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Chapter 2

Economic Networks

The International Trade Network (ITN) is a complex network formed by the bi-
lateral trade relations between world countries. The network complex structure
reflects important economic processes such as globalization, and the propagation
of shocks and instabilities. Both from the perspective of network theory and
macroeconomics, understanding the structure of the ITN is of paramount im-
portance: in particular, understanding which economic quantities play a role in
shaping the ITN structure is crucial. Traditional macroeconomics has mainly
used the Gravity Model to characterize the magnitude of trade volumes, using
macroeconomic properties such as GDP and geographic distance. On the other
hand, recent maximum-entropy network models successfully reproduce the com-
plex topology of the ITN, but provide no information about trade volumes. In
this chapter, we first discuss the role played by the countries GDP in determining
both the presence and the amount of trade exchanges between world countries.
Next, we make an effort to integrate these two currently incompatible approaches
via the introduction of two GDP driven models. We introduce a novel ingredi-
ent that we denote as ‘topological invariance’, i.e. the invariance of the expected
topology under an arbitrary change of units of trade volumes. Via this unified and
principled mechanism, which is transparent enough to be generalized to any eco-
nomic network, the models provide a new econometric framework wherein trade
probabilities and trade volumes can be separately controlled by macroeconomic
variables. The models successfully reproduce both the topology and the weights
of the ITN, finally reconciling the conflicting approaches.

The results presented in this chapter have been published in the following references:
A. Almog, T. Squartini, D. Garlaschelli New Journal of Physics, 17: 013009 (2015).
A. Almog, T. Squartini, D. Garlaschelli Int. J. Computational Economics and Econometrics, in
press, arXiv:1512.02454 (2016).
A. Almog, R. Bird, D. Garlaschelli arXiv:1506.00348 (2016).
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2.1 Introduction

2.1 Introduction

The bilateral trade relationships existing between world countries form a complex
network known as the International Trade Network (ITN). The observed complex
structure of the system is at the same time the outcome and the determinant of
a variety of underlying economic processes, including economic growth, integra-
tion, and globalization. Moreover, recent events such as the financial crisis clearly
pointed out that the interdependencies between financial markets can lead to cas-
cading effects which, in turn, can severely affect the real economy. International
trade plays a significant role among the possible channels of interaction among
countries [1, 2, 3, 4], thereby possibly further propagating these cascading effects
worldwide and adding one more layer of contagion. Characterizing the global
networked economy is, therefore, an important open problem and modelling the
ITN represents a crucial step of this challenge [5, 11, 13, 16, 17, 24, 25].

Historically, macroeconomic models have mainly focused on modelling the
trade volumes between countries. The Gravity Model, which was introduced in
the early 60’s by Jan Tinbergen [30], serves as a robust empirical model that aims
at predicting the bilateral trade flow between any two (trading) countries based
on the knowledge of their Gross Domestic Product (GDP) and mutual geographic
distance. Although the model has been upgraded, over the years, to include other
possible factors of macroeconomic relevance, like common language and trade
agreements, GDP and distance remain the two factors with the largest explana-
tory power. The gravity model can reproduce the observed trade volumes between
countries satisfactorily. However, at least in its simplest and most widespread im-
plementation, the model cannot account for zero volumes, therefore predicting
a fully-connected trade network. This outcome is entirely inconsistent with the
observed, heterogeneous, topology of the ITN, which represents the backbone on
which trade is made. Subsequent refinements of the gravity model allowing for
zero trade flows succeeded only in reproducing the total number of missing links,
not their position in the trade network, thereby producing sparser but still non-
realistic topologies [14, 15].

The sharp contrast between the observed topological complexity of the ITN
and the homogeneity of the network structure generated by the GM (including its
recent extensions) calls for significant improvements in the modelling approach.
Important steps have been made using network models [7, 38, 39, 23, 26|, among
which maximum-entropy techniques [18, 19, 20| have been proven to be partic-
ularly advantageous. Maximum-entropy models aim at reproducing higher-order
structural properties of real-world networks using lower-order information (more
precisely, node-specific), which is constrained to be reproduced [27, 28, 29]. Im-
portant examples of local properties that can be chosen as constraints are the
degree, i.e. the number of links of a node (in the ITN case, this is the number of
trade partners of a country) and the strength, i.e. the total weight of the links of
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a node (in the ITN case, this is the total trade volume of a country). Examples
of higher-order properties that the method aims at reproducing are the clustering
coefficient, which refers to the fraction of realised triangles around nodes, and the
degree correlations. The studies have focused on both binary and weighted rep-
resentations of the ITN, i.e. the two representations defined by the existence and
by the magnitude of trade exchanges among countries, respectively. In principle,
depending on which local properties are chosen as constraints, maximum-entropy
models can either fail or succeed in replicating the higher-order properties of the
ITN.

Importantly, the use of maximum-entropy models has lead to a counter-intuitive
result about the structure of the trade network: contrary to what naive economic
reasoning would predict, controlling for purely binary local properties (node de-
grees) is more informative than controlling for the corresponding weighted prop-
erties (node strengths). In other words, while the binary network reconstructed
only from the knowledge of the degrees of all countries is topologically very simi-
lar to the real ITN, the weighted network reconstructed only from the strengths
of all countries is very different (typically much denser) from the real network
[21, 22, 19]. This is somewhat surprising, given that economic theory assumes
that weighted properties (the total trade volume of a country) are per se more
informative than the corresponding binary ones (the number of trade partners of
a country). This empirical puzzle calls for a theoretical explanation and has gen-
erated further interest in the challenge of finding a unique mechanism predicting
link probabilities and link weights simultaneously. In this chapter, we will pro-
pose different models that successfully implement such mechanism. The models
can reproduce the observed properties of the ITN and finally highlight a clear
mathematical explanation for the observed binary/weighted asymmetry.

Our approach builds on previous theoretical results. Recently, an improved
reconstruction approach [32], based on an analytical maximum-likelihood esti-
mation method [18], has been proposed in order to define more sophisticated
maximum-entropy ensembles of weighted networks. This approach exploits pre-
vious mathematical results [34] characterizing a network ensemble where both
the degree and the strength sequences are constrained. The graph probability is
the so-called generalized Bose-Fermi distribution [34], and the resulting network
model goes under the name of Enhanced Configuration Model (ECM) [32]. When
used to reconstruct the properties of several empirical networks, the ECM shows
a significant improvement with respect to the case where either only the degree
sequence (Binary Configuration Model, BCM for short) or only the strength se-
quence (Weighted Configuration Model, WCM for short) is constrained. One,
therefore, expects that combining the knowledge of strengths and degrees is pre-
cisely the ingredient required to reproduce the ITN from purely local information
successfully. Indeed, a more recent study has shown that, when applied to in-
ternational trade data (both aggregated and commodity-specific), the method
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2.2 Data

successfully reproduces the key properties of the ITN, across different years and
for different levels of aggregation (i.e. for various commodity-specific layers) [33].

However, in itself, the ECM is a general network reconstruction method, rather
than a true structural model. To transform it into a proper network model for
the ITN structure, it would be necessary to find a macroeconomic interpretation
for the underlying variables involved in the method. This operation would corre-
spond to what has already been separately performed in different studies. For the
binary level, a strong relationship between the GDP and the variable controlling
the degree of a country in the BCM [7, 36] was identified. At the purely weighted
level, a similar relationship was found between the GDP and the variable control-
ling the strength of a country in the WCM [23], in the same spirit of the gravity
model. Here, we aim at generalizing the results, to one model that is able to
generate both strengths and degrees.

