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Chapter 3

Community Detection for
Time Series

The mesoscopic organisation of complex systems, from financial markets to the
brain, is the key intermediate level of organisation between the microscopic dy-
namics of individual units (stocks or neurons, in the mentioned cases), and the
macroscopic dynamics of the system as a whole. The organisation is determined
by “communities” of units whose dynamics, represented by time series of activ-
ity, is more strongly correlated internally than with the rest of the system. In
the current literature, such emergent organisation is mainly detected through the
measurement of cross-correlations among time series of nodes activity, the projec-
tion (usually via an arbitrary threshold) of these correlations to a network, and
the subsequent search for denser modules (or so-called communities) in the net-
work. It is well known that this approach suffers from an unavoidable information
loss induced by the thresholding procedure. Another, less realized, limitation is
the bias introduced by the use of network-based (as opposed to correlation-based)
community detection methods. In this chapter we discuss an improved method for
the identification of functional modules based on maximum-entropy. The method
is threshold-free, correlation-based, and very powerful in filtering out both local
unit-specific noise and global system-wide dependencies. The approach is guaran-
teed to identify mesoscopic functional modules that, relative to the global signal,
have an overall positive internal correlation and negative mutual correlation.

The results presented in this chapter have been published in the following references:
A. Almog, F. Besamusca, M. MacMahon and D. Garlaschelli PLoS ONE 10 7. e0133679 (2015).
A. Almog, O. Roethler, R. Buijink, J.H. Meijer, J.H.T. Rohling and D. Garlaschelli ,in preparation
(2016).
R. Buijink, A. Almog, C.B. Wit, O. Roethler, D. Garlaschelli, J.H. Meijer, J.H.T. Rohling and S.
Michel PLoS ONE, under second revision (2016).
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3.1 Introduction

3.1 Introduction

One of the most important properties of complex systems is community struc-
ture. Real-world systems are organized in a modular way, with clusters of units
sharing similar dynamics or functionality. However, while the clusters themselves
are internally cohesive, externally they can maintain contrasting dynamics. This
emergent structure is typically resolved from the recorded activity time series
of the system’s fundamental units (such as stocks, neurons, etc.). The problem
of resolving and identifying these mesoscopic structures, without any prior in-
formation, is extremely challenging. In financial markets, the mesoscopic scale
corresponds to sets of stocks that share similar price dynamics. The knowledge
of the market structure is highly valuable, and can assist in hedging risks and for
better understanding of the market. Consequently, over the past years, scientists
have deployed and developed many time series techniques to retrieve qualitative
information regarding the hierarchy and structure of financial markets [1, 2, 3, 4].

A promising approach is that of employing community detection techniques,
developed in network theory [5, 6], on empirical correlation matrices (constructed
from multiple time series). However, The attempts made so far have basically re-
placed network data with cross-correlation matrices, and are not adapted to deal
with correlation matrices. More specifically, the methods enforce a network rep-
resentation on the empirical correlation matrix, and later apply a network-based
(as opposed to correlation-based) community detection method. Such a process
also involves some type of thresholding procedure, which results in significant in-
formation loss. These methodological problems rise significant limitations, when
one comes to analyse empirical correlation matrices.

Recently, a novel method was proposed, which has been specifically designed
to detect communities from correlation matrices of multiple time series [7]. The
method is able to filter out both local unit-specific noise and global system-wide
dependencies, using random matrix theory as the null model. When applied to
financial time series, the method was able to capture the dynamical modularity of
real financial markets. It is able to identify clusters of stocks which are correlated
internally, but are anti-correlated with each other.

In this chapter we discuss this improved method and generalize it using a more
complete framework of maximum-entropy. The generalized maximum-entropy ap-
proach is able to capture both the global dynamics of the system and the random
noise induced by the different units. More importantly, this improved null model
is more “data-driven” in contrast to the original null model, enabling us to use
more empirical information to construct the community structure. In this set-
ting, the null models help us identify the non-random properties in the system to
a higher level of resolution.
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Community Detection for Time Series

The rest of the chapter is organized as follows. In section 3.3 we analyse
financial markets, exploring the mesoscopic structures induced by both the orig-
inal weighted time series and their corresponding binary signatures. We show
that both the binary and weighted information yield very similar community
structures, suggesting that the binary signatures carry significant structural in-
formation. In section 3.4 we apply the method to the suprachiasmatic nucleus of
mice, which is a complex network of oscillating neurons, revealing a remarkable
core periphery structure. This application to functional brain networks comes as
a by-product, as time series of brain activity have in common with financial time
series the potential of being driven by a strong signal and also being subject to
noise. In fact our method could have a great impact on the field of functional
brain networks. Finally, in sec 3.5 we summarize our results and provide some
conclusions.

3.2 Maximum-entropy approach to community de-
tection

In general, the problem of community detection in network science consists of
finding clusters of nodes that have dense connections internally and sparser con-
nections externally. Such clusters, or communities, represent sub-units of the
network like families in social networks or brain regions in structural brain net-
works. Identifying these modules and their boundaries is of great importance,
and over the last years, many methods have been developed to resolve this type
of organisation [5]. However, here we are interested in identifying functional mod-
ules from a correlation matrix, generated by multiple time series, rather than a
conventional network.

We now describe the so-called modularity-based community detection methods
but adapted to correlation matrices. This restricts us to undirected networks,
given the symmetry property of correlation matrices. Let us consider a network
with N nodes. One can introduce a number of partitions of the N nodes into non-
overlapping sets. The different partitions will be represented by an N -dimensional
vector ~σ where the i-th component σi denotes the set in which node i is placed
by that particular partition. Now, we introduce the modularity measure Q(~σ)
which indicates the quality of a particular choice of partition ~σ measured by a
high degree of inter-community connectivity and a low degree of intra-community
connectivity. So-called modularity optimization algorithms look for the specific
partition that maximizes the value of Q(~σ), the objective function. The latter is
defined as

Q(~σ) =
1
Atot

∑
i,j

[Aij − 〈Aij〉] δ(σi, σj) (3.1)

where δ(σi, σj) is a delta function ensuring that only pairs of nodes within the
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3.2 Maximum-entropy approach to community detection

same community contribute to the sum, and Aij is the adjacency matrix that in-
dicates whether a link exists between the nodes, (Aij = 1) or not, (Aij = 0). The
pre-factor Atot serves to normalize the value of Q(~σ) between −1 and 1, where
Atot ≡

∑
i,j Aij = 2L is twice the number of total links in the network. The term

〈Aij〉 is vital to the outcome of the community detection process. It represents the
expectation of whether a link exists or not, according to the specific null model
chosen. So far the majority of the methods use null models (hypotheses) which
are suited only for networks. For example, the configuration model is a null model
that preserves the degree sequence of the network. It has been shown that such
null models can introduce biases when applied to correlation matrices [7]. The
reason is that, while a null model for a network assumes independent links, cor-
relation matrices have different metric properties that imply dependencies among
their entries, even under the null hypothesis. A recent method proposed a redef-
inition of the modularity, which does take into account the existence of known
properties of correlation matrices (see sec. 3.3.1). Here, we take the maximum-
entropy approach, providing a specification of an appropriate null model.

