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Appendix A

Appendix

A.1 Time series models

Models for single time series

We consider the case N = 1, i.e. when X is a 1 × T matrix or equivalently a
T -dimensional row vector. Let us denote the entries of X as x(t).

Uniform random walk model

The trivial model is obtained when no constraints are enforced. In this case, there
is no free parameter and the Hamiltonian has the form

H(X) = 0 (A.1)

As a result, the partition function is

Z =
∑
X

1 = 2T (A.2)

which is nothing but the number of possible binary time series of length T . The
probability of occurrence of a time series X is then

P (X) =
1
Z

= 2−T (A.3)

and is completely uniform over the ensemble of all binary time series of length
T . All the T elements of X are mutually independent and identically distributed
with probability

Pt(x) ≡ Prob
(
x(t) = x

)
=
{

1/2 x = −1
1/2 x = +1 (A.4)
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A.1 Time series models

This results in a completely uniform random walk with zero expected value for
each increment:

〈x(t)〉 = 0 (A.5)

While the (ensemble) variance of each increment equals

Var[x(t)] ≡ 〈x2(t)〉 − 〈x(t)〉2 = 1. (A.6)

Biased random walk model

We now consider the total increment as the simplest non-trivial (one-dimensional)
constraint:

C(X) = T ·M1(X) = T · x(t) (A.7)

If we denote the corresponding (scalar) Lagrange multiplier by θ, the Hamiltonian
has the form

H (X, θ) = θ · T · x(t) = θ

T∑
t=1

x(t). (A.8)

The partition function is

Z(θ) =
∑
X

e−θ
∑T
t=1 x(t) =

∑
X

T∏
t=1

e−θx(t)

=
T∏
t=1

∑
x=±1

e−θx =
T∏
t=1

[
e−θ + e+θ

]
=

[
e−θ + e+θ

]T
(A.9)

where, when interchanging the order of the sum and product, we have replaced
the sum over all time series X with the sum over the two possible values x = ±1
of each individual entry.

The probability of the occurrence of a time series X is

P (X|θ) =
e−θ

∑T
t=1 x(t)

[e−θ + e+θ]T
=

T∏
t=1

e−θx(t)

e−θ + e+θ

=
T∏
t=1

Pt
(
x(t)|θ

)
(A.10)

where we have introduced the probability Pt(x|θ) of a given increment x = ±1 at
time t, which we identify as

Pt(x|θ) =
e−θx

e−θ + e+θ
. (A.11)
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Appendix

The above expression shows that the stochastic process corresponding to this
model is a biased random walk, as the two outcomes x = ±1 have a different
probability, unless θ = 0 (which leads us back to the uniform random walk model
considered above).

The expected value of the t-th increment x(t) (representing the bias of the
random walk) is

〈x(t)〉θ =
∑
x=±1

xPt(x|θ) =
e−θ − e+θ

e−θ + e+θ
= − tanh θ (A.12)

and the variance is

Var[x(t)] = 〈x2(t)〉θ − 〈x(t)〉θ2 = 1− tanh2 θ. (A.13)

The maximum likelihood condition (1.16), fixing the value θ∗ of the parameter
θ given a real time series X∗, reads

T
〈
x(t)

〉
=

T∑
t=1

〈x(t)〉 = −T tanh θ = T · x∗(t) (A.14)

Where x∗(t) is the measured average increment in the observed time series X∗.
This yields

− tanh θ∗ = x∗(t) (A.15)

which gives a parameter value

θ∗ = −artanh
[
x∗(t)

]
= −1

2
ln

[
1 + x∗(t)
1− x∗(t)

]
(A.16)

One-dimensional Ising model

We now consider a model where, besides the constraint on the total increment
specified in eq.(1.33), we enforce an additional constraint on the time-delayed
(lagged) quantity T · B1(X), where B1(X) is defined in eq.(1.27) with τ = 1.
This amounts to enforce the average one-step temporal autocorrelation of the
time series. The resulting 2-dimensional constraint can be written as the column
vector