We start with a summarized review of previous maximum-entropy approaches
to the characterization of the ITN, thus explaining the mathematical building
blocks on which we build our unifying approach. The rest of the chapter is or-
ganized as follows. In section 2.4 we discuss the macroeconomic approach to
model the ITN, in particular, the Gravity Model of Trade. We also present vari-
ous empirical relations existing between the GDP and a range of country-specific
properties. These results suggest a justification for the use of GDP as an empir-
ical fitness to be used in maximum-entropy models. In section 2.5 we introduce
a novel, GDP-driven, two-step model that successfully reproduces the binary and
the weighted higher-order properties of the ITN simultaneously. In section 2.6
we introduce what we call the Enhanced Gravity Model (EGM) of trade, which
represents a new, generalized model combining maximum-entropy network mod-
els with economically established gravity-like models. The model overcomes the
limitations of the existing approaches and retains the power of the popular GM
in reproducing trade volumes via geographic distances and GDPs. While at the
same time dramatically improving its network properties by reproducing both
first-order properties, such as node degree and node strength, and higher-order
properties, such as assortativity and clustering (in both binary and weighted rep-
resentations of the network). Finally, in section 2.7 we summarize our results and
provide some conclusions.

2.2 Data

We have used data from the Gleditsch database which spans over the years 1950-
2000 [9], and from the United Nations Commodity Trade Database (UN COM-
TRADE) [10] from the year 1992 to 2004. We use yearly bilateral data on exports
and imports Here we analyze the aggregated level, which results in yearly tempo-
ral snapshots of undirected total trade flows. The data sets are available in the
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form of weighted matrices of bilateral trade flows w;;, the associated adjacency
matrices a;; and vectors of GDPs. There are approximately 200 countries in the
data set covering the considered 51 years; the GDP is measured in U.S. dollars.

This data set was the subject of many studies exploring both purely the binary
representation, and its full weighted representation [18, 32, 33]. Another data set
which is widely used to represent the ITN network is the trade data collected by
Gleditsch [9]. The data contain the detailed list of bilateral import and export
volumes, for each country in the period 1950-2000.

2.3 Maximum-entropy approaches to the interna-
tional trade network

Since our results are a generalization of previous maximum-entropy approaches
to the characterization of the I'TN, in this section we first briefly review the main
results of those approaches, while our new findings are presented in the next sec-
tion. In doing so, we gradually introduce the mathematical building blocks of our
analysis and illustrate our main motivations. Moreover, since previous studies
have used different data sets, we also recalculate the quantities of interest on the
same data set that we will use later for our own investigation. This allows us to
align the results of previous approaches and properly compare them with our new
findings.

2.3.1 Binary structure

If one focuses solely on the binary undirected projection of the ITN, then the Bi-
nary Configuration Model (BCM) represents a very successful maximum-entropy
model. In the BCM, the local knowledge of the number of trade partners of each
country, i.e. the degree sequence, is specified. It has been shown that higher-
order properties of the ITN can be simply traced back to the knowledge of the
degree sequence [21]. This result adds considerable information to the standard
results of traditional macroeconomic analyses of international trade. In particu-
lar, it suggests that the degree sequence, which is a purely topological property,
needs to be considered as an important target quantity that international trade
models, in contrast with the mainstream approaches in economics, should aim at
reproducing [19].

Let us first represent the observed structure of the ITN as a weighted undi-
rected network specified by the square matrix W*, where the specific entry wy;
represents the weight of the link between country ¢ and country j. Then, let us
represent the binary projection of the network in terms of the binary adjacency
matrix A*, with entries defined as aj; = ©[w};], Vi, j, where © is a Heaviside
step function. A maximum-entropy ensemble of networks is a collection of graphs
where each graph is assigned a probability of occurrence determined by the choice
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2.3 Maximum-entropy approaches to the international trade network

of some constraints. The BCM is a maximum-entropy ensemble of binary graphs,
each denoted by a generic matrix A, where the chosen constraint is the degree
sequence. In the canonical formalism [18], the latter can be constrained by writing
the following Hamiltonian:

N
H(A)=> 0;ki(A) (2.1)
=1

where the degree sequence is defined as k;(A) = 21\;2 a;; = Zﬁél Ow;;], Vi,

and 0; are the free parameters (Lagrange multipliers) f18]. As a result of the con-
strained maximization of the entropy [18], the probability of a given configuration
A can be written as

eiH(A)

_ H zizy | 1 1=ai; 22)
oA e A 1+ 2z 1+ 22 '

i<j

P(A) =

ZiZ4
1+ZiJZj
a link between nodes ¢ and j, which is also the expected value

where z; = e~ % and Dij = . The latter represents the probability of forming

ZiZj

— =D 2.3
1+Zi2’j Pij ( )

(aij) =
According to the maximum-likelihood method proposed in 18], the vector of un-
knowns z' can be numerically found by solving the system of N coupled equations

N
<k)l> = Zpi]‘ = k‘Z(A*) Vi (24)

J#i
where the expected value of each degree k; is matched to the observed value
E;(A*) in the real network A*. The (unique) solution will be indicated as z*.
When inserted back into eq.(2.3), this solution allows us to analytically describe
the binary ensemble matching the observed constraints. Being the result of the
maximization of the entropy, this ensemble represents the least biased estimate
of the network structure, based only on the knowledge of the empirical degree

sequence.

In fig. 2.3 we plot some higher-order topological properties of the ITN as
a function of the degree of nodes, for the 2002 snapshot. These properties are
the so-called average nearest neighbour degree and the clustering coefficient. For
both quantities, we plot the observed values (red points) and the corresponding
expected values predicted by the BCM (blue points). The exact expressions for
both empirical and expected quantities are provided in the Appendix. We see
that the expected values are in very close agreement with the observed properties.
These results replicate recent findings [19] based on the same UN COMTRADE
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Figure 2.1: Binary Configuration Model, reconstruction of higher-order
properties. between the observed undirected binary properties (red points) and
the corresponding ensemble averages of the BCM (blue points) for the aggregated
ITN in the 2002 snapshot. Left panel: Average Nearest Neighbor Degree k™"
versus degree k;. Right panel: Binary Clustering Coefficient C; versus degree k;.
The figure shows that the expected values are in very close agreement with the
observed properties.

data. They show that at a binary level, the degree correlations (disassortativity)
and clustering structure of the ITN are excellently reproduced by the BCM. As
we also confirmed in the present analysis, these results were found to be very
robust, as they hold true over time and for various resolutions (i.e., for different
levels of aggregation of traded commodities) [19].

Relation with the fitness Model

It should be noted that eq.(2.3) can be thought of as a particular case of the
so-called Fitness Model [35], which is a popular model of binary networks where
the connection probability p;; is assumed to be a function of the values of some
‘fitness’ characterizing each vertex. Indeed, the variables z* can be treated as
fitness parameters [7, 36] which control the probability of forming a link. A very
interesting correlation between a fitness parameter of a country (assigned by the
model) and the GDP of the same country has been found [36]. This relation is

replicated here in fig. 2.4, where the rescaled GDP of each country (g; = %)
is compared to the value of the fitness parameter z; obtained by solving eq.(2.4).

The red line is a linear fit of the type
zi=Va- g (2:5)

This leads to a more economic interpretation where the fitness parameters can
be replaced (up to a proportionality constant) with the GDP of countries, and
used to reproduce the properties of the network. This procedure, first adopted in
[7], can give predictions for the network based only on macroeconomic properties
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Figure 2.2: Correlation between Lagrange multipliers and countries
GDP. The calculated z;, compared with the g; (re-scaled GDP) for each country
for the undirected binary aggregated ITN in the 2002 snapshot, with the linear
fit z; = V/a - g; (red line).

of countries, and reveals the importance of the GDP to the binary structure of
the ITN. Importantly, this observation was the first empirical evidence in favour
of the fitness model as a powerful network model [7]. Likewise, other studies
have shown that the observed topological properties turn out to be important in
explaining macroeconomics dynamics [1, 2].

2.3.2 Weighted structure

Despite the importance of the topology, the latter is only the backbone over which
goods are traded, and the knowledge of the volume of such trade is critical. To
be able to give predictions about the weight of connections, one needs to switch
from an ensemble of binary graphs to one of weighted graphs.