Instead of the previous adjacency matrix Aij , we input the empirical correla-
tion matrix Cij . The method defines the modularity as

Q(~σ) =
1

Cnorm

∑
i,j

[Cij − 〈Cij〉me] δ(σi, σj) (3.2)

where 〈Cij〉me is a maximum-entropy null model that needs to identify the ran-
dom properties of empirical correlation matrices.

In this approach, the empirical correlation matrix is first decomposed and then
reconstructed using only the eigenvalues (and eigenvectors) that are not repro-
duced by the random null model. Thus in this chapter, contrary to chapter 1, we
are interested in the correlation matrix spectrum which the random model (mul-
tiple time series) generates. Once compared with the observed spectrum of the
empirical correlation matrix, the model will identify the non-random eigenvalues
(by elimination). The non-random eigenvalues will be later used to generate the
new filtered matrix. In the next sections, we introduce two null models, which
will serve us as the “random benchmark” in this new definition of modularity.

3.2.1 Random time series

Let us go back to the same multiple time series formalism as in chapter 1, where
the system describes N time series with length T (N ×T matrix). We recall that
the entries of such a general matrix M are denoted by ri(t), where i labels the
stock and t labels the time step. Before introducing the specific models, we need
to make some necessary changes. Here, we extend our null models to weighted
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Community Detection for Time Series
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Figure 3.1: Eigenvalues density distribution comparison: maximum-
entropy versus Wishart matrix. The eigenvalue density distribution of the
correlation matrix of the time series generated by the solved maximum-entropy
model for the S&P500. In red is the sampled density distribution from 1000
runs, in blue is the theoretical Marchenko Pastur distribution. The figure present
a good agreement between the maximum-entropy model and the known analytical
curve of Wishart matrix.

returns, where −∞ < ri(t) <∞, and the constraints are enforced over the whole
matrix. Moreover, since the system is weighted we want to apply a normalization
condition on the distribution of the returns.

We start with the simplest case of N time series with no constraints. However,
contrarily to the binary (±1) case considered in chapter 1, here we are required
to enforce one extra constraint over the second moment

〈 1
NT

N∑
i

T∑
t

r2
i (t)〉 ≡ [r∗i (t)]2average (3.3)

to ensure that the probability distribution for ri(t) is normalised. The Hamilto-
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3.2 Maximum-entropy approach to community detection

nian reads

H(X, α) = α

N∑
i=1

T∑
t=1

r2
i (t) (3.4)

with α as a single free parameter, which leads us to a normal distribution.

Using maximum likelihood estimation as before, one finds

α∗ = TN

(
2
N∑
i=1

T∑
t=1

[r∗i (t)]2
)−1

(3.5)

as the value of α.

Once solved, this model is a maximum-entropy equivalent to the generic case,
where one measures the correlation betweenN independent random time series for
T time steps (the observed period). In this specific case, the resulting correlation
matrix would be an N ×N Wishart matrix, whose statistical properties are well-
known [19, 21]. In the limits where N,T → ∞ and T/N ≥ 1 the eigenvalues of
the Wishart matrix are distributed according to a Marchenko-Pastur distribution

P (λ) =
T

N

√
(λ+ − λ)(λ− λ−)

2πλ
if λ− ≤ λ ≤ λ+ (3.6)

and P (λ) = 0 otherwise. The boundaries λ+ and λ− are dependent on the data
size and given by

λ± =

[
1±

√
N

T

]2

. (3.7)

This analytic curve represents the boundaries of the bulk eigenvalues, which pre-
dominantly represent noise, and so have little meaning assigned to them.

In Fig 3.1 we plot the eigenvalue density distribution of the correlation matrix
of the time series generated by the maximum-entropy model for the S&P500. In
red is the empirical density sampled from 1000 runs, in blue is the theoretical
Marchenko Pastur distribution eq.(3.6). It is clear that both distributions are al-
most identical, validating our claim of correspondence between the models when
measuring the eigenvalues spectrum. We should note that although we use the
parameter σ which is extracted by eq. (3.5), it does not play any role in the eigen-
value distribution. The distribution is invariant to different σ, which explains the
agreement with the theoretical curve.

104



Community Detection for Time Series

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ρ
( 

λ
)

λ

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 3.2: Eigenvalues density distribution comparison: empirical cor-
relation versus Wishart matrix. The eigenvalue density distribution of the
correlation matrix of the S&P500. In red is the empirical eigenvalue distribution,
in blue is the Marchenko-Pastur distribution. The figure shows the bad agreement
of the Wishart matrix with respect to the empirical spectrum.

The empirical eigenvalues outside this range, however, have structural impli-
cations and relate to groups of correlated stocks [21]. As a result, any empirical
correlation matrix C can be identified as a sum of of two matrices:

C = C(r) + C(s), (3.8)

where C(r) is the random part aggregated from the eigenvalues in the random
spectrum (λ− ≤ λ ≤ λ+), i.e.

C(r) ≡
∑

i:λ−≤λi≤λ+

λi|vi〉〈vi|, (3.9)

and C(s) is the “structured” component, which is composed from those eigenvalues
above the boundary of the bulk eigenvalues. λ > λ+.

Moving forward, in financial markets, it is well established that stocks typi-
cally move up or down together, an effect known as the “market mode”. This effect
is indicated by the presence of a very large eigenvalue λm, orders of magnitude
greater than the rest. This can be observed in Fig 3.2 where we compare the eigen-
value density distribution (of the cross-correlation matrix) of the S&P500 index
to the Marchenko-Pastur distribution. Since this eigenvalue represents a common
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3.2 Maximum-entropy approach to community detection

factor influencing all the stocks in a given market, from a structural perspective,
the market mode eigenvalue signifies the presence of one single super-community,
containing all the stocks in the market.