~C(X) =
(
C1(X)
C2(X)

)
= T ·

(
M1(X)
B1(X)

)
. (A.17)

If we write the corresponding Lagrange multiplier as

~θ =
(
θ1

θ2

)
= −

(
I
K

)
, (A.18)
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A.1 Time series models

then the Hamiltonian reads

H(X, I,K) = ~θ · ~C(X) = Tθ1M1(X) + Tθ2B1(X)

= −I
T∑
t=1

x(t)−K
T∑
t=1

x(t)x(t+1), (A.19)

where we consider a periodicity condition as in eq.(1.28) with τ = 1, i.e. x(T+1) ≡
x(1). Note that, when X is a real binary time series of length T , this condition can
be always enforced by adding one last (fictious) timestep T+1 and a corresponding
increment x(T +1) chosen equal to x(1). For long time series, this has a negligible
effect.

The above Hamiltonian coincides with that for the one-dimensional Ising
model with periodic boundary conditions [55] (chapter 1). Each time step t is
seen as a site in an ordered chain of length T , and each value x(t) = ±1 is seen as
the value of a spin sitting at that site. The model is analytically solvable, which
allows us to apply it to real time series in our formalism. For the readers familiar
with time series analysis but not necessarily with the Ising model, we briefly recall
the standard solution of the model, adapting it from ref. [55] (chapter 1).

Applying the periodicity condition of eq.(1.28) ensures that all sites (time
steps) are statistically equivalent, i.e.:

〈x(1)〉 = 〈x(2)〉 = · · · = 〈x(T )〉 (A.20)

so that the system is translationally (here, temporally) invariant. The partition
function is

Z(I,K) =
∑
X

exp

[
I

T∑
t=1

x(t) +K

T∑
t=1

x(t)x(t+1)

]

and can be rewritten as a product of terms involving only two successive time
steps:

Z(I,K) =
∑
X

T∏
t=1

V
(
x(t), x(t+ 1)

)
, (A.21)

where we have introduced the function V (x, y) defined as

V (x, y) ≡ exp
(
I
x+ y

2
+Kxy

)
. (A.22)

We since both x and y can take only the values ±1, we can regard V (x, y) as
the element of a 2× 2 matrix V called the transfer matrix [55] (chapter 1):

V ≡
(
V (+1,+1) V (+1,−1)
V (−1,+1) V (−1,−1)

)
=
(
eK+I e−K

e−K eK−I

)
. (A.23)
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This allows us to rewrite eq.(A.21) as

Z(I,K) = Tr
(
VT
)
. (A.24)

Let ~v1, ~v2 denote the two eigenvectors of V, and λ1, λ2 the corresponding eigen-
values, so that

V~vj = λj~vj , j = 1, 2. (A.25)

The 2× 2 matrix Q ≡ (~v1, ~v2) (having column vectors ~v1 and ~v2) diagonalizes V,
i.e.

V = Q
(
λ1 0
0 λ2

)
Q−1, (A.26)

where a direct calculation of the eigenvalues and eigenvectors yields

λ1 = eK cosh I +
√
e2K sinh2 I + e−2K (A.27)

λ2 = eK cosh I −
√
e2K sinh2 I + e−2K (A.28)

and

Q =
(

cosφ − sinφ
sinφ cosφ

)
, (A.29)

with φ defined by

cot 2φ ≡ e2K sinh I. (A.30)

It then follows that eq.(A.24) simply reduces to

Z(I,K) = Tr
(
λ1 0
0 λ2

)T
= λT1 + λT2 , (A.31)

and the probability of occurrence of a time series X is

P (X|I,K) =
∏T
t=1 V

(
x(t), x(t+ 1)

)
λT1 + λT2

. (A.32)

The above results allow us to analytically obtain expected values. That of x(t)
is