The simplest weighted counterpart of the BCM is the WCM, which is a
maximum-entropy ensemble of weighted networks where the constraint is the
strength sequence, i.e. the total trade of each country in the case of the ITN.
In the canonical formalism [18], the latter can be constrained by writing the fol-
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lowing Hamiltonian:
N
H(W) = 0;5(W) (2.6)
i=1

where the strength sequence is defined as s;(W) = Zj\;l wij, Vi, and 6; are

the free parameters (Lagrange multipliers) [18]. As a result of the constrained
maximization of the entropy [18], the probability of a given configuration W can
be written as

—H(W)

P(W):W

= [T )™ (1 = viy) (2.7)
i<j
where y; = e %.

Recent studies have shown that the higher-order binary quantities predicted
by the WCM, as well as the corresponding weighted quantities, are very different
from the observed counterparts [18, 19]. More specifically, the main limitation of
the model is that of predicting a mostly homogeneous and very dense (sometimes
fully connected) topology. Roughly speaking, the model excessively ‘dilutes’ the
total trade of each country by distributing it to almost all other countries. This
failure in correctly replicating the purely topological projection of the real network
is the root of the bad agreement between expected and observed higher-order
properties.

Relation with the Gravity Model

Just like the BCM has been related to the Fitness Model [7], a variant of the WCM
has been related to the Gravity Model [23]. The variant is actually a continuous
version of the WCM, where the strength sequence is constrained, and the weights
are real numbers instead of integers. When applied to the ITN, the model gives
the following expectation for the weight of the links:

<wu) =T- 9i9; VZ,] (28)

where 7" is the total strength in the network, and g; is the re-scaled GDP as
before [23]. In essence, the above expression identifies again a relationship between
the GDP and the hidden variable (analogous to the fitness in the binary case)
specifying the strength of a node.

Equation (2.8) coincides with eq.(2.9) where 5 = 1 and v = 0. The model,
therefore, corresponds to a particularly simple version of the Gravity Model. In-
deed, the model reproduces reasonably well the observed non-zero weights of the
ITN [23]. However, just like the Gravity Model, the model predicts a complete
graph where a;; = 1 Vi, j, and dramatically fails in reproducing the binary ar-
chitecture of the network. This effect can be easily shown by realizing that the
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2.4 Macroeconomic approaches to the international trade network

continuous nature of edge weights, which can take non-negative real values in
the model, implies that there is a zero probability of generating zero weights (i.e.
missing links). We will show the prediction of this model in comparison with our
results later on in the chapter (when compared to the two-step model).

2.4 Macroeconomic approaches to the international
trade network

In this section, after covering the maximum-entropy approaches, we briefly review
the macroeconomic approaches to the characterization of the ITN, mainly focusing
on the popular Gravity model of trade. Next, we discuss the role played by
the countries GDP in determining both the presence and the amount of trade
exchanges between world countries. Identifying the specific relations between the
GDP and network properties, will enable us later to introduce models, which
converge the two approaches.

2.4.1 The gravity model of trade

Traditionally, macroeconomic models have mainly focused on the weighted repre-
sentation, because economic theory perceives the latter as being a prior: more
informative than the purely binary representation. The focus is on the ex-
pected volume of trade between two countries, given certain dyadic and country-
specific macroeconomic properties. Jan Tinbergen, the physics-educated! Dutch
economist who was awarded the first Nobel memorial prize in economics intro-
duced the so-called Gravity Model (GM) of trade [41]. The GM aims at inferring
the volume of trade between any two (trading) countries from the knowledge of
their Gross Domestic Product, geographic distance, and other possible dyadic
quantities of macroeconomic relevance (such as common currency, trade agree-
ments, bordering conditions, common language, etc.) [58]. In one of its simplest
forms, the gravity model predicts that the expected volume of trade between
countries ¢ and j is

(wi;) = a GDP} GDP/ R}, (2.9)
where GD Py, is the Gross Domestic Product of country k, R;; is the geographic
distance between countries 7 and j, and «, (3, 7y are free parameters to be estimated
by fitting the model to the data [30, 15, 42, 43].2 More complicated variants of

! Jan Tinbergen studied physics in Leiden, where he carried out a Ph.D. under the supervision
of the famous theoretical physicist Paul Ehrenfest. Tinbergen defended his thesis in 1929, and then
started a career as an economist. He was awarded the first Nobel memorial prize in economics in 1969.

2Note that eq.(2.9), by assuming for simplicity the same exponent 3 for the GDPs of both ¢ and j,
predicts (w;;) = (wj;) and should therefore be interpreted as a model for the undirected version of the
network. In this representation, the trade from country i to country j and the trade from country j
to country ¢ are combined into a single value of bilateral trade. Given the highly symmetric structure
of the ITN at the aggregate level (i.e. when all traded products are combined), this simplification
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eq.(2.9) use additional explanatory factors (with associated free parameters) either
favoring or resisting trade. These additional factors can be country-specific like
the GDP (e.g. population) or dyadic like the geographic distances (e.g. common
currency, trade agreements, etc.). In general, if we collectively denote with n;
the set of node-specific factors and with D;; the set of dyad-specific factors used,
eq.(2.9) can be generalized to

(wij) = F(n;,n;,Dyj), (2.10)

where, in general, the functional form of F'(n;,n;, D;;) need not be of the same
type as in eq.(2.9), and each component of n; and D;; may have a corresponding
free parameter to be fitted. In fact, despite the fact we are focusing on the grav-
ity model applied to the international trade network as our main application, our
discussion applies to many other models of (socio-economic) networks as well. For
instance, the recent Radiation Model (RM) [45], which improves the predictions of
the GM when applied to mobility (rather than trade) networks, is also described
by eq.(2.32), where n; and D;; are certain geographical and demographical vari-
ables. Our following discussion applies to both the GM and the RM, as well as
any more general model described by eq.(2.10).

Equation (2.10) refers to the expected value of w;;. The full probability dis-
tribution from which this expected value is calculated depends on the particular
implementation of the model. In the GM case, this distribution can be Gaus-
sian (implying that the expected weights can be fitted to the observed ones via
a simple linear regression [46, 47]), log-normal (requiring a linear regression of
log-transformed weights [49]), Poisson [49], or more sophisticated [48] (see [42]
for a review). The non-uniqueness of the weight distribution already highlights a
fundamental arbitrariness in the model. This is only one of the limitations of the
GM and similar models.

The GM can successfully reproduce the observed trade volume between trading
countries. However, at least in its simplest and most widespread implementation,
the model cannot generate zero volumes and therefore predicts a fully connected
network. From a model fitting perspective, this means that the GM can be fitted
only to the mon-zero weights, i.e. the strictly positive volumes existing between
pairs of connected countries. Therefore the model effectively disregards the empir-
ical topology of the network, thus making predictions on the basis of incomplete
data. Operatively, the GM can predict a realistic trade volume only after the
presence of the trade relation itself has been established independently [42]. This
problem is particularly critical, since, depending on the datasets, up to approxi-
mately half of the possible links in the real ITN are not realized [21, 22, 7, 19]. If
the total trade is disaggregated into commodity-specific trade flows, the resulting
commodity-specific networks are even sparser [50, 51|. Clearly, the same problem

retains all the basic network properties of the system [38, 21, 22, 44, 59, 60]. Throughout the chapter,
we will stick to this undirected (bilateral trade) representation, but the extension to the directed case
is straightforward.
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2.4 Macroeconomic approaches to the international trade network

holds in general for the RM and other models of the form (2.10).

While there are variants and extensions of the GM that do generate zero
weights (e.g. the so-called Poisson pseudo-maximum likelihood models [49] and
‘zero-inflated’ gravity models [48]), these variants can mainly reproduce the empir-
ical link density (the realized fraction of connections), but not the observed topol-
ogy [42, 43]. Indeed, even in these generalized forms, the GM predicts a largely
homogeneous topology, while the empirical topological backbone of the ITN is
much more heterogeneous and complex [15, 42]. For instance, the distribution of
node degree (number of connections of a country) is very broad, as for the distribu-
tion of node strength (total trade volume of a country) [5, 38, 11, 39, 13, 14, 15]. A
small number of rich countries dominate the trade patterns and account for most
of the trade. Clustering and mixing patterns exhibit the rich-club phenomenon
[65, 56], where well-connected nodes also connected to each other. The higher-
order correlations are disassortative in the binary representation (nodes of low
degree are more likely to be connected to nodes of a higher degree than expected
by chance [21]), but assortative in the weighted representation (nodes are more
likely to be connected to nodes of similar strength than expected by chance[22]).
These structural properties are remarkably stable over time: despite the fourfold
increase in trade volume over the last 65 years, the overall topology of interna-
tional trade has remained largely constant [57].