Thus, the other eigenvalues (not including the market mode), which deviate
from the bulk, λ+ < λi < λm are the ones corresponding to mesoscopic clusters,
i.e. groups of stocks with similar dynamics. This observation results in a further
decomposition of the empirical correlation matrix

C = C(r) + C(g) + C(m), (3.10)

where

C(m) ≡ λm|vm〉〈vm| (3.11)

represents the market mode, and

C(g) ≡
∑

i:λ+<λi<λm

λi|vi〉〈vi| (3.12)

represents the remaining correlated groups. These sub-groups of correlated stocks
comprise the mesoscopic structure of the market. They are also referred as “group
modes” in the literature [1, 21].

To conclude, this approach actively filters both the null model spectrum and
the market mode (largest eigenvalue) and has been introduced in [7]. However,
there are a few drawbacks to this approach. Firstly, the global mode is not
generated by the null model itself, and we are required to filter it “manually”. The
reason is that the null model only considers N random variables, and the presence
of the market model is purely an empirical fact which is not being account for
in the null hypothesis. Next, the random bulk distribution is only dependent on
the size of the data (T and N), and not on the data itself. One can imagine that
different systems would have different dynamics which requires different types
of spectral filtering. Lastly, the null model cannot reproduce the so-called sub-
random eigenvalues, where λi < λ−, as we can see in Fig 3.2. This is quite
alarming since the sub-random spectrum contains the majority of the empirical
eigenvalues. In the next section, we will introduce a new null model that can
overcome these limitations.

3.2.2 Random time series with global mode

Here we introduce a more sophisticated maximum-entropy null model, which en-
force added “structural information”, trying to overcome the random model lim-
itations. The model is designed to enforce also the average daily return, hence
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Community Detection for Time Series

capturing the non-stationary nature of the system. Thus, the constraints are

〈 1
NT

N∑
i

T∑
t

r2
i (t)〉 ≡ [r∗i (t)]2average 〈 1

N

N∑
i=1

ri(t)〉 ≡ {r∗i (t)} ∀t (3.13)

recalling that we denote {ri(t)} ≡ 1
N

∑
i ri(t) as the average over stocks.

This step is motivated by section 1.6, where we impose the information sepa-
rately for each day.

Combining all the above considerations, we finally generalize the model defined
by eq.(1.59) to the matrix case as follows:

H(X, α, ~θ) = α

N∑
i=1

T∑
t=1

r2
i (t) +

T∑
t=1

θt

N∑
i=1

ri(t) =
∑
it

[
αr2

i (t) + θtri(t)
]
(3.14)

where ~θ it a T -dimensional vector with entries θ(t).
Using maximum likelihood estimation, in this case one needs to solve T + 1

coupled equations

α∗ = TN

(
2
N∑
i=1

T∑
t=1

(r∗i (t)− {r∗i (t)})2

)−1

(3.15)

θ∗t = −2α∗{r∗i (t)} (3.16)

in order to find the value of α and ~θ.

Once solved, this maximum-entropy model corresponds directly to a one-factor
model defined in sec. 1.6.4. If we now define σ and µ as follows

σ∗ ≡
√

1
2α∗

, µ∗t ≡ {r∗i (t)} (3.17)

the probability of a matrix (multiple time series) is the product of Gaussian
distributed random variables pit

P (X) =
∏
it

1√
2πσ

e
−1
2σ2

∑
it

(ri(t)−µt)
2

︸ ︷︷ ︸
pit

(3.18)

resulting from the integration (from −∞ to∞) of the exponential (partition func-
tion). The components of the multiple financial time series can thus be sampled
as follows

ri(t) ∼ N (µ∗t , σ
∗) , (3.19)
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Figure 3.3: Eigenvalues density distribution comparison: maximum-
entropy model with global mode versus Wishart matrix. The eigenvalue
density distribution of the correlation matrix of the time series generated by the
solved maximum-entropy model for the S&P500. In red is the empirical eigen-
value distribution, in green is the sampled density distribution from 1000 runs
(new null model), in blue is the Marchenko-Pastur distribution. The figure shows
the spectrum of the improved null model with respect to the previous one, and
how it can better replicate the random bulk and global mode that are observed
in the empirical spectrum.

where N represents a random variable with normal distribution with mean µ∗t
specific to each time step and variance σ∗.
In Fig 3.3 we plot the eigenvalue density distribution (of the cross-correlation
matrix) for the S&P500 index. The green curve is the sampled eigenvalue distri-
bution of the maximum-entropy model, and the red curve is the empirical eigen-
value distribution and the blue curve the Marchenko-Pastur distribution. We can
see that the new null model can replicate the global mode (largest eigenvalue).
Furthermore, there is a shift in the random bulk, which is in agreement with the
empirical distribution. This results present an improved null model which is able
to generate both the global mode and the random bulk of the empirical data,

〈C〉me = C(m) + C(r) (3.20)

using partial information from the original data.

Returning to the modularity, we define the filtered empirical correlation matrix
C

(g)
ij filtering both the global mode C(m) and the random bulk C(r).
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Community Detection for Time Series

Once we input this result into the modularity eq.(3.2.2)

Q(~σ) =
1

Cnorm

∑
i,j

[Cij − 〈Cij〉me] δ(σi, σj) =
1

Cnorm

∑
i,j

(Cij − C(r)
ij − C

(m)
ij )δ(σi, σj)

we see that this leads to

Q(~σ) =
1

Cnorm

∑
i,j

C
(g)
ij δ(σi, σj). (3.21)

In other words, to clearly differentiate between the mesoscopic groups, one
must subtract out the main drift of the system and the random correlation, using
the maximum-entropy null model. The filtered matrix C(g)

ij constituted from the
“non-random” eigenvalues λ+ < λi < λm and their corresponding eigenvectors
vi. The new method modified three modern community detection algorithms,
customizing where necessary to be effective with correlation matrices [7]. The
three algorithms we use in this paper are known as the Potts (or spin glass)
method [12, 13], the Louvain method [14] and the spectral method [15]

3.3 Financial markets
Traditionally, the main object of time series analysis is the characterization of
patterns in the amplitude of the increments of the quantities of interest (stock
price in our case). The analysis requires a weighted description of the system,
i.e. both the amplitude and the sign of the activity. Indeed, a time series of
increments enclose complete information about the amplitude of the fluctuations
of the original signal. However, a significant part of this information is encoded
in the purely ‘binary’ projection of the time series, i.e. its sign. Recent stud-
ies have shown various forms of statistical dependency between the sign and the
absolute value of fluctuations [8, 9, 10]. In chapter 1, we have shown a robust
empirical relationship between binary and non-binary properties of real financial
time series [11]. The results show that binary signatures, which retain only the
sign of fluctuations, encode significant information regarding the full behaviour
of the stock (both amplitude and direction). Motivated by these results, here we
further explore the higher-order relations between financial time series and their
corresponding binary signatures, in a more complex setting. In this section we
study whether the binary signatures of assets can reproduce the same complex
community organisation of financial markets, as the weighted information.