〈x(t)〉 =
∑
X

x(t)P (X|I,K) =
Tr
(
SVT

)
λT1 + λT2

, (A.33)

where we have introduced the diagonal matrix

S ≡
(
S(+1,+1) S(+1,−1)
S(−1,+1) S(−1,−1)

)
=
(

+1 0
0 −1

)
(A.34)
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A.1 Time series models

having elements

S(x, y) ≡ xδ(x, y). (A.35)

Similarly, for 0 < s− t < T the expected value of x(t)x(s) is

〈x(t)x(s)〉 =
∑
X

x(t)x(s)P (X|I,K)

=
Tr
(
SVs−tSVT+t−s)
λT1 + λT2

. (A.36)

In the limit T → ∞ (corresponding to long time series in our case) with s − t
fixed, these expressions become

〈x(t)〉 = cos 2φ (A.37)

〈x(t)x(s)〉 = cos2 2φ+ sin2 2φ
(
λ1

λ2

)s−t
(A.38)

Now, we note that eqs.(A.33) and (A.36) manifestly show the translational (tem-
poral) invariance of the model, as 〈x(t)〉 is independent of t and 〈x(t)x(s)〉 depends
on t and s only through their difference s− t. This implies that, writing τ ≡ s− t
and performing a temporal average,〈

M1

〉
= cos 2φ (A.39)〈

Bτ
〉

= cos2 2φ+ sin2 2φ
(
λ1

λ2

)τ
. (A.40)

Using eq.(A.30) we can rewrite these expressions in terms of the model parameters,
I and K, as

〈
M1

〉
=

e2K sinh I√
1 + e4K sinh2 I

(A.41)

〈
Bτ
〉

=
e4K sinh2 I + (λ1/λ2)τ

1 + e4K sinh2 I
. (A.42)

The expected value of the autocorrelation defined in eq. (1.47) can be approx-
imated as the ratio of two expected values as follows:

〈
Aτ
〉
≡
〈
Bτ −M2

1

1−M2
1

〉
≈ 〈Bτ 〉 − 〈M

2
1 〉

1− 〈M2
1 〉

=
(
λ1

λ2

)τ
. (A.43)

Models for single cross-sections of multiple time series

For a single cross-section of a set of N multiple time series, X is a N × 1 matrix
or equivalently a N -dimensional column vector. We denote the entries of X as xi.
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Uniform random walk model

The uniform random walk is a simple modification of the same model that we
considered for single time series, where x(t) is replaced by xi and T is replaced by
N . This model is obtained when no constraints are enforced. The Hamiltonian is

H(X) = 0 (A.44)

and the partition function is simply the number of possible configurations for a
single cross-section of N stocks:

Z =
∑
X

1 = 2N . (A.45)

The probability of occurrence of a cross section X is

P (X) =
1
Z

= 2−N (A.46)

and is completely uniform over the ensemble of all cross sections of N stocks. All
the N elements of X are mutually independent and identically distributed with
probability

Pi(x) ≡ Prob
(
xi = x

)
=
{

1/2 x = −1
1/2 x = +1 (A.47)

This results in a completely uniform random walk with zero expected value

〈xi〉 = 0 (A.48)

and maximum variance

Var[xi] ≡ 〈x2
i 〉 − 〈xi〉

2 = 1. (A.49)

Biased random walk model

Also this model is analogous to the corresponding model for single time series.
We select the total daily increment of the cross section X as the constraint:

C(X) = N ·M1(X) = N · {xi} (A.50)

Let the corresponding Lagrange multiplier be denoted by θ. The Hamiltonian is

H (X, θ) = θ ·N · {xi} = θ

N∑
i=1

xi (A.51)
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and the partition function is

Z(θ) =
∑
X

e−θ
∑N
i=1 xi =

∑
X

N∏
i=1

e−θxi

=
N∏
i=1

∑
x=±1

e−θx =
N∏
i=1

[
e−θ + e+θ

]
=

[
e−θ + e+θ

]N
. (A.52)