In the next section, we will move forward, by trying to detect similarities
between the two approaches. We explore the various empirical relations between
the GDP of a country and specific country (network) properties like degree and
strength. This simple empirical analysis reveals the GDP as a “macroeconomic
fitness”, i.e. a powerful predictor of the number and strength of country’s trade
relations.

2.4.2 The GDP as macroeconomic fitness

Let us start with an empirical analysis of the GDP. We first define new rescaled
quantities of the GDP: g; and g;

_ GDP;

DP; .
Vi gi = G]:?Pi’ Y i, (2.11)

where GDP,,0an = w is the average GDP for an observed year. The two

quantities adjust the values of the countries GDPs for both the size of the network
and the growth, and are a connected by a simple relation §; = N - g;. We use
the two quantities of the rescaled GDP throughout our analysis, mainly using g;
for the reason that the quantity is bounded 0 < g; < 1 which coincides with our
model.
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Figure 2.3: Cumulative Distribution of countries GDP for different
decades. Empirical cumulative distributions Ps(g) of the GDP rescaled to the
mean, for different years. The curve is a log-normal distribution fitted to the
data.

In fig. 2.3 we plot the cumulative distribution of the rescaled GDP g; with i
indexing the countries for the different decades collected into our data set. What
emerges is that the distributions of the rescaled GDPs can be described by log-
normal distribution characterized by similar values of the parameters. The log-
normal curve is fitted to all the values (from the different decades). This suggests
that the rescaled GDPs are quantities which do not vary much with the evolution
of the system, thus potentially representing the (constant) hidden macroeconomic
fitness ruling the entire evolution of the system itself. This, in turn, implies un-
derstanding the functional dependence of the key topological quantities on the
countries rescaled GDP.

As already pointed out by a number of results [19], the topological quantities
which play a major role in determining the I'TN structure are the countries degrees
(i.e. the number of their trading partners) and the countries strengths (i.e. the
total volume of their trading activity). Thus, the first step to understanding
the role of the rescaled GDP in shaping the ITN structure is quantifying the
dependence of degrees and strengths on it. Since we want to analyse each snapshot
at a time (correction for size is not needed), here we will use the bounded rescaled
GDP g;. Moreover, this form of the rescaled GDP coincides with a bounded
macroeconomic fitness value, which is consistent with the models presented in the
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next sections.

To this aim, let us explicitly plot k; versus g; and s; versus g; for a particular
decade, as shown in fig. 2.4. The red points represent the relations between the
two pairs of observed quantities for the 2000 snapshot. Interestingly, the rescaled
GDP is directly proportional to the strength (on a log-log scale), thus indicating
that the wealth of countries is strongly correlated to the total volume of trade they
participate in. Such evidence provides the empirical basis for the definition of
the gravity model, stating that the trade between any two countries is directly
proportional to the (product of the) countries GDP.

On the other hand, the functional dependence of the degrees on the g; values
is less simple to decipher. Generally speaking, the relation is monotonically in-
creasing, and this means that countries with high GDP also have a high degree,
i.e. are strongly connected with the others; coherently, countries characterized
by a low value of the GDP have also a low degree, i.e. are less connected to
the rest of the world. Moreover, while for low values of the GDP there seems to
exist a linear relation (on a log-log scale) between k; and g;, as the latter rises
a saturation effect is observed (in correspondence of the value k0 = N — 1),
due to the finite size of the network under analysis. Roughly speaking, richest
countries lie on the vertical trait of the plot, while poorest countries lie on the
linear trait of the same plot: in other words, the degree of countries represents a
purely topological indicator of the countries wealth.

To sum up, fig. 2.4 shows that countries GDP plays a double role in shaping the
ITN structure: first, it controls for the number of trading channels each country
establishes; second, it controls for the volume of trade each country participates in,
via the established connections. The blue points in fig. 2.4, instead, represent the
relation between (k;) versus g; and (s;) versus g;, where the quantities in brackets
are the predicted values for degrees and strengths generated by our model, which
we will discuss later.

The obvious question that arises from these findings is can we extend the result
shown in section 2.3 to create a GDP-driven model for both the binary and the
weighted representation of the ITN. In the next section, we tackle exactly this
problem using a recent maximum-entropy model [33] which is able to reproduce
both representations.
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Figure 2.4: The relation of the GDP with local network properties. Com-
parison between observed (red points) and expected (blue points) degrees and
strengths for the aggregated ITN in the 2000 snapshot. Right panel: degree k;
versus normalized GDP g; and expected degree (k;) versus normalized GDP g;.
Left panel: strength s; versus normalized GDP g; and expected strength (s;)
versus normalized GDP g;.

2.5 A GDP-driven model of the ITN

Motivated by the challenge to satisfactorily model both the topology and the
weights of the ITN, the ECM has been recently proposed as an improved model
of this network [33]. The ECM focuses on weighted networks, and can enforce
the degree and strength sequence simultaneously [32]. It builds on the so-called
generalized Bose-Fermi distribution that was first introduced as a null model of
networks with coupled binary and weighted constraints [34].

In the ECM, the degree and strength sequence can be constrained by writing
the following Hamiltonian:

N
HW) = 3 [0k (W) + Bisi(W)] (2.12)

i=1

where the strength sequence is defined as s;(W) = Z;\;l wi;, Vi and the degree

sequence as k; (W) = Zj]\;? aij = Zj\;? Olw;;], Vi. As a result, the probability of
a given configuration W can be written as

e W) 11 (i)™ (yiy;)" (1 = yiy;) (2.13)
Zw/ e H(W) |

P(W) =
1 —yiy; + zix9:y;

i<j
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Figure 2.5: Enhanced Configuration Model, reconstruction of higher-
order properties. Comparison between the observed undirected binary and
weighted properties (red points) and the corresponding ensemble averages of the
the ECM (blue points) for the aggregated ITN in the 2002 snapshot. Top left
panel: Average Nearest Neighbour Degree k™" versus degree k;; Top right panel:
Binary Clustering Coefficient C; versus degree k; ; Bottom left panel: Average
Nearest Neighbour Strength s™" versus strength s; ; Bottom right panel: Weighted
Clustering Coefficient C"' versus strength s; .

with z; = e~ and 3; = e ?. The ECM gives the following predictions about
the probability of a link ({a;;)) and the expected weight of the link ((w;;)):

LTiljYiYj
(aij) = : = pij (2.14)
! 1 — iy + 2% 9:y; !
LijYiYj Pij
(wij) = R = — (2.15)

(1 — iy + zizjyiy;) (L —wayy) 1 —wayy

According to the maximum-likelihood method proposed in [32], the vectors of
unknowns Z and g can be numerically found by solving the system of 2N coupled
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equations
N
(ki(W)) = Zpij =ki(W*) Vi (2.16)
i
(5:(W)) = (wij) = s{(W*) Vi (2.17)
J#i

and will be indicated as ©* and y*. These unknown parameters can be treated as
fitness parameters which control the probability of forming a link and the expected
weight of that link simultaneously.

The application of the ECM to various real-world networks shows that the
model can accurately reproduce the higher-order empirical properties of these
networks [32]. When applied to the ITN in particular, the ECM replicates both
binary and weighted empirical properties, for different levels of disaggregation,
and for several years (temporal snapshots) [33]. Indeed, in fig. 2.5 we show the
higher-order binary quantities (average nearest neighbour degree and clustering
coefficient) as well as their weighted ones (average nearest neighbour strength and
weighted clustering coefficient) for the 2002 snapshot of the ITN. We compare the
observed values (red points) and the corresponding quantities predicted by the
ECM (blue points). The mathematical expressions for all these quantities are
provided in the Appendix. We find a very good agreement between data and
model, confirming the recent results in [33] for the data set we are using here. We
also confirmed that these results are robust for several temporal snapshots [33].

