STR haplotypes
of the suspect and those in the database are discarded. Hence, the likelihood ratio values
obtained with the generalized Good method were expected to be smaller than those obtained
with the discrete Laplace method. Thus, before directly comparing the likelihood ratio values
obtained with the two estimators, we compared them with the values they aim at estimating.

1the database is reduced to count so we loose the information about the order in which data is listed.
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Moreover, we discussed and quantified the uncertainty that is involved in each of the two
estimates. To do so, for each method we simulated many cases, for which we were able to
calculate the true likelihood ratio and the estimates, and we studied the difference of their
logarithm. Notice that to actually know the true likelihood ratio it would be necessary to
know the entire population. However, the available Y-STR database contains approximately
19,000 haplotypes from 129 different locations in the world (Purps et al., 2014). We consider
only 7 loci out of the 23 available, and we pretend that the database contains the entire
population of interest for our case.

In the discrete Laplace case, the error is both due to the fact that a specific distribution was
chosen to model the Y-STR alleles data (the discrete Laplace), and to the fact that parameters
for that distributions are estimated using databases of limited size. For the generalized Good
method the entire error is due to the approximation step.

Comparing the distributions of the error is not enough. Indeed, one has to take into account
the fact that the generalized Good method discards a lot of data and thus is less useful for
the final aim of the evaluation (being able to distinguish the correct hypothesis). One can
say that the hallmark desired likelihood ratio is one that evaluates the entirety of the data
at disposal, thus 1/f , hence a comparison with it is also proposed (see Chapter 4, for the
details).

2.5 A useful Lemma

In a forensic casework, it is very common that prosecution and defence agree on part of the
available information, and disagree on other. For instance, the prosecution may consider the
correspondence between the profiles of two DNA traces a sure event (since they came from the
same source), while the defence may believe that this correspondence is due to coincidence.
Nevertheless, both parts may accept a database as representative of the population of possible
perpetrators. Mathematically, one can say that prosecution and defence disagree on the
distribution of the evidence, while they agree on the distribution of the background data.
This situation is represented by the Bayesian network of Figure 2.4, where node Y stands
for the entirety of data at disposal (say the DNA profile of the crime stain, of the suspect
and a list of DNA profiles in the form of a database), while node X is the part of data whose
distribution is agreed on by prosecution and defence (only the suspect DNA profile and the
database). The distributions of X and Y depend on the nuisance parameter(s) represented
by A (such as the vector containing the population proportions of all DNA profiles in the
population of possible perpetrators).

The Lemma is very useful to simplify the development of the likelihood ratio for the eval-
uation of X and Y in this common forensic situation, since it is enough to calculate two
posterior expectations. In most of the cases of interest X represents everything except the
observation of the crime stain (hence, the reference database and the suspect’s DNA profile).
The probability of the entirety of data given X and the parameter(s) is 1 according to the
prosecution, while is a function of the parameter according to the defence.
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Lemma. Given four random variables A, H, X and Y , whose conditional dependencies are
represented by the Bayesian network of Figure 2.4, the likelihood function for h, given X = x
and Y = y satisfies

lik(h | x, y) ∝ E(p(y | x,A, h) | X = x).

A H

YX

Figure 2.4: Conditional dependencies of the random variables of the Lemma.

Hence the likelihood ratio can be developed as

LR =
p(x, y | hp)
p(x, y | hd)

=
E(p(y | x,A, hp) | X = x)

E(p(y | x,A, hp) | X = x)
.

This Lemma is used for the development of complex likelihood ratio formulae in Cereda
(2016a), Cereda et al. (2016), and Cereda (2016c), where a proof is also given. These publi-
cation are reported in full length in Chapters 7, 2.8, and 2.7, respectively.

2.6 Bayesian approach to LR for the rare match problem

This section is intended as a summary of the research published in Cereda (2016a), reproduced
in full in Chapter 7.

The first two methodological issues detailed in Section 2.3, prompted us to study the two
most common Bayesian solutions used in forensic science, the beta-binomial and Dirichlet-
multinomial model. Again, we have a double aim: to customise these models and make them
suitable as solution for the rare type match problem, and to show the difference between
the widespread plug-in solutions and a proper full Bayesian approach to likelihood ratio
assessment, which is obtained by evaluating also background data.