To this end, we use the daily closing prices of the stocks of three indexes
(S&P500, FTSE100 and NIKKEI225) over the period 2001-2011. For each index,
we restrict our sample to the maximal group of stocks that are traded continuously
throughout the selected period. This results in 445 stocks for the S&P500, 78
stocks for the FTSE100 and 193 stocks for the NIKKEI225. Given a stock price
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3.3 Financial markets

Pi(t) where i denotes one of the N stocks in the index, and t denotes one of the
T observed temporal snapshots (days), the log-return is defined as

ri(t) ≡ log
[

Pi(t)
Pi(t− 1)

]
, (3.22)

where 2 < t < T .
For each stock in the system we use the time series of it’s log-returns for our anal-
ysis. This is the construct we refer to as the “weighted time series” throughout the
rest of the chapter. In contrast, the “binary signatures” only reveal the direction
of the fluctuation (sign) in the price and are defined as

xi(t) ≡ sign[ri(t)] =

 +1 ri(t) > 0
0 ri(t) = 0
−1 ri(t) < 0

. (3.23)

In Fig. 1.1 from chapter 1 we show a simple example of a weighted time series,
along with the corresponding binary projection.

The two types of information are in fact different descriptions of the same
system, and are used to construct cross-correlation matrices. In turn, we de-
ploy three popular community-detection algorithms [12, 13, 14, 15] specifically
adapted, where necessary, for the correct use of cross-correlation matrices [7].
We examine and quantify similarities and variations in the organisation of the
markets for these two representations. This approach reveals some interesting
results. First, we can quantify the level of information encoded within the binary
signatures, with respect to the full weighted time series. Secondly, we observe
that both the binary and weighted representations yield very similar structures,
which indicates that most of the information regarding the structure of financial
communities is already encoded within the sign of a stock.

3.3.1 Spectral analysis
In this section we analyse the eigenvalue density distribution of the cross-correlation
matrices for the two representations of the data (binary and weighted). When
plotting the density distribution one can identify specific spectral properties that
have structural implications. In other words, it is possible to identify distinct
eigenvalues in the spectrum, which correspond to correlated clusters of stocks,
and typically indicate a non-trivial structure (as defined in sec. 3.2.2) .

Our focus here is to detect these non-random eigenvalues in the spectrum of
both the binary and weighted data. Moreover, we want to explore the similarities
and differences between the two spectra to inform us about the corresponding
structures yielded by each type of data.
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Community Detection for Time Series

Figure 3.4: Signatures of complex structure in the eigenvalue spec-
trum.The eigenvalue density distribution (of the cross-correlation matrix) for
the different indexes, where the upper panels are for the weighted series and the
lower panels are for the binary series. The red curve is the empirical eigenvalue
distribution and the blue curve the Marchenko-Pastur distribution. The largest
empirical eigenvalue λm is not shown in the plots, but its value is reported in
each panel. The figure shows that the complex structure, composed from global,
group, and random modes, is also maintained in the binary representation.

In Fig. 3.4 we plot the eigenvalue density distribution for the three different
indices. The top row corresponds to the weighted representation (log-returns),
and the bottom row corresponds to the binary representation (binary signatures).
We can observe the known structure of the financial markets in the weighted data,
however this complex structure also exists in the binary data. This result is non
trivial. We can observe a market mode, and several deviating eigenvalues also in
the “simpler” binary data (with the same order of magnitude).

We also want to inspect whether both descriptions of the system function the
same under randomization. The returns of each stock were separately permuted
randomly, therefore preserving the total return of the stocks and destroying the
daily correlation between the returns. Once the time series entries are shuffled,
both binary and weighted correlation matrices end up as elementary random
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3.3 Financial markets

Figure 3.5: Eigenvalues density distribution of randomized empirical
data. The eigenvalue density distribution of the Pearson correlation matrices
where the upper panels are for the weighted series and the lower panels are for
the binary series. The red curve is the empirical eigenvalue distribution and the
blue curve the Marchenko-Pastur distribution. The figure shows the collapse to
the random distribution once the original data is shuffled.

matrices. As discussed before, the eigenvalues of such matrices will be distributed
with a Marchenko-Pastur distribution.

In Fig. 3.5 we plot the density distribution of the shuffled data for the three
different indices. The top row corresponds to the weighted representation (log-
returns), and the bottom row corresponds to the binary representation (binary
signatures). As expected, in both cases we observed the known characteristics of
a random matrix. The spectra of both representations collapsed to the known
analytic curve.

To sum up this section, we identified a sub-group structure both in the weighted
and the binary representation of the three indices. Each of the binary spectra we
studied retain all the known properties of a “regular” (weighted) spectrum (ran-
dom bulk, market mode and group modes). This result propels us to do a more
refined analysis, and to further explore (and compare) the sub-group structure
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Consumer Discretionary: � Consumer Staples: �
Energy: � Financials: �
Health Care: � Industrials: �
Information Technology: � Materials: �
Telecom. Services: � Utilities: �

Table 3.1: The 10 industry sectors in the Global Industry Classification Stan-
dard (GICS), with the colour representation used to highlight the sectors in the
following Figures.

Weighted

83

143

62

75

91

Binary

90

116

61

71

107

Figure 3.6: S&P community structure. Communities of the S&P 500 (daily
closing prices from 2001 to 2011) generated using the modified Louvain algorithm
[7]. Each community is labelled with the number of stocks and the pie chart
represents the relative composition of each community based on the industry
sectors of the constituent stocks (colour legend in Table 1). The inter-community
link weights are negative, indicating that the communities are all residually anti-
correlated. We can see that the binary partition is almost identical to the weighted
one.

of the different indices. In the next section we will apply community detection
algorithms to extract a more detailed structure for both representations, so that
we can better quantify the similarities and the variations.

3.3.2 Community structure

In network theory, a community structure is the partition of the network into
relatively dense sets of nodes, with respect to the rest of the network. More
specifically, it is the organisation into clusters of nodes with dense connections
internally, while the connections between the clusters are sparser. Community
detection is the identification of such clusters of agents (nodes) in the system
(network). In the last decade there has been a burst of research concerning this
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topic, across a myriad of different fields [5].
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Figure 3.7: Nikkei community structure. Communities of the Nikkei 225
(daily closing prices from 2001 to 2011) generated using the modified Louvain
algorithm [7]. Each community is labelled with the number of stocks, and the pie
chart represents the relative composition of each community based on the industry
sectors of the constituent stocks (colour legend in Table 1).The link weights are
negative, indicating that the communities are all residually anti-correlated. We
can see that the binary partition is almost identical to the weighted one.