2.5.1 From Lagrange multipliers to macroeconomic prop-
erties

Considering the promising results of the ECM and the results from section 2.4.2,
we now make a step forward and check whether the hidden variables z; and
y;, which effectively reproduce the observed ITN, can be thought of as ‘fitness’
parameters having a clear economic interpretation. This amounts to checking
whether the relation shown previously in fig. 2.4 for the purely binary case can
be generalized in order to find a macroeconomic interpretation to the abstract
fitness parameters in the general weighted case as well.

In fig. 2.6 we show the relationship between the two parameters x; and y; and
the rescaled GDP (g;) for each country of the ITN in the 2002 snapshot. We find
strong correlations between these quantities. The fitness parameter z; turns out
to be in a roughly linear relation with the rescaled GDP g¢;, fitted by the curve

v =a- g, (2.18)

where /a is the fitted constant, and g; = % (all the GDPs are relative

to that specific year). It should be noted that this relation is similar to that
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Figure 2.6: Relation between Lagrange multipliers of the ECM and coun-

tries GDP. calculated ; (left panel) and - (right panel) compared with the g;

(rescaled GDP) for each country for the undirected binary aggregated ITN in the
2002 snapshot, with the linear fits (in log-log scale) z; = \/a - g;, and - =bgf
(red lines), where a, b, and ¢ are the fitted constant parameters per year.

found between z; and g; in the BCM and shown previously in fig.2.4, but less
accurate. This observation will be useful later. By contrast, since the GDP is
an unbounded quantity, while the fitness parameter y; is bounded between 0 and
1 (this is a mathematical property of the model [34, 32]), the relation between
y; and g; is necessarily highly nonlinear. A simple functional form for such a
relationship is given by

b-gf

= —. 2.19
14+0-9g¢ (2.19)

Yi

Indeed, fig. 2.6 confirms that the above expression provides a very good fit to the
data.

We checked that the above results hold systematically over time, for each
snapshot of the ITN in our data set. This implies that, in a given year, we can
insert eqs.(2.18) and (2.19) into eqs.(2.38) and (2.37) to obtain a GDP-driven
model of the ITN structure for that year. Such a model highlights that the GDP
has a crucial role in shaping both the binary and the weighted properties of the
ITN. While this was already expected on the basis of the aforementioned results
obtained using the BCM and the WCM (or the corresponding simplified gravity
model) separately, finding the appropriate way to explicitly combine these results
into a unified description of the ITN has remained impossible so far. Rather than
exploring in more detail the predictions of the GDP-driven model in the form
described above, we first make some considerations leading to a simplification of
the model itself.
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2.5.2 Reduced two-step model

At this point, it should be noted that we arrived at two seemingly conflicting
results. We showed that both the BCM and ECM give a very good prediction for
the binary topology of the network. However, eqs.(2.3) and (2.38), which specify
the connection probability p;; in the two models, are significantly different. The
comparable performance of the BCM and the ECM at a binary level (see figs.2.3
and 2.5) makes us expect that, when the specific values z* and #* are inserted into
eqs.(2.3) and (2.38) respectively, the values of the connection probability become
comparable in the two models, despite the different mathematical expressions.

In fig. 2.7 we compare the the two probabilities for the ITN in the 2002
snapshot. Note that each point refers to the probability of creating a link between
a pair of countries, which results in W points. Indeed, we can see that the
values are scattered along the identity line, confirming the expectation that the
connection probability has similar value in the two models.

The above result allows us to make a remarkable simplification. In eqs.(2.38)
and (2.37), we can replace the expression for p;; provided by the ECM with
that provided by the BCM in eq.(2.3). To avoid confusion, we denote the new
probability with pﬁj, where ts stands for ‘two-step’, for a reason that will be clear
immediately. This results in the following equations for the expected network
properties:

ts . Zizj _ ts
(aij> = 71 n Zizj = pij7 (220)
ts
ts Pij
Wi = —, 2.21
i) = o (221)

ts)

where the z;’s, and therefore the p!’’s, depend only on the degrees through
eq.(2.4), while the y;’s and the (wij>gs’s depend on both strengths and degrees
through eqs.(2.16) and (2.17).

In this simplified model the connection probability, which fully specifies the
topology of the ensemble of networks, no longer depends on the strengths as in
the ECM, while the weights still do. This implies that we can specify the model
via a two-step procedure where we first solve the N equations determining pf; via
the degrees, and then find the remaining variables determining (w;;)** through
the ECM. For this reason, we denote the model as the Two-Step (TS) model.

The probability of a configuration W reads

P(W) = ] ¢ (wiy) (2.22)
i<j
where
s Zi%i (2%] Yils Wij—aij I*yiy' Qij
o3 (g) = 52 09 (1 = i) 2.23)

1+ Zi%j
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Pij BCM

Figure 2.7: Link formation probability for the different models. The
probability of forming a link in the ECM p;; ECM compared to the probability
in the BCM p;; BCM for the undirected binary aggregated ITN in the 2002
snapshot. The red line describes the identity line.

is the probability that a link of weight w;; connects the nodes (countries) i and
j. The above probability has the same general expression as in the original ECM
[32], but here z; comes from the estimation of the simpler BCM. It is instructive
to rewrite (2.23) as

1
ts ts
B5(0) = (1 pte). 2.24
sz( ) 1 zi2; ( pzy)7 ( )
qf;(w) = pf;f(yiyj)w_l(l —¥y;), Yw >0 (2.25)

to highlight the random processes creating each link. As a first step, one deter-
mines whether a link is created or not with a probability pfj . If a link (of unit
weight) is indeed established, a second attempt determines whether the weight of
the same link is increased by another unit (with probability y;y;) or whether the
process stops (with probability 1 —y;y;). Iterating this procedure, the probability
that an edge with weight w is established between nodes ¢ and j is given precisely
by ¢i3(w) in eq.(2.25). The expected weight (w;;)"* is then correctly retrieved as
Eifo w- qu (w).

Using the relations found in egs.(2.5) and (2.19), we can input the g; as the
fitness parameters into eqs.(2.20) and (2.21) to get the following expressions that
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mathematically characterize our GDP-driven specification of the TS model:

ts a’gigj — ts
i — L) = pls 2.26
<a J> 1+ ag:g; Pi; ( )
1+ bgf)(1 + bgs
<wij>t8 — pts( gz)( gg). (227>

7 (1+ bgg + bgs)

The above equations can be used to reverse the approach used so far: rather than
using the 2N free parameters of the ECM (& and ¢) or of the TS model (2 and
) to fit the models on the observed values of the degrees and strengths, we can
now use the knowledge of the GDP of all countries to obtain a model that only
depends on the three parameters a, b, c. Assigning values to these parameters
can be done using two techniques: maximization of the likelihood function and
non-linear curve fitting. Since the model is a two-step one, we can first assign a
value to the parameter a, and only in the second step (once a is set) we fit the
parameters b and c.

We chose to fix a by maximizing the likelihood function [36], which results
in constraining the expected number of links to the observed number ((L) = L),
as in [7]. Fixing the values of b and c is slightly more complicated. Since the
model uses the approximated expressions of the TS model, rather than those of
the original ECM model, maximizing the likelihood function in the second step
no longer yields the desired condition (T") = T', where T is the total strength in
the network. Similarly, extracting the parameters from the fit as shown in fig. 2.6
does not maintain the total strength in the network. In absence of any a-priori
preference, we chose the latter procedure, due to its relative numerical simplicity
with respect to the former one.

In fig. 2.8 we show a comparison between the higher-order observed properties
of the I'TN in 2002 and their expected counterparts predicted by the GDP-driven
TS model. Again, the mathematical expressions of these properties are provided
in the Appendix. As a baseline comparison, we also show the predictions of
the GD P-driven WCM model with continuous weights described by eq.(2.8) [23],
which coincides with a simplified version of the gravity model as we mentioned.