The beta-binomial model for the rare Y-STR haplotype match problem If the data to
be evaluated is made of the suspect’s and the crime stain’s Y-STR haplotypes (Es and Ec)
which correspond, and of a database containing n Y-STR haplotypes from the population of
possible perpetrators, the beta-binomial model can be adopted. This amounts to put a beta
prior over θ (the unknown population proportion of the suspect’s Y-STR haplotype) and to
represent the database as a binomial variable B with parameters n and θ. The use of a full
Bayesian approach which evaluates both E = (Es, Ec) and B leads to the following likelihood
ratio (details can be found in Chapter 6):

LR =
α + β + n+ 1

α + b+ 1
. (2.2)
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where α and β are the shape parameters of the beta prior, and b is the number of times the
suspect’s Y-STR haplotype is observed in the database.

On the other hand, the plug-in approach would lead to the following estimate for the likeli-
hood ratio:

L̂R =
α + β + n

α + b
.

Sensitivity analysis of the logarithms of these two quantities, when b = 0 (i.e., in the case
of a rare type match problem) and of their difference, shows that the two quantities depend

a lot on α while they do not depend much on β. On the whole, the plug-in estimate L̂R is
more sensitive than LR to changes in α, and is more anti-conservative (it always exceeds the
full Bayesian likelihood ratio). The difference, however, is important only for small values of
α. Otherwise, the two methods would lead essentially to the same conclusions, so that the
plug-in can be seen as a good approximation of the proper Bayesian procedure.

The Dirichlet-multinomial model for the rare Y-STR haplotype match problem With
the same data to evaluate, another possibility is to treat the database as a multinomial sample
of size n. For a population with k different Y-STR haplotypes, the conventional choice for the
prior over the parameter vector θ, containing the population frequencies of all the different
haplotypes in Nature, is the Dirichlet distribution with all the hyperparameters equal to the
same value α. The reason for that, is that our prior knowledge about the probabilities of
the different categories is invariant to permutations of the categories. Green and Mortera
(2009) proposed a similar model, along with an implementation, using an equivalence with
a Polya urn scheme to avoid dealing with continuous parameter θ. Their implementation,
though, is not directly exploitable for our model, since they assume that k is known. For
several applications, k is chosen equal to the number of types in the database, but this is not
appropriate for Y-STR haplotypes, since the database usually does not offer a good coverage.
We don’t even have an idea of a maximal number of categories, so we proposed a modification
of the classical Dirichlet-multinomial model, where k is now modelled as a random variable,
with a prior p(k).

The full Bayesian likelihood ratio for this model is developed (for α=1) and is equal to

LR =
1

2

m∑
k=kobs+1

(
k

kobs + 1

)
Γ(k)

Γ(k +N + 1)
p(k)

m∑
k=kobs+1

(
k

kobs + 1

)
Γ(k)

Γ(k +N + 2)
p(k)

, (2.3)

where kobs is the number of distinct Y-STR haplotypes observed in the database. In our
research two prior distributions over k are studied: the Poisson distribution and the negative
binomial distribution. The full Bayesian likelihood ratio obtained with these priors can be
compared to likelihood ratio estimated through the classical Bayesian plug-in method. This,
for α = 1, is equal to

L̂R = k̄ +N, (2.4)

where the number of haplotypes is a fixed value k̄, to be chosen (or estimated) in advance.
Both using a Poisson prior and a negative binomial prior over k, we decided to perform a
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sensitivity analysis of the logarithms of the two likelihood ratios (2.4) and (2.3), and of their
difference, when k̄ is chosen equal to E(K).

Results show that, using the Poisson prior, the plug-in approach can be seen as a rather
good approximation of the full Bayesian likelihood ratio, while with the negative binomial
prior over K the difference between the two can be quite significant, especially if the mean
value for K is big. Moreover, for both the priors, the plug-in and the full Bayesian likelihood
ratios strongly depend on the hyperparameters, and not much on the data. In particular,
they depend on the data only through kobs, the number of distinct observed types, and not
on their frequencies. On the other hand, both these quantities depend much on the mean
value of K.

This research pointed out the inadequacy of both models (beta-binomial, and Dirichlet-
multinomial) for the rare type match problem. Indeed, for both models, the prior over the
parameter is chosen for mathematical convenience, rather than because it does represent the
expert’s belief. This procedure would be sensible only if, at the end, the data overrules the
prior choice, whilst this is not the case. This is the reason why we decided to investigate
different priors, more realistic for Y-STR data, such as those proposed in the study described
in Chapter 7.

2.7 Nonparametric Bayesian approach to LR assessment
in case of rare haplotype match

This section is intended as a summary of the research published in Cereda (2016c), reproduced
in full in Chapter 7.