This promising approach has also been applied to analyse time series data
[22, 23, 24, 25] where the goal is to identify clusters of components with a sim-
ilar dynamics. The attempts made so far have basically replaced network data
with cross-correlation matrices as the input. However, this procedure suffers from
a significant limitation. The null hypotheses used in the network-based algo-
rithms are inconsistent with the properties of correlation matrices. As a result,
these approaches can introduce an undesired bias when applied to the detection
of communities in time series based networks.[7]. Here we adopt a new method
[7], which is specifically shaped to deal with correlation matrices, based on the
spectral properties we presented in the previous section. The method presents an
improved and consistent way to cluster multiple time series, by leveraging a set
of null models, specifically designed for use with correlation matrices.

Applying the new approach, we use three popular community detection al-
gorithms, customizing where necessary to be effective with correlation matrices.
The three algorithms we use in this chapter are known as the Potts (or spin glass)
method [12, 13], the Louvain method [14] and the spectral method [15], and are
modified in [7] to correctly deal with correlation matrices. The algorithms use a
modularity optimization process, where modularity is a measure for how “optimal”
your partition is. The algorithms attempt to choose a specific partitioning of the
network into groups such that the corresponding value of the modularity is max-
imized (see Methods). The modularity implements a new null hypothesis, which
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is fitted to time series (correlation matrices). More specifically, the hypothesis
considers the empirical correlation matrix as a superposition of modes eq.(3.10),
and decomposes it accordingly. Both the random mode and market mode are
filtered out, and we are left with only the informative group mode, which is then
used to extract the market structure.

Thus, we end up with three community detection algorithms that are consis-
tent with time series data and represent the counterparts of the most popular
techniques used in network analysis. The method allows us to explore the meso-
scopic structure of different financial indices, and more specifically compare the
different community structures resulting from the different representations (bi-
nary and weighted).

First, we perform community detection on both the binary and the weighted
time series, using all three community detection methods, for the full time period
of the data (2001-2011). We pick the division that maximizes the modularity
(for a specific representation and algorithm), and compare the results for the two
types of information. In the case where several divisions maximize the modularity
(different runs result in different divisions), we take the division with the most
occurrences over 1000 runs (the highest probability). Here, we want to identify
groups with similar dynamics over the ten year period, with the rationale that
such a long period will reduce the noise.

To help further explore the communities resulting from the different passes, we
label each of the stocks according to its industry sector from the Global Industry
Classification Standard (GICS). This classification represents a more “traditional”
frame of mind where the different sectors are comprised of stocks conforming to
a particular, qualitative description of the industry they represent. Recent re-
sults show that real markets have a more complex structure [2, 26, 27, 16], where
different sectors are mixed in different sub-groups, i.e. the communities are as-
sembled out of stocks from different sectors. Furthermore, the classification helps
us to compare the results of the two representations in a very clear and visual way.

In Figs. 3.6 and 3.7 we plot the community structure of the S&P 500 and
Nikkei 225 (daily closing prices from 2001 to 2011) generated using the modified
Louvain algorithm. Each community is labelled with the number of stocks and
the pie chart represents the relative composition of each community based on the
industry sectors of the constituent stocks (colour legend in Table 1). The links
between the communities represent “residual” (i.e filtered) anti-correlation rela-
tions [7]. We can see that the binary partition is very similar to the weighted
one. For both indexes about 7 − 8 percent of the stocks switch community. In
the next section we will give a more quantitative measure for the dissimilarities
of the different partitions.
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Figure 3.8: FTSE community structure. Communities of the FTSE 100 (daily
closing prices from 2001 to 2011) generated using the modified Louvain algorithm
[7]. Each community is labelled with the number of stocks, and the pie chart
represents the relative composition of each community based on the industry
sectors of the constituent stocks (colour legend in Table 1). The inter-community
link weights are negative, indicating that the communities are all residually anti-
correlated.

In Fig. 3.8 we observe a more complex result. Again, we plot the community
structure of the FTSE100 (daily closing prices from 2001 to 2011) generated us-
ing the modified Louvain algorithm. Now, the binary representation consistently
identifies one more community than the weighted representation (for all the algo-
rithms). Later, we further explore these differences in community structure. Most
notably, the binary information results in a cluster configuration where the Finan-
cials sector (green) was partitioned into two communities, whereas the weighted
representation created only one sole Financials community, spreading the rest of
the stocks among other clusters.

We should note that, purely from a community detection perspective, there
is no “correct” partition. Each partition is generated from different data and so
maximizing modularity should not be expected to yield the same partitions. We
are comparing the end results of these processes, and in this setting (this chapter)
we treat the weighted partition as the “truth” since it is using a priori more infor-
mation to establish the partition. Thus, our aim is merely to examine the degree
to which the “binary” community structure matches the “weighted” community
structure, despite having less information for the algorithms to work with. That
said, it would be interesting to determine if the binary information can yield dif-
ferent points of view, or added structural information with respect to its weighted
counterpart. This would be useful in particular because binary time series are
more robust to noise and errors in the data. Such a line of exploration is however

116



Community Detection for Time Series

beyond the scope of this chapter.

In this section we showed that the binary description leads us to a very sim-
ilar market structure to the weighted description. This results suggest that the
information regarding the community partition is mainly encoded in the binary
signature of the fluctuations, i.e. just from the knowledge of the direction of move-
ment, one can practically reproduce the “correct” structure. In the next section
we will quantify the similarities and deviations of the different partitions for the
different algorithms. Furthermore, we will explore the evolution in time of the
variations between the two representations.

3.3.3 Variation of information analysis

Index Method Q weighted Q binary Frequent VI Switching Minimal VI Switching
stocks (%) stocks (%)

Potts 0.4035 0.4134 0.3543 8.81% 0.3198 6.74%
S&P Louvain 0.4070 0.4134 0.3477 8.09% 0.3192 7.64%

Spectral 0.4006 0.3932 0.6955 61.57% 0.6955 61.57%
Potts 0.4551 0.4525 0.3689 6.78% 0.2598 4.66%

NIKKEI Louvain 0.4551 0.4525 0.3711 7.25% 0.2604 4.15%
Spectral 0.4481 0.4424 0.4521 8.29% 0.4521 8.29%
Potts 0.4641 0.4988 0.5031 28.42% 0.4026 26.14%

FTSE Louvain 0.4635 0.4988 0.4995 21.79% 0.3981 17.95%
Spectral 0.4597 0.4903 0.6919 69.23% 0.6919 69.23%

Table 3.2: The Variation of Information measured between the binary and
weighted partitions, with the maximal modularity Q, for the period 2001-2011.
“Frequent VI” is the variation of information between the most common partitions
(that maximize the modularity), and “Minimal VI” is the variation of information
between the most similar (that maximize the modularity). The “Switching stocks”
is the percentage of stocks that moved to different communities.