We see that the GDP-driven TS model reproduces the observed trends very
well. Of course, as expected, the predictions in fig.2.8 (which use only three
free parameters) are noisier than those in fig.2.5 (which use 2N free parameters).
This is due to the fact that egs.(2.5) and (2.19) describe fitting curves rather than
exact relationships. Importantly, our model performs significantly better than the
WCM/gravity model in replicating both binary and weighted properties. Again,
the drawback of these models lies in the fact that they predict a fully connected
topology and a relatively homogeneous network.

It should also be noted that the plot of average nearest neighbour strength
(s™™) predicted by our model is slightly shifted with respect to the observed points.
This effect is due to the fact that, as we mentioned, the total strength 7' (hence
the average trend of the s"") is only approximately reproduced by our model, as
a result of the simplification from the ECM to the TS model.
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Figure 2.8: Two-Step Model, reconstruction of higher-order properties.
Comparison between the observed properties (red points), the corresponding en-
semble averages of the G D P-driven two-steps model (blue points) and the GD P-
driven WCM model (green points), of the aggregated ITN in 2002. Top left:
Average Nearest Neighbour Degree k'™ versus degree k;. Top right: Binary Clus-
tering Coefficient ¢; versus degree k;. Bottom left: Average Nearest Neighbour
Strength s}" versus strength s;. Bottom right: Weighted Clustering Coefficient
c}’ versus strength s;. The GDP-driven TS model reproduces the empirical trends
very well with respect to the WCM.

As for all the other results in this chapter, we checked that our findings are
robust over the entire time span of our data set. We, therefore, conclude that the
ECM model, as well as its simplified TS variant, can be successfully turned into
a fully GDP-driven model that simultaneously reproduces both the topology and
the weights of the ITN.

The success of the TS model has a meaningful interpretation. Looking back at
eqs.(2.20) and (2.26), we recall that the effect of the T'S approximation is the fact
that the connection probability pf? can be estimated separately from the weights
(w;;)'*, using only the knowledge of the degree sequence if eq.(2.20) is used, or the
GDP and total number of links if eq.(2.26) is used, while discarding that of the
strengths. By contrast, the estimation of the expected weights (w;;)** cannot be
carried out separately, as it requires that the connection probability pﬁj appearing
in eqs.(2.21) and (2.27) is estimated first. This asymmetry of the model means
that the topology of the ITN can be successfully inferred without any information
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about the weighted properties, while the weighted structure cannot be inferred
without topological information. The expressions defining the T'S model provide
a mathematical explanation for this otherwise puzzling effect that has already
been documented in previous analyses of the ITN [19, 33].

2.6 The enhanced gravity model

In the previous section, we have shown that the two-step model can reproduce
the higher-order properties of both representations of the ITN. However, despite
the vast improvements the model represent, it still has some definite limitations.
Firstly, the model does not allow to introduce additional macroeconomic param-
eters like geographic distance or other pair-countries information like trade re-
lations or common borders. This type of information is frequently being used
in macroeconomic models. Furthermore, the model cannot reproduce the spe-
cific weights w;; of the network. In this section, using a different methodology
than before, we start with the gravity model and reformulate it according to
maximum-entropy principles. This maximum-entropy generalization is aimed at
creating a model that combines the advantages of the gravity model (accurate
link expectation) with the benefits of the maximum-entropy models (topology
and higher-order reconstruction).

As we discussed before, the gravity model in eq.(2.10) (which includes eq.(2.9)
as a particular case) is successful in reproducing link weights only after the exis-
tence of the links themselves has been preliminarily established. This means that
eq.(2.10) in actually incorrect and should by rather reformulated as a model for
the conditional expectation of the weight w;;, given that w;; > 0.

To do so, we need to introduce ¢;;(w) as the probability that the volume of
trade between countries ¢ and j takes a value w, with w being, without loss of gen-
erality, a non-negative integer number (the event w = 0 indicates the absence of a
trade link). The probability ¢;;(w) is the fundamental quantity that fully specifies
the model. In particular, it controls both the topology and the link weights of the
network. Our aim is to find the form of ¢;;(w) that produces the desired gravity-
like conditional expectation for link weights, as well as a realistically expected
topology. The search for the form of ¢;;(w) will be guided by the important re-
quirement that the expected topology should not depend on the (arbitrary) units
of measure chosen to measure the link weights. The latter requirement will be
referred to as topological invariance.

Our first requirement is that ¢;j(w) produces eq.(2.10), once the latter has
been rewritten as an expression for the conditional weights. We perform this
rewriting first. Note that the probability p;; that countries ¢ and j are connected
(irrespective of the volume of trade) is given by

pij = 1 —qi;(0) = (a;j), (2.28)
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where a;; = O(w;;) is the entry of the binary adjacency matrix of the network
(equal to 1 if a link between countries ¢ and j exists and 0 otherwise). Note that
pi;j does not depend on ¢;;(w) for w > 0. By contrast, the expected trade volume
(irrespective of whether a connection is established) is given by

<wij> = Z w Qij(w)v (2.29)

w>0

which does not depend on ¢;;(0). Apparently, the fact that (a;;) and (w;;) depend
on different quantities implies that they can be defined separately, thus allowing
one to reproduce the topology and the weights simultaneously. However, we
will show that this is not the case: to enforce topological invariance, an explicit
dependence between (a,;) and (w;;) should be introduced.

To rewrite eq.(2.10) as a conditional expectation, we define the conditional
expected weight of the link between nodes i and j as

(wijla; =1) = Z w gij(wla; =1) = <w_ii> (2.30)
w>0 Dij
where
s (wlayy = 1) = &= @) _ 4i(w) (2.31)

u>0 Qij (u) Dij

is the (correctly renormalized) conditional probability that w;; equals w given
that a;; = 1 (i.e., given that the link is realized). We can now replace Eq. (2.10)
with the intended expression

(wijlai; = 1) = F(n;, 05, Dyj). (2.32)

Our next requirement is that ¢;;(w) enforces topological invariance. To ensure
that this is done without making ad hoc assumptions and using only empirical
information, we are going to formulate the problem within a maximum-entropy
framework. In doing so, we will generalize previous maximum-entropy formula-
tions of the GM by making them manifestly topologically invariant. For clarity,
in the next section we first briefly review these previous formulations, before pro-
viding our extension.

2.6.1 Maximum-entropy reformulation of the gravity model

Per se, the standard GM is not a micro-founded model. However, various micro-
founded models admit a gravity-like relation as their equilibrium outcome [64, 65,
66, 67]. Notably, the GM can be obtained from the maximum-entropy principle
[68], and this result has been reformulated recently in the context of maximum-
entropy ensembles of networks [23]. The maximum-entropy framework is in some
sense the most general (i.e. requiring the minimal set of assumptions) context
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Figure 2.9: The EGM enhanced reconstruction of the network topology.
The heterogeneous binary topology of the observed ITN (red points) and the
expected values from the EGM (blue points). Left: the ANND as a function of
the observed degree k. Right: the clustering coefficient C' as a function of the
observed degree k.

wherein the GM emerges naturally as an outcome. It also leads to the least
biased predictions, as it makes no other hypothesis than consistence with a certain
aggregation of the data. We first shortly review this approach, then slightly
modify it in a form that assumes discrete rather than continuous trade volumes,
and finally, generalize it to a novel model that fixes the main issue of the GM.

The maximum-entropy approach starts by considering the space of all networks
with N nodes, where in our case N is the number of countries.

Generalizing the results in [18, 22], we preliminarily require that all the em-
pirical edge weights {w;;} are reproduced on average by a maximum-entropy
model. This leads to the graph probability P(W) that maximizes Shannon’s en-
tropy S = — > w P(W)In P(W) (where the sum runs over all possible weighted
networks with the same number of nodes as the real network).