The probability of the occurrence of a cross section X is

P (X|θ) =
e−θ

∑N
i=1 xi

[e−θ + e+θ]N
=

N∏
i=1

e−θxi

e−θ + e+θ

=
N∏
i=1

Pi
(
xi|θ

)
(A.53)

where we have introduced the probability Pi(x|θ) of a given increment x = ±1
for stock i, which we identify as

Pi(x|θ) =
e−θx

e−θ + e+θ
. (A.54)

Just like the corresponding model for single time series, this model is a biased
random walk, because the two outcomes x = ±1 have a different probability
unless θ = 0.

The expected value of the i-th increment xi is

〈xi〉θ =
∑
x=±1

xPi(x|θ) =
e−θ − e+θ

e−θ + e+θ
= − tanh θ (A.55)

and the variance is

Var[xi] = 〈x2
i 〉θ − 〈xi〉θ

2 = 1− tanh2 θ. (A.56)

The maximum likelihood condition (1.16), fixing the value θ∗ of the parameter
θ given a real cross section X∗, reads

N
〈
{xi}

〉
=

N∑
i=1

〈xi〉 = −N tanh θ = N · {x∗i } (A.57)

where {x∗i } is the measured average increment of the observed cross section X∗.
This yields

− tanh θ∗ = {x∗i } (A.58)

which gives a parameter value

θ∗ = −artanh [{x∗i }] = −1
2

ln
[

1 + {x∗i }
1− {x∗i }

]
. (A.59)
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Mean-field Ising model

In this model, we enforce two constraints: the total increment and the total
coupling between stocks. The resulting 2-dimensional constraint can be written
as

~C(X) =
(
C1(X)
C2(X)

)
=
(
N ·M1(X)
D(X)

)
. (A.60)

We can write the corresponding Lagrange multiplier as

~θ =
(
θ1

θ2

)
= −

(
h
J

)
(A.61)

and the Hamiltonian as

H(X, h, J) = −h
N∑
i=1

xi − J
∑
i<j

xixj . (A.62)

Note that here we are not enforcing nearest-neighbor interactions as in the
one-lagged model for single time series, but market-wide interactions among all
stocks for the same time step (cross section). This is the result of the fact that,
when considering cross sections, there is no natural notion of ‘lattice sites’ induced
by e.g. a temporal ordering as in the one-lagged model. In other words, pairs of
stocks in a cross section are neither ‘close’ nor ‘distant’. We therefore assume a
common interaction strength J among all stocks.

The above model, known as the mean-field Ising model, is analytically solvable.
Here we adapt the derivation illustrated in ref. [55] (chapter 1). We first note
that, since xi2 = 1 for all i, H(X, h, J) can be expressed as a function of M1(X)
alone:

H(X, h, J) = −hNM1(X)− J

2
[
N2M2

1 (X)−N
]
. (A.63)

This implies that the sum over configurations in the partition function can be
replaced by a sum over the allowed values of M1(X), weighted by the number of
configurations for each value. If we denote by r the number of increments that
are negative (x = −1), and by (N −r) the number of increments that are positive
(x = +1), then we can write the Hamiltonian as a function of r alone through the
expression

NM1(X) = N − 2r. (A.64)

The partition function can therefore be calculated as

Z(h, J) ≡
∑
X

e−H(X,h,J) =
N∑
r=1

Cr (A.65)
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A.1 Time series models

where

Cr ≡
N !

r!(N − r)!
eh(N−2r)+ J

2 [(N−2r)2−N ] (A.66)

incorporates the binomial coefficient enumerating the configurations with given
r. The expected increment is therefore

〈M1〉 =
〈

1− 2r
N

〉
=
∑N
r=1

(
1− 2r

N

)
Cr

Z(h, J)
∀i. (A.67)