The need of priors which better represent Y-STR haplotypes frequencies, prompted us to
study new kinds of distributions. In particular, we realized that one of the problems of the
method used in Cereda (2016a) (see Section 2.6), is the choice of equal hyperparameters for
the Dirichlet prior, since it generates a posterior distribution for θ (after the observation
of the multinomial sample) such that the probability of the non observed types is almost
uniformly distributed over these types. In fact, looking at the distribution of the frequencies
of thousands of Y-STR haplotypes collected all over the world (shown in Figure 2.5), one
can realize that there are many types with very rapidly decreasing probabilities, showing a
sort of power-law behavior, described in Section 1.4.5. A tempting solution would be to use
an asymmetric Dirichlet prior. However, this would lead to extremely difficult computations.
The density of the two-parameter Poisson Dirichlet distribution (described in Section 1.4.3)
shows a behavior similar to that of Figure 2.5, at least for the smaller probabilities (those of
interest in the rare type match case). For this reason the use of this distribution as a prior
over the nuisance parameter was investigated. The necessary assumption for this solution is
that there are infinitely many Y-STR haplotypes in nature. This assumption, already used
by Kimura (1964), is acceptable given the huge number (almost four thousand) of distinct 7
loci Y-STR haplotypes observed in the available database. To use this model, the additional
assumption that the specific sequence of STR alleles forming each Y-STR haplotype carries
no information was made. This is not realistic, since the distance of Y-STR numbers between
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Figure 2.5: Power-law behaviour (logarithmic scale) observed for the ranked frequencies
of 7 loci Y-STR haplotypes of Purps et al. (2014).

two haplotypes is an indication of the number of mutation drifts that separate them, but
we considered this information too complex to be exploited. Thanks to this assumption, one
could reduce by sufficiency the database of size n to a partition of the set [n], obtained by
grouping in the same subsets the indexes corresponding to the same haplotypes. According
to this model, prosecution and defence agree that this partition is distributed according
Pitman’s sampling formula (see Section 1.4.2). The entirety of data is made of n+2 observed
hyplotypes (those in the database and two additional haplotypes from the suspect and from
the crime scene trace), and can be reduced to a partition of the set [n + 2], where n + 1
and n+ 2 form a subset by themselves in the rare type match case. Prosecution and defence
disagree on the distribution of this random partition since, according to prosecution, elements
n+ 1 and n+ 2 are in the same class with probability one.

Using the Chinese Restaurant representation described in Section 1.4.3, and the Lemma
presented in Section 2.5, and modelling the hyperparameters α and θ as random variables A
and Θ, the likelihood ratio can be written as

LR =
1

E( 1−A
n+1+Θ

| Π[n+1] = π[n+1])
,

where π[n+1] is the partition obtained enlarging the database with the Y-STR haplotype of
the suspect.

Empirical validation showed that choosing a flat hyperprior for the parameters α and θ, the
likelihood ratio can be accurately approximated by

LR ≈ n+ 1 + θMLE

1− αMLE

, (2.5)

where αMLE and θMLE are the maximum likelihood estimates of α and θ, respectively. This
is equivalent to a plug-in approach where the parameters are estimated through data, and
where estimates were plugged into the likelihood ratio. Here this approach is validated by
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empirical studies, whose details can be found in Chapter 7. This result was unexpected,
but very useful, since it makes the method very practical to be used, despite the complex
theoretical background. The paper offers also a comparison between the values obtained with
(2.5), and the ‘true’ likelihood ratio one would obtain knowing the vector p with the sorted
population frequencies of all Y-STR haplotypes in Nature, both using the same reduction
of data, and not reducing the data at all. To make this comparison, we built a Metropolis-
Hastings algorithm similar to the one proposed in Anevski et al. (2013). This comparison led
to the conclusion that the use of the two-parameter Poisson Dirichlet prior is very convenient,
and allows one to obtain accurate approximation of the likelihood ratio one would obtain
knowing the nuisance parameter p. Additional details can be found in Chapter 7.

2.8 A solution for the rare type match problem when us-
ing the DIP-STR marker system

This section is intended as a summary of the research published in Cereda et al. (2016),
reproduced in full in Chapter 8.

The available database of DIP-STR alleles contains only observations from about 100 Swiss
individuals. Hence, whenever a new trace is analysed, it is very likely to observe alleles not
contained in the database. Not all the solutions proposed and summarized in the previous
sections for the Y-STR rare type match problem are appropriate for the DIP-STR case.
For instance, the generalized Good method requires a large sample size, while the discrete
Laplace and two-parameter Poisson Dirichlet model requires trust in the prior: one would
need a sort of empirical validation that cannot be achieved given the small data available. On
the other hand, the method proposed in Cereda (2016a), which uses a Dirichlet prior with a
random number of categories can be successfully applied, and the model can be developed in
a way that does not require the ad hoc plug-in approximations used in Cereda et al. (2014b)
for the DIP-STR allelic proportions, and allows one to obtain the full Bayesian likelihood
ratio.