If the weight of a link between two nodes is denoted (in some units) as the
entry w;; of a non-negative integer matrix W, then the corresponding entry in
the (purely binary) adjacency matrix A of the graph is

ai; = O(wi;), (2.33)
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where O is a Heaviside step function.

The result is P(W) = [[,_; y;';f /Z, where y;; is now a ‘dyadic’ (as opposed to
node-specific) hidden variable and where Z is the normalizing constant, or parti-
tion function [18]|. This model leads to expected weights of the form (w;;) = 1351
and (wijla;; = 1) = lfyij. Compared with previous maximum-entropy ap-
proaches to the ITN [18, 22, 19, 33|, this model has the big advantage that y;;
can be chosen such that (w;;la;; = 1) = F(n;,n;,D,;;) where F is any func-
tion of dyadic (D,;) and node-specific (n;) variables, like in eq.(2.32). Note that
F(n;,n;,D;;) has the same units of measure as w;;. At the same time, the model
fixes the entire probability ¢;;(w) that nodes ¢ and j are connected by a link of
weight w, which here has the geometric [18, 22| form g;;(w) = y;5(1 — yi;), thus
removing the aforementioned undesired arbitrariness of the weight distribution
in the GM. Therefore this model can be regarded as the ‘canonical’ specification
of the GM within a maximum-entropy framework. Note in particular that fixing
(wijla;; = 1) = F(n;,n;,D;;) automatically fixes all the other moments of the
geometric weight distribution, eliminating the extra parameters introduced by the
addition of additive or multiplicative noise to eq. (2.9).

Enforcing topological invariance means that, if we express the trade volumes
{w;;} in terms of millions of dollars rather than dollars, we want to obtain the
same expectations for the topology {a;;}, even if the expected volumes {(w;;)}
should instead scale accordingly. Unfortunately, in the above model the connec-
tion probability p;; = (ai;) = vij = (wi;)/(1 + (wi;)) is not invariant under a
change of units of measure for w;;. While (w;;) scales with w;; as desired, (a;;)
should not scale with (w;;), because the observed a;; is independent of the scale
of w;;: we do not want the expected number of ‘zeroes’ to be affected by the
arbitrary units of measure of the non-zero weights. Incidentally, we note that
choosing a realistically small unit (e.g. one dollar like in many trade databases)
implies that w;; (and therefore (w;;)) is a large number, which implies p;; — 1:
as the unit becomes smaller, this model predicts a denser network, asymptotically
complete like in the traditional GM. The dependence of the link density on ar-
bitrary units of weight, as well as its asymptotic saturation to a unit value, is a
general explanation for the failure of an entire class of weighted network models
(like the GM itself) that do not target purely topological properties in their con-
struction. Indeed, we argue that a simple and general theoretical reason for the
empirical failure of previous models is their lack of topological invariance.

2.6.2 The complete model

Since the maximum-entropy framework requires minimal assumptions (as it does
not postulate mechanistic or behavioral rules), it represents the most general
and transparent setting to reformulate the GM in such a way that topological
invariance is enforced as an additional ingredient, while keeping the other more
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Figure 2.10: The Gravity model, trade flow expectation. Comparison be-
tween the observed weights of the I'TN on the y-axis and the GM expected weights
(green points) on the x-axis. The black line is the identity line.

traditional specifications unchanged.

We generalize a recent model [32], based on an analytical maximum-likelihood
estimation method [18], that has been recently proposed in order to construct
advanced maximum-entropy ensembles of weighted networks that significantly
improve the fit to real data. The approach is particularly successful when applied
to the ITN [33]. In its standard formulation, the model enforces the degree and
strength sequence simultaneously [32]. It builds on the so-called generalized Bose-
Fermi distribution that was first introduced as a null model of networks with
coupled binary and weighted constraints [34].

Here, we reformulate the model more generally as a model that can flexibly
reproduce the edge weights of a network using both dyadic and node-specific
factors, while at the same time enforcing topological invariance, i.e. the desired
invariance of the (expected) binary structure under a change in the (arbitrary)
units of weight.

We therefore introduce a model that, besides the empirical weights {w;;},
enforces the empirical topology {a;; }, thus manifesting topological invariance from
the very beginning. As shown in sec. Materials and Methods, this model yields a
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2.6 The enhanced gravity model

Figure 2.11: The Enhanced Gravity model, trade flow expectation. Com-
parison between the observed weights of the ITN on the y-axis and the EGM
expected weights (blue points) on the x-axis, in green are the expectations of the
original GM. The black line is the identity line.

weight probability

()" (i)™ (1 = yi)
L —yij + ijyi;

aij(w) : (2.34)

where {z;;} and {y;;} are two arrays of dyadic hidden variables. The conditional
expected weight is

1

wi‘|ai- =1) = (235)
< J J > 1— sz
and the connection probability is
TijYij
pij =1 —¢;;(0) 70 (2.36)

-y Ty

As we illustrate below, now the presence of the extra variable z;; allows to keep
pi; fixed (thus enforcing topological invariance) while varying y;; as a result of a
possible change of scale in the original weights {w;; }.

The dyadic nature of the model allows us to combine the successful ingredients
of the traditional GM, which satisfactorily reproduces the conditional weights of
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the ITN, with those of more recent network models, which accurately reproduce
the topology. One one hand, we require that (2.35) has the generic structure of
the GM as in eq.(2.32):

1
1 —yij

(wijla; = 1) = = F(n;,n;,Dy;). (2.37)

On the other hand, we require that eq.(2.36) has the structure of a binary maximum-
entropy model reproducing the topology of the ITN [7, 36, 21, 31, 20]:

_ TijYij _
L—yij + iy 1+ 2

Zij

The above two expressions define our topology-enhanced model in general
form. Importantly, the conditional weights are independent of the topology, while
the opposite is not true. Also note that F'(n;,n;,D;;) depends on the chosen
currency or money unit, while we require z;; to be invariant (and dependent
uniquely on the binary structure of the network). This implies that the general
solution of the model is

1

vy = 1= F(n;,n;, D;;) (2.59)
L—vij _ Zij

Yij F(n;,n;,D;;)—1

Tij = Zij (2.40)

In general, both F(n;,n;,D,;) and z;; allow for any combination of dyadic
and country-specific properties. In what follows, we make (the simplest) particular
choices for these quantities. When fitting the standard GM to empirical data, the
typical result is that the main factor determining trade volume is GDP. Adding
geographical distances improves the fit significantly, while adding other dyadic
properties is generally a small refinement. For these reason, we choose the node
specific variable n; to be the GDP of country, rescaled to the total world GDP

n,=g; = % (as shown in Figure 2.4). Next, we choose the dyadic variable

D;; to be solely the distance between the two countries D;; = R;;. Thus,
F(ni, nj,Dl-j) =« (gz gj)ﬁ RZ] (241)

In this formation, g; is adimensional and does not depend on the chosen currency
or unit of money. On the other hand, it has been shown [7, 31] that the binary
structure of the I'TN can be excellently reproduced by setting

Although in principle one can add the geographic distances into z;; as well, em-
pirical evidence shows that, contrary to the weighted case, the effect of distances
on the binary structure of the ITN is not very strong [53]. This result motivates
our choice above. In any case, adding extra factors is straightforward.
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Putting the pieces together, our model is fully specified by the weight proba-
bility (2.34) with parameters given by egs.(2.39) and (2.40), which in turn depend
only on GDP and distance through eqs.(2.41) and (2.42). As a result we get the
following expected values:

09i9;

) = 54
pij = (aij) 1+ 0019, (2.43)
(wijlai; = 1) = a (9: 9;)° R}, (2.44)

5(gig:)P+!
(wij) = pij(wijlai; = 1) = 00l99;) R};. (2.45)

1+4gi9;

Note that the presence of p;; in the expression for (w;;) implies that the latter
takes the standard gravity form (2.9) only for those pairs of countries with large
GDP, which are surely connected in the model. For lower values of the GDP, the
expression is instead different, and for pair of countries with very low GDP one
gets (w;;) ~ ad(gig;) RZ]-, i.e. the exponent of g;g; is increased by one.