Once we obtain the community structure using the different algorithms, our
goal is to quantify the dissimilarities (or similarities) between the different par-
titions (binary and weighted). For this task we apply the Variation of Informa-
tion (VI) measurement [28, 29]. The variation of information is an information-
theoretic measure of the distance between two partitions. The different partitions
~σ1 and ~σ2 represent N -dimensional vectors where the i-th component σi denotes
the set in which node i is placed by that particular partition.

The variation of information involves the mutual information I( ~σ1 : ~σ2) which
is defined as

I( ~σ1 : ~σ2) =
N∑
i=1

N∑
j=1

p(σ1
i , σ

2
j )log

(
p(σ1

i , σ
2
j )

p(σ1
i )p(σ2

j )

)
, (3.24)
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where p(σ1
i , σ

2
i ) is the joint probability distribution, and p(σ1

i ) the marginal dis-
tribution of σ1

i . The mutual information measures the overlap between the two
partitions, however it is not a metric (does not obeys the triangle inequality)
nor is it normalized. Thus, for this study we use the (normalized) variation of
information which is defined as

V I( ~σ1 : ~σ2) = 1− I( ~σ1 : ~σ2)

H( ~σ1 : ~σ2)
(3.25)

where H( ~σ1 : ~σ2) is the joint entropy and is defined as

H( ~σ1 : ~σ2) =
N∑
i=1

N∑
j=1

p(σ1
i , σ

2
j )log

(
p(σ1

i , σ
2
j )
)
. (3.26)

The variation of information ranges from 0 to 1, where 0 indicates two identical
partitions, and 1 a complete dissimilarity between the partitions.

First, we measure the variation of information between two partition vectors,
generated by the weighted and binary time series. Respectively, this approach en-
ables us to quantify the difference in group structure (for 2001-2011), and compare
the performances of the different algorithms.

In Table 3.2 we plot the measured VI between the different partitions, which
resulted from the binary and weighted data. These measurements are for the
community structures resulting from 10 years (2500 time steps) of data, for each
of the three different indices. We run the algorithms 1000 times (for Louvain and
Potts, while the spectral is deterministic) and extract the partitions that maxi-
mize the modularity. We measure the VI between two different partitions: the
most frequent one, and the one that minimizes the VI (the most similar ones).
One can consider this to be the best result (subject to the best partition). Again
we should note that all the partitions maximize the modularity, and therefore
are optimal. Since the VI is not linear (and not intuitive), we also included a
simpler measurement of the percentage of stocks that are not occupying the same
community in the different partitions.

We can observe that both the Potts and Louvain algorithms consistently per-
form better then the spectral method, i.e. they yield partitions with higher mod-
ularity. We should note that, one can only compare the value of the modularity
for the same representation (binary or weighted), while there is no meaning in
comparing modularity between the different representations. Generally, we can
observe that the binary information and the weighted information result in very
similar structures, as we showed in the previous section. The exception to this is
the FTSE index, where the binary information consistently yields a greater num-
ber of communities. It is interesting to note that the binary information always
results in either the same or a greater number of communities over the weighted
time series.
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Figure 3.9: Variation of information analysis for the different clustering
algorithms. variation of information between the binary and weighted partitions
for a sliding window of 600 trading days (approximately 28 moths) starting at
Q3 2001. The VI is measured between the frequent partitions for the different
algorithms: Potts (blue), Louvain(red) and Spectral (green).

Next, we will explore the evolution in time of the VI between the different
types of information. We considered a sub-period of 600 time steps (about two
and a half years), and apply the same procedure as before. However, here we use
a sliding window technique, where in each step we input a new day and ignore the
previous information. This results in 1900 time steps (from the original 2500),
where each point is the frequent VI calculated from the correlation matrix using
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the given 600 time step. In Fig. 3.9 we plot the different measurements for the
different algorithms. The Potts and the Louvain methods present a more stable
dynamics, while the Spectral method yield higher VI. Furthermore, there is no
systematic effects of the financial crisis on the similarity between the binary and
the weighted representations.

The analysis reveals that in financial markets both the binary and weighted in-
formation yield very similar structures, which also manifest themselves in similar
spectral properties. The algorithms find complex mesoscopic structure of inter-
nally correlated clusters, which are residually anti-correlated with each other [7].
Moreover, the clusters are populated by stocks from various sectors. Remarkably,
we show that the simple knowledge of the direction of increments of each stock
can reproduce this complex structure very successfully.

3.4 Functional brain networks

In this section, we move from financial markets to brain systems. Remarkably,
from a pure “network science perspective”, these different systems share very sim-
ilar features. Their dynamics is monitored in terms of multiple time series of
activity of the constituent units, such as stocks or neurons respectively. In both
systems, we have no complete information or exhaustive understanding about the
underlying mechanisms at play, and we resort to information extraction from ob-
servations and empirical measurements. This illustrates why the use of correlation
matrices is so popular both in financial systems and in neuroscience. Resolving
the structure of brain networks from time series data (via the calculation an em-
pirical correlation matrix), exactly as we did for financial markets in the previous
section, is the object of the research field that goes under the name of ‘functional
brain networks.’ In neuroscience, functional networks are defined by the corre-
lated dynamical activity of neurons, as opposed to structural networks which are
instead defined as the real physical connections between neurons [32, 33, 34].

In functional brain networks, the mesoscopic structure is the key intermedi-
ate level of organisation bridging the microscopic dynamics of individual neurons
with the macroscopic dynamics of the brain as a whole. At this mesoscopic level,
brain activity tends to be organized in a modular way [41], with functionally re-
lated units being positively correlated with each other, while at the same time
being relatively less (or even negatively) correlated with dissimilar ones. Such
emergent organisation is mainly detected through the aforementioned functional
networks. In this setting, the network displays the correlated dynamical activity
between pairs of units in the brain. Dependent on the type and resolution of the
data, the units can vary from single neurons to brain regions. Over the last years,
the statistical characterization of these functional networks developed into a very
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Figure 3.10: Functional modules without functional network, a new
method to identify emergent organisation. A compression between the gen-
eral steps of functional network construction and our new method. On the left
scheme, we can see the introduction of a threshold procedure, once the majority
of the data is neglected one can create a network representation. On the right
scheme, we apply our spectrum filtering by comparing the empirical data to the
random null model. By directly producing a partition of the original time series
into communities, our new method bypasses the functional network projection,
avoiding the use of a threshold procedure.
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popular and powerful tool to study brain organisation [33, 35, 36].