When N is large, a traditional derivation [55] (chapter 1) shows that the sum
at the numerator of eq.(A.67) is dominated by the single addendum correspond-
ing to the maximum of Cr. The same applies to the partition function at the
denominator. If r0 denotes the value of r such that Cr is maximum, we then get

〈M1〉 ≈ 1− 2r0

N
. (A.68)

A further expansion [55] (chapter 1) finally shows that, given h and J , the ex-
pected value 〈M1〉 is the solution of the nonlinear equation

〈M1〉 = tanh
[
(N − 1)J〈M1〉+ h

]
. (A.69)

From the above equation, one can infer the existence of a phase transition in the
model, separating a regime where the expected ‘magnetization’ (here the average
increment 〈M1〉) is zero from one where it is non-zero [55] (chapter 1). This
transition is discussed in sec.1.5.3.

Before proceeding further, we note a peculiarity of the model, which has impli-
cations for the applicability of our maximum likelihood approach. An argument
similar to that leading to eq.(A.68) implies that the second moment of M1(X)
can be expressed as

〈M2
1 〉 =

〈(
1− 2r

N

)2
〉
≈
(

1− 2r0

N

)2

≈ 〈M1〉2. (A.70)

This implies that

Var[M1] ≡ 〈M2
1 〉 − 〈M1〉2 = 0, (A.71)

or in other words that M1(X) is no longer a random variable. As a consequence,
something unusual happens when we apply the maximum likelihood principle.
From eq.(A.63), and recalling the general result embodied by eq.(1.20) in sec.1.3.2,
it is clear that the parameter values h∗ and J∗ maximizing the likelihood can be
found as the solution to the two coupled equations

〈M1〉 = M1(X∗) (A.72)
〈M2

1 〉 = M2
1 (X∗) (A.73)
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However, eq. (A.70) implies that eq.(A.73) can be rewritten as

〈M1〉2 = M2
1 (X∗) (A.74)

which coincides with eq.(A.72). So eqs. (A.72) and (A.73) are equivalent, and they
cannot be used to uniquely determine the two unknown parameters h∗ and J∗.
This is the result of the fact that, when fitted to the data, the model is actually
over-constrained: there are two parameters to fit the only constraint (M1) on
which the Hamiltonian depends. This aspect of the model is not manifest when
M1 is regarded as a function of h and J , as usually done when simulating spin
systems.

The above consideration implies that we should drop one of the two param-
eters and consider the two cases J = 0 and h = 0 separately. The former case
coincides with the biased random walk model that we already discussed, and we
will not discuss it any further. The latter case will instead represent our genuine
specification of the ‘mean-field’ model. Setting h = 0 implies

H(X, 0, J) = −J
2
[
N2M2

1 (X)−N
]

(A.75)

and

〈M1〉 = tanh
[
(N − 1)J〈M1〉

]
. (A.76)

Applying the maximum likelihood principle to eq.(A.75) tells us to select J∗ as
the solution of eq.(A.73). However, we have seen that this condition leads to
eq.(A.74), which is actually equivalent to eq.(A.72). Therefore, the value of J∗
can be found by replacing 〈M1〉 with the observed value M1(X∗) = {x∗i } in eq.
(A.76), which leads to

{x∗i } = tanh
[
(N − 1)J∗{x∗i }

]
. (A.77)

Note that in the traditional situation one is interested in finding the (expected)
magnetization given a value of J , which implies that the transcendental eq. (A.76)
should be solved numerically. Here, we are instead facing the inverse situation
where we look for the value of J∗ given the (observed) value of the magnetization.
In this quite unusual case, it turns out that eq. (A.77) can be inverted to give
the following analytical solution:

J∗ =
artanh{x∗i }
{x∗i }(N − 1)

=
1

2{x∗i }(N − 1)
ln
[

1 + {x∗i }
1− {x∗i }

]
. (A.78)

Once this value is calculated, it can be inserted into the probability

P (X∗|0, J) =
e−H(X∗,0,J)

Z(0, J)
=

eJN(N{x∗i }
2−1)/2∑N

r=1
N !

r!(N−r)!e
J[(N−2r)2−N ]/2

(A.79)
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(where we have set h = 0) to obtain the maximized likelihood of generating the
observed cross section X∗ under the mean-field model.