The Bayesian network of Figure 2.6, is developed starting from the structure of the object-
oriented Bayesian network presented in Cereda et al. (2014b), with two additional nodes,
representing the database (D) and the nuisance parameter (Θ).

The data to evaluate is made of a database containing n DIP-STR alleles from a relevant
population, along with the two DIP-STR alleles of the victim, the two DIP-STR alleles of
the suspect, and one or two alleles observed from the mixed trace. The hypotheses of interest
are the same as those in Section 2.1 regarding whether the second contributor of the stain is
the suspect or an unknown (unrelated) individual from the relevant population. We assume
that there may be at most 2m possible DIP-STR alleles, but only some of them are actually
present in the population and even less are those observed in the available database. The
nuisance parameter θ = (θL1 , ...., θ

L
m, θ

S
1 , ...., θ

S
m), contains the population proportions of the

2m potential DIP-STR alleles.2 The values corresponding to alleles which are not present

2L and S represent “long” and “short” as defined in Section 1.1.5.
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Figure 2.6: Bayesian network for the Dirichlet-multinomial model with a random num-
ber of types, to be used for single loci DIP-STR results from mixtures of two contrib-
utors. V represents the victim’s (or the major contributor’s) DIP-homozigozity at the
represented locus, with three possible states: HomoL, HomoS and Hetero. Node H
represents the hypotheses hp and hd. Nodes S1 and S2 represent the two DIP-STR al-
leles of the suspect, while nodes U1 and U2 represent the two DIP-STR alleles of the
alternative (unknown) minor contributor. Nodes C1 and C2 represent the DIP-STR al-
leles of the actual minor contributor. Depending on H they can be a copy of S1 and S2

(under hp), or of U1 and U2 (under hd). Nodes O1 and O2 contain the DIP-STR alleles
observed from the mixed trace. Nodes S1, S2, U1, U2, C1, C2, O1, and O2 have states
(L,i) (or (S,i)) where i ∈ {1, ...,m} represents the STR part of the DIP-STR allele.
Node θ contains the population proportions of all the potential 2m DIP-STR alleles at
that locus, (for instance, alphabetically ordered). For more details on the conditional
probability distribution of each node, see Chapter 8.
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in the population are zero. The prior for θ is articulated and can be described as follows.
The random variable ψ representing the sum of the frequencies of the DIP-STR alleles of
type L has a uniform prior, while the normalized vector containing the frequencies of the
DIP-STR alleles of type L (obtained dividing each θLi by ψ) has a Dirichlet distribution with
all hyperparameters equal to α, with a random number of categories (kL). The same holds
for the normalized vector containing the frequencies of the DIP-STR alleles of type S. kL

and kS have uniform priors as well.

The Lemma discussed in Section 2.5, and proved in Cereda (2016c), is used to simplify the
development of the full Bayesian likelihood ratio. Details can be found in Chapter 8.

The sensitivity analysis conducted on the likelihood ratio values, using data from different
DIP-STR markers and different contributors, shows that these values moderately depend on
α, at least when a uniform prior is given to kL, kS, and ψ. This shows the need of introducing
better priors, either less sensitive to changes in α or more realistic, such as the prior used for
Y-STR frequencies in Cereda (2016c) (see Section 2.7). Moreover, the full Bayesian likelihood
ratio values are compared to those obtained with the plug-in approximation adopted in
Cereda et al. (2014b). The values are practically identical.

The drawback of this model is, again, the fact that few information from the database are
used in the likelihood ratio. This can be due to the choice of having all hyperparameters equal
to α. In order to compensate for this undesired feature, another solution can be adopted.
It consists of an hybrid combination with the Good-Turing estimator. Given kL, and the
observation from the database augmented with suspect’s and victim’s alleles, the posterior
expectation of the total probability of the unobserved DIP-STR alleles of type L, is equal
to

(kL − kLobs)α

kLα + nL
, (2.6)

where kLobs is the number of dinstinct DIP-STR alleles of type L in the augmented database.
According to the Good-Turing estimator, the total probability of the unobserved DIP-STR
alleles of type L can be estimated by

NL
1

nL
, (2.7)

where NL
1 is the number of singletons of type L, while nL is the total number of alleles of

type L in the augmented database. By equating (2.6) and (2.7), we obtain an empirical Bayes
estimate of kL, of the form

k̂L =
NL

1 n
L + kLobsαn

L

αnL − αNL
1

.

This methods uses more information from the augmented database (namely nL1 and nS1 ).
Additional investigations led to the conclusion that it is a very good approximation to the
full Bayesian likelihood ratio.
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