Recent studies have used functional networks analysis to quantify global and
local properties of brain networks [43, 44]. The use of functional networks yields
very promising results. They are expected to encode the physiological mechanism
for information processing and mental representations [37, 38, 39, 40]. More-
over, various case studies have shown that neurological and psychiatric disorders,
such as Alzheimer’s disease and schizophrenia, lead to variations in the network
topology [45, 46]. Despite these encouraging results, it is well known that the
current approaches suffer from specific methodological problems [42]. Firstly, the
methods suffer from an inevitable information loss induced by the thresholding
procedure. Another, less realized, limitation is the bias introduced by the use of
network-based (as opposed to correlation-based) community detection methods
[7]. Finally, the presence of (anti)correlated modules is obfuscated by the presence
of a global mode of brain activity which imparts an overall positive correlation,
a problem that becomes particularly evident when searching for communities in
small brain regions, where the global signal is strong.

As we demonstrated in the previous section, our maximum-entropy approach
can overcome precisely these methodological limitations. Furthermore, our method
is not limited to a set of random walks with a common global factor. In financial
markets, which we analysed in the previous section, the global factor translates
to the similar reaction of stocks to news or events (the known market mode).
However, once generalized, our new null model as described in section 3.2.2 can
account for various systems with a global mode. In biological systems, the global
mode can be a result of the units sharing a similar environment, or being affected
by the same periodic signal (e.g. blood pressure or heartbeat rates). Remarkably,
the removal of the global mode in our method entails by definition the removal
of all common factors which affect the units of the system. This filtering capa-
bility demonstrates why our method has a great potential in the biological setting.

3.4.1 The suprachiasmatic nucleus

As we mentioned, we analyse the suprachiasmatic nucleus (SCN), located in the
hypothalamus in the brain. The SCN is a complex structure comprising of a het-
erogeneous collection of genetically and electrically rhythmic neurons that syn-
chronize their activity to the external world to form a central pacemaker. This
complex network needs to produce stable output signals and at the same time re-
main flexible to changes in the environment. Thus, it is essential for the regulation
of our daily and seasonal rhythms. The network is organized in a complex way
for it to coordinate these daily rhythms at the tissue level [47], where the central
pacemaker is a 24 hour rhythm that is synchronized to the external light-dark
cycle. In response to a shift in the external cycle, neurons of the SCN resyn-
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Figure 3.11: The community structure of the SCN as resolved by a stan-
dard threshold approach. On the left, we plot the community structure,
resolved by the standard method, for different thresholds. In blue are the nodes
that belong to the large cluster, while in gray are isolated nodes (communities
composed out of one node). In the right panel, we plot the fraction of nodes in
the largest connected component LCC

N in blue, and the fraction of communities
detected Communities

N in red.

chronize with a different frequency. Recent studies have shown that the neuronal
network organisation of the SCN changes in different seasons [48], however, the
mechanisms behind these changes are still elusive. Currently, not much is under-
stood about emergent organisation of the SCN, and if it is shaped by the external
light-dark cycle. Here, we apply our community detection method to identify the
functional community structure in different light-dark conditions.

This set-up investigates gene transcription activity, on a cellular scale, in SCN
slices of male mice. This process is part of the molecular clock and is rhythmically
expressed with a period of 24 hours. The target protein, which we monitor, is
fused with the light emitting firefly luciferase. For each cell in the sample, the
luminosity levels are recorded, generating the gene transcription “activity” time
series of the units in the system. We should note that this “single cell resolu-
tion” of the data is unique for functional analysis. Currently, brain networks are
most often derived from data acquisition techniques that do not have the possi-
bility to perform recordings at the single cell level. Techniques such as Functional
Magnetic Resonance Imaging (fMRI), Magnetoencephalography (MEG) or Elec-
troencephalography (EEG) use brain regions as nodes in the network and fiber
bundles between these regions as edges. Our setup enables us to investigate a brain
network at the micro-scale where nodes are single cells and edges are functional
connections between the cells. The bioluminescence time series were obtained
from individual cells (for exact method REF: [50]). In the next section, we apply
the popular standard methods for constructing functional networks, highlighting
their known limitations.
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3.4.2 Standard approach to functional networks

Before we present the output of our method, we preliminary preform a standard
analysis based in the mainstream method for detecting communities via functional
networks. This is a useful reference as a comparison with our own method. In Fig-
ure 3.10 we present the standard (“old”) approach versus our new approach. Once
we measure the empirical correlation matrix, the conventional method requires a
threshold value to exclude negative values and to neglect “weak” links simultane-
ously. Despite the significant loss of information, this thresholding procedure is
an integral part of all current methods. Next, we adapt the thresholded matrix
as an adjacency matrix, which corresponds to a network structure. The resulting
network can either be a binary one, where all links are 1 or 0, or a weighted one,
where the values from the correlation matrix remain as the weights of the links.
Finally, we can apply various community detection methods [12, 13, 15, 14], to
detect the community structure. In this analysis, we use the Louvain method [14].

In Figure 3.11 we present the community structure, resolved by the standard
method, for different thresholds. In blue are the nodes that belong to the large
cluster, while in gray are isolated nodes (communities composed out of one node).
In the right panel, we plot the fraction of nodes in the largest connected compo-
nent LCC

N in blue, and the fraction of communities detected Communities
N in red.

It is evident that applying different thresholds essentially detaches isolated nodes
from the large cluster, and there is no optimal value for the threshold. There-
fore, the standard method can only observe a “radial gradient” of connectivity,
and there is no large scale left-right symmetry, which is one of the signatures of
functional as opposed to structural connectivity. This poor performance of the
method is a known limitation when applied to very dense networks.

In the next section, we employ our new method described in section 3.2, which
results in the new scheme portrayed in Figure 3.10. By directly producing a
partition of the original time series into communities, our method bypasses the
functional network projection, avoiding the use of a threshold procedure. Also,
the method removes noise and filters out the common trend in the system.