In this appendix we give a summarized description of the binary and weighted
network quantities which are studied in this paper. Specifically, we first show
how the properties are measured over a real network, and then how the expected
values under the ECM and the TS model are constructed.

A.2 Network models

Observed Properties

Let us note a weighted undirected network as a square matrix W, where the spe-
cific entry wij represents the edge weight between country i and country j. The
binary representation of the network is noted by a binary matrix A, where the
entries are aij = Θ[wij ], ∀ i, j.

We compute the Average Nearest Neighbor Degree as:

knni (W) =
∑
j 6=i

aijkj
ki

=

∑
j 6=i
∑
k 6=j aijajk∑
j 6=i aij

. (A.80)

Its calculated as the arithmetic mean of the degrees of the neighbors of a spe-
cific node, which is a measure of correlation between the degrees of adjacent nodes.

The Binary Clustering Coefficient has the following expression:

ci(W) =

∑
j 6=i
∑
k 6=i,j aijajkaki∑

j 6=i
∑
k 6=i,j aijaki

. (A.81)

It is a measure of the tendency to which nodes in a graph form cluster together.
More specifically, it counts how many closed triangles are attached to each node
with respect to all the possible triangles.

The corresponding weighted properties are the Average Nearest Neighbor
Strength and the weighted Clustering Coefficient. The Average Nearest Neighbor
Strength, defined as:

snni (W) =
∑
j 6=i

aijsj
ki

=

∑
j 6=i
∑
k 6=j aijwjk∑
j 6=i aij

(A.82)

where si =
∑
j wij is the strength (total flow) of a country. The snni measure the

average strength of the neighbors for a specific node i. Like its binary counterpart,
it gives the magnitude of activity of a specific node neighbors (weighted activity).
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The weighted Clustering Coefficient [54] (chapter 2) is defined as:

cWi (W) =

∑
j 6=i
∑
k 6=i,j(wijwjkwki)

1
3∑

j 6=i
∑
k 6=i,j aijaki

. (A.83)

The cWi (W) is a measure of the weight density in the neighborhood of a node. It
classify the tendency of a specific node to cluster in a triangle taking into account
also the edge-values.

Now, the measured properties of the real network need to be compared with
the reproduced properties of the different models. These reproduced properties
are the expected values of the maximum entropy ensemble that each model id
generating, and can be calculated analytically. The expected values can be ob-
tained by simply replacing aij with the probability pij for the different models
(pij is different to each model). This next step is what we will discuss in the next
sections.

Expected values in the BCM and ECM

Since the BCM model is only dealing with the binary representation, we will have
expected values just for the two binary higher-order properties. While the ECM
gives expectations for the weighted counterparts of the binary properties.

For the binary higher-order properties, we replace aij with pij which is the
probability of creating a link, and also the expected value of the edge pij = 〈aij〉.
This simple procedure yields the analytic formula of the expected value for the
properties. We compute the expected Average Nearest Neighbor Degree as:

〈knni 〉 =

∑
j 6=i
∑
k 6=j pijpjk∑
j 6=i pij

(A.84)

and the expected Binary Clustering Coefficient as:

〈ci〉 =

∑
j 6=i
∑
k 6=i,j pijpjkpki∑

j 6=i
∑
k 6=i,j pijpki

(A.85)

where for the BCM model we input pij = zizj
1+zizj

, and for the ECM the more
complex term pij = xixjyiyj

1−yiyj+xixjyiyj
In the weighted case (weighted higher-order properties), we are left only with

the ECM. The expected Average Nearest Neighbor Strength is calculated as:

〈snni 〉 =

∑
j 6=i
∑
k 6=j pij〈wjk〉∑
j 6=i pij

(A.86)
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A.2 Network models

where 〈wjk〉 = xixjyiyj
(1−yiyj+xixjyiyj)(1−yiyj) and we input the pij of the ECM model

as before.