The model can also be interpreted as constructed from two random processes.
As a first step, one determines whether a link is present or not with a probability
pij- If a link (of unit weight) is indeed established, a second attempt determines
whether the weight of the same link is increased by another unit (with probability
y;j) or whether the process stops (with probability 1 — y;;). Iterating this proce-
dure, the probability that an edge with weight w is established between nodes @
and j is given precisely by ¢;;j(w) in eq.(2.34). The presence of these two degrees
of freedom allows us to make a parallel, like in [33], with the economic literature
about the so-called extensive and intensive margins of trade [61, 62, 63|, defined
as the preference for the network to evolve by either establishing new connections
or strengthening the intensity of existing ones respectively.

2.6.3 Results

In this section we will compare the performance of the two models, in reproduc-
ing the observed properties (low-order and high-order) of the real complex trade
network. We start with the trading volumes between countries, i.e. the weights
of the existing links in the network. This property has been the main focus of the
empirical economic literature on international trade, and it is the only property
the classical gravity model is designed to reproduce.

In Fig 2.10 we can see a typical log-log plot of the expected values versus the
real observed weights of the GM (as defined in eq. (2.9)). The three parameters
of the model, «, 3, and ~, are first fitted to the data, then plotted with the iden-
tity line (black line). The picture shows the typical good agreement between the
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Figure 2.12: The Enhanced Gravity Model, reconstruction of higher-
order binary properties. The heterogeneous binary topology of the observed
ITN (red points) and the expected topology from the EGM (blue points) and the
GM (green points). Left: the average nearest neighbour degree k™" as a function
of the observed degree k. Right: the clustering coefficient C' as a function of the
observed degree k.

predictions of the GM and the empirical non-zero trade volumes [15, 42, 43].

In Fig. 2.11 we compare the observed weights to both the gravity model
(GM) and enhanced gravity model (EGM) conditional weights. Overall there is
a very good agreement for both models; note that the EGM expectations are
shifted to the right compared to the gravity model values, compensating for the
higher expected number of zeroes. Despite the fact that in this study we use the
classical gravity model in its simplest form, the EGM model can support more
sophisticated models which incorporate additional dyadic information. Thus, the
model has maximum flexibility when picking an expression for the conditional
weights, and can be improved by using more refined models.

Binary Structure

In the binary representation, the main first-order property is the number of trade
partners (connections) of each country, i.e. the degree sequence of the network.
This simple yet important representation provides an added layer of considerable
information to the standard results of traditional macroeconomic analyses of in-
ternational trade. Recent studies have shown that higher-order binary properties,
like the degree correlations (disassortativity) and clustering structure, of the ITN
can be traced back to the knowledge of the degree sequence [21, 19]. This result
indicates that the degree sequence, which is a purely topological property, needs
to be considered as an important target quantity that international trade models,
in contrast with the mainstream approaches in economics, should aim at repro-
ducing.
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In Fig. 2.12 we plot some higher-order topological properties of the ITN as
a function of the degree of nodes, for the 2000 snapshot. These properties are
the so-called average nearest neighbour degree and the clustering coefficient. For
both quantities, we plot the observed values (red points) and the corresponding
expected values predicted by the EGM (blue points) and the GM (green points).
The exact expressions for both empirical and expected quantities are provided in
sec. Materials and Methods. We see that the expected values of the EGM are in
very close agreement with the observed properties, as opposed to the classical GM
which consistently predicts a complete network. They show that at a binary level,
the degree correlations (disassortativity) and clustering structure of the ITN are
excellently reproduced by the EGM.

Weighted Structure

Despite the importance of the topology, the latter is only the backbone over which
goods are traded, and the knowledge of the volume of such trade is imperative.
The simplest weighted counterpart of the degree sequence is the strength sequence,
i.e. the total trade of each country in the case of the ITN. Recent studies have
shown that the higher-order binary quantities inferred from the strength sequence,
as well as the corresponding weighted quantities, are very different from the ob-
served counterparts [21, 22]. More specifically, the main limitation of models
targeting only weighted properties, just like the gravity model, is that of predict-
ing a mostly homogeneous and very dense (sometimes fully connected) topology.
Roughly speaking, the models excessively ‘dilute’ the total trade of each country
by distributing it to almost all other countries. This failure in correctly replicat-
ing the purely topological projection of the real network is the root of the bad
agreement between expected and observed higher-order properties.

In fig. 2.13 we plot some higher-order weighted properties of the ITN as
a function of the strength of nodes, for the 2000 snapshot. These properties
are the so-called average nearest neighbour strength and the weighted clustering
coefficient. For both quantities, we plot the observed values (red points) and the
corresponding expected values predicted by the EGM (blue points) and the GM
(green points). The exact expressions for both empirical and expected quantities
are provided in sec. Materials and Methods. Again, we see that the expected
values of the EGM are in very close agreement with the observed properties,
as opposed to the classical GM. The bad performance of the traditional GM
results directly from the unrealistically expected topology (complete network).
This result highlights the importance of added structural information (degree
sequence) to the models.
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Figure 2.13: The Enhanced Gravity Model, reconstruction of higher-
order weighted properties. Comparison between the observed weighted prop-
erties of the observed ITN (red points), the corresponding expected values of the
EGM (blue points) and the gravity model (green points). Left: the average near-
est neighbour strength s™" as a function of the observed strength s. Right: the
weighted clustering coefficient C* as a function of the strength s.

2.7 Conclusions

In this chapter, we introduced a novel GD P-driven model which successfully
reproduces both the binary and weighted properties of the ITN. The model uses
the GDP of countries as a sort of macroeconomic fitness, and reveals the existence
of strong relations between the GDP and the model parameters controlling the
formation and the volume of trade relations. In the light of the limitations of the
existing models (most notably the binary-only nature of the fitness model and the
weighted-only nature of the gravity model), these results represent a promising
step forward in the development of a unified model of the ITN structure. Later, we
have introduced the EGM, which further improves these results and expand them
by introducing additional macroeconomic parameters like geographic distance,
aiming at bridging the gap between network-based and gravity-based approaches
to the structure of international trade.

Theoretically, the EGM model originates within a maximum-entropy frame-
work from a simple requirement of topological invariance under a change of money
units. The maximum-entropy nature fixes the form of the weight distribution,
thus removing an arbitrary ingredient of the original GM. Phenomenologically,
the EGM allows us to reconcile two very different approaches that have remained
incompatible so far: on one hand, the established GM which successfully repro-
duces non-zero trade volumes in terms of GDP and distance, while failing in
predicting the correct topology [42]; on the other hand, network models which
have been successful in reproducing the topology [7] but are more limited in their
weighted structure [31]. Empirically, the EGM is the first model that can suc-
cessfully reproduce the binary and the weighted empirical properties of the ITN
simultaneously.
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The EGM can be thought of as endowing the standard GM with a novel topo-
logically invariant structure calibrated to replicate the binary properties of the
ITN. Just like the standard GM, the EGM can accommodate additional economic
factors in terms of extra-dyadic and country-specific properties.

Our results have strong implications for the theoretical foundations of trade
models and the resulting policy implications. It is known that the traditional
GM is consistent with a number of (possibly conflicting) micro-founded model
specifications [64, 65, 66, 67]. For instance, a gravity-like relation can emerge as
the equilibrium outcome of models of trade specialization and monopolistic com-
petition with intra-industry trade [69, 70]. The empirical failure of the standard
GM, which we ultimately traced back to its lack of topological invariance, implies
a previously unrecognized limitation of these micro-founded models (and their
policy implications) as well. At the same time, our results suggest a natural way
to overcome this limitation via a topologically invariant reformulation of micro-
founded models of trade, in such a way that a change in the units of trade volume
has no impact on the resulting probability of trade among countries. How the
policy implications of a model change as the mere result of this reformulation is an
important point in the future research agenda. In general, we envisage the need
for a new generation of micro-founded models that are consistent with the EGM.
We, therefore, believe that the EGM can represent a novel benchmark supporting
improved theories of trade and refined policy scenarios.
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