3.4.3 SCN analysis

In Figure 3.12 we present the community structure detected by different recur-
sive runs of the method. In the bottom panels are the partitions detected, where
each community is marked with a different colour. In the top panels are the
corresponding resolved filtered correlation matrices (for each run) displaying the
resolved structure as a block matrix. In the left panel, we can observe that all
the nodes in the system belong to one community when the global mode is not
filtered out yet. Next, once we filtered out the global mode we found a consis-
tent core-periphery structure. This result is robust to all the samples we have
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Figure 3.12: The hierarchical community structure of the SCN as re-
solved by our method. The community structure detected by different recur-
sive runs of the method. In the bottom panels are the partitions detected, where
each community is marked with a different colour. In the top panels are the
corresponding resolved filtered correlation matrices (for each run) displaying the
resolved structure as a block matrix.

analysed. Further iterations of our method within each of the identified modules,
can detect hierarchy in the community structure. Note that for the second run
the functional modules still retain the left-right symmetry, which implies a real
functional structure. However, the hierarchical decomposition of the two clusters
is difficult to interpret, because the resulting sub-clusters are small in size, which
troubles reliable detection of significant differences between these sub-clusters. As
a result, in this chapter, we will focus on the first partition that our method yields
since it is providing the most impressive and consistent results.

The core-periphery structure confirms the ventral-dorsal distinction within
the SCN. The ventral part of the SCN receives light input and adjusts quickly to
changing light schemes, while the dorsal part of the SCN lags behind [51]. Our
approach is able to identify the two communities in all the different experimental
conditions, i.e. different the light-dark conditions simulating summer conditions
(long days, short nights: L16D8) and winter day conditions (short days, long
nights: L8D16). This results present a very robust functional structure, which
is not dependent on external conditions. However, a more detailed analysis of
the signals within the communities presented some variations in the distribution
of the signals (within the communities) which depend on the light-dark cycles
[50]. These findings motivate further research into this functional structure, and
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Figure 3.13: (A) The bioluminescence image of one SCN sample. (B) The plotted
average partition over all the samples. (C) The plotted average signal of the whole
system (in black) versus the mean signals of the two detected communities (in
red and blue). (D) The plotted average residual signals of the two communities,
once the global signal is subtracted.

possibly the next hierarchical partition.

We should note that regional analyses of the SCN has been performed by other
groups. Evans and co-workers used a similar approach to identify single-cell-like
regions of interest, but do not use clustering algorithms and choose the regions by
hand [52]. Silver and co-workers also used regions of interest, called superpixels,
but these were not necessarily identified as single cells. Based on these superpixels
they use threshold methods to determine regional differences in the SCN [53, 54].
Abel and co-workers used a threshold method based on mutual information on
single-cell-like regions of interest [55]. However, all studies encounter the known
limitations as described in the previous section using the threshold method. They
only find one large cluster and many isolated cell-like communities (in the shell
or dorsal part).

In Figure 3.13 we present the overall findings our method provides. In panel
A we can observe the experimental setup and the original sample with the illu-
minating neurons. In panel B we plot the average partition over all the samples
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(approximately 40); these results highlight the robustness of our findings and the
clear core-periphery partition. In C we plot the average signal of the two commu-
nities (blue and red) with the mean signal of the whole system (black). In panel
D we plot the deviations of each community signal from the common signal. We
found a perfect anti-correlation with respect to the global mode. Our method is
indeed guaranteed to resolve mutually anti-correlated modules, as the result of
the maximization of the modularity. Note however, that the anti-correlation is
defined in terms of the “residual” signals with respect to the average system-wide
signal (see [7]).

3.5 Conclusions

Over the last few years community detection methods have revealed themselves
as useful tools to study the structure of complex systems. In this chapter, we
first have introduced a new approach aiming at analysing structural dependen-
cies, which result from different descriptions (weighted and binary activity) of
a complex system. Our approach enables us to quantify the level of “structural
information” encoded within the binary projection of weighted time series, and
measure variations and similarities between the different partitions.

Our findings suggest that the binary signatures of financial time series carry
significant structural information. These results are far from trivial, as one might
expect that the full knowledge of the amplitudes of price fluctuations is a key
component in clustering the markets into correlated groups. However, here we
explicitly showed that purely binary information can replicate the main features
obtained from complete information. Thus, we conclude that the key features of
the market structure are induced by the binary dynamics of the stocks. Even
when the two representations differ by some extent, the binary description pro-
vides very sensible information (as exemplified by the Financials sector in the
FTSE).

Typically, the binary signature of a time series is obtained as a projection
from the full weighted information, and is therefore known only if the latter is
also known. This means that there are not many practical situations in which the
full weighted information is unknown, while the binary projection is known. How-
ever, what can occur quite often (and indeed typically occurs) is that the weighted
amplitudes of time series increments, much more than their signs, are affected by
noise or errors. For instance, in many financial institutions (e.g. hedge funds or
investment banks) there are specific departments in charge of cleaning the data
and verifying their reliability. Generally, errors in the data are detected in the
form of increments with anomalously large or small absolute value. By contrast,
the sign of the increment itself is very robust to errors. Therefore our results indi-
cate that analyses based on binary projections are likely to be much more robust
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to noise than analyses based on the full original data. Since the extraction of the
binary signatures is an extremely simple procedure, while the verification of the
quality of weighted data can be very demanding and time consuming, our findings
suggest that, at least for the purpose of identifying non-trivially correlated groups
of stocks, the simpler procedure can be safely adopted.

Alongside the financial markets analysis, we have also applied our method to
brain data. This step was possible due to the maximum-entropy generalization of
the null model 3.2.2. By enforcing the total increments of each time step in the
data, under the maximum-entropy formalism, we were able to expand our method
to any system of signals with a common global factor, i.e. not be limited to a
system with N random walks with an ad hoc market mode. Moreover, the new
null model uses the optimal amount of information (eigenvalues) based on the
particular data structure and not the data size (i.e. N and T ) as before. In this
general setting, the method resolves the partition of communities with maximum
mutual anti-correlation, with respect to the global signal.

From a neuroscience perspective, our threshold-free method has a high poten-
tial to refine the search for functional modules in the brain. The fact that the
approach does not require a “traditional” functional network representation is en-
abling the use of complete data sets and not just parts of it. Another aspect of our
method that has significant implications for the research of brain networks is the
multi-resolution quality. Since our method can recursively filter any global factors
that are present in the system, we were able to detect single-cell-like regions of
interest. This result pushes the resolution limit beyond the state-of-the-art meth-
ods, when identifying functional modules.

We applied our method to the SCN, revealing a core-periphery functional
structure of two communities. Once the global signal is filtered from the sys-
tem, the two clusters present a distinct anti-correlated dynamics. The global
signal in this system corresponds to the common 24 hours cycle in all the cells,
where the two communities describe a phase leading and a phase lagging commu-
nity. This core-periphery structure confirms the ventral-dorsal distinction within
the SCN. The ventral part of the SCN receives light input and adjusts quickly
to changing light schemes, while the dorsal part of the SCN lags behind. Our
community detection approach enhances the identification and the subsequent
functional characterization of neuronal clusters in the SCN, possibly paving the
way for more elaborate network analysis on the level of single cells in other brain
regions.
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