In the expected value of the cW we should be more careful, since it is necessary
to calculate the expected product of (powers of) distinct matrix entries

〈cWi 〉 =

∑
j 6=i
∑
k 6=i,j〈(wijwjkwki)

1
3 〉∑

j 6=i
∑
k 6=i,j pijpki

. (A.87)

We know that

〈
∑
i 6=j 6=k

wαij · w
β
jk · ...〉 =

∑
i6=j 6=k

〈wαij〉 · 〈w
β
jk〉 · 〈...〉 (A.88)

with the generic term for the ECM case

〈wγij〉 =
∞∑
0

wγqij(w|~x, ~y) =
xixj(1− yiyj)Liγ(yiyj)

1− yiyj + xixjyiyj
(A.89)

where Lin(R) =
∑∞
l=1

Rl

ln is the nth polylogarithm of R. For a more comprehen-
sive description please refer to [32] (chapter 2).

Expected values in the TS model

Here again we use the known expressions for the properties and replacing the terms
ptsij and wtsij with the expected values 〈aij〉 and 〈wij〉 correspondingly. However,
here the expected values are a function of the GDP of the countries, or more
specifically the re-scaled GDP gi. The expressions for the higher-order binary
properties are as before :

〈knni 〉 =

∑
j 6=i
∑
k 6=j p

ts
ijp

ts
jk∑

j 6=i p
ts
ij

(A.90)

and

〈ci〉 =

∑
j 6=i
∑
k 6=i,j p

ts
ijp

ts
jkp

ts
ki∑

j 6=i
∑
k 6=i,j p

ts
ijp

ts
ki

(A.91)

where ptsij = agigj
1+agigj

.
In the weighted case,the expected Average Nearest Neighbor Strength is cal-

culated as:

〈snni 〉 =

∑
j 6=i
∑
k 6=j p

ts
ij〈wtsjk〉∑

j 6=i p
ts
ij

(A.92)
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where 〈wij〉ts = agigj
1+agigj

· (1+bgci )(1+bgcj )

(1+bgci+bgcj ) and we input the ptsij of the Two-Step model
as before.

For convenience reasons we will write the expression for the weighted Clus-
tering Coefficient cW first as a function of the fitness parameters zi and yi, and
later replaced them with the corresponding GDP terms. The expected value of
the cW in the Two-Step case is :

〈cWi 〉 =

∑
j 6=i
∑
k 6=i,j〈(wijwjkwki)

1
3 〉ts∑

j 6=i
∑
k 6=i,j p

ts
ijp

ts
ki

. (A.93)

As before we observe that

〈
∑
i 6=j 6=k

wαij · w
β
jk · ...〉 =

∑
i 6=j 6=k

〈wαij〉 · 〈w
β
jk〉 · 〈...〉 (A.94)

with the generic term for the Two-Step model

〈wγij〉 =
∞∑
0

wγqij(w|~z, ~y) =
zizj(1− yiyj)Liγ(yiyj)

(1 + zizj)yiyj
(A.95)

where Lin(R) =
∑∞
l=1

Rl

ln is the nth polylogarithm of R.
Once we input the expressions of zi and yi

zi =
√
a · gi,

yi =
b · gci

1 + b · gci
(A.96)

equation (A.95) yields

〈wγij〉 =
agigj

1 + agigj
·

1 + cgci + bgcj
b2gci g

c
j

Liγ

(
b2gci g

c
j

(1 + bgci )(1 + bgcj)

)
(A.97)
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